JP5674126B2 - Sample for transmission electron microscope and method for producing the same - Google Patents

Sample for transmission electron microscope and method for producing the same Download PDF

Info

Publication number
JP5674126B2
JP5674126B2 JP2010285863A JP2010285863A JP5674126B2 JP 5674126 B2 JP5674126 B2 JP 5674126B2 JP 2010285863 A JP2010285863 A JP 2010285863A JP 2010285863 A JP2010285863 A JP 2010285863A JP 5674126 B2 JP5674126 B2 JP 5674126B2
Authority
JP
Japan
Prior art keywords
sample
transmission electron
protective film
manufacturing
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010285863A
Other languages
Japanese (ja)
Other versions
JP2012132813A (en
Inventor
淳 鹿野
淳 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2010285863A priority Critical patent/JP5674126B2/en
Publication of JP2012132813A publication Critical patent/JP2012132813A/en
Application granted granted Critical
Publication of JP5674126B2 publication Critical patent/JP5674126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、透過型電子顕微鏡用試料及びその作製方法に関する。   The present invention relates to a sample for a transmission electron microscope and a manufacturing method thereof.

透過型電子顕微鏡(TEM:Transmission Electron Microscope)の観察において、集束イオンビーム(FIB:Focused Ion Beam)を用いた薄片化によりTEM用試料の作製を行うことが知られている。例えば、図1A〜図1C、図2A〜図2B及び図3A〜図3Bは、一般的なFIBによるTEM用試料の作製方法を示す模式図である。   In observation of a transmission electron microscope (TEM), it is known that a sample for a TEM is prepared by thinning using a focused ion beam (FIB). For example, FIGS. 1A to 1C, FIGS. 2A to 2B, and FIGS. 3A to 3B are schematic diagrams illustrating a method for preparing a TEM sample by a general FIB.

図1Aに示すように、まず、試料101の上側からFIB_B0を照射して、試料101を削る。それにより、図1Bに示すように、第1本体部102と薄体部103とを形成する。薄体部103は、第1本体部102から横方向に伸び、第1本体部102より薄い形状を有している。第1本体部102は、薄体部103を削り出したときの試料101の残余の部分である。薄体部103の横側及び下側で、薄体部103と結合している。   As shown in FIG. 1A, first, FIB_B0 is irradiated from above the sample 101 to scrape the sample 101. Thereby, as shown to FIG. 1B, the 1st main-body part 102 and the thin-body part 103 are formed. The thin body portion 103 extends laterally from the first main body portion 102 and has a shape thinner than that of the first main body portion 102. The first main body portion 102 is a remaining portion of the sample 101 when the thin body portion 103 is cut out. The thin body portion 103 is coupled to the thin body portion 103 on the lateral side and the lower side thereof.

続いて、図1Cに示すように、試料101の上側からFIB_C0を照射して、薄体部103を削り、第2本体部103aと薄片部104とを形成する。薄片部104は、第2本体部103aから横方向に伸び、第2本体部103aより薄い形状を有している。第2本体部103aは、薄片部104を削り出したときの薄体部103の残余の部分である。薄片部104の横側及び下側で、薄片部104と結合している。図1Cの工程を拡大して示したのが図2A〜図2Bである。   Subsequently, as shown in FIG. 1C, FIB_C0 is irradiated from the upper side of the sample 101 to scrape the thin body portion 103, thereby forming the second main body portion 103a and the thin piece portion 104. The thin piece portion 104 extends laterally from the second main body portion 103a and has a shape thinner than that of the second main body portion 103a. The second main body portion 103a is a remaining portion of the thin body portion 103 when the thin piece portion 104 is cut out. The thin piece portion 104 is coupled to the thin piece portion 104 on the lateral side and the lower side thereof. FIG. 2A to FIG. 2B show the enlarged process of FIG. 1C.

ここで、図3A(図2BのP0部分の拡大)に示すように、FIB_C0により、薄片部104を更に削る。それにより、図3Bに示すように、第3本体部104aと薄膜部111とを形成する。薄膜部111は、第3本体部104aから横方向に伸び、第3本体部104aより薄い形状を有している。第3本体部104aは、薄膜部111を削り出したときの薄片部104の残余の部分である。薄膜部111の横側及び下側で、薄膜部111と結合している。この薄膜部111の所定の箇所に、TEMによる解析対象物113が存在している。   Here, as shown in FIG. 3A (enlargement of the P0 portion in FIG. 2B), the thin piece portion 104 is further shaved by FIB_C0. Thereby, as shown in FIG. 3B, the third main body portion 104a and the thin film portion 111 are formed. The thin film portion 111 extends laterally from the third main body portion 104a and has a shape thinner than that of the third main body portion 104a. The third main body portion 104a is a remaining portion of the thin piece portion 104 when the thin film portion 111 is cut out. The thin film part 111 is coupled to the thin film part 111 on the lateral side and the lower side. An analysis object 113 by TEM is present at a predetermined location of the thin film portion 111.

FIBによる試料の薄片化では、試料の上側からビームを入射させたとき、試料内の構成によって材料が異なることにより研磨レートが変わる。そのため、試料内で膜厚のばらつきが発生する場合がある。そのような場合、元素分析の定量化を行おうとすると、その膜厚ばらつきにより分析の精度が大幅に低下する。この現象をカーテニングという。カーテニングを防止することが望まれる。   In the thinning of the sample by FIB, when the beam is incident from the upper side of the sample, the polishing rate varies depending on the material depending on the configuration in the sample. Therefore, there may be a variation in film thickness within the sample. In such a case, when the elemental analysis is quantified, the accuracy of the analysis is greatly lowered due to the variation in the film thickness. This phenomenon is called cartaining. It is desirable to prevent curtaining.

関連する技術として、特開平9−145567号公報(特許文献1)に透過型電子顕微鏡観察用試料の作製方法が開示されている。この透過型電子顕微鏡観察用試料の作製方法は、炭化水素を主成分とする有機分子ガスが存在する真空室内で、試料表面に電子ビームを照射することにより炭素皮膜を形成し、この炭素皮膜上からArイオンビームを照射することにより、炭素皮膜被覆部以外の試料表面をエッチング除去し、炭素皮膜被覆部に、試料表面に垂直な柱状の観察部を形成する。   As a related technique, Japanese Patent Laid-Open No. 9-145567 (Patent Document 1) discloses a method for preparing a sample for observation with a transmission electron microscope. The method for preparing a sample for observation with a transmission electron microscope is that a carbon film is formed by irradiating an electron beam on the surface of a sample in a vacuum chamber in which an organic molecular gas mainly composed of hydrocarbons is present. By irradiating with an Ar ion beam, the sample surface other than the carbon film covering portion is etched away, and a columnar observation portion perpendicular to the sample surface is formed in the carbon film covering portion.

また、特開2007−292507号公報(特許文献2)に透過型電子顕微鏡の試料作製方法および集束イオンビーム装置が開示されている。この透過型電子顕微鏡の試料作製方法は、試料を加工することによって、透過型電子顕微鏡による所望の観察箇所を含む薄片部を形成し、前記薄片部を含む前記試料表面に薄膜を成膜した後に、前記薄片部に対し集束イオンビームにより加工を施して、前記薄片部の一部の前記薄膜を除去し、前記透過型電子顕微鏡の観察試料とする。   Japanese Patent Laid-Open No. 2007-292507 (Patent Document 2) discloses a transmission electron microscope sample preparation method and a focused ion beam apparatus. In this transmission electron microscope sample preparation method, after processing a sample, a thin piece portion including a desired observation position by the transmission electron microscope is formed, and a thin film is formed on the sample surface including the thin piece portion. Then, the thin piece portion is processed with a focused ion beam to remove a part of the thin film of the thin piece portion, and to be an observation sample of the transmission electron microscope.

また、第26回分析電子顕微鏡討論会予稿集の“FIB試料作製時における最近のダメージ低減テクニック”には、試料の裏側からFIBを照射することでカーテニングが抑制されることが開示されている。   In addition, “Recent damage reduction technique at the time of FIB sample preparation” in the proceedings of the 26th Analytical Electron Microscope Symposium discloses that the cutting is suppressed by irradiating the FIB from the back side of the sample.

特開平9−145567号公報JP-A-9-145567 特開2007−292507号公報JP 2007-292507 A

完山正林、“FIB試料作製時における最近のダメージ低減テクニック”、第26回分析電子顕微鏡討論会予稿集(2010)Masabayashi Masahiro, “Recent Damage Reduction Techniques in FIB Sample Preparation”, Proceedings of the 26th Analytical Electron Microscope Discussion Meeting (2010)

上記の一般的なFIBによるTEM用試料の作製方法には以下の問題点が有ることが、発明者の研究により今回初めて明らかとなった。図4A及び図4Bは、薄膜化における問題点を示す模式図である。薄膜部111を形成するとき、試料1の上側からビームを入射させると、薄片化されている箇所が二方向から崩れていく場合がある。例えば、図4Aに示すように、薄膜部111を所望の厚みにするべく薄膜化を行っていると、薄片化されている箇所が、上方から崩れる(図中、K1で表示)のみでなく、側面方向からも崩れ始める(図中、K2で表示)。この場合、二方向から薄膜部111が崩れていくため、図4Bに示すように、薄膜部111aの面積が小さくなってしまう。すなわち、広い範囲の薄片化が困難であり、最悪の場合、解析対象物113のある箇所が崩れることも起こり得る。したがって、最薄片化(例示:膜厚30nm−100nm)を行う場合、崩れの制御が極めて重要になる。   It has been clarified for the first time by the inventor's research that the above-described general method for preparing a TEM sample by FIB has the following problems. 4A and 4B are schematic diagrams showing problems in thinning. When the thin film portion 111 is formed, if a beam is incident from above the sample 1, the thinned portion may collapse from two directions. For example, as shown in FIG. 4A, when the thin film portion 111 is thinned to have a desired thickness, the thinned portion collapses from above (indicated by K1 in the figure), It begins to collapse from the side (indicated by K2 in the figure). In this case, since the thin film portion 111 collapses from two directions, the area of the thin film portion 111a becomes small as shown in FIG. 4B. That is, thinning over a wide range is difficult, and in the worst case, a certain part of the analysis object 113 may be broken. Therefore, control of collapse is extremely important when making the thinnest (example: film thickness 30 nm-100 nm).

以下に、発明を実施するための形態で使用される番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、特許請求の範囲の記載と発明を実施するための形態との対応関係を明らかにするために括弧付きで付加されたものである。ただし、それらの番号・符号を、特許請求の範囲に記載されている発明の技術的範囲の解釈に用いてはならない。   Hereinafter, means for solving the problem will be described using the numbers and symbols used in the embodiments for carrying out the invention. These numbers and symbols are added with parentheses in order to clarify the correspondence between the description of the claims and the mode for carrying out the invention. However, these numbers and symbols should not be used for interpreting the technical scope of the invention described in the claims.

本発明の透過型電子顕微鏡用試料は、試料本体(4a)と、薄膜部(11)と、保護膜(8)とを具備している。薄膜部(11)は、試料本体(4a)から第1の向き(−Y)に伸び、試料本体(4a)より薄い。保護膜(8)は、試料本体(4a)及び薄膜部(11)の上側の表面に連続的に設けられ、薄膜部(11)の主材料より固い。薄膜部(11)は、保護膜(8)の下側に接した極薄膜部(12)と、極薄膜部(12)の下側に接した残余部(11a)とを備えている。極薄膜部(12)は、残余部(11a)より薄い。極薄膜部(12)は、保護膜(8)と接する部分を第1の辺とする三角形又は四角形の薄片形状を有している。極薄膜部(12)は、第1の辺に交わり外側に露出した第2の辺と、第2の辺に交わり残余部(11a)と結合する第3の辺とが成す角(α)が、0°より大きく180°より小さい。   The sample for a transmission electron microscope of the present invention includes a sample body (4a), a thin film portion (11), and a protective film (8). The thin film portion (11) extends from the sample body (4a) in the first direction (-Y) and is thinner than the sample body (4a). The protective film (8) is continuously provided on the upper surface of the sample body (4a) and the thin film portion (11), and is harder than the main material of the thin film portion (11). The thin film part (11) includes an ultrathin film part (12) in contact with the lower side of the protective film (8) and a remaining part (11a) in contact with the lower side of the ultrathin film part (12). The ultrathin film portion (12) is thinner than the remaining portion (11a). The ultrathin film portion (12) has a triangular or quadrangular flake shape with the first side being the portion in contact with the protective film (8). The ultrathin film portion (12) has an angle (α) formed by a second side that intersects the first side and is exposed to the outside and a third side that intersects the second side and is coupled to the remaining portion (11a). , Greater than 0 ° and less than 180 °.

本発明の透過型電子顕微鏡用試料では、極薄膜部(12)上に、薄膜部(11)の主材料より固い保護膜(8)が設けられている。そのため、所定形状の極薄膜部(12)を横側からのビームによる加工で形成した場合、すなわち、第2の辺と第3の辺とが成す角(α)が0°より大きく180°より小さい所定形状の極薄膜部(12)を有する場合でも、カーテニングを抑制しつつ極薄膜部(12)の崩れも抑制されてその形状を保持することができる。それにより、広い面積での薄膜サンプリングが可能になる。   In the transmission electron microscope sample of the present invention, the protective film (8) harder than the main material of the thin film part (11) is provided on the ultrathin film part (12). Therefore, when the ultrathin film portion (12) having a predetermined shape is formed by processing with a beam from the side, that is, the angle (α) formed by the second side and the third side is greater than 0 ° and greater than 180 °. Even in the case of having an extremely thin film portion (12) having a small predetermined shape, the collapse of the ultrathin film portion (12) can be suppressed and the shape can be maintained while curving is suppressed. Thereby, thin film sampling in a large area becomes possible.

本発明の透過型電子顕微鏡用試料の作製方法は、保護膜(8)を形成する工程と;試料本体(4a)と薄膜部(11)とを形成する工程と;極薄膜部(12)を形成する工程とを具備している。保護膜(8)を形成する工程は、試料(1)の上側の表面に、試料(1)の主材料より固い保護膜(8)を形成する。試料本体(4a)と薄膜部(11)とを形成する工程は、イオンビームを照射して試料(1)を削り、保護膜(8)を上側の表面に備える試料本体(4a)と、保護膜(8)を上側の表面に備え、試料本体(4a)から第1の向き(−Y)に伸び、試料本体(4a)より薄い薄膜部(11)とを形成する。極薄膜部(12)を形成する工程は、試料本体(4a)と反対側の薄膜部(11)の横側からイオンビームを照射して、薄膜部(11)を薄くなるように削り、保護膜(8)の下側に接した極薄膜部(12)を形成する。   The method for producing a sample for a transmission electron microscope of the present invention comprises: a step of forming a protective film (8); a step of forming a sample body (4a) and a thin film portion (11); and an ultra thin film portion (12). Forming the process. The step of forming the protective film (8) forms a protective film (8) harder than the main material of the sample (1) on the upper surface of the sample (1). The step of forming the sample body (4a) and the thin film portion (11) includes irradiating an ion beam to scrape the sample (1), and a sample body (4a) provided with a protective film (8) on the upper surface. A film (8) is provided on the upper surface, extends from the sample body (4a) in the first direction (-Y), and forms a thin film portion (11) thinner than the sample body (4a). The step of forming the ultrathin film portion (12) is performed by irradiating an ion beam from the side of the thin film portion (11) opposite to the sample main body (4a) and shaving the thin film portion (11) so as to be thin. An ultrathin film part (12) in contact with the lower side of the film (8) is formed.

本発明の透過型電子顕微鏡用試料の作製方法では、極薄膜部(12)を形成する工程のとき、事前に、極薄膜部(12)上に、薄膜部(11)の主材料より固い保護膜(8)が設けられている。そのため、所定形状の極薄膜部(12)を横側からのビームによる加工で形成した場合でも、カーテニングを抑制しつつ極薄膜部(12)の崩れも抑制されてその形状を保持することができる。それにより、広い面積での薄膜サンプリングが可能になる。   In the method for preparing a sample for a transmission electron microscope of the present invention, in the step of forming the ultrathin film portion (12), protection on the ultrathin film portion (12) is harder than the main material of the thin film portion (11) in advance. A membrane (8) is provided. Therefore, even when the ultra-thin film portion (12) having a predetermined shape is formed by processing with a beam from the side, the collapse of the ultra-thin film portion (12) can be suppressed and the shape can be maintained while curving is suppressed. . Thereby, thin film sampling in a large area becomes possible.

本発明により、過型電子顕微鏡用試料及びその作製方法において、カーテニングを抑制しつつ解析対象物付近の薄膜部分の崩れを抑制することができる。   According to the present invention, in a sample for an over-type electron microscope and a manufacturing method thereof, collapse of a thin film portion in the vicinity of an analysis object can be suppressed while curving is suppressed.

図1Aは一般的なFIBによるTEM用試料の作製方法を示す模式図である。FIG. 1A is a schematic diagram showing a method for producing a TEM sample by a general FIB. 図1Bは一般的なFIBによるTEM用試料の作製方法を示す模式図である。FIG. 1B is a schematic view showing a method for producing a TEM sample by a general FIB. 図1Cは一般的なFIBによるTEM用試料の作製方法を示す模式図である。FIG. 1C is a schematic diagram showing a method for producing a TEM sample by a general FIB. 図2Aは一般的なFIBによるTEM用試料の作製方法を示す模式図である。FIG. 2A is a schematic view showing a method for producing a TEM sample by a general FIB. 図2Bは一般的なFIBによるTEM用試料の作製方法を示す模式図である。FIG. 2B is a schematic diagram showing a method for producing a TEM sample by a general FIB. 図3Aは一般的なFIBによるTEM用試料の作製方法を示す模式図である。FIG. 3A is a schematic diagram showing a method for preparing a TEM sample by a general FIB. 図3Bは一般的なFIBによるTEM用試料の作製方法を示す模式図である。FIG. 3B is a schematic view showing a method for producing a TEM sample by a general FIB. 図4Aは薄膜化における問題点を示す模式図である。FIG. 4A is a schematic diagram showing problems in thinning. 図4Bは薄膜化における問題点を示す模式図である。FIG. 4B is a schematic diagram showing problems in thinning. 図5Aは本発明の実施の形態に係る透過型電子顕微鏡用試料の構成を示す斜視図である。FIG. 5A is a perspective view showing a configuration of a transmission electron microscope sample according to the embodiment of the present invention. 図5Bは本発明の実施の形態に係る透過型電子顕微鏡用試料の構成を示す側面図である。FIG. 5B is a side view showing the configuration of the transmission electron microscope sample according to the embodiment of the present invention. 図6Aは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 6A is a schematic view showing a method for producing a transmission electron microscope sample according to an embodiment of the present invention. 図6Bは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 6B is a schematic view showing a method for manufacturing a transmission electron microscope sample according to the embodiment of the present invention. 図6Cは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 6C is a schematic diagram showing a method for manufacturing a transmission electron microscope sample according to an embodiment of the present invention. 図6Dは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 6D is a schematic diagram illustrating a method for manufacturing a transmission electron microscope sample according to an embodiment of the present invention. 図7Aは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 7A is a schematic view showing a method for manufacturing a transmission electron microscope sample according to an embodiment of the present invention. 図7Bは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 7B is a schematic diagram showing a method for manufacturing a transmission electron microscope sample according to an embodiment of the present invention. 図8Aは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 8A is a schematic view showing a method for manufacturing a transmission electron microscope sample according to an embodiment of the present invention. 図8Bは本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 8B is a schematic view showing a method for manufacturing a transmission electron microscope sample according to the embodiment of the present invention. 図9は本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。FIG. 9 is a schematic diagram showing a method for producing a transmission electron microscope sample according to an embodiment of the present invention.

以下、本発明の透過型電子顕微鏡用試料及びその作製方法の実施の形態に関して、添付図面を参照して説明する。   Embodiments of a transmission electron microscope sample of the present invention and a method for manufacturing the same will be described below with reference to the accompanying drawings.

本発明の実施の形態に係る透過型電子顕微鏡用試料の構成について説明する。図5A及び図5Bは、本発明の実施の形態に係る透過型電子顕微鏡用試料の構成を示す斜視図及び側面図である。透過型電子顕微鏡用の試料1は、例えば略直方体形状の試料の一部が、集束イオンビーム(FIB)等を用いて、TEM観察可能な程度に薄く削り出された形状を有している。試料1は、第3本体部4aと、薄膜部11と、極薄膜部12と、保護膜8とを具備している。更に、第1本体部2と、第2本体部3aとを具備していても良い。   The configuration of the transmission electron microscope sample according to the embodiment of the present invention will be described. 5A and 5B are a perspective view and a side view showing a configuration of a transmission electron microscope sample according to the embodiment of the present invention. A sample 1 for a transmission electron microscope has a shape in which, for example, a part of a substantially rectangular parallelepiped sample is cut out thinly enough to allow TEM observation using a focused ion beam (FIB) or the like. The sample 1 includes a third main body portion 4a, a thin film portion 11, an ultrathin film portion 12, and a protective film 8. Furthermore, you may comprise the 1st main-body part 2 and the 2nd main-body part 3a.

第1本体部2は、+Y方向に向かって段構造(昇段)を有している。その段構造には、第2本体部3aが設けられている。第2本体部3aは、第1本体部2の上部から横方向(−Y方向)に伸び、第1本体部2より薄い板状の形状を有している。第1本体部2は、第2本体部3aの横側(+Y側)及び下側(−Z側)で、第2本体部3aと結合している。   The first main body 2 has a step structure (step up) in the + Y direction. The step structure is provided with a second main body 3a. The second main body 3 a extends in the lateral direction (−Y direction) from the top of the first main body 2 and has a plate-like shape that is thinner than the first main body 2. The first main body 2 is coupled to the second main body 3a on the lateral side (+ Y side) and the lower side (−Z side) of the second main body 3a.

第2本体部3aは、+Y方向に向かって段構造(昇段)を有している。その段構造には、第3本体部4aが設けられている。第3本体部4aは、第2本体部3aの上部から横方向(−Y方向)に伸び、第2本体部3aより薄い板状の形状を有している。第2本体部3aは、第3本体部4aの横側(+Y側)及び下側(−Z側)で、第3本体部4aと結合している。   The second main body 3a has a step structure (ascending step) in the + Y direction. In the step structure, a third main body portion 4a is provided. The third main body 4a extends in the horizontal direction (−Y direction) from the top of the second main body 3a, and has a plate-like shape that is thinner than the second main body 3a. The second main body portion 3a is coupled to the third main body portion 4a on the lateral side (+ Y side) and the lower side (−Z side) of the third main body portion 4a.

第3本体部4aは、+Y方向に向かって段構造(昇段)を有している。その段構造には、薄膜部11が設けられている。薄膜部11は、第3本体部4aの上部から横方向(−Y方向)に伸び、第3本体部4aより薄い板状の形状を有している。第3本体部4aは、薄膜部11の横側(+Y側)及び下側(−Z側)で、薄膜部11と結合している。   The third main body 4a has a step structure (ascending step) in the + Y direction. The thin film portion 11 is provided in the step structure. The thin film portion 11 extends in the lateral direction (−Y direction) from the upper portion of the third main body portion 4a, and has a plate shape thinner than the third main body portion 4a. The third main body portion 4 a is coupled to the thin film portion 11 on the lateral side (+ Y side) and the lower side (−Z side) of the thin film portion 11.

保護膜8は、少なくとも薄膜部11及び第3本体部4aの上側(+Z側)の表面を連続的に覆うように設けられている。更に、第2本体部3a及び第1本体部2の上側(+Z側)の表面を連続的に覆うように設けられていてもよい。   The protective film 8 is provided so as to continuously cover at least the upper surface (+ Z side) of the thin film portion 11 and the third main body portion 4a. Furthermore, it may be provided so as to continuously cover the upper (+ Z side) surfaces of the second main body 3a and the first main body 2.

薄膜部11は、極薄膜部12と、残余部11aとを備えている。極薄膜部12は、保護膜8の下側に接している。残余部11aは、極薄膜部12の下側に接している。残余部11aは、一部、保護膜8の下側に接していてもよい。極薄膜部12は、残余部11aより薄い。極薄膜部12は、TEM観察用の解析対象物13を含んでいる。   The thin film portion 11 includes an ultrathin film portion 12 and a remaining portion 11a. The ultrathin film portion 12 is in contact with the lower side of the protective film 8. The remaining portion 11 a is in contact with the lower side of the ultrathin film portion 12. The remaining portion 11a may partially be in contact with the lower side of the protective film 8. The ultrathin film portion 12 is thinner than the remaining portion 11a. The ultrathin film portion 12 includes an analysis object 13 for TEM observation.

極薄膜部12は、保護膜8と接する部分を第1の辺(Y方向)とする三角形又は四角形の薄片形状を有している。図5Bでは実線で三角形の場合を、二点鎖線で四角形の場合をそれぞれ例示している。極薄膜部12は、その三角形又は四角形の内部に、TEM観察用の解析対象物13を含んでいる。第1の辺に交わり外側に露出した第2の辺(Z方向の辺)と、第2の辺に交わり残余部11aと結合する第3の辺とが成す角αは、0°より大きく180°より小さい。また、極薄膜部12の面積を広くしようとすれば、角αは45°以上であることがより好ましい。薄膜部11の強度を十分に維持(極薄膜部12の面積を抑える)しようとすれば、各αは135°以下であることが好ましい。   The ultrathin film portion 12 has a triangular or quadrangular thin piece shape with a portion in contact with the protective film 8 as a first side (Y direction). FIG. 5B illustrates a case where the solid line is a triangle and a case where the two-dot chain line is a rectangle. The ultrathin film portion 12 includes an analysis object 13 for TEM observation inside the triangle or the rectangle. The angle α formed between the second side (side in the Z direction) that intersects the first side and is exposed to the outside and the third side that intersects the second side and is coupled to the remaining portion 11a is greater than 0 ° and 180 °. Less than °. Further, in order to increase the area of the ultrathin film portion 12, the angle α is more preferably 45 ° or more. In order to sufficiently maintain the strength of the thin film portion 11 (suppress the area of the ultrathin film portion 12), each α is preferably 135 ° or less.

保護膜8は、少なくとも薄膜部11の主材料より硬度が固い材料で形成されている。ここで、薄膜部11の主材料は、薄膜部11の中で最も量の多い材料とする。更に、第3本体部4a及び第2本体部3aの主材料より硬度が固い材料で形成されていてもよい。その場合、主材料は、薄膜部11、第3本体部4a及び第2本体部3aの中で最も量の多い材料とする。このような保護膜8は、薄膜部11や極薄膜部12を薄く削って行く場合でも、薄膜部11や極薄膜部12と比較して削られ難い。そのため、薄膜部11や極薄膜部12は、削られて極めて薄くなったとしても、相対的に削られる量が少ない保護膜8に保持・支持されるので、崩れ難くなる。すなわち、保護膜8は、薄膜部11や極薄膜部12の崩れを防止することができ好ましい。保護膜8は、薄膜部11や極薄膜部12と比較して削られ難いため、X方向の幅は、薄膜部11や極薄膜部12の厚み(X方向)と比較して、等しいか又は大きい。   The protective film 8 is formed of a material that is harder than at least the main material of the thin film portion 11. Here, the main material of the thin film portion 11 is the material having the largest amount in the thin film portion 11. Further, it may be formed of a material whose hardness is harder than the main material of the third main body portion 4a and the second main body portion 3a. In this case, the main material is the material having the largest amount among the thin film portion 11, the third main body portion 4a, and the second main body portion 3a. Such a protective film 8 is less likely to be cut than the thin film portion 11 and the ultrathin film portion 12 even when the thin film portion 11 and the ultrathin film portion 12 are thinned. Therefore, even if the thin film portion 11 and the ultrathin film portion 12 are cut and become extremely thin, the thin film portion 11 and the ultra thin film portion 12 are held and supported by the protective film 8 that has a relatively small amount to be cut, and thus are not easily broken. That is, the protective film 8 is preferable because it can prevent the thin film portion 11 and the ultrathin film portion 12 from collapsing. Since the protective film 8 is hard to be cut compared to the thin film portion 11 and the ultrathin film portion 12, the width in the X direction is equal to the thickness (X direction) of the thin film portion 11 and the ultrathin film portion 12, or large.

例えば、薄膜部11等の主材料がシリコンの場合、シリコンの硬度は4.0であることから、保護膜8の硬度は4.0より大きいことが好ましい。それにより、薄膜部11や極薄膜部12を薄く削って行くときに保護膜8が同様に削られて無くなってしまう、という状況を防止できる。硬度が大きい材料としては、Pt、W、Ni、SiC、DLC(Diamond−Like Carbon)のうちの少なくとも一つを含む材料が例示される。特に、これらの材料は、硬度が4.0より大きい材料であり、主材料がシリコンの場合にも適している。   For example, when the main material such as the thin film portion 11 is silicon, since the hardness of silicon is 4.0, the hardness of the protective film 8 is preferably larger than 4.0. Thereby, when the thin film part 11 and the ultra-thin film part 12 are shaved thinly, the situation where the protective film 8 is similarly shaved and lost can be prevented. Examples of the material having high hardness include materials containing at least one of Pt, W, Ni, SiC, and DLC (Diamond-Like Carbon). In particular, these materials are materials having a hardness greater than 4.0, and are also suitable when the main material is silicon.

保護膜8の膜厚は、0.1μm以上、3μm以下であることが好ましい。0.1μmより薄いと、保護膜8としての上記機能を果たせないからである。膜厚の上限は特に制限はないが、取り扱いの容易さを考慮すると、約3μm以下となる。   The thickness of the protective film 8 is preferably 0.1 μm or more and 3 μm or less. This is because if the thickness is less than 0.1 μm, the function as the protective film 8 cannot be performed. The upper limit of the film thickness is not particularly limited, but is about 3 μm or less in consideration of ease of handling.

また、極薄膜部12内の観察対象位置(解析対象物13の位置)は、第1の辺(保護膜8)から0μmより大きく5μm以下であることが好ましい。後述されるように、カーテニングの低減効果(試料の凹凸の影響の低減効果)を狙う場合、その効果は、試料表面付近(例示:表面から5μm以内)に解析対象物13がある場合に大きいと考えられるからである。それにより、カーテニングを低減しつつ、広い領域の薄膜サンプリングを可能とすることができる。   In addition, the observation target position (position of the analysis target 13) in the ultrathin film portion 12 is preferably greater than 0 μm and less than or equal to 5 μm from the first side (protective film 8). As will be described later, when aiming at the effect of reducing the curtaining (the effect of reducing the influence of the unevenness of the sample), the effect is large when the analysis target 13 is near the sample surface (example: within 5 μm from the surface). It is possible. Thereby, thin film sampling in a wide area can be made possible while reducing the curtaining.

次に、本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法について説明する。図6A〜図6D、図7A〜図7B、図8A〜図8B及び図9は、本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法を示す模式図である。   Next, a method for manufacturing a transmission electron microscope sample according to an embodiment of the present invention will be described. FIGS. 6A to 6D, FIGS. 7A to 7B, FIGS. 8A to 8B, and FIG. 9 are schematic diagrams illustrating a method for producing a transmission electron microscope sample according to an embodiment of the present invention.

図6Aに示すように、まず、試料1の上側の表面に保護膜8を形成する。例えば、保護膜用のPtやWのターゲットをスパッタリングA1して、保護膜8としてPt膜やW膜を成膜する。   As shown in FIG. 6A, first, a protective film 8 is formed on the upper surface of the sample 1. For example, a Pt or W target for the protective film is sputtered A1, and a Pt film or a W film is formed as the protective film 8.

次に、図6Bに示すように、試料1の上側からFIB_B1を照射して、保護膜8が成膜された試料1を削る。それにより、図6Cに示すように、第1本体部2と薄体部3とを形成する。薄体部3は、保護膜8を表面に備え、第1本体部2から横方向(−Y方向)に伸び、第1本体部2より薄い形状を有している。第1本体部2は、薄体部3を削り出したときの試料1の残余の部分であり、保護膜8を表面に備えている。薄体部3の横側(+Y側)及び下側(−Z側)で、薄体部3と結合している。   Next, as shown in FIG. 6B, FIB_B1 is irradiated from above the sample 1 to scrape the sample 1 on which the protective film 8 is formed. Thereby, as shown to FIG. 6C, the 1st main-body part 2 and the thin-body part 3 are formed. The thin body portion 3 includes a protective film 8 on the surface, extends in the lateral direction (−Y direction) from the first main body portion 2, and has a shape thinner than that of the first main body portion 2. The 1st main-body part 2 is the remainder part of the sample 1 when the thin body part 3 is cut out, and is provided with the protective film 8 on the surface. The thin body 3 is coupled to the thin body 3 on the lateral side (+ Y side) and the lower side (−Z side).

続いて、図6Dに示すように、試料1の横側(薄体部3に対して、第1本体部2との結合部分と反対の側;−Y側)から、+Y方向の成分を有する向きに、FIB_C1を照射して、薄体部3を削る。それにより、第2本体部3aと薄片部4とを形成する。薄片部4は、保護膜8を表面に備え、第2本体部3aから横方向(−Y方向)に伸び、第2本体部3aより薄い形状を有している。第2本体部3aは、薄片部4を削り出したときの薄体部3の残余の部分であり、保護膜8を表面に備えている。薄片部4の横側(+Y側)及び下側(−Z側)で、薄片部4と結合している。図6Dの工程を拡大して示したのが図7A〜図7Bである。   Subsequently, as shown in FIG. 6D, the sample 1 has a component in the + Y direction from the side of the sample 1 (the side opposite to the coupling portion with the first main body portion 2 with respect to the thin body portion 3; the −Y side). In the direction, FIB_C1 is irradiated to cut the thin body portion 3. Thereby, the 2nd main-body part 3a and the thin piece part 4 are formed. The thin piece portion 4 includes a protective film 8 on the surface, extends in the lateral direction (−Y direction) from the second main body portion 3a, and has a shape thinner than the second main body portion 3a. The 2nd main-body part 3a is a remaining part of the thin-body part 3 when the thin piece part 4 is cut out, and is provided with the protective film 8 on the surface. The thin piece portion 4 is coupled to the thin piece portion 4 on the lateral side (+ Y side) and the lower side (−Z side). FIG. 7A to FIG. 7B show the process of FIG. 6D in an enlarged manner.

ここで、試料1の横側から、FIBを照射するのは、カーテニングによる分析精度低下(試料の凹凸の影響)の問題を解決するためである。発明者の研究により、試料の上側からFIBを照射した場合に発生するカーテニングは、試料の横側からFIBを照射することにより、大幅に低減できることが判明した。従って、少なくとも図6Dの工程以降において、横側からFIBを照射することにより、カーテニングを大幅に抑制することができる。   Here, the reason why the FIB is irradiated from the side of the sample 1 is to solve the problem of degradation in analysis accuracy (effect of unevenness of the sample) due to the cutting. According to the inventors' research, it has been found that the curtaining that occurs when the FIB is irradiated from the upper side of the sample can be significantly reduced by irradiating the FIB from the lateral side of the sample. Therefore, at least after the step of FIG. 6D, the cutting can be significantly suppressed by irradiating the FIB from the side.

更に、図8A(図7BのP1部分の拡大)に示すように、試料1の横側(−Y側)から、+Y方向の成分を有する向きに、FIB_C1を照射して、薄片部4を削る。それにより、図8Bに示すように、第3本体部4aと薄膜部11とを形成する。薄膜部11は、保護膜8を表面に備え、第3本体部4aから横方向(−Y方向)に伸び、第3本体部4aより薄い形状を有している。第3本体部4aは、薄膜部11を削り出したときの薄片部4の残余の部分であり、保護膜8を表面に備えている。薄膜部11の横側(+Y側)及び下側(−Z側)で、薄膜部11と結合している。   Further, as shown in FIG. 8A (enlargement of the P1 portion in FIG. 7B), FIB_C1 is irradiated from the lateral side (−Y side) of the sample 1 in a direction having a component in the + Y direction, and the thin piece portion 4 is shaved. . Thereby, as shown to FIG. 8B, the 3rd main-body part 4a and the thin film part 11 are formed. The thin film portion 11 includes a protective film 8 on the surface, extends in the lateral direction (−Y direction) from the third main body portion 4a, and has a shape thinner than that of the third main body portion 4a. The 3rd main-body part 4a is a remaining part of the thin piece part 4 when the thin film part 11 is shaved, and is provided with the protective film 8 on the surface. The thin film part 11 is coupled to the thin film part 11 on the lateral side (+ Y side) and the lower side (−Z side).

更に、図9(図8BのQ1部分の拡大)に示すように、試料1の横側(−Y側)から、+Y方向の成分を有する向きに、FIB_C1を照射して、薄膜部11を削る。それにより、極薄膜部12と残余部11aを形成する。極薄膜部12は、保護膜8の下側に接し、残余部11aから横方向(−Y方向)に伸び、残余部11aより薄い形状を有している。残余部11aは、極薄膜部12を削り出したときの薄膜部11の残余の部分であり、保護膜8を表面に備えている場合もある。極薄膜部12の横側(+Y側)及び下側(−Z側)で、極薄膜部12と結合している。この極薄膜部12の所定の箇所が、TEMによる解析対象物13となる。   Further, as shown in FIG. 9 (enlargement of the Q1 portion in FIG. 8B), the thin film portion 11 is shaved by irradiating FIB_C1 from the lateral side (−Y side) of the sample 1 in a direction having a component in the + Y direction. . Thereby, the ultrathin film portion 12 and the remaining portion 11a are formed. The ultrathin film portion 12 is in contact with the lower side of the protective film 8, extends in the lateral direction (−Y direction) from the remaining portion 11a, and has a shape thinner than the remaining portion 11a. The remaining portion 11a is a remaining portion of the thin film portion 11 when the ultrathin film portion 12 is cut out, and may have a protective film 8 on the surface. The ultrathin film portion 12 is coupled to the ultrathin film portion 12 on the lateral side (+ Y side) and the lower side (−Z side). A predetermined portion of the ultrathin film portion 12 becomes an analysis target 13 by TEM.

このとき、保護膜8は、薄膜部11や極薄膜部12と比較して削られ難いため、X方向の幅は、薄膜部11や極薄膜部12の厚み(X方向)と比較して、等しいか又は大きくなっている。すなわち、保護膜8は、極薄膜部12の上側(+Z側)において、±X方向に張り出している場合がある。また、保護膜8は、必ずしも図6Aで示す段階で成膜しなくても良く、他の箇所に影響しなければ図6Cや図6Dで示す段階で成膜しても良い。   At this time, since the protective film 8 is difficult to be cut compared to the thin film portion 11 and the ultrathin film portion 12, the width in the X direction is compared with the thickness (X direction) of the thin film portion 11 and the ultrathin film portion 12, Equal or larger. That is, the protective film 8 may protrude in the ± X direction on the upper side (+ Z side) of the ultrathin film portion 12. Further, the protective film 8 is not necessarily formed at the stage shown in FIG. 6A, and may be formed at the stage shown in FIGS. 6C and 6D as long as it does not affect other portions.

ここで、FIB_C1を照射する横側の向きは、いずれの場合にも、少なくとも+Y方向(横方向)の成分を有している。そして、更に、仰角0°以上90°未満(上側(+Z側)に0°以上90°未満)、又は、俯角0°以上90°未満(下側(−Z側)に0°以上90°未満)の角度範囲であることが好ましい。このとき、FIB_C1は、X軸上を平行移動し、YZ平面内で上記所定の角度範囲内を向いて照射される。例えば、図9に示すように、FIB_C11を照射する向きは、−Y方向の成分を有し、かつ、俯角0°以上90°未満(下側(−Z側)に0°以上90°未満)の角度範囲である。FIB_C12を照射する向きは、−Y方向の成分を有し、仰角0°(又は俯角0°)の角度範囲である。FIB_C13を照射する向きは、−Y方向の成分を有し、かつ、仰角0°以上90°未満(上側(+Z側)に0°以上90°未満)の角度範囲である。   Here, the horizontal direction of irradiation with FIB_C1 has at least a component in the + Y direction (lateral direction) in any case. Further, the elevation angle is 0 ° to less than 90 ° (0 ° to less than 90 ° on the upper side (+ Z side)), or the depression angle is 0 ° to less than 90 ° (0 ° to less than 90 ° on the lower side (−Z side)). ) Is preferable. At this time, FIB_C1 is moved in parallel on the X-axis, and is irradiated in the predetermined angle range in the YZ plane. For example, as shown in FIG. 9, the direction in which FIB_C11 is irradiated has a component in the −Y direction, and the depression angle is 0 ° or more and less than 90 ° (0 ° or more and less than 90 ° on the lower side (−Z side)). Is the angle range. The direction of irradiating FIB_C12 has a component in the −Y direction and is in an angle range of an elevation angle of 0 ° (or a depression angle of 0 °). The direction of irradiating FIB_C13 has a component in the −Y direction, and has an elevation range of 0 ° or more and less than 90 ° (0 ° or more and less than 90 ° on the upper side (+ Z side)).

このとき、図9に例示される極薄膜部12の形状(実線及び二点鎖線;第2の辺と第3の辺との成す角α)は、FIB_C12〜FIB_C13のような水平〜上向きのFIBを照射することにより形成することができる。なお、上記FIBの照射の角度範囲は、極薄膜部12の面積を広くしようとすれば、仰角45°以下であることがより好ましい。また、薄膜部11の強度を十分に維持(極薄膜部12の面積を抑える)しようとすれば、俯角45°以下であることが好ましい。   At this time, the shape of the ultrathin film portion 12 illustrated in FIG. 9 (solid line and two-dot chain line; angle α formed between the second side and the third side) is a horizontal to upward FIB such as FIB_C12 to FIB_C13. Can be formed by irradiation. The FIB irradiation angle range is more preferably an elevation angle of 45 ° or less in order to increase the area of the ultrathin film portion 12. In addition, in order to sufficiently maintain the strength of the thin film portion 11 (suppress the area of the ultrathin film portion 12), the depression angle is preferably 45 ° or less.

以上のようにして、本発明の実施の形態に係る透過型電子顕微鏡用試料の作製方法が実施される。すなわち、極薄膜部12が、極薄膜部12の下側に接した薄膜部11の残余部11aより薄く、保護膜8と接する部分を第1の辺とする三角形又は四角形の薄片形状を有し、第1の辺と交わり外側に露出した第2の辺と、第2の辺と交わり残余部11aと結合する第3の辺とが成す角が0°より大きく180°より小さい、ように透過型電子顕微鏡用の試料が作製される。   As described above, the method for manufacturing the sample for the transmission electron microscope according to the embodiment of the present invention is performed. That is, the ultrathin film portion 12 is thinner than the remaining portion 11a of the thin film portion 11 that is in contact with the lower side of the ultrathin film portion 12, and has a triangular or quadrangular flake shape with a portion in contact with the protective film 8 as a first side. The angle formed by the second side that intersects the first side and is exposed to the outside and the third side that intersects the second side and joins the remaining portion 11a is larger than 0 ° and smaller than 180 °. A sample for a scanning electron microscope is produced.

本実施の形態では、薄膜化を進める工程でのFIBの照射を阻害しない位置(極薄膜部12の表面)に、事前に保護膜8が成膜されている。そのため、FIBを照射する時、極薄膜部12の近傍が極めて薄い形状になっても、保護膜8が極薄膜部12を支持・保持している。すなわち、保護膜8が極薄膜部12での膜の崩れを抑える支持体として機能している。それにより、この横方向(+Y方向あるいは側面方向)からFIBを入射して加工したとき、極薄膜部12での膜の崩れは、この横方向(−Y方向あるいは側面方向)からのみになる。従って、極薄膜部12の領域を広く形成・維持することができる。その結果、広い領域の薄膜サンプリングが可能になる。   In the present embodiment, the protective film 8 is formed in advance at a position (the surface of the ultrathin film portion 12) that does not inhibit the FIB irradiation in the process of thinning. Therefore, when the FIB is irradiated, the protective film 8 supports and holds the ultrathin film portion 12 even if the vicinity of the ultrathin film portion 12 becomes extremely thin. That is, the protective film 8 functions as a support that suppresses the collapse of the film in the ultrathin film portion 12. Accordingly, when the FIB is incident and processed from this lateral direction (+ Y direction or side surface direction), the film collapse at the ultrathin film portion 12 is only from this lateral direction (−Y direction or side surface direction). Accordingly, the region of the ultrathin film portion 12 can be formed and maintained widely. As a result, wide area thin film sampling is possible.

また、本実施の形態では、TEM用試料の薄膜(例示:極薄膜部12)を、FIBを用いて作製するとき、横方向(+Y方向あるいは側面方向)からビームを入射させて、カーテニングの低減効果(試料の凹凸の影響の低減)を狙っている。このとき、試料表面付近(例示:表面から5μm以内)に解析対象物13がある場合、角部の薄片化が必要となり(例示:図4Aの場合と同様)、薄片化時に膜が崩れて解析対象物13が破壊されるおそれがある(例示:図4Bの場合と同様)。しかし、本実施の形態では、事前に試料表面に保護膜8を成膜することにより、上述のように膜の崩れを抑えることができる。すなわち、カーテニングを低減しつつ、広い領域の薄膜サンプリングを可能とすることができる。   Further, in this embodiment, when a thin film of a TEM sample (example: ultrathin film portion 12) is manufactured using FIB, a beam is incident from the lateral direction (+ Y direction or side surface direction) to reduce the curtaining. It aims at effect (reduction of the influence of unevenness of the sample). At this time, if there is an analysis target 13 near the sample surface (example: within 5 μm from the surface), the corner portion needs to be thinned (example: similar to the case of FIG. 4A), and the film breaks down at the time of thinning. There is a possibility that the target 13 is destroyed (example: same as in FIG. 4B). However, in this embodiment, the film collapse can be suppressed as described above by forming the protective film 8 on the sample surface in advance. That is, thin film sampling in a wide area can be achieved while reducing the curtaining.

本発明は上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変形又は変更され得ることは明らかである。   The present invention is not limited to the embodiments described above, and it is obvious that the embodiments can be appropriately modified or changed within the scope of the technical idea of the present invention.

1、101 試料
2、102 第1本体部
3、103 薄体部
3a、103a 第2本体部
4、104 薄片部
4a、104a 第3本体部
8 保護膜
11、111 薄膜部
111a 薄膜部
11a 残余部
12 極薄膜部
13 解析対象物
DESCRIPTION OF SYMBOLS 1,101 Sample 2,102 1st main-body part 3,103 Thin body part 3a, 103a 2nd main-body part 4,104 Thin piece part 4a, 104a 3rd main-body part 8 Protective film 11,111 Thin-film part 111a Thin-film part 11a Residual part 12 Ultrathin film part 13 Analytical object

Claims (7)

(a)表面と、前記表面と交差する側面を有し、解析物を内包する試料を準備する工程と、
(b)前記(a)工程の後、前記試料の前記表面上に、前記試料の主材料よりも硬度の大きい保護膜を形成する工程と、
(c)前記(b)工程の後、前記試料の前記表面に向かってイオンビームを照射し、第1面と、前記第1面とは反対側の第2面と、前記保護膜の残存部の一部分から成る第1保護膜面と、前記側面の残存部の一部分から成る第1側面を有し、前記解析対象物を内包する第1試料部を形成する工程と、
(d)前記(c)工程の後、前記第1試料部の前記第1側面に向かってイオンビームを照射し、第1主面と、前記第1主面とは反対側の第2主面と、前記第1保護膜面の残存部の一部分から成る第2保護膜面と、前記第1側面の残存部の一部分から成る第2側面を有し、前記解析対象物を内包する第2試料部を形成する工程と、
(e)前記(d)工程の後、前記第2試料部の前記第2側面に向かってイオンビームを照射し、前記第2試料部に前記解析対象物を内包する第1領域と前記解析対象物を内包しない第2領域を形成する工程と
を備え、
前記(e)工程では、断面視において前記第1領域の膜厚を前記第2領域の膜厚よりも薄く形成する
透過型電子顕微鏡用試料の作製方法。
(A) preparing a sample having a surface and a side surface intersecting with the surface and containing the analyte;
(B) after the step (a), forming a protective film having a hardness higher than that of the main material of the sample on the surface of the sample;
(C) After the step (b), the surface of the sample is irradiated with an ion beam, the first surface, the second surface opposite to the first surface, and the remaining portion of the protective film Forming a first protective film surface comprising a part of the first protective film surface, a first side surface comprising a part of the remaining part of the side surface, and forming a first sample part containing the analysis object;
(D) After the step (c), the first main surface is irradiated with an ion beam toward the first side surface of the first sample portion, and the first main surface and the second main surface opposite to the first main surface When, and a second protective layer surface consisting of a portion of the remaining portion of the first protective film surface, a second side surface consisting of a portion of the remaining portion of the first side surface, the enclosing the analysis object 2 Forming a sample portion;
(E) After the step (d), an ion beam is irradiated toward the second side surface of the second sample portion, and the first region containing the analysis target in the second sample portion and the analysis target Forming a second region that does not contain an object,
In the step (e), the thickness of the first region is made thinner than the thickness of the second region in a cross-sectional view.
請求項に記載の透過型電子顕微鏡用試料の作製方法において、
前記(e)工程において、前記イオンビームの照射方向は、前記第2試料部の第2側面に対して仰角0°以上90°未満又は俯角0°以上90°未満の角度範囲で、イオンビームを照射する工程を含む、
透過型電子顕微鏡用試料の作製方法。
In the manufacturing method of the sample for transmission electron microscopes of Claim 1 ,
In the step (e), the irradiation direction of the ion beam is an ion beam in an angle range of an elevation angle of 0 ° to less than 90 ° or a depression angle of 0 ° to less than 90 ° with respect to the second side surface of the second sample portion. Including the step of irradiating,
A method for producing a sample for a transmission electron microscope.
請求項に記載の透過型電子顕微鏡用試料の作製方法において、
前記(e)工程は、
前記第1領域が、
前記保護膜と接する部分を第1辺とする三角形又は四角形の薄片形状を有し、
前記第1辺と交わり外側に露出した第2辺と、前記第2辺と交わり前記第2領域と結合する第3辺とが成す角が、0°より大きく180°よりも小さくなるように前記第1領域を形成する工程を含む
透過型電子顕微鏡用試料の作製方法。
In the manufacturing method of the sample for transmission electron microscopes of Claim 2 ,
The step (e)
The first region is
It has a triangular or quadrangular flake shape whose first side is a portion in contact with the protective film,
A second side exposed to the outside of the first side and the intersection, the angle formed between the third side is to bind to a second side and intersects the second region, said to be smaller than 180 ° greater than 0 ° A method for producing a sample for a transmission electron microscope, including a step of forming a first region.
請求項乃至のいずれか一項に記載の透過型電子顕微鏡用試料の作製方法において、
前記保護膜の硬度が前記第1試料部の硬度より大きい
透過型電子顕微鏡用試料の作製方法。
In the manufacturing method of the sample for transmission electron microscopes as described in any one of Claims 1 thru | or 3 ,
A method for producing a sample for a transmission electron microscope, wherein the hardness of the protective film is greater than the hardness of the first sample portion.
請求項に記載の透過型電子顕微鏡用試料の作製方法において、
前記保護膜の膜厚は、0.1μm以上、3μm以下である
透過型電子顕微鏡用試料の作製方法。
In the manufacturing method of the sample for transmission electron microscopes of Claim 4 ,
The thickness of the protective film is 0.1 μm or more and 3 μm or less. A method for manufacturing a sample for a transmission electron microscope.
請求項に記載の透過型電子顕微鏡用試料の作製方法において、
前記保護膜は、Pt、W、Ni、SiC、DLC(Diamond−Like Carbon)のうちの少なくとも一つを含む
透過型電子顕微鏡用試料の作製方法。
In the manufacturing method of the sample for transmission electron microscopes of Claim 1 ,
The method for manufacturing a sample for a transmission electron microscope, wherein the protective film includes at least one of Pt, W, Ni, SiC, and DLC (Diamond-Like Carbon).
請求項乃至のいずれか一項に記載の透過型電子顕微鏡用試料の作製方法において、
前記第2試料部は、前記第3辺とは反対側に位置し、前記第2側面に接続され、前記第1辺および前記第2辺と交差する第4辺を有し、
前記第1領域内の前記解析対象物の位置は、前記第2試料部の前記第1辺と前記第2辺の間に位置し、前記第1辺よりも前記第2辺の近くに配置され、且つ、前記第3辺と前記第4辺の間に位置し、前記第4辺よりも前記第3辺の近く配置されている
透過型電子顕微鏡用試料の作製方法。
In the manufacturing method of the sample for transmission electron microscopes as described in any one of Claims 1 thru | or 6 ,
The second sample portion is located on the opposite side to the third side, connected to the second side surface, and has a fourth side intersecting the first side and the second side,
The position of the analysis object in the first region is located between the first side and the second side of the second sample part, and is arranged closer to the second side than the first side. And the manufacturing method of the sample for transmission electron microscopes located between the said 3rd side and the said 4th side, and arrange | positioned near the said 3rd side rather than the said 4th side.
JP2010285863A 2010-12-22 2010-12-22 Sample for transmission electron microscope and method for producing the same Expired - Fee Related JP5674126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285863A JP5674126B2 (en) 2010-12-22 2010-12-22 Sample for transmission electron microscope and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285863A JP5674126B2 (en) 2010-12-22 2010-12-22 Sample for transmission electron microscope and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012132813A JP2012132813A (en) 2012-07-12
JP5674126B2 true JP5674126B2 (en) 2015-02-25

Family

ID=46648567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285863A Expired - Fee Related JP5674126B2 (en) 2010-12-22 2010-12-22 Sample for transmission electron microscope and method for producing the same

Country Status (1)

Country Link
JP (1) JP5674126B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884247B2 (en) * 2012-09-25 2014-11-11 Fei Company System and method for ex situ analysis of a substrate
US9349573B2 (en) * 2014-08-01 2016-05-24 Omniprobe, Inc. Total release method for sample extraction in an energetic-beam instrument
JP6925522B2 (en) * 2018-05-25 2021-08-25 三菱電機株式会社 Method for preparing a transmission electron microscope sample

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318468A (en) * 1994-05-25 1995-12-08 Hitachi Ltd Manufacture of electron microscope observational sample
JPH09145567A (en) * 1995-11-22 1997-06-06 Fuji Electric Co Ltd Manufacture for sample for observation by transmission electron microscope
JP3768197B2 (en) * 2003-02-28 2006-04-19 株式会社東芝 Preparation method of transmission electron microscope specimen
JP2004301557A (en) * 2003-03-28 2004-10-28 Tdk Corp Method for machining object to be observed and micromachining method
JP2007292507A (en) * 2006-04-21 2007-11-08 Matsushita Electric Ind Co Ltd Sample-manufacturing method of transmission electron microscope, and convergent ion beam device
JP4890373B2 (en) * 2007-07-19 2012-03-07 新日本製鐵株式会社 Sample preparation method
JP5075801B2 (en) * 2008-12-02 2012-11-21 株式会社日立ハイテクノロジーズ Observation sample preparation method

Also Published As

Publication number Publication date
JP2012132813A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5674126B2 (en) Sample for transmission electron microscope and method for producing the same
JP6780957B2 (en) Method for preparing a sample for microstructure diagnosis and sample for microstructure diagnosis
JP2014130145A (en) Method for preparing samples for imaging
US7354500B2 (en) Mask and apparatus using it to prepare sample by ion milling
JP2009198412A (en) Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope
JP3711018B2 (en) TEM sample thinning method
EP2817818B1 (en) Method and arrangement for manufacturing a radiation window
JP6288258B2 (en) Method for dividing brittle substrate
CN105236345A (en) MEMS (Micro Electro Mechanical System) device, semiconductor device and manufacturing methods thereof
JP2012168002A (en) Minute sample processing method and minute sample
JP4801432B2 (en) Focused ion beam processing method and transmission electron microscope sample preparation method using the same
JP6288260B2 (en) Method for dividing brittle substrate
JP5492105B2 (en) Sample preparation equipment
JP5961029B2 (en) Hard coating layer and formation method thereof
JP2007163160A5 (en)
JP5420452B2 (en) Sample cross-section manufacturing apparatus and manufacturing method using ion beam
US20110260056A1 (en) Auxiliary stage and method of utilizing auxiliary stage
KR20220093880A (en) Method of fabricating TEM test sample using focused ion beam
JP2010271101A (en) Minute sample stand, substrate for forming the minute sample stand, method for manufacturing the minute sample stand, and analyzing method using the minute sample stand
JP7420922B2 (en) bonded substrate
JP5363370B2 (en) Method for producing highly oriented diamond film
Chen et al. Fabrication of sub-200 nm AlN-GaN-AlN waveguide with cleaved end facet
KR101856556B1 (en) Method for splitting brittle substrate
CN103868769A (en) Plane transmission electron microscope sample and preparation method thereof
JP2011242334A (en) Section observation sample manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5674126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees