JP5674790B2 - 光学的に基礎付けられた平面状スキャナー - Google Patents

光学的に基礎付けられた平面状スキャナー Download PDF

Info

Publication number
JP5674790B2
JP5674790B2 JP2012528933A JP2012528933A JP5674790B2 JP 5674790 B2 JP5674790 B2 JP 5674790B2 JP 2012528933 A JP2012528933 A JP 2012528933A JP 2012528933 A JP2012528933 A JP 2012528933A JP 5674790 B2 JP5674790 B2 JP 5674790B2
Authority
JP
Japan
Prior art keywords
bragg grating
light
switchable bragg
waveguide
platen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012528933A
Other languages
English (en)
Other versions
JP2013504823A (ja
Inventor
ハムレ・ジョン・ディー.
マーセ・ダニエル・エフ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Identix Inc
Idemia Identity and Security USA LLC
Original Assignee
Identix Inc
Identix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Identix Inc, Identix Inc filed Critical Identix Inc
Publication of JP2013504823A publication Critical patent/JP2013504823A/ja
Application granted granted Critical
Publication of JP5674790B2 publication Critical patent/JP5674790B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Image Input (AREA)
  • Position Input By Displaying (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Transform (AREA)

Description

[他の出願との関係]
本出願は、2009年9月11日に提出された”OPTICALLY BASED PLANAR SCANNER”と題する特許暫定出願61/241,546号、及び2010年9月9日に提出された”OPTICALLY BASED PLANAR SCANNER”と題する実用新案出願12/878,535号に基づいて優先権を主張するものであり、上記出願の内容はすべて本願に参照して合同されるものとする。
現行の法医学的品質(forensic quality)生物測定用スキャナーはレンズ、鏡、プリズム、及び光学センサから成る従来の光学技術を使用するものである。これらのシステムを使用して走査される対象物の画像は優秀な像質を有するものであるが、かような法医学的品質生物測定用スキャナーにおける光学的経路の三次元的性質の結果として、システムは重いものとなる。更に、光路が三次元である結果として照明度が可成り高くなり、多量の電力が必要となることが有る。
此処に開示されるのは画像生成用の光学的に基礎付けられた平面状スキャナーを提供する装置及び方法である。此処に開示される光学的に基礎付けられた平面状スキャナーの装置及び方法とはスイッチ可能ブラッグ格子である。
本発明の一実施形態における画像を走査するように構成された装置には光線を供給するように構成された光源と、この光線を検出する光検出器と、プラテンと、 導波管と、反射型格子と、スイッチ可能ブラッグ格子とが含まれる。このスイッチ可能ブラッグ格子の一領域はこの光線をこの反射型格子とこの該導波管を通じてこのプラテンへと導くように活性化されるように構成され、このプラテンはこの光線をこの導波管を通じて内部全反射によってこの反射型格子へと反射又は屈折させるように構成されている。この反射型格子はこのプラテンから反射された光線をこの導波管へと反射させるように構成されている。この導波管はこの光線をこの光検出器へと導くように構成されたものである。
別の実施形態による装置は画像を走査して入力を受信するように構成されたものであり、光線を供給するように構成された光源と、この光線を検出する光検出器と、プラテンと、このプラテンの下に位置する導波管と、この導波管の下に位置する反射型格子と、この反射型格子の下に位置するスイッチ可能ブラッグ格子が含まれる。このプラテン、導波管、反射型格子、及びスイッチ可能ブラッグ格子は透明である。この装置には装置の使用者に可視であり、入力選択を表示するように構成された表示器が更に含まれる。この表示器はスイッチ可能ブラッグ格子の下に位置するものである。スイッチ可能ブラッグ格子の一領域はこの光線を反射型格子と導波管を通じてプラテンへと導くように活性化されるように構成されている。プラテンはこの光線を 導波管を通じて内部全反射によって反射型格子へと反射又は屈折させるように構成されている。反射型格子は プラテンから反射された光線を導波管へと反射させるように構成されている。導波管はこの光線を光検出器へと導くように構成されたものである。
本発明の更に別の実施形態の場合、画像を走査する方法にはスイッチ可能ブラッグ格子を供する工程が含まれる。このスイッチ可能ブラッグ格子の一領域は光線を反射型格子及び導波管を通してプラテンに導くように活性化される。この光線は内部全反射によりプラテンの一表面から反射され、又は屈折されて、該プラテンの表面に接触している対象物に入れられる。この反射光線はこの導波管を通して反射型格子に導かれるものである。反射型格子から反射された光線は導波管へと反射される。反射された光線は導波管で検出装置へ導かれる。
本発明の更なる実施形態の場合、画像を走査するように構成された装置は光線を供給するように構成された光源、この光線を検出するように構成された光検出器、対象物受領表面、第一層を形成するように配列された第一複数スイッチ可能ブラッグ格子部品、及び第二層を形成するように配列された第二複数スイッチ可能ブラッグ格子部品を含む。第一複数スイッチ可能ブラッグ格子部品の領域は該光線を該対象物受領表面へ導くように構成される。対象物受領表面は光線を第一スイッチ可能ブラッグ格子部品を通じて内部全反射によって第二複数スイッチ可能ブラッグ格子部品の活性化された領域へと反射又は屈折させるように構成される。第二スイッチ可能ブラッグ格子部品の活性化された領域は光線を光検出器へと導くように構成される。
本発明の更に別の実施形態の場合、画像を走査するように構成された装置は光線を供給するように構成された光源、この光線を検出するように構成された光検出器、プラテン、スイッチ可能ブラッグ格子、ガラス層、導波管、及び反射型格子を含むものである。スイッチ可能ブラッグ格子の一領域は光線を内部全反射によりスイッチ可能ブラッグ格子で出されるように活性化されるように構成されている。プラテンは内部全反射によりスイッチ可能ブラッグ格子で出された光線を導波管を通して全反射により反射型格子へ反射するように構成されている。反射型格子は該プラテンから反射された光線を該導波管へ反射するように構成されている。導波管は光線を光検出器へ導くように構成されたものである。
一個以上の実施形態の詳細が図示及び以下記述されるが、その他の特徴、目的、利点などは図及び請求項の記述により明白であろう。
スイッチ可能ブラッグ格子の作用を略示するものである。 本発明の一実施形態による光学的に基礎付けられた平面状スキャナーの側面を略示するものである。 図2Aの平面状スキャナーのスイッチ可能ブラッグ格子スタックの拡大略示図である。 スイッチ可能ブラッグ格子の一領域が活性化されていない場合における図2Aの平面状スキャナーにおける光路を略示するものである。 スイッチ可能ブラッグ格子の一領域が活性化されている場合における図2Aの平面状スキャナーにおける光路を略示するものである。 図2Aの平面状スキャナーの一部の上面略図である。 本発明の一実施形態の場合の光学的に基礎付けられた平面状映像走査方法のフロー図である。 本発明の別の実施形態による光学的に基礎付けられた平面状スキャナーの側面略図である。 図4Aの平面状スキャナーの第一複数のスイッチ可能ブラッグ格子部品の拡大略図である。 作動時における図4Aの平面状スキャナーの中の光路を略示するものである。 図4Aの平面状スキャナーの一部の上面略図である。 本発明の更に別の実施形態の光学的に基礎付けられた平面状スキャナーの側面略図である。 作動時における図5Aの平面状スキャナーの中の光路を略示するものである。 本発明の更なる実施形態の場合の光学的に基礎付けられた平面状スキャナーの側面略図である。 作動時における図5Cの平面状スキャナーの中の光路を略示するものである。 本発明の更なる実施形態の光学的に基礎付けられた平面状スキャナーの側面図と平面状スキャナーの中の光路を略示するものである。
本発明は光学的に基礎付けられた平面状スキャナー及び方法に関し、殊に指紋、掌紋及び手紋の捕捉にスイッチ可能ブラッグ格子を使用する光学的に基礎付けられた平面状スキャナー及び方法に関する。
指紋、掌紋及び手紋を捕捉するための可動スキャナーはより大きく,高質の画像、法医学的の高質スキャナーのそれを達成する機能性を要求し始めている。可動スキャナーに要求されているその他の項目には、例えば小型化、重量の減少、バッテリで供給可能な低度の電力消費がある。現行の走査システムのサイズ縮小の為の技術的アプローチとしてシステムを二次元的構成に押しつぶすことがある。
此処に開示される光学的に基礎付けられた平面状スキャナー及び方法ではスイッチ可能ブラッグ格子が使用される。スイッチ可能ブラッグ格子の商業用製造者にはSBG Labs(Sunnyvale,CA)がある。
スイッチ可能ブラッグ格子(SBG)は電界の存在有無によってスイッチ可能ブラッグ格子(SBG)の透過又は分散特性を変化させ得る機能性を有する物質である。SBGは通常表示及び通信工業において使用される。或るSBGは単量体内の液晶物質の微小滴を混合して製造される。混合物は単量体を重合する構成されたレーザに露出され、液晶小滴が所定のパタンに配列される。かようなSBGが形成された後、SBGに電圧を与えると液晶小滴が方向付けされ、電圧の印加された領域においてSBGの光学的特性が変更される。
図1はSBGの作用を略示するものである。図102及び図152において、SBG106は一方の側面に複数の電極108を有し、反対側の面に複数の電極110を有している。複数の電極108の各々は複数の電極110の一つの電極に対応している。代行的な場合、SBG106は一方の面に複数の電極108を有し、反対側の面には単一の照合電極(図示せず)を有する。SBG106の両面には上面ガラス116及び底面ガラス117とがある。図102及び図152の両方において、光線112(直線で表示)は上面ガラス116と底面ガラス117の間を内部全反射によって通過している。
図102では電界(鉛直の矢印で表示)が複数の電極108の各々と複数の電極110の中のそれに対応する電極との間に生成されている。代行的な場合には、電界が複数の電極108の各々と単一の照合電極の間に生成される。この単一の照合電極は複数の電極110と同じ領域に亘るものであるがこれは複数の各自の電極の代わりの唯一の電極なのである。或るSBGの場合、SBGに亘って生成される電界はAC電界である。SBG106の電極108の各々と電極110の中のそれに対応する電極との間に生成された電界の結果、光線112はSBG106を通過して行く;即ち、SBGは活性化されて居らず、透過状態にある。印加電圧を除いて一対の電極の間の電界を除去すると、SBGはこのSBGの製造に使用されたプロセス条件によって決定される角度で光線を回折する;即ちSBGは活性化されて回折状態にある。図152の場合、電極118とそれに対応する電極120とはその間にAC電界を生成して居らず、光線112はSBGの電極間の領域122で回折される。
ナノ分散液晶物質を使用して製造されたSBGは透過状態と回折状態の間のスイッチ時間が極めて高速(例えば約100マイクロ秒)である。SBGは所定の波長又は波長範囲で光線と反応する。
図2Aは本発明の一実施形態による光学的に基礎付けられた平面状スキャナーの側面を略示するものである。スキャナー202にはプラテン又は対象物受領表面204、導波管206、反射型格子211、SBGスタック209、光学的物質230、透過物質228、偏光器226、ビーム拡張視準光学器224、表示器236、光検出器238、及び光源222が含まれる。SBGスタック209には上面ガラス214、SBG212、及び底面ガラス216が含まれる。導波管206には導波管核部208及び導波管核部208の両側にある導波管クラディング207及び210が含まれる。
或る実施形態の場合、光源222は電磁波スペクトラムの可視部分の光線(即ち約380から760ナノメートルの間)又は電磁波スペクトラムの不可視部分の光線を発生するレーザである。電磁波スペクトラムの不可視部分の光線を発生するレーザを使用することは、検出を避けることが重要な状態でスキャナーが走査される場合に重要である。例えば不可視光線を使用することは戦場で重要である。或る実施形態の場合、照射システムでのレーザは(例えば波長が約785ナノメートルの光線を発射するように構成された)赤外線レーザである。レーザからの光線は先ずビーム拡張視準光学器224を通過する。或る実施形態の場合、ビーム拡張視準光学器224の厚さは約1ミリメートルである。ビーム拡張光学器は狭くて低発散度の光線をレーザ光線の平面(即ち図2Aの頁へと伸びる平面 )へと形成する。視準光学器はレーザ光線の面の視準の役を果たす。視準された光線は略平行な光線であり、伝播するに従って緩やかに拡散する。光線の視準の重要性については後述する。
ビーム拡張視準光学器224を通過した後、レーザ光線の視準された面はビーム拡張視準光学器224の表面232で反射される。この表面はこの光線の波長域で反射性のものでもよく、光線が全反射によってこの表面232で反射されるものであってもよい。この表面232で反射された後、光線は偏光器226を通過してこれによって偏光される。発明の或る実施形態の場合、偏光器の厚さは約50から100マイクロメートルである。光線を偏光させることの重要性については後述する。光線は次いで透過物質228へと通過し、 透過物質228の表面234で反射される。この表面234は表面232と同様であってよい。光線は表面234から反射された後、透過物質228を通過してSBGスタック209へと通過する。或る実施形態の場合、この透過物質228の厚さは約1.3ミリメートルである。透過物質228の屈折率は光線がSBGスタック209の底部ガラス216からSBG212へと通過する時の反射がないか殆どないように構成されている。
図2Bは図2Aのスキャナー202のSBGスタック209を拡大して略示する図である。SBGスタックには上部ガラス、SBG212の上面上の複数の電極213、SBG212の底面上の複数の電極215、及び底面ガラス(図示せず)が含まれる。或る実施形態の場合、SBG212の底面上の複数の電極215は上記のように単一の照合電極(図示せず)で置き換えられる。或る実施形態の場合、電極は透明な導電性酸化物である。特別な実施形態の場合、この透明な導電性酸化物はインジウム錫酸化物である。或る実施形態の場合、電極の厚さは約200から300ナノメートルである。或る実施形態の場合、電極の幅は2ミル(2/1000インチ)である。電極の幅は下記のようにスキャナー202によって生成される画像の解像度を決定するものである。SBG212の厚さは或る実施形態の場合約3から12マイクロメートルである。特殊な実施形態のSBG212の厚さは約4マイクロメートルである。上面ガラス214及び底面ガラス216の厚さは或る実施形態の場合夫々約50から500マイクロメートルである。特殊な実施形態の場合、上面ガラス214及び底面ガラス216の厚さは夫々約300マイクロメートルである。図2Bから見ると、透過物質228からの光線(図2A)はSBG212を図2Bの頁の面へと通過する。図2Aから見ると、電極213及び電極215は図2Aの頁の面へと延びている。
図1に関連して説明されたように、複数の電極213の各々は複数の電極215の中の一つに対応している。運行中において、電極213と215のすべての対の間に強度が十分なAC電界が生成されると、SBG212のすべての領域が透明状態となる。約50ボルトで振動数が約1キロヘルツ又はそれ以上の電圧で生成されるAC電界が本発明の或る実施形態の場合或るSBGに好適である。SBG212のすべての領域が透明状態の場合、透過物質228からの光線はSBGスタックの上面ガラス214と底面ガラス216の間の内部全反射で反射されるような角度でSBGスタック209に入射する。
本発明の更なる実施形態の場合、SBGスタック209にはSBGの上面上の第二複数の電極(図示せず)及びSBGの底面上の第二複数の電極(図示せず)とが含まれる。或る実施形態の場合、これらの第二複数の電極は電極213及び215と直交している。SBGの上面上の第二複数の電極の各々はSBGの底面上の第二複数の電極の一つと対応している。これらの第二複数の電極があると、電極213及び215に直交するSBG物質片は回折状態となることが出来、これらの片に沿って光線は通過しないことになる。このことは、下記のように指紋の製造に使用可能な偽造モデルの検出のような画素ごとのプラテン照射の制御が望まれるような応用面において有用である。
図2Cは図2AのスキャナーのSBG212が活性化されて居らず、すべての領域が透明状態にある場合における光源222からの光線242の経路を略示するものである。光線242はSBGスタック209の内部に留まっており、光検出器238によって検出されない。光学的物質230はSBGスタック209の内部で光線242の内部全反射が起こるような屈折率である。光線はSBGスタック209の左端部から出て内部全反射で捕捉され、右端部にある光線を実質上全部吸収してしまう光吸収体から成る光ダンプ203に遇う。
しかし、電極213と電極215との間の電極の対で、その間にAC電界が生成されていないものがあると、SBGのこの電極対の間の領域は活性化され、回折状態にある。SBGの一領域が回折状態にあると、このSBGは光線をSBGスタック209の上面ガラス214と底面ガラス216の間の内部全反射から取り出す角度に導く。
図2DはSBG212の一領域が活性化されて回折状態にある場合の図2Aのスキャナーにおける光源222からの光線の経路244を略示するものである。図2Dにおいて、SBG212は領域250の部分で活性化されて居り、光線は上面ガラス214と底面ガラス216の間で内部全反射から取り出される。
光線が領域250において内部全反射から取り出されると、この光線はプラテン204の表面へと反射型格子211及び導波管206とを通過する。光線とプラテンの表面とが反応する領域252において対象物がプラテン204の表面と接触していない場合には、プラテンの表面において内部全反射が起こり、光線は導波管206の中へと反射される。もし対象物が光線とプラテンと反応する領域252でプラテン204の表面に接触しているならば、光線の一部分は対象物の内部に屈折し、一部は内部全反射で反射されることになるかもしれない。光線の全体が対象物の内部へと屈折する場合があってもよい。
プラテン204の表面から反射される光線、又はその一部は導波管206を通して反射型格子211へと反射される。反射型格子211の領域254で光線は導波管206へと反射される。この反射型格子はレーザで供給される光線の波長を反射させるように選択される。本発明の或る実施形態の場合、反射型格子の厚さは約50マイクロメートルである。偏光度の異なる光線が反射型格子と反応してもよく、偏光度の異なる光線は異なる効率で反射する。偏光器226は光線を偏光し(即ち光線は一様式に偏光されている)、従って光線は偏光器によって異なる様式の偏光による強度のバラツキがない。従って、光検出器によって検出される光強度のバラツキ(下記において更に詳述される)はプラテンの表面での光線の反応の相違によるものであり、スキャナー202のその他の部品によるものではない。
導波管206は反射型格子211からの光線を内部全反射によって光検出器へと導く。導波管は通常広範囲の波長の光線に亘って機能するものである。記載されたように、導波管206には通常厚さが約40マイクロメートルの導波管核部208及び導波管核部208の両側にある導波管クラディング207及び210が含まれ、導波管クラディングの厚さは約60マイクロメートルである。光検出器238に到達する前に、光線は導波管206の表面240で反射される。この表面240は表面232及び234と同様である。
図2Eは図2Aのスキャナー202の一部の上面略図である。SBG物質の14インチx14インチのパネルが製造可能なので、大型のプラテンを有するスキャナーが意図されている。更に、スキャナー202用のプラテンは掌紋又は手紋を生成する大きさであり得るが、より小さいプラテンのスキャナーも製造可能である。例えば、約3.2x3.0インチのプラテンは指四本の画像を生成するように構成されたスキャナーに十分の大きさである。
図2Eにおいて、光線は図2C及び 図2Dと同様に図の右側268から図の左側269に進行する。光線はビーム拡張視準光学器224で視準された面である。図2Eにはプラテン204に接触することになる対象物が示されている。この場合、プラテン204に接触するのは指紋隆起線265をもつ指先である。図2Eには更に三個の異なる領域270、272、及び274が示されている。図2Eの領域272での光面の経路は図2Dでの領域250,252、及び254に相当する。
図2Eにおいて、電極213と電極215とは光線の進行方向と略直交している。即ち、電極213と電極215の複数個の電極対は図2Eで鉛直方向の行として表示されている。図2Eの視野からしては電極213のみ可視であり、SBG212及び電極215は電極213の下である。領域270において、視準された光面は間にAC電界が生成されている電極213と電極215のこの領域のすべての電極対によって(即ちSBG212は活性化されて居らず、透明状態にあるので)SBGスタック209を内部全反射によって通過する。光線は視準されているので領域270の中を拡散することなく、略直線に進行する。領域272ではAC電界がその間に生成されていない電極213と電極215の一電極対によってSBGには活性化された場所がある。上記のごとく、SBG212内に活性化された回折状態の領域があると、光面は内部全反射から取り出されてしまう。光面はプラテン204の表面へと反射型格子211及び導波管206を通過する。
領域291、292、293、及び294にはプラテン204の表面に接触する対象物がなく、光線はすべて内部全反射によってプラテン204の表面から反射される。反射光線は反射型格子211へと導波管206を通過して進行し、ここで導波管206の中へ反射される。領域274では導波管206が光線を光検出器238へ導く。領域291、292、293、及び294の各々で光検出器238はプラテンの表面との反応の後実質上同じ光線の強度が測定される。領域291、292、293、及び294での光線はスキャナー内で同じ行路を有し、プラテン204の表面の上の対象物への屈折のため光線のロスがない。
しかし、領域276−279では対象物(即ち指紋隆起線265)がプラテン204の表面と接触している。これらの領域での光線の一部は指紋隆起線265の中へ屈折して行き、一部はSBG212の活性化された領域に対応して指紋隆起線265に接触するプラテンの割合に依存して内部全反射によりプラテン204の表面から反射される。例えば、領域277は完全に指紋隆起線265で覆われており、この領域での光線の大部分又は全部が指紋隆起線の中へと屈折されて行く。領域279は指紋隆起線265の小部分で覆われて居り、この領域の光線の大部分はプラテン204の表面から反射されるであろう。領域276−279について、プラテン204の表面から反射された光線は反射型格子211へと導波管206を通過し、此処で光線は導波管の中へ反射される。領域274では導波管206が光線を光検出器238へ導く。例えば領域277では光検出器238の測定する光線の強度は非常に低いであろう。例えば領域279においては、光検出器238の測定する光線強度は領域277で測定されるのより高いであろうが、領域275での測定より低いであろう。
本発明の或る実施形態の場合、光面がプラテン204の表面との反応の後に視準されなくなり拡張することがないことを保証するために、導波管206は光面を複数の個別の経路280に分けるものを使用する。図2Eにおいて、これらの個別の経路280は水平方向の列として表示されている。これらの個別の経路280の幅及びスペーシングはスキャナー202の解像度を決定するものである。個別の経路の各々の幅は或る実施形態の場合約2ミル(2/1000インチ)である。光面を個別の経路とすることにより、光線は視準されて拡張してスキャナー202の解像度を悪化することがなくなる。例えば、もし光面が視準されて拡張すると、領域276からの光線が領域293及び277に拡張するかもしれず、かような拡張はすべての領域(即ち領域276、277、278,279,291,292,293、及び294)で起こってスキャナー202の解像度を悪化することであろう。導波管206は個別化された光路を検出器238に導く。
光検出器238は或る実施形態の場合線状光学センサアレイである。この光検出器238には相補型金属酸化膜半導体(CMOS)センサ、電荷結合装置(CCD)センサ、又はその他の半導体センサが含まれてよい。導波管206内の各個別経路は本発明の或る実施形態の場合光検出器238の特定の領域に組み合わされている。例えば本発明の或る実施形態の場合、各個別の経路は光検出器の一画素に組み合わされている。即ち、導波管内の各個別の経路280ごとに光検出器238には一つの画素位置があるということである。本発明の別の実施形態の場合 導波管内の各個別の経路280ごとに複数の検出器画素が対応している。本発明の更なる実施形態の場合、光検出器238には複数の光学センサアレイ又は一個の二次元的光学センサアレイが含まれてよい。二次元的光学センサアレイは、線状光学センサアレイの画素を導波管内の個別経路に配列するのと比較して、導波管内の個別の経路280に配列するのが容易かも知れない。かような二次元的光学センサアレイを使用する場合、導波管内の個別の経路が二次元的光学センサアレイのどちらの領域に光線を照射しているのか決定するのにソフトウエア及びコンピュータシステムが使用されてもよい。
スキャナー202の電極213及び215の活性化された対の各々について、光検出器238は光線の各個別の経路の光線の強度を測定するように構成されている。SBG212の各領域を活性化し、活性化された領域の各々に対応する光線の強度を測定し保存して、プラテン204の表面に接触している対象物の画像が生成可能である。即ち、スキャナー202は対象物の一次元的画像を捕捉し、それが対象物の二次元的画像の生成に使用可能となる。例えば光線の強度はコンピュータのメモリに保存されてよい。光線の一次元的強度は次いでコンピュータで画像の生成のために集められてよい。アナロジーとして、例えば光検出器238はディジタルカメラに見られる二次元的光検出器の一行とみなすことが出来る。ディジタルカメラと対照的に、スキャナー202はディジタルカメラで可能なように画像全体を一時に捕捉する代わり、プラテン204の表面に接触する対象物の画像の個別の一行を捕捉するものである。
レーザセンサアレイは通常二次元的アレイが二次元的画像を捕捉するより高速に一次元的画像を捕捉するものである。運行にあたり、SBGの領域は光線が十分に光検出器に向けられて光検出器が積分された強度を測定することが出来るように十分に長い時間活性化される必要がある。本発明の或る実施形態の場合、SBG212の各活性化領域のための滞在時間は約10から100マイクロ秒であり、これは即ちSBG212の各活性化領域が約10から100マイクロ秒間活性化されると言うことである。これにより、光面は約50から100マイクロ秒間プラテン204の表面と反応することが出来、光検出器はこの時間に亘り積分された光線の強度を集めることが出来る。
更に、上記された如く、スキャナー202の解像度は電極213と215の対の幅とスペーシング及び導波管内における個別の経路280の幅とスペーシングによって決定されるものである。幅が約2ミルの電極対と幅が約2ミルの導波管の個別経路の場合、プラテン204の表面と接触する対象物の画像の解像度はインチ毎に約500画像(ppi)である。画像の解像度は本発明の更なる実施形態の場合電極の幅やスペーシング又は個別の導波管経路の幅やスペーシングを縮小することで改良可能である。
光検出器に要求される短い滞在時間、SBGの高速スイッチング時間、及び生成可能な画像の高解像度により、法医学的に上質の画像が短時間に生成可能となる。例えば此処に開示される本願の実施形態によるスキャナー202の3.2インチx3.0インチのプラテン204を使用して、転がした指紋画像が生成可能である。転がした指紋の画像を生成するため、スキャナー202は毎秒走査される対象物の画像を少なくとも約12個生成する必要がある。毎秒12個の画像を生成し、画像を得るに十分な領域をSBGがカバーする、これが上記のようにスキャナー202の部品に要求される短いアクチュエイション及びセンシング時間によって可能となる。スキャナーはこれより高速又は低速の画像収集によって運行されてよい。
上記のように、或る実施形態の場合、スキャナー202にはプラテン204の表面から可視であるように構成された表示器236が含まれる。表示器236がスキャナー202に含まれるのは、プラテン204、導波管206、反射型格子211、SBGスタック209及びその他のプタテンと表示器236との間に位置される部品が実質上透明である実施形態である。この表示器236はLCD表示器,LED表示器。又はその他の電子表示器であってよい。或る実施形態の場合、この表示器236はプラテン204の表面で可視のように構成された情報を表示するのに使用される。例えば表示器236はスキャナーの使用者用に運転教示を表示することが出来る。表示器は更にフィードバック機構としてプラテン204の表面に接触して居た対象物の画像の表示に使用されてもよい。例えばスキャナー202が指紋の画像の収集に使用された後その指紋の画像が表示されてもよい。これによりスキャナーの使用者は容易にスキャナーで収集された画像の質をチェックすることが出来る。表示器236は更に画像捕捉の間にフィードバックを行って画像捕捉プロセスの向上に使用可能である。
本発明の更なる実施形態の場合、スキャナーは叉入力装置として構成される。スキャナーが毎秒数個の画像を生成する場合、プラテンが対象物(例えば指先)で接触されている領域は例えばコンピュータの使用によって決定される。コンピュータはプラテンの画像を生成するのであり、このコンピュータは何時対象物がプラテン204の表面に接触するか及び/又は対象物によって接触されているプラテン204の表面の領域を決定するように構成されている。従って、スキャナーは余分なセンサ部品(例えば容量性タッチスクリーン)を追加せずにタッチスクリーンセンサとして機能することになる。例えば毎秒10画像を集めるスキャナー202はタッチセンサとして作用するには十分高速であるが、毎秒一個の画像しか集めないスキャナーは恐らく高速とは認められないであろう。毎秒一画像しか得られない場合、スキャナーがその表面が接触されたと認めるまで、使用者はプラテンの表面を物体で1秒間又はそれ以上接触する必要があろう。本発明のかような実施形態の場合、表示器236は入力選択を表示するように構成される。入力選択はスキャナー202の運転用の選択(例えば「画像走査」及び「画像消去」)又はQWERTYキーパッドであってもよい。接触されたプラテンの領域を感知する機能と組み合わされた表示器236はスキャナー用の入力機構として機能し、別個のキーパッド又はその他の入力装置を不要にする。
本発明の或る実施形態においてスキャナーが入力装置として構成されている場合、生成されるプラテンの画像の解像度は重要でない。例えばSBG208の選択された領域を活性化してプラテン204の表面の低解像度の画像を集めることが可能となる。例えば電極213と215の電極対を五番ごとに活性化すると低解像度が生成されるが、これによってスキャナーは各電極対を活性化するより短時間でプラテンの画像を生成することが出来る。
更に、入力装置として構成された場合、スキャナー202は指紋の画像を被験者に自分の指紋画像が採られていると意識させずに収集することが出来る。例えばスキャナー202はコンピュータスクリーンの入力装置として(例えばその他のタッチスクリーン技術を使用する代わりに)構成することが出来る。対象者が選択しようとこのスクリーンに接触する度に指紋画像は採られてしまう。
更に、入力装置として構成された場合、スキャナー202は入力情報を収集すると同時に指紋画像をも収集するものである。入力選択に基づいて実行されるべき行為は例えば捕捉された指紋がこの入力選択を使用する権限を有する人に属するかによって決定される。
図3は本発明の一実施形態の場合の光学的に基礎付けられた平面状映像走査方法300のフロー図である。光線は302においてSBGに与えられる。本発明の或る実施形態で光線がレーザから与えられる場合、光線はSBGに与えられる前に視準されて拡張され、レーザ光線の面が生成される。更なる実施形態の場合、光線はSBGに供される前に偏光器を通過させられる。光線が偏光器を通過させられることは光線のSBGや反射型格子との反応に光線の偏光の相違によるバラツキのないことを保障するのに役立つ。
SBGの一領域が304で活性化され、光線がプラテンに導かれる。上記のように、SBGの一領域はSBGの側面の二電極で生成されるAC電界を除去することで活性化され得る。光線はプラテンの表面に到達する前に反射型格子及び導波管を通過する。
光線は306でプラテンの表面から内部全反射で反射されるか、又はプラテンの表面に接触している物体の中へ屈折する。反射された光線は導波管を通じて反射型格子へ導かれる。反射される光線の量対屈折される光線の量はSBGの活性化された面積の対応する領域でプラテンを覆う物体の量の関数である。もし物体が領域を覆う割合が高ければ高パーセンテイジの光線が物体内に屈折される。それに反してもし物体が領域を覆う割合が低ければ低パーセンテイジの光線が物体内に屈折される。
反射された光線は308で反射型格子から導波管へと反射される。反射された光線は310で導波管により光検出器に導かれる。
SBGには複数個の活性化されるように構成された領域が含まれている。プラテンに接触する物体の画像を生成するには304から310が活性化されるように構成されたSBGの各領域について繰り返される。304から310までの各繰り返しの後、光線の強度が光検出器で測定される。測定された光線の強度は次いで保存される。測定された強度は例えばコンピュータのメモリに保存される。保存された光線の強度を使用することによってプラテンに接触する物体の画像が生成される。
本発明の或る実施形態の場合、入力選択は標示器で与えられる。入力選択はプラテンの表面から可視である。上記の走査テクニクを使用して、入力選択が検出される。一実施形態の場合、入力選択は活性化されるように構成されたSBGの各領域について304から310を繰り返すことによって検出される。304から310までの各繰り返しの後、光線の強度が光検出器によって測定される。プラテンに接触する物体が存在すれば、その画像はこの測定された強度を使用して生成可能である。一つの画像から、表示器で表示された入力選択を選択するのに物体で接触されたプラテンの領域が決定可能である。更なる実施形態の場合、画像操作の教示又は走査された物体の画像を含むその他の情報もプラテンの表面の上に表示されてよい。
此処に開示されたスキャナーの製造又は運行に要求される種々のプロセサ、回路盤、相互接続子、動力源(例えばバッテリ)及び結合材も本発明の実施形態に含まれてよい。
此処に開示された光学的に基礎付けられた平面状スキャナーは現行の法医学的品質生物測定用具に比して有意義的な利点を有する。これらの利点には現行の法医学的品質生物測定用具に比して縮小されたサイズ、減少された重量、及び減少されたコストが含まれる。スキャナー202の或る実施形態の場合、スキャナーの厚さ(即ちプラテン204から表示器までの全体の部品の厚さ)は約0.6インチである。
更に、此処に開示された光学的に基礎付けられた平面状スキャナーは現行の法医学的品質生物測定用具より有意義的に使用する電力が少ない。開示されたスキャナーの或る実施形態の場合、レーザが光線の生成に使用される。電気エネルギーから光エネルギーへの変換は通常非常に能率的である。レーザ光線は方向性が高く、開示されたスキャナー内の光線の経路及び方法は緻密に制御されたものである。対照的に、現行の法医学的品質生物測定用具ではそれに使用されている光学装置ゆえに用具内部の光線の経路がそれ程緻密には制御が可能でない。このような用具の場合、画像の走査に要求される動力の約半分乃至三分の一は照明システムに使用されている。此処に開示されたスキャナーではより少量の電力が必要であり、例えばバッテリを動力源とする携帯用スキャナーの使用が可能となる。必要とされる電力の低下により、より小型のバッテリが使用可能となり、より多量の画像が与えられたバッテリサイズで生成可能となる。
更に、此処に開示された光学的に基礎付けられた平面状スキャナーの運行に外部光源(例えばプラテンを照射する太陽光線)は有意義的には干渉しない。これには多くの要因が存在する。第一に、レーザは他の光源に比して明るいものであり、外部光源の影響が少ない。第二に、SBG及び反射型格子は通常格子の構成に従った特定の波長の光線と反応するものである。第三に、光線は導波管と特定の角度で組み合わされて居り、外部の光源からの光線は特定の角度でスキャナーに入射しないと導波管には導入されない。
図4Aは本発明の別の実施形態による光学的に基礎付けられた平面状スキャナーの側面略図である。スキャナー402にはプラテン又は物体受領面404、上面ガラス407、第一複数のSBG部品408、内部ガラス412、第二複数のSBG部品420、底面ガラス416、表示器436、光源422、及び光検出器422が含まれる。第一及び第二複数のSBG部品については下記において更に詳細に説明される。スキャナー402の表示器436は上記の表示器236と同様に機能するものでよい。或る実施形態の場合、スキャナー402は上記のように更に入力装置としても構成される。
本発明の或る実施形態の場合、光源422は電磁波スペクトラムの可視部分の光線又は電磁波スペクトラムの不可視部分の光線を生成するレーザである。もしレーザが光源422に使用される場合、関連するビーム拡張光学部品もスキャナー402に含まれる。或る実施形態の場合、光源は白熱光源又はその他の従来例の光源である。広スペクトラムの光源からの光線がSBG部品408及び420と適合性の波長となるようにバンドフィルターを通過させられてもよい。図4Bは図4Aのスキャナー402の第一複数のSBG部品408の拡大略図である。図4Bに示されるのは、上面ガラス407、第一複数のSBG部品の上面上の複数の電極413、第一複数のSBG部品408、第一複数のSBG部品の底面上の複数の電極415、及び複数の導波管壁424である。或る実施形態の場合、第一複数のSBG部品408の底面上の複数の電極415は上記のように単一の照合電極(図示せず)で置き換えられる。第一複数のSBG部品408の中の各々のSBG部品はSBG物質の片を含む。従って、図4Aにおける第一複数のSBG部品408とは個別のSBG部品と導波管壁424のスタック(図4Aの頁へ延びている)である。示されていないのは内部ガラス412である。図4Aに示されているスキャナー402の種々の部品の厚さ、寸法、及び材料はスキャナー202の種々の部品のものと同じでよい。第二複数のSBG部品420及び導波管壁(図示せず)は第一複数のSBG部品408及び導波管壁424と同様に構成されてよい。
各SBG部品408の各側面上には複数の導波管壁424の中の一つの壁がある。導波管壁の物質は光線が導波管壁によってSBG部品の中に保持されるような屈折率であることが必要である。本発明の或る実施形態の場合、導波管壁424はSBG部品408より低い屈折率である。或る実施形態の場合、導波管壁はエンボスされた重合体であってよい。導波管壁424、上面ガラス、及び内部ガラス412のすべてが光線を第一複数のSBG部品408の中の各自のSBG部品に閉じ込める役を果たす。図4Bで見た場合、光源422からの光線は図4Bの頁の面へと進行する。図4Aで見た場合、電極413及び電極415は実質上図4Aの頁の面へと延び、導波管壁424は図4Aに示すようにSBG部品408の長手方向に沿って位置している。
上記のように、スキャナー402の或る実施形態の場合、光源422はレーザである。このような実施形態の場合、スキャナー402にはビーム拡張及び視準光学器(図示せず)が含まれてよい。スキャナー402がそのように構成されている場合、第一複数のSBG部品に導波管壁は不必要である。即ち、この層のSBGは上記のスキャナー202のSBG212と同様である。光線は視準によって拡張することなく略直線に進行するので導波管壁の必要性が除去される。しかし、このような実施形態の場合、導波管壁はスキャナー402の解像度を保持するために第二複数のブラッグ格子部品420には依然として必要である。
図1に関して説明されたように、複数の電極413の各々は複数の電極415の一つに対応している。電極413と電極415との一対の電極と一対の導波管壁の共通部分がSBG部品の領域を囲い、SBG物質のセルを定義する。このセル426はSBGのセルである。従ってスキャナー402の中においては第一及び第二複数のSBG部品の中に複数のセルが存在する。電極及び導波管壁のこれらの対で定義されるセルのサイズでスキャナーの解像度が決定される。
運行の際、AC電界が電極413と415のすべての電極対の間に生成されていると、SBG部品408のすべての領域は透明状態にある。SBG部品408のすべての領域が透明状態にある場合、光源422からの光線は、上面ガラス407と内部ガラス412の間で内部全反射するような角度で第一複数のSBG部品408の中の各SBG部品に入射する。
図4Cは作動時における図4Aのスキャナー402の中の光線444の経路を略示するものである。SBG部品が透明状態にある場合、光線444は第一複数のSBG部品408を進行する。電極の対の中に、間にAC電界を生成していない対(図4Cでの電極418と419)があると、その電極と関連するSBG部品の領域は活性化されて回折状態にある。SBG部品の領域が回折状態にあると、そのSBG部品は領域450での光線を上面ガラス407と内部ガラス412の間の内部全反射から取り出す角度に導く。
SBG部品の中で光線が内部全反射から取り出されると、この光線は物体受領面404へ導かれる。領域452において、光線は物体受領面404と上記のように反応する(即ち内部全反射445又は物体受領面と接触している物体へと屈折)。
物体受領面404から反射された光線、又はその一部、は第一複数のSBG部品408を通過して第二複数のSBG部品420へと反射される。第二複数のSBG部品420の中の一つのSBG部品で、その一領域が活性化されて居り、回折状態にある。図4Cでの領域454において電極428と429はSBG部品を活性化するようにその間にAC電界を生成して居らず、光線は検出器438に導かれる。
図4Dは図4Aの平面状スキャナーの一部の上面略図である。図4Dは図2Eと同様である。図4Dで光線は図4Cと同様に図の左側468から図の右側469へと進行している。物体受領面404と接触することになろう物体も示されている。この場合、物体受領面404と接触する物体は指紋隆起線265を有する指先である。図4Dには叉三個の異なる領域470、472、及び474も示されている。図4Dの領域472での光線の経路は図4Cでの領域450、452、及び454に相当する。
図4Dで第一及び第二複数のSBG部品と関連する複数の電極対は光線の進行方向に略直交している。即ち、図4Dで複数の電極対は鉛直の行で表現されているのであるが、電極413のみ可視である。第一と第二の複数のSBG部品の個別のSBG408は図4Dで水平の列として表現されている。セル(例えばセル426)は電極対と導波管壁の対との共通部分として定義される。
領域470の中で光線はSBG部品の領域に活性化された部分がないので、第一複数のSBG部品の各個別のSBG部品を内部全反射で通過して進行する。第一複数のSBG部品408の中で光線は上面ガラス407、内部グラス412及び複数の導波管壁424によって各個別のSBG部品に閉じ込められている。光線は次いで間にAC電界が生成されていない電極対(例えば図4Cの電極418と419)によって活性化されたSBG部品の領域に到達する。上記のように、SBGの領域が活性化されると個別のSBG部品の各々の中の光線は内部全反射から取り出される。この光線は物体受領面404に導かれ、そこで物体受領面と反応する。この反応は図2Eを参照して説明された通りである。
物体受領面404から反射された光線は第一複数のSBG部品408を通過して第二複数のSBG部品420の活性化された領域へ進行する。光線はそこで光検出器438の方向に回折される 第二複数のSBG部品420の中で、光線は内部ガラス412、底面ガラス416、及び複数の導波管壁によって個別のSBG部品の各々に閉じ込められている。光検出器438は或る実施形態の場合線状光学センサアレイである。第二複数のSBG部品420の個別のSBG部品の各々は光検出器438の所定の領域と組み合っている。例えば本発明の或る実施形態の場合、各個別のSBG部品は光検出器の一画素に対応して居り、これは即ち各SBG部品に対応して光検出器には一つの画素位置があると言うことである。第一と第二複数のSBG部品の両方のSBG部品の領域を活性化し、活性化された領域に関連する光線の強度を測定して保存することにより、物体受領面に接触する物体の画像が上記のように生成される。
スキャナー402の中では、使用される光線の波長とスキャナーの構成に従って、第一複数のSBG部品の領域が活性化され、第二複数のSBG部品の関連する領域が活性化される。スキャナー402ではこれら二つの領域は三個の電極によって互いにオフセットされるが、このオフセットは他の実施形態の場合より小さく、又はより大きいかも知れない。例えば、もし光線が第一複数のSBG部品により領域450において図4Cでの角度と異なる角度で回折すると、この光線は異なる角度で物体受領面404から反射することであろう。これら異なる角度の故に、光線は図4Cの領域454より右又は左の領域で第二複数のSBG部品と反応することとなろう。
図5Aは本発明の更に別の実施形態の、指紋、掌紋,又は手紋の画面を走査するように構成された光学的に基礎付けられた平面状スキャナーの側面略図である。これらの実施形態のスキャナーは上記の内部全反射の手法(光学手法)で機能するものではなく、その代わり、指又は掌の存在に関連する電界に基づいて機能するもの(電界手法)である。このスキャナー502にはプラテン又は対象物受領表面504、複数のSBG部品508、底部ガラス502、光源522、光検出器538、及び表示器536が含まれる。これらの部品はスキャナー402に関連して上記において説明された部品と同様でよい。或る実施形態の場合、この対象物受領表面504の厚さは約50マイクロメートルである。叉、対象物受領表面は電気的に絶縁体である。このスキャナー502の表示器536は上記の表示器236と同様に機能するものでよい。或る実施形態の場合、このスキャナー502は上記のように入力装置として構成されてよい。
光源522がレーザであるスキャナー502の実施形態の場合、このスキャナー502にはビーム拡張及び視準光学装置(図示せず)が含まれてよい。スキャナーがこのように構成されている場合、複数のSBG部品508の中の導波管壁は不必要である。即ち、この層でのSBGは上記のスキャナー202の中のSBG212と同様である。光源522が従来例の光源であって視準されていないスキャナー502の実施形態の場合には、スキャナーの解像度を維持するために複数のSBG部品508に導波管壁が必要である。
図5Bは作動時における図5Aのスキャナー502の中の光線544の経路を略示するものである。 図5Bでは複数の電極510が複数のSBG部品508の底側にあるが、上側にはない。領域570の中では二つの隣接する電極が、位相はずれに駆動されることによって、その間にAC電界が生成される。このAC電界がSBG部品と反応すると、これらのSBG部品は透明状態になる。例えば電極518と519の領域570の中のSBG部品はこれら二つの電極に亘って生成されたAC電界(矢印520)によって透明状態にある。
運行の場合、スキャナー502の電極は一つの領域の中で電極が同相で駆動されるように配列されている。図5Bの領域572では三個の電極519,529,及び527が同相で駆動される。これら三個の電極が同相で駆動されるため、電極529は電極529の領域572の中のSBG508部品にAC電界を生成しない。AC電界が存在しないために、SBGのこれらの領域は活性化されて回折状態にある。SBGのこれらの領域に遭遇する光線は回折される。
しかし、もし例えば指又は掌のような接地された照合物体、又は電極529に対して反対の相で駆動される物体が電極529に近くの対象物受領表面504に接触していると、この物体はそれと電極529の間のAC電界を支持することになる。このAC電界はSBG部品を完全に又は部分的に非活性化する。即ち、電極529に関連するSBG部品は完全に透明状態又は透明/回折状態となり、後者の場合には光線の一部はSBG部品(領域574)を通して通過し、他の一部は回折562される。電極529に関連するAC電界の強度は接地照合物体と電極529との距離に比例する。従って、例えば電極529によってSBG部品508の領域が活性化された時に回折される光線の量は接地照合物体と電極529との距離に反比例する。或るSBG部品508の領域が活性化されても接地照合物体が存在しない場合、光線は光検出器538に導かれず、或るSBG部品508の領域が活性化された時に接地照合物体が存在する場合には、光線は領域574の中の透明状態にあるSBG部品を通じて光検出器538に到達する。SBG部508品の各領域を活性化し、各活性化された領域に関連する光線の強度を測定して保存することにより、接地照合物体の画像が生成可能である。
或る実施形態の場合、このスキャナーを使用して生成される画像の解像度は光学手法で機能されるスキャナーで生成される画像の解像度と同等である。即ち、或る実施形態の場合、画像の解像度は約500ppiである。スキャナー502で生成される画像の解像度は複数の電極の各々の幅及びスペーシング及びSBG部品508の幅に依存する。
或るタイプの偽造指モデルが対象物受領表面504に接触して置かれた場合、指紋又は掌紋の画像を生成するのに電界手法を使用するスキャナー502は画像が生成されないこともある。かような偽造指モデルは例えば指紋を使用してアクセスを許可/拒絶する警備システムの迂回又は回避を試みるのに使用されるかもしれない。ヒトの指紋の緻密な三次元モデルはシリコーン、ラテクス又はその他の多くの物質から製造が可能であろう。かような偽造指モデルはスキャナー202及び402のような光学手法を使用するスキャナーを使用した場合、ヒトの指紋の正確な画像を生成するかもしれない。スキャナー502であると、モデルに導電性がないために、ヒトの指紋の正確な画像は生成されない。更に、電界手法を使用するスキャナー502は光学手法を使用するスキャナーに干渉的である湿気に対して主として不感性である。
図5Cは本発明の更なる実施形態の場合の、指紋、掌紋、又は手紋の画像を走査するように構成された、光学的に基礎付けられた平面状スキャナーの側面略図である。このスキャナー5002はスキャナー502と同様に電界手法に基づいて機能するものである。このスキャナー5002にはプラテン又は対象物受領表面5004、SBG5008、ガラス層5012、導波管5012、反射型格子5020、ビーム拡張及び視準光学装置5024、光源5022、及び光検出器5038が含まれる。導波管5018には導波管核部5016及び導波管核部5016の各側部にある導波管クラディング5015及び5017が含まれる。これらの部品はスキャナー202に関連して上記のように説明された部品と同様であってよい。或る実施形態の場合、対象物受領表面5004の厚さは約50マイクロメートルであり、実質上透明又は透光性であってよい。叉、この対象物受領表面5004は電気的絶縁体である。光源5022がレーザであるスキャナー5002の実施形態の場合、このスキャナー5002にはビーム拡張及び視準光学装置5024も含まれてよい。対象物受領表面5004が実質上透明である場合、スキャナー5002には上記の表示器236と同様に機能する表示器(図示せず)も含まれて居てよい。或る実施形態の場合、このスキャナー5002は上記のように入力装置として構成される。
図5Dは作動時における図5Cの平面状スキャナーの中の光路を略示するものである。図5Dでは複数の電極5010が複数のSBG5008の底側に関連してあるが、上側にはない。領域5070の中では二つの隣接する電極が、位相はずれに駆動されることによって、その間にAC電界が生成される。このAC電界がSBGと作用すると、このSBGは光線を全部内部全反射でガラス層5012の中に閉じ込める役を果たす。例えば電極5041と5042の領域5070の中のSBGはこれら二つの電極に亘って生成されたAC電界(矢印5043)によって総ての光線を内部全反射でガラス層5012の中に閉じ込める役を果たす。
運行の場合、スキャナー5002の電極は一つの領域の中で電極が同相で駆動されるように配列されている。図5Dの領域5072では三個の電極5042,5044,及び5045が同相で駆動される。これら三個の電極が同相で駆動されるため、電極5044は電極5044の領域5072の中のSBG5008にAC電界を生成しない。AC電界が存在しないために、SBGのこの領域は活性化されない。SBG5008の或る領域が活性化されると、ガラス層5012を通して進行中の光線は内部全反射から取り出される。
光線は領域5050で内部全反射から取り出されると対象物受領表面5004の下面から内部全反射で反射型格子5020へSBG5008、ガラス層5020及び導波管5018を通過して反射される。反射型格子5020で光線は導波管5018の中へ領域5052から反射される。導波管5018は反射型格子5020からの光線を内部全反射によって光検出器に導く。
しかし、もし接地照合物体(例えば指、又は掌)が電極5044に近くの対象物受領表面5004に接触していると、この接地照合物体はそれと電極5044の間のAC電界を支持することになる。このAC電界はSBGを完全に又は部分的に非活性化する。即ち、ガラス層5012を進行する光線は全部内部全反射でSBG5008内に留まるか、一部の光線が内部全反射でSBG5008内に留まり、一部の光線が内部全反射で対象物受領表面5004の下面で反射される。電極5044に関連するAC電界の強度は接地照合物体と電極5044との距離に比例する。従って、例えば電極5044によってSBG5008の領域が活性化された時に回折される光線の量は接地照合物体と電極5044との距離に反比例する。或るSBG5008の領域が活性化されても接地照合物体が存在しない場合、光線は光検出器5038に導かれず、或るSBG5008の領域が活性化された時に接地照合物体が存在する場合には、光線は導波管5018を通じて光検出器5038に到達する。SBG5008の各領域を活性化し、各活性化された領域に関連する光線の強度を測定して保存することにより、接地照合物体の画像が生成可能である。
図6は本発明の更なる実施形態の光学的に基礎付けられた平面状スキャナーの側面図と平面状スキャナーの中の光路を略示するものである。スキャナー602にはスキャナー402及びスキャナー502の部品が含まれている。このスキャナー602にはプラテン又は対象物受領表面604、第一複数のSBG部品606、 第一複数のSBG部品606に関連する複数の電極608、及び第一ガラス610が含まれる。スキャナー602の此の部分はスキャナー502と同様であり、スキャナーのこの部分のSBG部品及び電極はスキャナー502を参照して上記のように説明されたと同様に構成されてよい。光検出器638が更にスキャナー602のこの部分に関連している。スキャナー602には更に第二複数のSBG部品614,第二SBG部品の上面上にある複数の電極612、第二SBG部品の底面上にある複数の電極616、第二ガラス618、第三複数のSBG部品622,第三SBG部品の上面上にある複数の電極620、第三SBG部品の底面上にある複数の電極624、及び第三ガラス626が含まれる。スキャナー602のこの部分はスキャナー402と同様であり、スキャナーのこの部分のSBG部品及び電極はスキャナー402を参照して上記のように説明された構成と同様に構成されてよい。電源602及び光検出器639が更にスキャナー602のこの部分に関連している。スキャナー602の表示器636は上記の表示器236と同様に機能するものでよい。
運行に際し、SBG部品が透明状態にある場合、光源672からの光線650は内部全反射により第二複数のSBG部品614を通過して進行する。領域675において、光線650は活性化されて回折状態にあるSBG部品の領域と反応する。ここで光線650は内部全反射から取り出されて、第一複数SBG部品606の活性化された領域へ導かれる。領域654において、接地照合物体(例えば指)が存在しない場合、光線の一部は第一複数SBG部品の活性化された領域で光検出器638に向けて反射される。第一複数のSBG部品は接地照合物体が存在しない場合既知のパーセンテイジの光線のみ光検出器に向けて回折されるように構成されている。或る実施形態の場合、接地照合物体が存在しない場合には50%の光線のみ光検出器に向けて回折されるように構成されている 接地照合物体が存在し、領域654でのSBG部品が活性化されて居ない場合、光線は対象物受領表面604へと進行する。
対象物受領表面604において,光線は上記のように領域656で表面と反応する。即ち、対象物受領表面と接触している物体が存在すればそのような物体の内部に光線は屈折する。対象物受領表面604から内部全反射で反射される光線は第一複数SBG部品606及び第二複数SBG部品614を通過して第三複数のSBG部品622の領域を活性化する。領域658において光線は光検出器639に向けて回折される。
或る実施形態の場合、第一及び第三の複数のSBG部品の中で光線は導波管壁によって個別のSBG部品に閉じ込められている。或る実施形態の場合、光検出器638及び639は線状光学センサアレイである。第一及び第三の複数のSBG部品の各々の個別SBGは夫々の光検出器638及び639の所定の領域と組み合わされている。第一、第二及び第三の複数のSBG部品のSBG部品の領域を活性化し、活性化された領域に関連する光線の強度を測定し、測定された強度を保存することにより、上記のように対象物受領表面に接触している物体の画像が生成可能である。光検出器638は電界手法に基づく画像を生成し、光検出器639は光学手法に基づく画像を生成する。
或る実施形態の場合、スキャナー602は上記のように入力装置としても構成される。どちらの光検出器(即ち光検出器638又は光検出器639)でも物体に接触されている対象物受領表面604の領域を決定するのに使用されてよい。
両方の測定方法を共に実施出来るスキャナー602の利点は、両方の方法の利点を組み合わせていることである。例えば電界手法は導電性でない偽造指モデルの画像が生成できなかろうが、このようなモデルでも光学手法では正確な指紋が生成される。別の例の場合、単純な導電性の偽造指モデルは電界手法で正確なプリントを生成出来ようが、かようなモデルは光学的方法で正確な指紋を生成する為には光学的迫真性が十分でない。電界手法と光学手法の両方で正確な指紋を生成できる指のモデルを製作するのは難しい。
多くの応用面においてスキャナー602は有用である。例えばスキャナー602は公衆のアクセスが管理されて居らず、対象物受領表面604に当てられた指又は掌の真偽の決定方法が必要なシステムに使用可能である。
上記の装置及び方法は光線の流量を減衰又は増加する手法を実施する。これらの装置及び方法は所定の装置又は方法がいずれの手法をも実施出来るように再構成されてよい。
本発明の数々の実施形態が記述されたが、本発明の精神及び範囲から外れることなく、種々の変形が可能であることは理解可能であろう。

Claims (35)

  1. 画像を走査するように構成された装置であって、
    光線を供給するように構成された光源、
    この光線を検出する光検出器、
    プラテン、
    導波管、
    反射型格子、及び
    スイッチ可能ブラッグ格子を備え、
    該スイッチ可能ブラッグ格子の一領域はこの光線を該反射型格子と該導波管を通じて該プラテンへと導くように活性化されるように構成され、該プラテンはこの光線を該導波管を通じて内部全反射によって該反射型格子へと反射又は屈折させるように構成され、該反射型格子は該プラテンから反射された光線を該導波管へと反射させるように構成され、該導波管はこの光線を該光検出器へと導くように構成されたものである、装置。
  2. 指紋画像、掌紋の印刷画像、又は手紋の印刷画像を走査するように構成されたものである、請求項1に記載の装置。
  3. 該光源がレーザを含む、請求項1に記載の装置。
  4. 該レーザが赤外光線を出力するレーザを含む、請求項3に記載の装置。
  5. 更に該スイッチ可能ブラッグ格子の第一表面と第二表面の上の透明な導電性酸化物電極から成り、第一表面上の各電極は第二表面上の電極と対応して電極の対を構成するものである、請求項1に記載の装置。
  6. 該電極の透明な導電性酸化物がインジウム錫酸化物を含む、請求項5に記載の装置。
  7. 該電極対の一対はAC電界を生成するように構成されたものである、請求項5に記載の装置。
  8. 該電極対の間にAC電界が生成されて居ない時、該スイッチ可能ブラッグ格子の電極対の間の領域は活性化されるものである、請求項7に記載の装置。
  9. 該スイッチ可能ブラッグ格子の第一表面上の複数の透明な導電性酸化物電極、及び
    該スイッチ可能ブラッグ格子の第二表面上の透明な導電性酸化物の層を更に備える、請求項1に記載の装置。
  10. 該光源からの光線を、該光線が該スイッチ可能ブラッグ格子に入る前に偏光させるように構成された偏光器を更に備える、請求項1に記載の装置。
  11. 該スイッチ可能ブラッグ格子の第一側面上の第一ガラス層、及び
    該スイッチ可能ブラッグ格子の第二表面上の第二ガラス層を更に備える、請求項1に記載の装置。
  12. 該光検出器が複数の光学センサアレイ、二次元的光学センサアレイ、及び線状光学センサアレイから成るグループから選ばれるものである、請求項1に記載の装置。
  13. 該プラテン、該導波管,該反射型格子、及び該スイッチ可能ブラッグ格子が透明であり、該装置が更に該プラテンの一表面から可視であるように構成された表示器を更に備える、請求項1に記載の装置。
  14. 該表示器が更に該画像及び入力選択を表示するように構成されたものである、請求項13に記載の装置。
  15. 画像を走査し、入力を受信するように構成された装置であって、
    光線を供給するように構成された光源、
    この光線を検出する光検出器、
    プラテン、
    該プラテンの下に位置する導波管、
    該導波管の下に位置する反射型格子、
    該反射型格子の下に位置するスイッチ可能ブラッグ格子、及び
    該装置の使用者に可視であり、入力選択を表示するように構成され、該スイッチ可能ブラッグ格子の下に位置する表示器を備え、
    該プラテン、該導波管、該反射型格子、及び該スイッチ可能ブラッグ格子は透明であり、該スイッチ可能ブラッグ格子の一領域はこの光線を該反射型格子と該導波管を通じて該プラテンへと導くように活性化されるように構成され、該プラテンはこの光線を該導波管を通じて内部全反射によって該反射型格子へと反射又は屈折させるように構成され、該反射型格子は該プラテンから反射された光線を該導波管へと反射させるように構成され、該導波管はこの光線を該光検出器へと導くように構成されたものである、装置。
  16. 画像を走査する方法であって、
    (a)スイッチ可能ブラッグ格子に光線を当てる工程、
    (b)該スイッチ可能ブラッグ格子の一領域を活性化して該光線を反射型格子及び導波管を通してプラテンに導く工程、
    (c)該光線を内部全反射により該プラテンの一表面から反射又は該光線を屈折させて該プラテンの表面に接触している対象物に導く工程であって、該反射光線は該導波管を通して該反射型格子に導かれるものである工程、
    (d)該反射型格子から反射された光線を該導波管へと反射させる工程、及び
    (e)反射された光線を該導波管で検出装置へ導く工程
    を備える方法。
  17. 光線を該スイッチ可能ブラッグ格子に供する前に該光線をして偏光器を通過させる工程を更に備える、請求項16に記載の方法。
  18. 該光線がレーザによって供されるものであり、該光線を該スイッチ可能ブラッグ格子に供する前に該レーザからの該光線を視準及び拡張する工程を更に備える、請求項16に記載の方法。
  19. 該スイッチ可能ブラッグ格子には活性化されるように構成された複数の区域があり、工程(b)−(e)を該スイッチ可能ブラッグ格子の各領域について繰り返す工程を更に備える、請求項16に記載の方法。
  20. 工程(b)−(e)の各繰返しの後に光線の強度を該検出装置で測定する工程を更に備える、請求項19に記載の方法。
  21. 工程(b)−(e)の各繰返しの後に該光線の測定された強度を保存する工程、及び
    光線の測定された強度を使用して該プラテンに接触する対象物の画像を生成する工程を更に備える、請求項20に記載の方法。
  22. 該プラテン、該導波管、該反射型格子、及び該スイッチ可能ブラッグ格子の下に位置する表示器で、プラテンの表面より可視の入力選択を表示する工程、及び
    該入力選択の選択を検出する工程を更に備える、請求項16に記載の方法。
  23. 該スイッチ可能ブラッグ格子には活性化されるように構成された複数の領域があり、該入力選択の選択を検出する工程には
    活性化されるように構成された該スイッチ可能ブラッグ格子の各領域で工程(b)−(e)を繰り返す工程、
    工程(b)−(e)の各繰返しの後に該検出装置で光線の強度を測定する工程、及び
    第二対象物が接触する該プラテンの領域を決定して該入選択を選択する工程を含むものである、請求項22に記載の方法。
  24. 画像を走査するように構成された装置であって、
    光線を供給するように構成された光源、
    該光線を検出するように構成された光検出器、
    対象物受領表面、
    第一層を形成するように配列された第一複数スイッチ可能ブラッグ格子部品、及び
    第二層を形成するように配列された第二複数スイッチ可能ブラッグ格子部品を備え、
    第一複数スイッチ可能ブラッグ格子部品の領域は該光線を該対象物受領表面へ導くように構成され、該対象物受領表面は該光線を該第一スイッチ可能ブラッグ格子部品を通じて内部全反射によって該第二複数スイッチ可能ブラッグ格子部品の活性化された領域へと反射又は屈折させるように構成され、該第二スイッチ可能ブラッグ格子部品の該活性化された領域は該光線を該光検出器へと導くように構成されたものである、装置。
  25. 該第一複数スイッチ可能ブラッグ格子部品の各スイッチ可能ブラッグ格子部品及び該第二複数スイッチ可能ブラッグ格子部品がスイッチ可能ブラッグ格子物質のいずれかの側面上に導波管壁を含み、該導波管壁が該光線を該スイッチ可能ブラッグ格子物質の内部に含むように構成されたものである、請求項24に記載の装置。
  26. 該第一複数スイッチ可能ブラッグ格子部品の第一表面上及び第二表面上にある第一複数透明導電性酸化物電極であって、該第一表面上の各電極は該第二表面上の一電極に対応して第一複数電極対を形成するものである第一複数透明導電性酸化物電極、及び
    該第二複数スイッチ可能ブラッグ格子部品の第一表面上及び第二表面上にある第二複数透明導電性酸化物電極であって、該第一表面上の各電極は該第二表面上の一電極に対応して第二複数電極対を形成するものである第二複数透明導電性酸化物電極を更に備える、請求項24に記載の装置。
  27. 該第一複数の電極対の一対がAC電界を生成するように構成されたものであり、該第二複数の電極対の一対がAC電界を生成するように構成されたものである、請求項24に記載の装置。
  28. 該第一複数電極対の電極対の間の第一複数スイッチ可能ブラッグ格子部品の領域はAC電界が電極の間に生成されていない時活性化されるものであり、該第二複数電極対の電極対の間の第二複数スイッチ可能ブラッグ格子部品の領域はAC電界が電極の間に生成されていない時活性化されるものである、請求項27に記載の装置。
  29. 該対象物受領表面、該第一複数スイッチ可能ブラッグ格子部品、及び該第二複数スイッチ可能ブラッグ格子部品は透明であり、該装置は更に表示装置から成り、該表示装置は該対象物受領表面から可視であり、 該対象物受領表面、該第一複数スイッチ可能ブラッグ格子部品、及び該第二複数スイッチ可能ブラッグ格子部品の下に位置するものである、請求項24に記載の装置。
  30. 画像を走査するように構成された装置であって、
    光線を供給するように構成された光源、
    該光線を検出するように構成された光検出器、
    プラテン、
    スイッチ可能ブラッグ格子、
    ガラス層、
    導波管、及び
    反射型格子を備え、
    該スイッチ可能ブラッグ格子の一領域は光線を内部全反射によりスイッチ可能ブラッグ格子で出されるように活性化されるように構成されて居り、該プラテンは内部全反射によりスイッチ可能ブラッグ格子で出された光線を該導波管を通して全反射により該反射型格子へ反射するように構成されて居り、該反射型格子は該プラテンから反射された光線を該導波管へ反射するように構成されて居り、該導波管は該光線を該光検出器へ導くように構成されたものである、装置。
  31. 該スイッチ可能ブラッグ格子に関連する複数の電極から更に成り、スイッチ可能ブラッグ格子の該地区は該複数電極の一電極がスイッチ可能ブラッグ格子の該地区にAC電界を生成していない時に活性化されるものである、請求項30に記載の装置。
  32. 該複数電極の隣接した電極は該スイッチ可能ブラッグ格子の地区にAC電界を生成するように構成されたものである、請求項31に記載の装置。
  33. 該光源はレーザを含む、請求項30に記載の装置。
  34. 該光検出器が複数の光学センサアレイ、二次元的光学センサアレイ、及び線状光学センサアレイから成るグループから選ばれるものである、請求項30に記載の装置。
  35. スイッチ可能ブラッグ格子の該地区が活性化されて居り、接地対象物がプラテンに接触して居る場合に光はスイッチ可能ブラッグ格子で内部全反射により出されないものである、請求項30に記載の装置。
JP2012528933A 2009-09-11 2010-09-10 光学的に基礎付けられた平面状スキャナー Expired - Fee Related JP5674790B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US24154609P 2009-09-11 2009-09-11
US61/241,546 2009-09-11
US12/878,535 2010-09-09
US12/878,535 US8354640B2 (en) 2009-09-11 2010-09-09 Optically based planar scanner
PCT/US2010/048474 WO2011032005A2 (en) 2009-09-11 2010-09-10 Optically based planar scanner

Publications (2)

Publication Number Publication Date
JP2013504823A JP2013504823A (ja) 2013-02-07
JP5674790B2 true JP5674790B2 (ja) 2015-02-25

Family

ID=43730234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012528933A Expired - Fee Related JP5674790B2 (ja) 2009-09-11 2010-09-10 光学的に基礎付けられた平面状スキャナー

Country Status (6)

Country Link
US (1) US8354640B2 (ja)
EP (1) EP2476081B1 (ja)
JP (1) JP5674790B2 (ja)
CA (1) CA2773704C (ja)
RU (1) RU2012114160A (ja)
WO (1) WO2011032005A2 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US20200057353A1 (en) 2009-10-09 2020-02-20 Digilens Inc. Compact Edge Illuminated Diffractive Display
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
WO2011110821A1 (en) * 2010-03-12 2011-09-15 Milan Momcilo Popovich Biometric sensor
US8541856B2 (en) * 2010-12-08 2013-09-24 Omnivision Technologies, Inc. Optical touch-screen imager
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (en) * 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
WO2013102759A2 (en) * 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
US9057926B1 (en) 2012-01-27 2015-06-16 Rockwell Collins, Inc. Multi-wavelength emitter array
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
WO2013167864A1 (en) 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
CN107873086B (zh) 2015-01-12 2020-03-20 迪吉伦斯公司 环境隔离的波导显示器
EP3245551B1 (en) 2015-01-12 2019-09-18 DigiLens Inc. Waveguide light field displays
JP6867947B2 (ja) * 2015-01-20 2021-05-12 ディジレンズ インコーポレイテッド ホログラフィック導波路ライダー
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
WO2016146963A1 (en) * 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
WO2016156776A1 (en) 2015-03-31 2016-10-06 Milan Momcilo Popovich Method and apparatus for contact image sensing
WO2017060665A1 (en) 2015-10-05 2017-04-13 Milan Momcilo Popovich Waveguide display
CN106875842B (zh) 2015-12-11 2020-02-07 印象认知(北京)科技有限公司 具有指纹采集功能的显示屏
WO2017134412A1 (en) 2016-02-04 2017-08-10 Milan Momcilo Popovich Holographic waveguide optical tracker
US10387710B2 (en) * 2016-03-07 2019-08-20 Microsoft Technology Licensing, Llc Image sensing with a waveguide display
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
EP3433658B1 (en) 2016-04-11 2023-08-09 DigiLens, Inc. Holographic waveguide apparatus for structured light projection
JP7022907B2 (ja) * 2016-05-13 2022-02-21 フィンガープリント カーズ アナカタム アイピー アクティエボラーグ 光をカバーガラスに注入するシステム及び方法
EP3548939A4 (en) 2016-12-02 2020-11-25 DigiLens Inc. UNIFORM OUTPUT LIGHTING WAVEGUIDE DEVICE
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
KR102676211B1 (ko) * 2017-02-08 2024-06-19 삼성전자주식회사 생체 센서를 포함하는 전자 장치
WO2018193723A1 (ja) * 2017-04-20 2018-10-25 パナソニックIpマネジメント株式会社 光スキャンデバイス、光受信デバイス、および光検出システム
EP3698214A4 (en) 2017-10-16 2021-10-27 Digilens Inc. SYSTEMS AND METHODS FOR MULTIPLICATION OF THE IMAGE RESOLUTION OF A PIXELIZED DISPLAY
KR20200104402A (ko) 2018-01-08 2020-09-03 디지렌즈 인코포레이티드. 도파관 셀을 제조하기 위한 시스템 및 방법
JP7404243B2 (ja) 2018-01-08 2023-12-25 ディジレンズ インコーポレイテッド 導波管セル内のホログラフィック格子の高スループット記録のためのシステムおよび方法
WO2019136476A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Waveguide architectures and related methods of manufacturing
EP4372451A3 (en) 2018-03-16 2024-08-14 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US10976579B2 (en) * 2018-08-09 2021-04-13 Analog Devices, Inc. Liquid crystal waveguide with active incoupling
EP3924759A4 (en) 2019-02-15 2022-12-28 Digilens Inc. METHODS AND APPARATUS FOR MAKING A HOLOGRAPHIC WAVEGUIDE DISPLAY WITH INTEGRATED GRIDINGS
JP2022525165A (ja) 2019-03-12 2022-05-11 ディジレンズ インコーポレイテッド ホログラフィック導波管バックライトおよび関連する製造方法
WO2020247930A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
CN110427822A (zh) * 2019-06-28 2019-11-08 江西沃格光电股份有限公司 超声波指纹识别装置及其加工方法、电子设备
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
EP4022370A4 (en) 2019-08-29 2023-08-30 Digilens Inc. VACUUM BRAGG GRATINGS AND METHODS OF MANUFACTURING
US12007655B2 (en) * 2021-05-25 2024-06-11 Microsoft Technology Licensing, Llc Optical attenuation via switchable grating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902088A (en) * 1986-03-25 1990-02-20 Apa Optics, Inc. Integrated optic device for laser beam scanning
US5937115A (en) * 1997-02-12 1999-08-10 Foster-Miller, Inc. Switchable optical components/structures and methods for the fabrication thereof
CA2300170A1 (en) * 1997-08-13 1999-02-25 Brent Little Switchable optical components
JP2000030034A (ja) * 1998-07-09 2000-01-28 Fuji Electric Co Ltd 指紋画像入力装置
US6661542B1 (en) * 2000-08-23 2003-12-09 Gateway, Inc. Display and scanning assembly
US20030038824A1 (en) * 2001-08-24 2003-02-27 Ryder Brian D. Addition of mouse scrolling and hot-key functionality to biometric security fingerprint readers in notebook computers
JP4266770B2 (ja) * 2003-10-22 2009-05-20 アルプス電気株式会社 光学式画像読み取り装置
US7233710B2 (en) * 2004-03-01 2007-06-19 University Of Washington Polymer based electro-optic scanner for image acquisition and display
US7787110B2 (en) * 2004-10-16 2010-08-31 Aprilis, Inc. Diffractive imaging system and method for the reading and analysis of skin topology
US7700908B2 (en) * 2007-06-08 2010-04-20 University Of Washington Two dimensional optical scanning image system
WO2011110821A1 (en) * 2010-03-12 2011-09-15 Milan Momcilo Popovich Biometric sensor

Also Published As

Publication number Publication date
EP2476081A2 (en) 2012-07-18
EP2476081B1 (en) 2019-04-10
CA2773704C (en) 2018-02-20
EP2476081A4 (en) 2015-04-08
US20110063604A1 (en) 2011-03-17
US8354640B2 (en) 2013-01-15
RU2012114160A (ru) 2013-10-20
WO2011032005A2 (en) 2011-03-17
CA2773704A1 (en) 2011-03-17
JP2013504823A (ja) 2013-02-07
WO2011032005A3 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5674790B2 (ja) 光学的に基礎付けられた平面状スキャナー
US20200150469A1 (en) Method and Apparatus for Contact Image Sensing
US11443547B2 (en) Waveguide device incorporating beam direction selective light absorber
US11256155B2 (en) Contact image sensor using switchable Bragg gratings
US10891460B2 (en) Systems and methods for optical sensing with angled filters
CN107480584B (zh) 扫描式指纹识别与触控一体屏
EP3461292B1 (en) Anti-spoofing sensing for rejecting fake fingerprint patterns in under-screen optical sensor module for on-screen fingerprint sensing
CN109791599B (zh) 用于屏幕上指纹感应的屏幕下光学传感器模块
CN111178324B (zh) 采用准直器的光学传感器
CN109948410B (zh) 具有纹路检测功能的电子设备
CN108877492B (zh) 嵌入光学成像传感器的平板显示器
US8035625B2 (en) Touch screen
KR102098657B1 (ko) 디스플레이 일체형 지문센서를 갖는 전자기기, 그것의 사용자 인증 방법, 및 그것의 사용자 지문 등록 방법
CN105759330A (zh) 基于光栅结构与微棱镜阵列的指纹识别系统
WO2011110821A1 (en) Biometric sensor
CN111108511A (zh) 指纹检测装置和电子设备
KR20180003702A (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
CN210605739U (zh) 指纹检测装置和电子设备
KR20160017419A (ko) 지문 인식 장치 및 이를 이용하는 지문 인식 방법
KR20180122509A (ko) 광학식 이미지 인식 센서를 구비한 평판 표시장치
CN111868736B (zh) 带有倾斜接收光学元件的显示模块下的指纹传感器
JP2005164283A (ja) 表面形状検出装置及び光学装置並び光学装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees