JP5678383B2 - Proton conductor and electrochemical device using the same - Google Patents

Proton conductor and electrochemical device using the same Download PDF

Info

Publication number
JP5678383B2
JP5678383B2 JP2012011422A JP2012011422A JP5678383B2 JP 5678383 B2 JP5678383 B2 JP 5678383B2 JP 2012011422 A JP2012011422 A JP 2012011422A JP 2012011422 A JP2012011422 A JP 2012011422A JP 5678383 B2 JP5678383 B2 JP 5678383B2
Authority
JP
Japan
Prior art keywords
zeolite
proton
proton conductor
protons
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012011422A
Other languages
Japanese (ja)
Other versions
JP2013147408A (en
Inventor
加藤 正直
正直 加藤
学 小出
学 小出
智宏 佐藤
智宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SINTER LAND INC.
Original Assignee
SINTER LAND INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SINTER LAND INC. filed Critical SINTER LAND INC.
Priority to JP2012011422A priority Critical patent/JP5678383B2/en
Publication of JP2013147408A publication Critical patent/JP2013147408A/en
Application granted granted Critical
Publication of JP5678383B2 publication Critical patent/JP5678383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、プロトン(H+)を伝導イオン種とするプロトン伝導体及びそれを用いた燃料電池用や水素ポンプ用、水蒸気電解用の固体電解質等の電気化学素子に関するものである。 The present invention relates to a proton conductor having proton (H + ) as a conductive ion species, and an electrochemical element such as a solid electrolyte for a fuel cell, a hydrogen pump, or a steam electrolysis using the proton conductor.

従来、この種のプロトン伝導体として、例えば、リン酸塩系ガラスからなる組成構造のものが知られている。   Conventionally, as this type of proton conductor, for example, one having a composition structure made of phosphate glass is known.

特開2007−265803JP2007-265803 特許第4140909号Japanese Patent No. 4140909

しかしながらこれらリン酸塩系ガラスからなる組成構造の場合、一般に吸湿性や潮解性が激しく、水に対して非常に弱く、溶けてしまい、安定したガラス状態を保持できず、水分が存在する状況では、僅かの水分と反応してバルク状態を保つことができず、化学的耐久性が低く、機械的強度も低くなり、大面積化、高精度化等の障害となることがあるという不都合を有している。   However, in the case of a composition structure composed of these phosphate glasses, in general, hygroscopicity and deliquescence is intense, very weak against water, melts, cannot maintain a stable glass state, and there is moisture However, the bulk state cannot be maintained by reacting with a small amount of moisture, the chemical durability is low, the mechanical strength is also low, and there is a disadvantage that it may be an obstacle to increase in area and accuracy. doing.

本発明はこのような不都合を解決することを目的とするもので、本発明のうち、請求項1記載の発明は、プロトンを含むゼオライトを原料とし、該プロトンを含むゼオライトの粉末を機械加圧及び加熱により焼結してなり、該焼結により該ゼオライトの微細孔を圧潰し、この圧潰により組織を緻密化し、プロトンを保持可能なサイトをもつアルミノ珪酸系のガラスからなることを特徴とするプロトン伝導体にある。   The present invention aims to solve such disadvantages. Among the present inventions, the invention according to claim 1 uses a zeolite containing protons as a raw material, and mechanically pressurizes the powder of the zeolite containing protons. And sintered by heating, crushing the fine pores of the zeolite by the sintering, densifying the structure by the crushing, and comprising an aluminosilicate glass having sites capable of holding protons. Proton conductor.

又、請求項2記載の発明は、上記プロトンを含むゼオライトの粉末を放電プラズマ焼結法(以下、「SPS法」ともいう。)により焼結することを特徴とするものである。   The invention described in claim 2 is characterized in that the zeolite powder containing protons is sintered by a discharge plasma sintering method (hereinafter also referred to as “SPS method”).

又、請求項3記載の発明は、上記請求項1又は2記載のプロトン伝導体を用いたことを特徴とする電気化学素子にある。   A third aspect of the present invention is an electrochemical device using the proton conductor according to the first or second aspect.

本発明は上述の如く、請求項1又は請求項3記載の発明にあっては、プロトンを含むゼオライトを原料とし、プロトンを含むゼオライトの粉末を機械加圧及び加熱により焼結して製造され、この焼結によりゼオライトの微細孔は圧潰され、この圧潰により組織が緻密化し、プロトンを保持可能なサイトをもつアルミノ珪酸系のガラスからなるプロトン伝導体を得ることができ、ゼオライトはプロトンを取り込みやすい構造と性質を有し、このゼオライトを焼結によりガラス状態とすることで、プロトンを保持できるサイトを有した状態を保持でき、このサイトを用いることでプロトンのみによる伝導が可能となり、良好なプロトン伝導度を発揮することができ、かつ、ゼオライトを原料としたガラスは、シリカ、アルミナで三次元の組織を維持するため、非常に強固な機械的強度を有し、水溶液中や高温等の様々な条件で使用することが可能となり、化学的耐久性に優れ、強い機械的強度を有したプロトン伝導体を得ることができ、このようなプロトン伝導体を燃料電池用や水素ポンプ用、水蒸気電解用の固体電解質等の各種の電気化学素子として用いることができる。   As described above, the present invention is the invention according to claim 1 or claim 3, wherein a zeolite containing proton is used as a raw material, and the zeolite containing proton is sintered by mechanical pressure and heating, Due to this sintering, the micropores of the zeolite are crushed, the structure is densified by this crushing, and a proton conductor made of aluminosilicate glass having sites capable of holding protons can be obtained. This zeolite has a structure and properties, and by sintering this zeolite into a glass state, it can maintain a state having sites capable of holding protons. By using this site, conduction only by protons is possible, and good protons are obtained. Glass that can exhibit conductivity and that uses zeolite as a raw material maintains a three-dimensional structure with silica and alumina. Therefore, it has a very strong mechanical strength, can be used in various conditions such as aqueous solution and high temperature, and obtains a proton conductor having excellent chemical durability and strong mechanical strength. Such proton conductors can be used as various electrochemical elements such as solid electrolytes for fuel cells, hydrogen pumps, and steam electrolysis.

又、請求項2記載の発明にあっては、ゼオライトの粉末を放電プラズマ焼結法を用いて焼結するようにしているから、焼結加工を容易に行うことができる。   In the invention according to claim 2, since the zeolite powder is sintered using the discharge plasma sintering method, the sintering process can be easily performed.

本発明の実施の形態例の製造工程説明図である。It is manufacturing process explanatory drawing of the embodiment of this invention. 本発明の実施例1のX線強度と回折角とのX線回折図である。It is an X-ray diffraction diagram of the X-ray intensity and diffraction angle of Example 1 of the present invention. 本発明の実施例1の電気伝導度と温度との関係図である。It is a related figure of the electrical conductivity of Example 1 of this invention, and temperature. 本発明の実施例2のX線強度と回折角とのX線回折図であるIt is an X-ray diffraction diagram of the X-ray intensity and diffraction angle of Example 2 of the present invention. 本発明の実施例2の電気伝導度と温度との関係図である。It is a related figure of the electrical conductivity of Example 2 of this invention, and temperature. 本発明の実施例3のX線強度と回折角とのX線回折図である。It is an X-ray diffraction diagram of the X-ray intensity and diffraction angle of Example 3 of the present invention. 本発明の実施例3の電気伝導度と温度との関係図である。It is a related figure of the electrical conductivity of Example 3 of this invention, and temperature.

図1は本発明の実施の形態例であって、図1において、その製造方法を説明すると、先ず、原料として、プロトン(H+)(水素の陽イオン)を含むゼオライトZの粉末を用意することになり、ここに、ゼオライトZはシリカとアルミナからなるアルミノ珪酸塩系鉱物質であって、プロトンを含むゼオライトZは、例えば、ゼオライトZのもつイオン交換作用によりアルミノ珪酸塩のナトリウムの陽イオン(Na+)をアンモニウムイオン(NH +)で交換し、その後、焼成してプロトン(H+)を残し、これによりプロトンを含むゼオライトZ(プロトンタイプのゼオライト)を得ることができ、ゼオライトZの結晶構造中に、図1中(a)の断面図及び(b)の側断面図の如く、原子サイズレベルの決まった大きさの多数の微細孔hを有しており、図1中(c)の説明図の如く、プロトンを含むゼオライトZの粉末を、真空チャンバC内の焼結ダイD中に充填して上下の焼結パンチP・Pにより挟み、ゼオライトZの粉末を、例えば、放電プラズマ焼結法(以下、「SPS法」という。)により機械加圧及び加熱を行って焼結し、これによりゼオライトZの粉末の焼結体が製造され、図1中(d)の断面図、(e)側断面図の如く、この焼結体は微細孔hが圧潰されて組織が緻密化し、これによりプロトン(H+)を保持可能な不規則的な配置状態のサイト(site)(おそらくサイトの配置状態は不規則的な配置となると思われる。)をもつアルミノ珪酸のガラスからなるプロトン伝導体Sが製造されることになる。尚、焼結法として、機械加圧及び加熱を同時に行う構造に限らず、ゼオライトZの粉末を先ず機械加圧し、そして、機械加圧した状態において加熱して焼結する方法を採用することもある。 FIG. 1 shows an embodiment of the present invention. In FIG. 1, the production method will be described. First, a zeolite Z powder containing proton (H + ) (hydrogen cation) is prepared as a raw material. Zeolite Z is an aluminosilicate mineral composed of silica and alumina. Proton-containing zeolite Z is, for example, a sodium cation of aluminosilicate due to the ion exchange action of zeolite Z. (Na + ) is exchanged with ammonium ions (NH 4 + ), and then calcined to leave protons (H + ), whereby a proton-containing zeolite Z (proton-type zeolite) can be obtained. In the crystal structure of FIG. 1, a number of fine holes h having a predetermined atomic size level are formed as shown in the sectional view of FIG. As shown in FIG. 1C, the zeolite Z powder containing protons is filled in a sintering die D in a vacuum chamber C and sandwiched between upper and lower sintering punches P and P. The zeolite Z powder is sintered by, for example, mechanical pressurization and heating by a discharge plasma sintering method (hereinafter referred to as “SPS method”), thereby producing a sintered body of the zeolite Z powder. As shown in the sectional view of FIG. 1 (d) and the sectional side view of FIG. 1 (e), this sintered body is irregular in that the fine holes h are crushed and the structure becomes dense, thereby holding protons (H + ). Proton conductors S made of aluminosilicate glass with a site in a typical arrangement (probably the site arrangement is likely to be irregular) will be produced. The sintering method is not limited to a structure in which mechanical pressurization and heating are performed at the same time, and it is also possible to employ a method in which the zeolite Z powder is first mechanically pressurized and then heated and sintered in the mechanically pressurized state. is there.

この実施の形態例は上記のとおり、プロトン(H+)を含むゼオライトZを原料とし、プロトンを含むゼオライトZの粉末を機械加圧及び加熱により焼結して製造され、この焼結によりゼオライトZの微細孔hは圧潰され、この圧潰により組織が緻密化し、プロトン(H+)が容易に他のイオンに置き換わらず、プロトンのみが通過できるガラス状態に保持可能なサイトをもつアルミノ珪酸系のガラスからなるプロトン伝導体Sを得ることができ、ゼオライトZはプロトンを取り込みやすい構造及び性質を有し、このゼオライトZを焼結によりガラス状態とすることで、プロトンを保持できるサイトを有した状態を保持でき、このサイトを用いることでプロトンのみによる伝導が可能となり、良好なプロトン伝導度を発揮することができ、かつ、ゼオライトZを原料としたガラスは、シリカ、アルミナで三次元の組織を維持するため、非常に強固な機械的強度を有し、水溶液中や高温等の様々な条件で使用することが可能となり、化学的耐久性に優れ、強い機械的強度を有したプロトン伝導体Sを得ることができる。 In this embodiment, as described above, zeolite Z containing proton (H + ) is used as a raw material, and the powder of zeolite Z containing proton is sintered by mechanical pressure and heating. Of the aluminosilicate system having a site capable of maintaining a glass state in which only protons can pass therethrough without protons (H + ) being easily replaced with other ions. Proton conductor S made of glass can be obtained, and zeolite Z has a structure and properties that make it easy to take in protons, and this zeolite Z is made into a glass state by sintering, thereby having a site that can hold protons. By using this site, it is possible to conduct only by protons, and can exhibit good proton conductivity. Glass made from zeolite Z, which maintains a three-dimensional structure with silica and alumina, has extremely strong mechanical strength and can be used in various conditions such as aqueous solutions and high temperatures. The proton conductor S having excellent chemical durability and strong mechanical strength can be obtained.

この場合、プロトンを含むゼオライトZの粉末を放電プラズマ焼結法(以下、「SPS法」ともいう。)を用いて焼結するようにしているから、焼結加工を容易に行うことができる。   In this case, since the powder of zeolite Z containing protons is sintered using a discharge plasma sintering method (hereinafter also referred to as “SPS method”), the sintering process can be easily performed.

そして、このようなプロトン伝導体Sを燃料電池用や水素ポンプ用、水蒸気電解用の固体電解質等の各種の電気化学素子として用いることができる。   Such proton conductor S can be used as various electrochemical elements such as solid electrolytes for fuel cells, hydrogen pumps, and steam electrolysis.

尚、ゼオライトZは、強固なケイ素イオンとアルミニウムイオンを骨格構造としており、さらに、ケイ素イオンとアルミニウムイオンの割合を変化させることで、骨格構造を変化させることができ、プロトン伝導度を制御することもできる。   Zeolite Z has strong silicon ions and aluminum ions as a skeleton structure, and by changing the ratio of silicon ions and aluminum ions, the skeleton structure can be changed, and proton conductivity can be controlled. You can also.

実施例1においては、モルデナイト型ゼオライトを原料とし、このモルデナイト型ゼオライトは、1次元に開かれた微細孔hを有しており、ナトリウムタイプ、アンモニアタイプ、プロトンタイプ(プロトンを含むタイプのゼオライトZ)があり、このプロトンを含むプロトンタイプのゼオライトZの粉末をSPS法を用い、焼結条件として、40MPaの圧力下において、1,250℃の焼結温度で焼結し、試料1のプロトン伝導体Sを得た。   In Example 1, mordenite-type zeolite is used as a raw material, and this mordenite-type zeolite has one-dimensionally open micropores h, and is sodium-type, ammonia-type, proton-type (zeolite-containing zeolite Z The proton-type zeolite Z powder containing protons was sintered at a sintering temperature of 1,250 ° C. under a pressure of 40 MPa as a sintering condition using the SPS method. Body S was obtained.

この試料1のプロトン伝導体SをX線回折により構造解析をした結果、図2のX線回折図のとおり、ほぼガラスであることがわかった。また、この試料1では、図3のとおり、450℃から650℃の温度範囲で、10−8(Scm−1)から10−4(Scm−1)の電気伝導度を有することがわかった。 As a result of structural analysis of the proton conductor S of Sample 1 by X-ray diffraction, it was found that it was almost glass as shown in the X-ray diffraction diagram of FIG. In addition, as shown in FIG. 3, Sample 1 was found to have an electric conductivity of 10 −8 (Scm −1 ) to 10 −4 (Scm −1 ) in the temperature range of 450 ° C. to 650 ° C.

実施例2においては、フォージャサイト型ゼオライトを原料とし、このフォージャサイト型ゼオライトには、シリカとアルミナの比の違いによりYタイプ(S/Al=6以上)とXタイプ(S/Al=6以下)とがあり、どちらのタイプも3次元に開かれた微細孔hを有しており、ナトリウムタイプ、アンモニアタイプ、プロトンタイプがあり、このS/Al比14のフォージャサイト型YタイプゼオライトのプロトンタイプをSPS法を用い、40MPaの圧力下において、1,200℃の焼結温度で焼結し、試料2のプロトン伝導体Sを得た。 In Example 2, a faujasite type zeolite is used as a raw material, and this faujasite type zeolite has a Y type (S i O 2 / Al 2 O 3 = 6 or more) and X depending on the ratio of silica and alumina. There are types (S i O 2 / Al 2 O 3 = 6 or less), and both types have micropores h that are three-dimensionally open, and there are sodium types, ammonia types, and proton types. The proton type of a faujasite type Y type zeolite with a S i O 2 / Al 2 O 3 ratio of 14 was sintered at a sintering temperature of 1,200 ° C. under a pressure of 40 MPa using a SPS method. Proton conductor S was obtained.

このプロトン伝導体SをX線回折により構造解析をした結果、図4のX線回折図のとおり、ほぼガラスであることがわかった。又、この試料2では、図5のとおり、400℃から650℃の温度範囲で、10−6(Scm−1)から10−4(Scm−1)の電気伝導度を有することがわかった。 As a result of structural analysis of the proton conductor S by X-ray diffraction, it was found that the proton conductor S was almost glass as shown in the X-ray diffraction diagram of FIG. Further, as shown in FIG. 5, this sample 2 was found to have an electric conductivity of 10 −6 (Scm −1 ) to 10 −4 (Scm −1 ) in the temperature range of 400 ° C. to 650 ° C.

実施例3においては、フォージャサイト型Yタイプゼオライトを原料とし、S/Al比6のフォージャサイト型YタイプゼオライトのプロトンタイプをSPS法を用い、40MPaの圧力下において、1,300℃の焼結温度で焼結し、試料3のプロトン伝導体Sを得た。 In Example 3, the faujasite type Y type zeolite is used as a raw material, and the proton type of the faujasite type Y type zeolite having a S i O 2 / Al 2 O 3 ratio of 6 is used under the pressure of 40 MPa using the SPS method. The proton conductor S of Sample 3 was obtained by sintering at a sintering temperature of 1,300 ° C.

このプロトン伝導体SをX線回折により構造解析をした結果、図6のX線回折図のとおり、ガラス相に微細な結晶を含む構造であることがわかった。又、試料3では、図7のとおり、電気伝導度は、450℃から650℃の温度範囲で、10−5(Scm−1)から10−3(Scm−1)の電気伝導度を有することがわかった。 As a result of structural analysis of the proton conductor S by X-ray diffraction, it was found that the proton conductor S had a structure containing fine crystals in the glass phase as shown in the X-ray diffraction diagram of FIG. Moreover, in the sample 3, as shown in FIG. 7, the electric conductivity has an electric conductivity of 10 −5 (Scm −1 ) to 10 −3 (Scm −1 ) in the temperature range of 450 ° C. to 650 ° C. I understood.

尚、他の実施例として、上記プロトンを含むゼオライトZにガラス成分を添加した混合物を原料とし、このプロトンを含むゼオライトZにガラス成分を添加した混合物の粉末を機械加圧及び加熱により焼結し、この焼結によりゼオライトZの微細孔hを圧潰し、この圧潰により組織が緻密化し、プロトンを保持可能なサイトをもつアルミノ珪酸系のガラスからなるプロトン伝導体Sとすることもできる。   As another example, a mixture of the above-described zeolite Z containing protons with a glass component added is used as a raw material, and the powder of the mixture obtained by adding a glass component to zeolite Z containing protons is sintered by mechanical pressure and heating. The fine pores h of the zeolite Z can be crushed by this sintering, the structure can be densified by the crushing, and the proton conductor S made of an aluminosilicate glass having sites capable of holding protons can be obtained.

この具体的な試料4として、例えば、上記モルデナイト型ゼオライトのプロトンタイプ、又は、上記フォージャサイト型ゼオライトのプロトンタイプに酸化鉛、酸化ビスマス等の低融点化合物を含むガラス成分を添加した混合物を原料とし、この混合物をSPS法を用い、40MPaの圧力下において、1,200℃の焼結温度で焼結し、試料4のプロトン伝導体Sを得ることができる。   As this specific sample 4, for example, a raw material is a mixture in which a glass component containing a low melting point compound such as lead oxide or bismuth oxide is added to the proton type of the mordenite zeolite or the proton type of the faujasite type zeolite. Then, this mixture is sintered at a sintering temperature of 1,200 ° C. under a pressure of 40 MPa using the SPS method, and the proton conductor S of Sample 4 can be obtained.

この試料4においては、比較的低温下におけるSPS法において、プロトン伝導体Sを得ることができる。   In this sample 4, the proton conductor S can be obtained by the SPS method at a relatively low temperature.

尚、本発明は上記実施の形態例に限られるものではなく、ゼオライトZの種類や焼結の方法等は適宜変更して設計されるものである。   Note that the present invention is not limited to the above embodiment, and the type of zeolite Z, the sintering method, and the like are appropriately changed and designed.

以上、所期の目的を充分達成することができる。   As described above, the intended purpose can be sufficiently achieved.

Z ゼオライト
h 微細孔
S プロトン伝導体
Z Zeolite h Micropore S Proton conductor

Claims (3)

プロトンを含むゼオライトを原料とし、該プロトンを含むゼオライトの粉末を機械加圧及び加熱により焼結してなり、該焼結により該ゼオライトの微細孔を圧潰し、この圧潰により組織を緻密化し、プロトンを保持可能なサイトをもつアルミノ珪酸系のガラスからなることを特徴とするプロトン伝導体。   Proton-containing zeolite is used as a raw material, and the zeolite-containing zeolite powder is sintered by mechanical pressure and heating, and the fine pores of the zeolite are crushed by the sintering. A proton conductor made of an aluminosilicate glass having a site capable of holding a metal. 上記プロトンを含むゼオライトの粉末を放電プラズマ焼結法(以下、「SPS法」ともいう。)を用いて焼結することを特徴とする請求項1記載のプロトン伝導体。   2. The proton conductor according to claim 1, wherein the zeolite powder containing protons is sintered using a discharge plasma sintering method (hereinafter also referred to as "SPS method"). 上記請求項1又は2記載のプロトン伝導体を用いたことを特徴とする電気化学素子。   An electrochemical element using the proton conductor according to claim 1 or 2.
JP2012011422A 2012-01-23 2012-01-23 Proton conductor and electrochemical device using the same Expired - Fee Related JP5678383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011422A JP5678383B2 (en) 2012-01-23 2012-01-23 Proton conductor and electrochemical device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011422A JP5678383B2 (en) 2012-01-23 2012-01-23 Proton conductor and electrochemical device using the same

Publications (2)

Publication Number Publication Date
JP2013147408A JP2013147408A (en) 2013-08-01
JP5678383B2 true JP5678383B2 (en) 2015-03-04

Family

ID=49045305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011422A Expired - Fee Related JP5678383B2 (en) 2012-01-23 2012-01-23 Proton conductor and electrochemical device using the same

Country Status (1)

Country Link
JP (1) JP5678383B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437307B2 (en) * 2014-12-26 2018-12-12 旭化成株式会社 Solid electrolyte
JP6603026B2 (en) * 2015-02-27 2019-11-06 住友電気工業株式会社 Method for manufacturing ceramic sintered body, method for manufacturing capacitor, method for manufacturing solid oxide fuel cell, method for manufacturing water electrolysis device, and method for manufacturing hydrogen pump
JP2016219134A (en) * 2015-05-15 2016-12-22 旭化成株式会社 Solid electrolyte

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127821A1 (en) * 1981-07-14 1983-02-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen FIXED PROTON LADDER AND THEIR USE
JPS59213616A (en) * 1983-05-19 1984-12-03 Nippon Kogaku Kk <Nikon> Amorphous aluminosilicate and its manufacture
JP3844374B2 (en) * 1996-11-19 2006-11-08 秋田県 Bioreactor carrier and method for producing the same
JPH11228238A (en) * 1998-02-17 1999-08-24 Kubota Corp Bulk molded product having crystalline pore structure and its production
JP2002313362A (en) * 2001-04-16 2002-10-25 Takeshi Kawabata Structure of solid fuel cell and its manufacturing method
JP2007200601A (en) * 2006-01-24 2007-08-09 Kri Inc Proton conductive solid electrolyte
JP2008037721A (en) * 2006-08-09 2008-02-21 Kyodo Printing Co Ltd Zeolite formed body and method of manufacturing the same
US20110217623A1 (en) * 2008-05-05 2011-09-08 Nanyang Technological University Proton exchange membrane for fuel cell applications
JP2011150949A (en) * 2010-01-23 2011-08-04 Nanomembrane Technologies Inc Membrane electrode assembly, its manufacturing method, and fuel battery cell

Also Published As

Publication number Publication date
JP2013147408A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
Oh et al. Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering
Hanghofer et al. Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries
Miara et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+ 2 x–y (La3–x Rb x)(Zr2–y Ta y) O12 (0≤ x≤ 0.375, 0≤ y≤ 1) superionic conductor: A first principles investigation
Deng et al. Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON) solid electrolytes
Wood et al. Sodium ion diffusion and voltage trends in phosphates Na4M3 (PO4) 2P2O7 (M= Fe, Mn, Co, Ni) for possible high-rate cathodes
Sadikin et al. Superionic Conduction of Sodium and Lithium in Anion‐Mixed Hydroborates Na3BH4B12H12 and (Li0. 7Na0. 3) 3BH4B12H12
Shen et al. Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic–organic self-assembly and superior supercapacitor performance
Zhou et al. An entropically stabilized fast-ion conductor: Li3. 25 [Si0. 25P0. 75] S4
England et al. Fast proton conduction in inorganic ion-exchange compounds
Li et al. High Li+ conduction in NASICON-type Li1+ xYxZr2− x (PO4) 3 at room temperature
Ramana et al. Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and Raman spectroscopy
Leo et al. Lithium conducting glass ceramic with Nasicon structure
Tesfaye et al. Anodized Ti3SiC2 as an anode material for Li-ion microbatteries
Lambregts et al. Phase behavior and ion dynamics of nanoconfined LiBH4 in silica
Zettl et al. Combined effects of anion substitution and nanoconfinement on the ionic conductivity of Li-based complex hydrides
Salehabadi et al. Dy3Al2 (AlO4) 3 ceramic nanogarnets: Sol-gel auto-combustion synthesis, characterization and joint experimental and computational structural analysis for electrochemical hydrogen storage performances
Strauss et al. High-entropy polyanionic lithium superionic conductors
JP5678383B2 (en) Proton conductor and electrochemical device using the same
He et al. Vertically heterostructured solid electrolytes for lithium metal batteries
Strangmüller et al. Modifying the Properties of Fast Lithium-Ion Conductors—The Lithium Phosphidotetrelates Li14SiP6, Li14GeP6, and Li14SnP6
Cheng et al. One-Step Incorporation of Nitrogen and Vanadium between Ti3C2 T x MXene Interlayers Enhances Lithium Ion Storage Capability
Chowdhury et al. Theoretical model for magnetic supercapacitors—From the electrode material to electrolyte ion dependence
Joos et al. Impact of hydration on ion transport in Li 2 Sn 2 S 5· x H 2 O
Shen et al. Atomistic insights into the role of grain boundary in ionic conductivity of polycrystalline solid-state electrolytes
Zhang et al. Fast Ionic Conducting Glasses in the System 20LiCl–40Li2O–(80–x) PO5/2–x MoO3: The Structural Dependence of Ion Conductivity Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5678383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees