JP5420452B2 - Sample cross-section manufacturing apparatus and manufacturing method using ion beam - Google Patents

Sample cross-section manufacturing apparatus and manufacturing method using ion beam Download PDF

Info

Publication number
JP5420452B2
JP5420452B2 JP2010047979A JP2010047979A JP5420452B2 JP 5420452 B2 JP5420452 B2 JP 5420452B2 JP 2010047979 A JP2010047979 A JP 2010047979A JP 2010047979 A JP2010047979 A JP 2010047979A JP 5420452 B2 JP5420452 B2 JP 5420452B2
Authority
JP
Japan
Prior art keywords
shielding material
sample
ion beam
cross
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010047979A
Other languages
Japanese (ja)
Other versions
JP2010230665A (en
Inventor
弘樹 轟
美紀子 樋岡
勉 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2010047979A priority Critical patent/JP5420452B2/en
Publication of JP2010230665A publication Critical patent/JP2010230665A/en
Application granted granted Critical
Publication of JP5420452B2 publication Critical patent/JP5420452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、イオンビームと遮蔽材を用いて平滑且つ清浄な試料断面を作製することのできる試料断面作製装置に関する。     The present invention relates to a sample cross section preparation apparatus capable of producing a smooth and clean sample cross section using an ion beam and a shielding material.

半導体内部等の不良解析を行なう時、集束イオンビーム(FIB)を用いて欠陥部位を断面加工し、走査電子顕微鏡(SEM)や透過電子顕微鏡(TEM)で観察することが広く行われている。しかし、FIBによる断面加工には試料の破壊を伴うという欠点が有る。   When analyzing a defect inside a semiconductor or the like, it is a common practice to process a cross-section of a defective portion using a focused ion beam (FIB) and observe it with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). However, the cross-section processing by FIB has a drawback that it involves destruction of the sample.

ところで、SEMやTEMで断面観察の対象となる試料には、半導体試料の他にも、柔らかい試料、熱に弱い試料、吸水性のある試料、樹脂埋め込みが困難な試料等の断面作製が難しい試料が多くある。これらの試料の断面作製方法として試料の上に遮蔽物を置いて、イオンビームを集束させないで広げたまま試料に照射する試料作製方法(以下、「CP法」:Cross section Polisher法、と称す)が使われるようになっている(例えば、特許文献の特許第3263920号公報を参照)。CP法は、特に硬さが異なる異種材料からなり複合材料あるいはポーラスな構造を有する材料において、FIB法よりも構造変化の少ない良好な断面を得ることができるとされている。さらに、FIB法に比べて、加工前処理が簡単で、熟練を要する作業の必要も無いので、容易に短時間で断面作製が行えるという利点も有る。   By the way, samples that are subject to cross-sectional observation by SEM or TEM include samples other than semiconductor samples, such as soft samples, heat-sensitive samples, water-absorbing samples, samples that are difficult to embed resin, etc. There are many. As a cross-section preparation method of these samples, a sample preparation method in which a shield is placed on the sample and the sample is irradiated without spreading the ion beam (hereinafter referred to as “CP method”: Cross section Polisher method) (For example, see Japanese Patent No. 3263920 in the patent literature). The CP method is said to be able to obtain a good cross-section with less structural change than the FIB method, particularly in a composite material or a material having a porous structure made of different materials having different hardnesses. Furthermore, as compared with the FIB method, pre-processing is simple and there is no need for skilled work, so that there is an advantage that a cross-section can be easily produced in a short time.

特許文献1の試料作製装置の改良技術として、特許文献2の特許第4208658号公報には、断面作製位置を調節するための光学顕微鏡を備えた装置に関する技術が開示されている。以下に、特許第4208658号公報を参考にして従来の断面試料作製技術を簡単に説明する。   As an improvement technique of the sample preparation apparatus of Patent Document 1, Japanese Patent No. 4208658 of Patent Document 2 discloses a technique related to an apparatus provided with an optical microscope for adjusting the cross-section preparation position. The conventional cross-section sample preparation technique will be briefly described below with reference to Japanese Patent No. 4208658.

なお、説明の理解を容易にするため、図面において、互いに直交する座標軸X,Y,Z軸を定義し、座標軸を図面上に表記する。この表記中、「〇」の中に「・」が記載されているものは、紙面裏から表に向かう矢印を表し、「〇」の中に「×」が記載されているものは、紙面表から裏に向かう矢印を意味するものとする。   In order to facilitate understanding of the description, coordinate axes X, Y, and Z that are orthogonal to each other are defined in the drawing, and the coordinate axes are represented on the drawing. In this notation, “○” in “◯” indicates an arrow heading from the back of the page to the front, and “X” in “○” is the front of the page. It means an arrow pointing from the back to the back.

図6は従来の試料断面作製装置全体の概略構成例を示す側面図である。図6において、真空チャンバ1の上部にはイオン銃(イオンビーム照射手段)2が取り付けられている。イオン銃2から放出されるイオンビームIBの中心軸Oiはz軸に略平行である。試料ステージ引出機構3は真空チャンバ1に開閉可能に取り付けられている。図6(a)は試料ステージ引出機構3が開けられた状態(引き出された状態)、図6(b)は閉じられた状態を示している。試料ステージ引出機構3が閉じられた状態で加工室18は排気装置17によって真空排気される。試料ステージ引出機構3には試料ステージ4がy軸の周りに傾斜可能に取り付けられている。試料ステージ4上には試料位置調節機構5が配置され、試料位置調節機構5上に装着された試料ホルダ7及び試料ホルダ7に載置された試料6をx及びy軸方向に移動可能なように構成されている。遮蔽材保持機構13に保持された遮蔽材12は、遮蔽材傾倒機構11に傾倒可能に取り付けられている。遮蔽材保持機構13はx軸に平行な軸qの周りに回動して遮蔽材12を試料6上から退避させることができる。試料ステージ4上には遮蔽材位置調節機構10が配置され、y軸方向に移動可能に構成されている。光学顕微鏡15を保持する光学顕微鏡位置調節機構16は、光学顕微鏡傾倒機構14に傾倒可能に取り付けられている。図6(b)に示すように、試料ステージ引出機構3を閉じる場合、光学顕微鏡15と光学顕微鏡位置調節機構16は、x軸に平行な軸rの周りに回動して真空チャンバ1の外に位置するように構成されている。   FIG. 6 is a side view showing a schematic configuration example of the entire conventional sample cross-section preparation apparatus. In FIG. 6, an ion gun (ion beam irradiation means) 2 is attached to the upper part of the vacuum chamber 1. The central axis Oi of the ion beam IB emitted from the ion gun 2 is substantially parallel to the z axis. The sample stage drawing mechanism 3 is attached to the vacuum chamber 1 so as to be openable and closable. FIG. 6A shows a state where the sample stage drawing mechanism 3 is opened (drawn state), and FIG. 6B shows a closed state. The processing chamber 18 is evacuated by the exhaust device 17 in a state where the sample stage drawing mechanism 3 is closed. A sample stage 4 is attached to the sample stage drawing mechanism 3 so as to be inclined around the y-axis. A sample position adjusting mechanism 5 is arranged on the sample stage 4 so that the sample holder 7 mounted on the sample position adjusting mechanism 5 and the sample 6 placed on the sample holder 7 can be moved in the x and y axis directions. It is configured. The shielding material 12 held by the shielding material holding mechanism 13 is attached to the shielding material tilting mechanism 11 so as to be tiltable. The shielding material holding mechanism 13 can be rotated around an axis q parallel to the x axis to retract the shielding material 12 from the sample 6. A shielding material position adjusting mechanism 10 is arranged on the sample stage 4 and configured to be movable in the y-axis direction. The optical microscope position adjusting mechanism 16 that holds the optical microscope 15 is attached to the optical microscope tilting mechanism 14 so as to be tiltable. As shown in FIG. 6B, when the sample stage drawing mechanism 3 is closed, the optical microscope 15 and the optical microscope position adjusting mechanism 16 rotate around an axis r parallel to the x axis to move outside the vacuum chamber 1. It is comprised so that it may be located in.

ここで、図6の構成の試料断面作製装置において、断面作製に先立って行われる断面作製位置決めの手順を簡単に説明する。先ず、試料ステージ引出機構3を閉じて加工室18を真空排気した図6(b)の状態で、イオンビームIBを試料6上の任意の位置に所定時間照射しイオンビーム痕を形成する。次に、試料ステージ引出機構3を開けて加工室18を大気開放した図6(a)の状態で、光学顕微鏡位置調節機構16を操作して、イオンビーム痕が光学顕微鏡15の視野中心に来るように光学顕微鏡15の位置調節を行なう。これにより、光学顕微鏡15の光軸OLをイオンビーム照射軸Oiに一致させることができる。続いて、操作者は光学顕微鏡15で遮蔽材12を観察しながら、遮蔽材位置調節機構10に設けられた「遮蔽材y移動摘み」(図示せず)を操作することにより、遮蔽材12の端縁部位置を光軸OL上に位置するように調節する。続いて、操作者は光学顕微鏡15で試料6を観察しながら、試料位置調節機構5に設けられた「試料x移動摘み」と「試料y移動摘み」(図示せず)を操作することにより、試料6の断面作製位置が遮蔽材12の端縁部の真下に位置するように調節する。   Here, in the sample cross-section preparation apparatus having the configuration shown in FIG. 6, a procedure for cross-section preparation positioning performed prior to cross-section preparation will be briefly described. First, in the state of FIG. 6B in which the sample stage drawing mechanism 3 is closed and the processing chamber 18 is evacuated, an ion beam IB is irradiated to an arbitrary position on the sample 6 for a predetermined time to form an ion beam mark. Next, in the state of FIG. 6A in which the sample stage extraction mechanism 3 is opened and the processing chamber 18 is opened to the atmosphere, the optical microscope position adjustment mechanism 16 is operated, and the ion beam trace comes to the center of the visual field of the optical microscope 15. Thus, the position of the optical microscope 15 is adjusted. Thereby, the optical axis OL of the optical microscope 15 can be made to coincide with the ion beam irradiation axis Oi. Subsequently, the operator operates the “shielding material y moving knob” (not shown) provided in the shielding material position adjusting mechanism 10 while observing the shielding material 12 with the optical microscope 15. The edge position is adjusted so as to be positioned on the optical axis OL. Subsequently, the operator operates the “sample x moving knob” and “sample y moving knob” (not shown) provided in the sample position adjusting mechanism 5 while observing the sample 6 with the optical microscope 15. The cross-sectional production position of the sample 6 is adjusted so that it is located directly below the edge of the shielding material 12.

上記のように断面作製位置を決めることができたら、再び試料ステージ引出機構3を閉じて加工室18を真空排気した図6(b)の状態とし、イオンビームIBを照射して断面作製を行なう。   When the cross-section production position can be determined as described above, the sample stage drawing mechanism 3 is closed again and the processing chamber 18 is evacuated to the state shown in FIG. 6B, and the cross-section production is performed by irradiating the ion beam IB. .

図7は、イオンビームを用いて断面作製を行なうときの前準備方法を説明するための図である。図7(a)は、異物30(観察対象部位)を含む板状の試料6′を平面方向から見た図(平面図)である。異物30は試料6′の外側から直接肉眼又は光学顕微鏡等で観察可能な場合とX線等を用いて透視しないと存在を確認できない場合がある。何れの場合にも何らかの手段を用いて試料6′中の観察対象部位を見出し、試料作製の前準備を行なう。例えば図7(a)に示すように、サインペン等を用いて、異物30を挟むようにマーカー31a、31bを描き、断面作製位置の凡その目標位置を定める。   FIG. 7 is a diagram for explaining a pre-preparation method when a cross-section is formed using an ion beam. FIG. 7A is a diagram (plan view) of a plate-like sample 6 ′ including the foreign material 30 (observation target site) viewed from the plane direction. There are cases where the foreign matter 30 can be observed directly from the outside of the sample 6 ′ with the naked eye, an optical microscope, or the like, or the presence of the foreign matter 30 cannot be confirmed unless it is seen through using X-rays. In any case, the observation target site in the sample 6 ′ is found by some means, and preparation for sample preparation is performed. For example, as shown in FIG. 7A, markers 31a and 31b are drawn so as to sandwich the foreign material 30 using a sign pen or the like, and an approximate target position of the cross-section production position is determined.

図7(b)は試料6′の断面作製位置C付近を切断機により切離し、断面作製装置に装着するための試料6を準備する方法を説明するための平面図である。マーカー31a、31bの近傍を切断し領域6aを切り取る。領域6bは切断時に失われる損壊領域であり、使用する切断機の刃の厚さや刃の回転ぶれの大きさなどにより決まる。   FIG. 7B is a plan view for explaining a method of preparing the sample 6 for cutting the vicinity of the cross-section preparation position C of the sample 6 ′ with a cutting machine and mounting it on the cross-section preparation apparatus. The area 6a is cut by cutting the vicinity of the markers 31a and 31b. The area 6b is a damaged area lost at the time of cutting, and is determined by the thickness of the blade of the cutting machine to be used, the size of the rotational shake of the blade, and the like.

図7(c)及び(d)は、観察対象部位を含む試料6を断面作製装置の試料ホルダ7に装着し、遮蔽材12の端縁部を断面作製位置Cに合わせる操作を説明するための図である。図7(c)は側面図、図7(d)は平面図を表している。試料6と遮蔽材12を光学顕微鏡15で観察しながら前述した手順で遮蔽材12の端縁部を断面作製目標位置に合わせる。   FIGS. 7C and 7D are diagrams for explaining an operation of mounting the sample 6 including the observation target part on the sample holder 7 of the cross-section preparation apparatus and aligning the edge of the shielding material 12 with the cross-section preparation position C. FIG. FIG. 7C shows a side view and FIG. 7D shows a plan view. While observing the sample 6 and the shielding material 12 with the optical microscope 15, the edge portion of the shielding material 12 is aligned with the cross-section production target position by the procedure described above.

図4は、試料断面作製を行なうとき、断面が形成されていく様子を説明するための模式図である。イオンビームIBの照射により、試料6の遮蔽材に遮蔽されない部分が徐々に切削される。図4(a)は切削が始まった直後、図4(b)は切削途中、図4(c)は断面作製がほぼ完了した状態を示す。
FIG. 4 is a schematic diagram for explaining how a cross section is formed when a cross section of a sample is prepared. The portion of the sample 6 that is not shielded by the shielding material is gradually cut by irradiation with the ion beam IB. FIG. 4A shows a state immediately after cutting has started, FIG. 4B shows a state in which cutting is in progress, and FIG.

特許第3263920号公報Japanese Patent No. 3263920 特許第4208658号公報Japanese Patent No. 4208658

図4(c)に示す状態のように断面作製が施されると、遮蔽材の端縁位置に平坦な断面が出現するはずである。しかし、この断面に段差を生じたり汚れが付着していたりして本来の構造を観察できない場合がある。   If cross-section preparation is performed as in the state shown in FIG. 4C, a flat cross-section should appear at the edge position of the shielding material. However, there is a case where the original structure cannot be observed due to a difference in level or contamination on the cross section.

この問題は、試料の遮蔽材に遮蔽されない部分(以下、「突き出し部」と略称する)をイオンビーム照射により切削する時に、削られた物質が遮蔽材の端縁部や試料の加工完了部分に再付着(リデポジション)する現象に起因すると考えられる。   This problem is that when the portion of the sample that is not shielded by the shielding material (hereinafter abbreviated as “protruding portion”) is cut by ion beam irradiation, the scraped material is applied to the edge of the shielding material or the processed portion of the sample. This is thought to be due to the phenomenon of redeposition.

図5はリデポジション現象を説明するための模式図である。図5(a)において、イオンビームIBの照射により試料6の突き出し部から飛散した物質は、遮蔽材12の端縁部に再付着し、付着物12aを形成する。付着物12aは新たな遮蔽材の働きをするので、領域6aはイオンビームIBの照射に対して付着物12aの影になってしまう。付着物12aは試料6の突き出し部が切削されて小さくなるにつれて逆に大きく成長するため、本来得られるはずの断面に少しずつ覆い被さる状態になる。そのため段差を生じたり、仕上げが不完全となって平坦な断面を得ることが出来ない。   FIG. 5 is a schematic diagram for explaining the redeposition phenomenon. In FIG. 5A, the substance scattered from the protruding portion of the sample 6 by the irradiation of the ion beam IB is reattached to the edge portion of the shielding material 12 to form a deposit 12a. Since the deposit 12a acts as a new shielding material, the region 6a becomes a shadow of the deposit 12a with respect to the irradiation of the ion beam IB. Since the deposit 12a grows conversely as the protruding portion of the sample 6 is cut and becomes smaller, the deposit 12a gradually covers the section that should have been obtained. For this reason, a step is produced, or the finish is incomplete and a flat cross section cannot be obtained.

発明者の実験によれば、図5(a)中の突き出し量Lを、断面作製を始めるときに極めて小さくなるように設定しておけば、リデポジション現象の影響を殆ど無視できることが分かった。しかし、観察目標とする異物30が小さい場合、図7中の損壊領域6bを考慮すると、突き出し量L(すなわち断面作製目標位置から切断機による切断面までの距離)は少なくとも25μm〜75μm程度が必要である。突き出し量Lが25μm〜75μm程度もあると、リデポジション現象の影響を避けることは困難である。   According to the inventor's experiment, it has been found that the influence of the redeposition phenomenon can be almost ignored if the protrusion amount L in FIG. However, when the foreign object 30 to be observed is small, considering the damaged region 6b in FIG. 7, the protrusion amount L (that is, the distance from the cross-section production target position to the cutting surface by the cutting machine) needs to be at least about 25 μm to 75 μm It is. When the protrusion amount L is about 25 μm to 75 μm, it is difficult to avoid the influence of the redeposition phenomenon.

図5(b)はもうひとつのリデポジション現象を説明するための模式図である。イオンビームIBによって突き出し部の切削が進行すると、突き出し部の上側は大きく削られるが下側はまだ残部が突き出した状態である。そのため、下側の残部から飛散した物質が、加工を完了した断面に汚れとして再付着してしまう。したがって、SEM等により作製された断面を観察しても、本来の断面構造を知ることが出来ない。   FIG. 5B is a schematic diagram for explaining another redeposition phenomenon. When the cutting of the protruding portion proceeds by the ion beam IB, the upper side of the protruding portion is largely cut, but the lower side is still in a state where the remaining portion protrudes. For this reason, the substance scattered from the remaining lower part is reattached as a stain to the cross section after the processing is completed. Therefore, even if the cross section produced by SEM etc. is observed, an original cross-sectional structure cannot be known.

本発明は上記した問題を解決するためになされたものであって、その目的は、試料にイオンビームを照射して断面試料を作製するとき、イオンビームによって削られた物質が遮蔽材や試料に再付着するリデポジションの影響を除去して、段差や汚れの無い平坦な試料断面を作製する試料作製装置及び試料作製方法を提供することにある。   The present invention has been made to solve the above-described problems. The purpose of the present invention is to produce a cross-sectional sample by irradiating a sample with an ion beam. An object of the present invention is to provide a sample preparation apparatus and a sample preparation method for removing the influence of redeposition of redeposition and producing a flat sample cross section free from steps and dirt.

上記の問題を解決するために、
(1)請求項1に記載の発明は、試料の一部を遮蔽材で覆い、当該遮蔽材の端縁部を含めて前記遮蔽材側から前記試料にイオンビーム照射手段からのイオンビームを照射することにより、前記試料の前記遮蔽材に遮蔽されない切削対象部分を前記イオンビームによって切削し、前記試料の断面を作製するための試料断面作製装置であって、その端縁部が前記試料の断面作製位置に設定される第1遮蔽材と、前記第1遮蔽材と前記イオンビーム照射手段との間に前記イオンビームが前記第1遮蔽材の端縁部及び前記試料の断面作製位置に照射されないように配置される第2遮蔽材であって、端縁部を有し、前記イオンビーム照射手段からのイオンビームが該端縁部を含む該第2遮蔽材及び前記試料の切削対象部分に照射される第2遮蔽材と、前記第2遮蔽材を前記イオンビームが前記第1遮蔽材の端縁部及び前記試料の断面作製位置に照射される退避位置へ移動させる第2遮蔽材位置移動手段と、を備えたことを特徴とする。
(2)請求項2に記載の発明は、前記第2遮蔽材位置移動手段を制御する第2遮蔽材位置制御手段を備え、該第2遮蔽材位置制御手段は、前記第1遮蔽材の端縁部が前記試料の断面作製位置に配置される基準位置の情報を記憶すると共に、前記第2遮蔽材により試料の前記断面作成位置及び前記切削対象部分が遮蔽される状態で前記イオンビームの照射が開始されると、前記記憶した基準位置の情報に基づき、前記試料の前記第2遮蔽材に遮蔽されない部分の切削が進行するにつれて前記第2遮蔽材の端縁部が前記基準位置に向けて近づくように前記第2遮蔽材を移動させ、前記第2遮蔽材の端縁部が前記基準位置を越えて前記イオンビームが前記第1遮蔽材の端縁部及び前記第1遮蔽材に遮蔽されない部分に照射される状態となったら前記第2遮蔽材の移動を停止させるように前記第2遮蔽材位置移動手段を制御することを特徴とする。
(3)請求項3に記載の発明は、試料の一部を遮蔽材で覆い、当該遮蔽材の端縁部を含めて前記遮蔽材側から前記試料にイオンビームを照射することにより、前記試料の前記遮蔽材に遮蔽されない切削対象部分を前記イオンビームによって切削し、前記試料の断面を作製するための試料断面作製方法であって、前記イオンビーム照射前に、前記試料の断面作製位置に第1遮蔽材の端縁部を配置させる第1の工程と、前記イオンビーム照射前に、前記第1遮蔽材と前記イオンビーム照射手段との間に配置される第2遮蔽材によって、試料の前記断面作成位置及び前記切削対象部分が遮蔽されるように前記第2遮蔽材と試料との相対位置を設定する第2の工程と、前記イオンビーム照射により、前記試料の前記第2遮蔽材に遮蔽されない切削対象部分を切削する第3の工程と、前記第3の工程の後、前記第1遮蔽材の端縁部が前記第2遮蔽材によって遮蔽されること無く前記イオンビームが前記試料の断面作製位置に照射される位置に前記第2遮蔽材を配置させイオンビーム照射を行う第4の工程と、を有することを特徴とする。
(4)請求項4に記載の発明は、前記第3の工程において、前記試料の前記第2遮蔽材に遮蔽されない切削対象部分の切削が進行するにつれて前記切削が進行する方向に前記試料に対する前記第2遮蔽材の端縁部の位置を変化させるようにしたことを特徴とする。
To solve the above problem,
(1) In the first aspect of the invention, a part of the sample is covered with a shielding material, and the sample is irradiated with an ion beam from the ion beam irradiation means from the shielding material side including the edge of the shielding material. A sample cross-section preparation apparatus for cutting a portion of the sample that is not shielded by the shielding material with the ion beam to produce a cross-section of the sample, the edge of which is a cross-section of the sample The ion beam is not irradiated to the edge of the first shielding material and the cross-sectional production position of the sample between the first shielding material set at the production position and the first shielding material and the ion beam irradiation means. The second shielding material is arranged in such a manner that it has an edge, and the ion beam from the ion beam irradiation means irradiates the second shielding material including the edge and the portion to be cut of the sample. The second shielding material and the front And characterized in that the second shielding member the ion beam and a second shielding member position moving means for moving to the retracted position to be irradiated to cross making the position of the edges and the sample of the first shielding member To do.
(2) The invention described in claim 2 is provided with a second shielding material position control means for controlling the second shielding material position moving means, and the second shielding material position control means is an end of the first shielding material. The ion beam irradiation is performed in such a manner that the information on the reference position where the edge portion is arranged at the cross-section preparation position of the sample is stored and the cross-section preparation position of the sample and the cutting target portion are shielded by the second shielding material Is started, the edge portion of the second shielding material is directed toward the reference position as cutting of the portion of the sample that is not shielded by the second shielding material proceeds based on the stored reference position information. The second shielding material is moved so as to approach, the edge of the second shielding material exceeds the reference position, and the ion beam is not shielded by the edge of the first shielding material and the first shielding material. When the part is irradiated And controlling the second shielding member position moving means to stop the movement of the second shielding member.
(3) In the invention according to claim 3, the sample is covered with a shielding material, and the sample is irradiated with an ion beam from the shielding material side including an edge of the shielding material. A method for preparing a cross section of a sample for cutting a portion to be cut that is not shielded by the shielding material with the ion beam to produce a cross section of the sample . The first step of arranging the edge portion of one shielding material, and the second shielding material arranged between the first shielding material and the ion beam irradiation means before the ion beam irradiation, the sample of the sample A second step of setting a relative position between the second shielding material and the sample so that the cross-section creation position and the cutting target portion are shielded, and shielding the second shielding material of the sample by the ion beam irradiation. Cutting object that is not After the third step of cutting the portion and the third step, the edge of the first shielding material is not shielded by the second shielding material, and the ion beam is placed at the cross-section preparation position of the sample. And a fourth step of performing ion beam irradiation by placing the second shielding material at a position to be irradiated .
(4) In the invention according to claim 4, in the third step, as the cutting of the part to be cut that is not shielded by the second shielding material of the sample progresses, the cutting with respect to the sample proceeds in the direction in which the cutting proceeds. The position of the edge part of the second shielding material is changed .

本発明によれば、イオンビームを照射して断面加工を施す試料の端部から断面加工位置までの距離が長くても、加工中に試料又は遮蔽材を移動させて、試料の遮蔽材に遮蔽されない突き出し部をイオンビームで切削していくので、イオンビームによって削られた物質が遮蔽材や試料に再付着するリデポジションの影響を除去して、段差や汚れの無い平坦な試料断面を作製することができる。   According to the present invention, even if the distance from the end of the sample subjected to the cross-section processing by irradiating the ion beam to the cross-section processing position is long, the sample or the shielding material is moved during the processing and is shielded by the sample shielding material. Since the unextruded protrusion is cut with an ion beam, the effect of redeposition, in which the material removed by the ion beam re-adheres to the shielding material or sample, is removed, and a flat sample cross-section without steps and dirt is created. be able to.

本発明に係る試料作製装置の要部を示す側面図である。It is a side view which shows the principal part of the sample preparation apparatus which concerns on this invention. 本発明に係る他の試料作製装置の要部を示す側面図である。It is a side view which shows the principal part of the other sample preparation apparatus which concerns on this invention. 本発明に係る他の試料作製装置の要部を示す側面図である。It is a side view which shows the principal part of the other sample preparation apparatus which concerns on this invention. 試料作製装置により断面が形成されていく様子を説明するための模式図である。It is a schematic diagram for demonstrating a mode that a cross section is formed with a sample preparation apparatus. リデポジション現象を説明するための模式図である。It is a schematic diagram for demonstrating a redeposition phenomenon. 従来の試料断面作製装置全体の概略構成例を示す側面図である。It is a side view which shows the schematic structural example of the whole conventional sample cross-section preparation apparatus. イオンビームを用いて断面作製を行なうときの前準備方法を説明するための模式図である。It is a schematic diagram for demonstrating the preparation method when performing cross-section preparation using an ion beam. 本発明に係る試料作製装置を用いて試料断面を作製する過程を説明するための模式図である。It is a schematic diagram for demonstrating the process which produces a sample cross section using the sample preparation apparatus which concerns on this invention. 本発明に係る他の試料作製装置を用いて試料断面を作製する過程を説明するための模式図である。It is a schematic diagram for demonstrating the process of producing a sample cross section using the other sample preparation apparatus which concerns on this invention. 本発明に係る他の試料作製装置を用いて試料断面を作製する過程を説明するための模式図である。It is a schematic diagram for demonstrating the process of producing a sample cross section using the other sample preparation apparatus which concerns on this invention.

以下、図面を参照しながら、本発明の実施の形態について説明する。但し、この例示によって本発明の技術範囲が制限されるものでは無い。各図において、図6の試料作製装置と同一または類似の動作を行なうものには共通の符号を付し、詳しい説明の重複を避ける。また、各図において表示されている座標軸X,Y,Z軸の定義は図6と同じである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited by this illustration. In each figure, those that perform the same or similar operations as those of the sample preparation device of FIG. The definition of the coordinate axes X, Y, and Z axes displayed in each figure is the same as that in FIG.

(実施の形態1)
図1は、本発明に係る試料作製装置100の要部を示す側面図である。試料作製装置100において、22は試料位置調節機構5をy軸方向に微小量ずつ移動させるための駆動装置、22aは駆動装置22に組み込まれたピエゾモータである。21は駆動装置22を制御するための制御装置、20はパーソナルコンピュータ等の制御演算装置である。
(Embodiment 1)
FIG. 1 is a side view showing a main part of a sample preparation apparatus 100 according to the present invention. In the sample preparation apparatus 100, reference numeral 22 denotes a driving device for moving the sample position adjusting mechanism 5 by a minute amount in the y-axis direction, and reference numeral 22 a denotes a piezo motor incorporated in the driving device 22. 21 is a control device for controlling the drive device 22, and 20 is a control arithmetic device such as a personal computer.

図1のように構成された試料作製装置100を用いて試料断面を作製する過程を、図8を参照しながら説明する。   A process of preparing a sample cross section using the sample preparation apparatus 100 configured as shown in FIG. 1 will be described with reference to FIG.

図8(a)は、試料にイオンビームを照射する前に、試料作製装置100の加工室18を図6(a)のように大気開放した状態で、遮蔽材12の端縁部を断面作製位置C(異物30の真ん中)に合わせた時の状態を示す側面図である。光学顕微鏡15を使用して試料6の表面を観察しながら、試料位置調節機構5に設けられた「試料y移動摘み」を動かして断面作製位置Cの位置決めを行なう。図8(a)は、試料6中の異物30の断面を作製するように、断面作製位置CのY軸上の位置P1を決めた状態を示している。制御演算装置20はP1の座標を記憶する。   FIG. 8A shows a cross-section of the edge of the shielding material 12 in a state where the processing chamber 18 of the sample preparation apparatus 100 is opened to the atmosphere as shown in FIG. 6A before the sample is irradiated with the ion beam. It is a side view which shows the state when set to the position C (middle of the foreign material 30). While observing the surface of the sample 6 using the optical microscope 15, the “sample y moving knob” provided in the sample position adjusting mechanism 5 is moved to position the cross-section production position C. FIG. 8A shows a state in which the position P1 on the Y axis of the cross-section production position C is determined so that the cross section of the foreign material 30 in the sample 6 is produced. The control arithmetic unit 20 stores the coordinates of P1.

このままでは試料6の遮蔽材12に遮蔽されない突き出し部が長すぎるため、ピエゾモータ22により試料ホルダ7を駆動して試料6をY軸のマイナス方向に距離dだけ移動させ、遮蔽材12に遮蔽されない部分を小さくする。P2は加工開始時点における断面作製位置Cの初期位置となる。図8(b)は、試料6にイオンビーム照射を開始するとき、突き出し部が短く設定されている状態を示している。   In this state, since the protruding portion of the sample 6 that is not shielded by the shielding material 12 is too long, the sample holder 7 is driven by the piezo motor 22 to move the sample 6 by the distance d in the negative direction of the Y axis, and the portion that is not shielded by the shielding material 12 Make it smaller. P2 is the initial position of the cross-section production position C at the start of processing. FIG. 8B shows a state in which the protruding portion is set short when the ion beam irradiation is started on the sample 6.

制御演算装置20がP1とP2の座標を記憶したら、試料作製装置100の加工室18を図6(b)に示す状態にして真空排気を行なう。   When the control arithmetic unit 20 stores the coordinates of P1 and P2, the processing chamber 18 of the sample preparation apparatus 100 is evacuated with the state shown in FIG. 6B.

加工室18が所定の真空度に達したら、試料6にイオンビームIBの照射を開始する。制御演算装置20は試料6の突き出し部の切削が進行するのに合わせて、ピエゾモータ22により試料ホルダ7を駆動し、断面作製位置Cを徐々にP2からP1に移動させる。図8(c)は、異物30がP2からP1の位置に移動する途中のP3の位置にある状態を示している。   When the processing chamber 18 reaches a predetermined degree of vacuum, irradiation of the sample 6 with the ion beam IB is started. The control arithmetic unit 20 drives the sample holder 7 by the piezo motor 22 as the cutting of the protruding portion of the sample 6 proceeds, and gradually moves the cross-section preparation position C from P2 to P1. FIG. 8C shows a state in which the foreign object 30 is at the position P3 while moving from the position P2 to the position P1.

例えば、はじめに突き出し量を25μmに設定したとすると、加工開始から20分程度の間は図8(b)に示す状態のまま試料6を移動させずに切削を行なう。加工時間が20分から95分の間は1μm/分程度のスピードで、図8(c)に示す状態で試料6を遮蔽材12から突き出す方向へ連続的又は断続的に移動させる。95分から120分(加工終了)の間は試料6の移動を停止して断面作製位置CをP1に固定したままイオンビームIBによる切削を行なう。   For example, assuming that the protrusion amount is set to 25 μm first, cutting is performed without moving the sample 6 in the state shown in FIG. 8B for about 20 minutes from the start of processing. During the processing time of 20 minutes to 95 minutes, the sample 6 is moved continuously or intermittently in the direction of protruding from the shielding material 12 in the state shown in FIG. 8C at a speed of about 1 μm / minute. During the period from 95 minutes to 120 minutes (end of processing), the movement of the sample 6 is stopped, and cutting with the ion beam IB is performed while the cross-section production position C is fixed to P1.

上記した加工条件は一例であり、試料の種類、突き出し量、イオンビームのエネルギー等により設定条件は異なる。また、はじめの突き出し量を0μmに設定して、加工開始の時から試料6を移動させるようにしても良い。   The above-described processing conditions are examples, and the setting conditions differ depending on the type of sample, the amount of protrusion, the energy of the ion beam, and the like. Alternatively, the initial protrusion amount may be set to 0 μm, and the sample 6 may be moved from the start of processing.

図8(d)は、断面作製位置CがP1まで移動してイオンビームIBによる切削が行なわれ、ほぼ断面作製が完了した状態を示している。   FIG. 8D shows a state where the cross-section preparation position C has moved to P1 and the cutting with the ion beam IB has been performed, and the cross-section preparation has been substantially completed.

(実施の形態2)
図2は、本発明に係る試料作製装置200の要部を示す側面図である。試料作製装置200において、24は遮蔽材32を保持する遮蔽材保持機構33をy軸方向に微小量ずつ移動させるためのピエゾモータである。23はピエゾモータ24を制御するための制御装置、20はパーソナルコンピュータ等の制御演算装置である。
(Embodiment 2)
FIG. 2 is a side view showing the main part of the sample preparation apparatus 200 according to the present invention. In the sample preparation apparatus 200, reference numeral 24 denotes a piezo motor for moving the shielding material holding mechanism 33 that holds the shielding material 32 by a minute amount in the y-axis direction. Reference numeral 23 denotes a control device for controlling the piezo motor 24, and 20 denotes a control arithmetic device such as a personal computer.

図2のように構成された試料作製装置200を用いて試料断面を作製する過程を、図9を参照しながら説明する。   A process of preparing a sample cross section using the sample preparation apparatus 200 configured as shown in FIG. 2 will be described with reference to FIG.

図9(a)は、試料にイオンビームを照射する前に、試料作製装置200の加工室18を図6(a)のように大気開放した状態で、遮蔽材32の端縁部を断面作製位置C(異物30の真ん中)に合わせた時の状態を示す側面図である。光学顕微鏡15を使用して試料6の表面を観察しながら、遮蔽材位置調節機構10により遮蔽材32を保持する遮蔽材保持機構33を動かして遮蔽材32の位置決めを行なう。図9(a)は、試料6中の異物30の断面を作製するように、遮蔽材32の端縁部のY軸上の位置S1を設定した状態を示している。S1の位置が断面作製位置Cとなる。制御演算装置20はS1の座標を記憶する。   FIG. 9A shows a cross-section of the edge of the shielding material 32 in a state where the processing chamber 18 of the sample preparation apparatus 200 is opened to the atmosphere as shown in FIG. 6A before the sample is irradiated with the ion beam. It is a side view which shows the state when set to the position C (middle of the foreign material 30). While observing the surface of the sample 6 using the optical microscope 15, the shielding material holding mechanism 33 that holds the shielding material 32 is moved by the shielding material position adjusting mechanism 10 to position the shielding material 32. FIG. 9A shows a state in which the position S1 on the Y-axis of the edge portion of the shielding material 32 is set so that a cross section of the foreign material 30 in the sample 6 is produced. The position of S1 is the cross-section production position C. The control arithmetic unit 20 stores the coordinates of S1.

このままでは試料6の遮蔽材32に遮蔽されない突き出し部が長すぎるため、ピエゾモータ24により遮蔽材保持機構33を駆動して遮蔽材32をY軸のプラス方向に距離dだけ移動させ、遮蔽材32に遮蔽されない部分を小さくする。S2は加工開始時点における遮蔽材32の端縁部の初期位置となる。図9(b)は、試料にイオンビーム照射を開始するとき、突き出し部が短く設定されている状態を示している。 制御演算装置20がS1とS2の座標を記憶したら、試料作製装置200の加工室18を図6(b)に示す状態にして真空排気を行なう。   Since the protruding portion of the sample 6 that is not shielded by the shielding material 32 is too long, the shielding material holding mechanism 33 is driven by the piezo motor 24 to move the shielding material 32 by the distance d in the positive direction of the Y axis. Reduce the unshielded part. S2 is the initial position of the edge of the shielding member 32 at the start of processing. FIG. 9B shows a state in which the protruding portion is set short when ion beam irradiation is started on the sample. When the control arithmetic device 20 stores the coordinates of S1 and S2, the processing chamber 18 of the sample preparation device 200 is evacuated to the state shown in FIG. 6B.

加工室18が所定の真空度に達したら、試料にイオンビームIBの照射を開始する。制御演算装置20は試料6の突き出し部の切削が進行するのに合わせて、ピエゾモータ24により遮蔽材保持機構33を駆動し、遮蔽材32の端縁部を徐々にS2からS1に移動させる。図9(c)は、遮蔽材32の端縁部がS2からS1の位置に移動する途中のS3の位置にある状態を示している。   When the processing chamber 18 reaches a predetermined degree of vacuum, irradiation of the sample with the ion beam IB is started. As the cutting of the protruding portion of the sample 6 proceeds, the control arithmetic device 20 drives the shielding material holding mechanism 33 by the piezo motor 24, and gradually moves the edge of the shielding material 32 from S2 to S1. FIG. 9C shows a state in which the edge portion of the shielding member 32 is at the position S3 in the middle of moving from the position S2 to the position S1.

例えば、はじめに突き出し量を25μmに設定したとすると、加工開始から20分程度の間は図9(b)に示す状態のまま遮蔽材を移動させずに切削を行なう。加工時間が20分から95分の間は1μm/分程度のスピードで、突き出し部の切削が進行する方向に遮蔽材32の端縁部を連続的又は断続的に移動させる(図9(c)に示す状態)。95分から120分(加工終了)の間は遮蔽材32の移動を停止して遮蔽材32の端縁部をS1に固定したままイオンビームIBによる切削を行なう。   For example, if the protrusion amount is set to 25 μm first, the cutting is performed without moving the shielding material in the state shown in FIG. 9B for about 20 minutes from the start of processing. When the machining time is between 20 minutes and 95 minutes, the edge of the shielding material 32 is moved continuously or intermittently in the direction in which the cutting of the protruding portion proceeds at a speed of about 1 μm / minute (FIG. 9C). State shown). During the period from 95 minutes to 120 minutes (end of processing), the movement of the shielding material 32 is stopped, and the cutting with the ion beam IB is performed while the edge portion of the shielding material 32 is fixed to S1.

上記した加工条件は一例であり、試料の種類、突き出し量、イオンビームのエネルギー等により設定条件は異なる。また、はじめの突き出し量を0μmに設定して、加工開始の時から遮蔽材32の端縁部を移動させるようにしても良い。   The above-described processing conditions are examples, and the setting conditions differ depending on the type of sample, the amount of protrusion, the energy of the ion beam, and the like. Further, the initial protrusion amount may be set to 0 μm, and the end edge portion of the shielding member 32 may be moved from the start of processing.

図9(d)は、遮蔽材32の端縁部がS1(すなわち断面作製位置C)まで移動してイオンビームIBによる切削が行なわれ、ほぼ断面作製が完了した状態を示している。   FIG. 9D shows a state in which the edge of the shielding material 32 has moved to S1 (that is, the cross-section production position C) and cutting has been performed by the ion beam IB, and the cross-section production has been substantially completed.

(実施の形態3)
図3は、本発明に係る試料作製装置300の要部を示す側面図である。試料作製装置300は、遮蔽材12(第1遮蔽材)と遮蔽材32(第2遮蔽材)が別体で構成され、二重構造となっているところに特徴がある。24は遮蔽材32を保持する遮蔽材保持機構33をy軸方向に微小量ずつ移動させるためのピエゾモータである。23はピエゾモータ24を制御するための制御装置、20はパーソナルコンピュータ等の制御演算装置である。
(Embodiment 3)
FIG. 3 is a side view showing the main part of the sample preparation apparatus 300 according to the present invention. The sample preparation apparatus 300 is characterized in that the shielding material 12 (first shielding material) and the shielding material 32 (second shielding material) are formed separately and have a double structure. Reference numeral 24 denotes a piezo motor for moving the shielding material holding mechanism 33 for holding the shielding material 32 by a minute amount in the y-axis direction. Reference numeral 23 denotes a control device for controlling the piezo motor 24, and 20 denotes a control arithmetic device such as a personal computer.

図3のように構成された試料作製装置300を用いて試料断面を作製する過程を、図10を参照しながら説明する。   A process of preparing a sample cross section using the sample preparation apparatus 300 configured as shown in FIG. 3 will be described with reference to FIG.

図10(a)は、試料にイオンビームを照射する前に、試料作製装置300の加工室18を図6(a)のように大気開放した状態で、遮蔽材12の端縁部を断面作製位置C(異物30の真ん中)に合わせた時の状態を示す側面図である。   FIG. 10A shows a cross-section of the edge of the shielding material 12 in a state where the processing chamber 18 of the sample preparation apparatus 300 is opened to the atmosphere as shown in FIG. 6A before the sample is irradiated with the ion beam. It is a side view which shows the state when set to the position C (middle of the foreign material 30).

光学顕微鏡15を使用して試料6の表面を観察しながら、遮蔽材位置調節機構10により遮蔽材12を保持する遮蔽材保持機構13を動かして遮蔽材12の位置決めを行なう。図10(a)は、試料6中の異物30の断面を作製するように、遮蔽材12の端縁部のY軸上の位置S1を決めた状態を示している。S1の位置が試料作製位置Cとなる。制御演算装置20はS1の座標を記憶する。
上記操作を行なう間、遮蔽材32の端縁部は遮蔽材12の端縁部が光学顕微鏡15による観察を妨げない適当な位置T1までずらしておく。
While observing the surface of the sample 6 using the optical microscope 15, the shielding material holding mechanism 13 that holds the shielding material 12 is moved by the shielding material position adjusting mechanism 10 to position the shielding material 12. FIG. 10A shows a state in which the position S1 on the Y-axis of the edge portion of the shielding material 12 is determined so as to produce a cross section of the foreign material 30 in the sample 6. FIG. The position of S1 is the sample preparation position C. The control arithmetic unit 20 stores the coordinates of S1.
During the above operation, the edge of the shielding member 32 is shifted to an appropriate position T1 where the edge of the shielding member 12 does not interfere with observation by the optical microscope 15.

このままでは試料6の遮蔽材12に遮蔽されない突き出し部が長すぎるため、ピエゾモータ24により遮蔽材保持機構33を駆動して遮蔽材32をS1からY軸のプラス方向に距離dだけ移動させたT2に設定し、遮蔽材32に遮蔽されない部分を小さくする。制御演算装置20はT2の座標(位置)を記憶する。T2は加工開始時点における遮蔽材32の端縁部の初期位置となる。図10(b)は、試料にイオンビーム照射を開始するとき、突き出し部が短く設定されている状態を示している。   Since the protruding portion of the sample 6 that is not shielded by the shielding material 12 is too long as it is, the shielding material holding mechanism 33 is driven by the piezo motor 24, and the shielding material 32 is moved from S1 in the positive direction of the Y axis by a distance d to T2. It sets and makes the part which is not shielded by the shielding material 32 small. The control arithmetic unit 20 stores the coordinates (position) of T2. T2 is the initial position of the edge of the shielding member 32 at the start of processing. FIG. 10B shows a state in which the protruding portion is set short when ion beam irradiation is started on the sample.

制御演算装置20がS1とT2の座標(位置)を記憶したら、試料作製装置300の加工室18を図6(b)に示す状態にして真空排気を行なう。   When the control arithmetic unit 20 stores the coordinates (positions) of S1 and T2, the processing chamber 18 of the sample preparation apparatus 300 is evacuated to the state shown in FIG. 6B.

加工室18が所定の真空度に達したら、試料6にイオンビームIBの照射を開始する。制御演算装置20は試料6の突き出し部の切削が進行するのに合わせて、ピエゾモータ24により遮蔽材保持機構33を駆動し、遮蔽材32の端縁部を徐々に(連続的又は断続的に)T2からS1に向けて移動(後退)させる。図10(c)は、遮蔽材32の端縁部がT2からS1に移動する途中のT3の位置にある状態を示している。   When the processing chamber 18 reaches a predetermined degree of vacuum, irradiation of the sample 6 with the ion beam IB is started. The control arithmetic unit 20 drives the shielding material holding mechanism 33 by the piezo motor 24 as the cutting of the protruding portion of the sample 6 proceeds, and gradually (continuously or intermittently) the edge of the shielding material 32. Move (retract) from T2 toward S1. FIG. 10C shows a state in which the edge of the shielding member 32 is at a position T3 in the middle of moving from T2 to S1.

例えば、はじめに遮蔽材32に対する試料の突き出し量を25μmに設定したとすると、加工開始から20分程度の間は図10(b)に示す状態のまま遮蔽材32の端縁部を移動させずに切削を行なう。切削スピードが例えば1μm/分程度であるとすると、20分間で突き出し部分の25μmの大半が切削された状態となる。その後加工時間が20分から95分の間は1μm/分程度のスピードで、突き出し部の切削が進行する方向に遮蔽材32の端縁部を連続的又は断続的に移動(後退)させる(図10(c)に示す状態)。95分から120分(加工終了)の間は遮蔽材32の端縁部をS1の位置まで徐々に移動させる。加工が完全に終了する前に遮蔽材32の端縁部をT4に移動させ、遮蔽材32と遮蔽材12の位置を固定したまましばらくの間、遮蔽材12の端縁部を用いたイオンビームIBによる仕上げの切削を行なう。このとき遮蔽材32の端縁部の位置T4は、少なくともイオンビームIBによる遮蔽材12の端縁部位置S1への照射を妨げない適当な位置にあれば良い。   For example, if the protruding amount of the sample with respect to the shielding material 32 is first set to 25 μm, the edge portion of the shielding material 32 is not moved in the state shown in FIG. Cut. If the cutting speed is, for example, about 1 μm / min, most of 25 μm of the protruding portion is cut in 20 minutes. Thereafter, during the machining time of 20 minutes to 95 minutes, the edge of the shielding material 32 is moved (retracted) continuously or intermittently in the direction in which the cutting of the protruding portion proceeds at a speed of about 1 μm / minute (FIG. 10). (State shown in (c)). During the period from 95 minutes to 120 minutes (end of processing), the edge of the shielding material 32 is gradually moved to the position of S1. Before processing is completed, the edge of the shielding material 32 is moved to T4, and the position of the shielding material 32 and the shielding material 12 is fixed. For a while, the ion beam using the edge of the shielding material 12 is used. Finish cutting with IB. At this time, the position T4 of the edge portion of the shielding material 32 may be at an appropriate position that does not hinder the irradiation of the edge position S1 of the shielding material 12 by the ion beam IB.

図10(d)は、遮蔽材32の端縁部がT4まで移動した後、遮蔽材12の端縁部位置S1(すなわち断面作製位置C)までイオンビームIBによる切削が行なわれ、ほぼ断面作製が完了した状態を示している。なお、イオンビームIBは、ビーム中心部が最高強度で、中心から離れるに従って強度が低下する強度分布を有するため、切削に寄与する遮蔽材の端縁部が常にビーム中心部に位置することが好ましい。そのため、図10(b)において遮蔽材32の端縁部がイオンビームIBのビーム中心位置にあることから分かるように、遮蔽材32の試料に対する後退に合わせて試料ステージ4を用いて試料6、試料ホルダ7、遮蔽材12、遮蔽材32を一体でイオンビームIBの中心に近づく方向に移動させ、それにより、遮蔽材32の端縁部が常にイオンビームIBのビーム中心位置にあるようにしている。   In FIG. 10D, after the edge portion of the shielding material 32 has moved to T4, the cutting is performed by the ion beam IB to the edge position S1 of the shielding material 12 (that is, the cross-section production position C). Indicates a completed state. Since the ion beam IB has an intensity distribution in which the center of the beam has the highest intensity and the intensity decreases with increasing distance from the center, it is preferable that the edge of the shielding material contributing to cutting is always located at the center of the beam. . Therefore, as can be seen from the fact that the edge of the shielding material 32 is located at the beam center position of the ion beam IB in FIG. 10B, the sample 6 is obtained using the sample stage 4 in accordance with the retreat of the shielding material 32 relative to the sample. The sample holder 7, the shielding material 12, and the shielding material 32 are integrally moved in a direction approaching the center of the ion beam IB so that the edge of the shielding material 32 is always at the beam center position of the ion beam IB. Yes.

そして、遮蔽材32の端縁部が遮蔽材12の端縁部を超えて後退した時点では、図10(c)に示されているように、遮蔽材12の端縁部がイオンビームIBのビーム中心位置にある状態で試料ステージ4による移動は停止され、遮蔽材12の端縁部を用いた仕上げの切削が行なわれる。   Then, at the time when the end edge portion of the shielding material 32 is retracted beyond the end edge portion of the shielding material 12, as shown in FIG. 10C, the edge portion of the shielding material 12 is the ion beam IB. The movement by the sample stage 4 is stopped in the state where the beam is located at the center of the beam, and finishing cutting using the edge of the shielding material 12 is performed.

上記した加工条件は一例であり、試料の種類、突き出し量、イオンビームのエネルギー等により設定条件は異なる。また、はじめの遮蔽材32に対する試料の突き出し量を0μmに設定して、加工開始の時から遮蔽材32の端縁部を移動させるようにしても良い。   The above-described processing conditions are examples, and the setting conditions differ depending on the type of sample, the amount of protrusion, the energy of the ion beam, and the like. Further, the protruding amount of the sample with respect to the first shielding material 32 may be set to 0 μm, and the edge portion of the shielding material 32 may be moved from the start of processing.

更にまた、上記説明では、遮蔽材32をその端縁部がスタート時点のT2(図10(b)に示す状態)からT3(図10(c)に示す状態)を経てS1、更にT4の位置に来るように徐々に移動させるようにしたが、移動はステップ的で良く、移動の回数も1回だけでも良い。すなわち、先に説明したように、加工開始から20分程度の間、図10(b)に示す状態のまま遮蔽材32の端縁部を移動させずに切削を行なった結果、突き出し部分の大半が切削された状態となったら、遮蔽材32を端面が遮蔽材12の端縁部位置S1を通り越して図10(d)に示される位置まで来るように一気に後退させてイオンビームIBが遮蔽材12の端縁部と試料に照射されるようにし、それ以降は、その状態のまま遮蔽材12の端縁部を用いたイオンビームIBによる切削を行なうようにしても良い。前記d及び遮蔽材32に対する試料の突き出し量を、イオンビームIBの径によって決まる切削可能限界長よりも小さく設定すれば、このような遮蔽材32により遮蔽材12を覆った状態での遮蔽材32の端面を用いた第1段階の切削と、遮蔽材32を遮蔽材12上から退避させた状態での遮蔽材12の端面を用いた第2段階の仕上げ切削の2工程により、断面作製を完了させることができる。遮蔽材32は、遮蔽材12を覆う状態と遮蔽材12上から退避させた状態の2位置の間を移動させれば良いので、移動機構及び移動制御を簡略化することが可能となる。   Furthermore, in the above description, the shielding material 32 has its edge at the positions of S1 and T4 after passing through T2 (the state shown in FIG. 10B) from the start time T3 (the state shown in FIG. 10C). However, the movement may be stepwise and the number of movements may be only one. That is, as described above, as a result of cutting without moving the edge portion of the shielding material 32 in the state shown in FIG. 10B for about 20 minutes from the start of machining, most of the protruding portion is obtained. Is cut back so that the end surface of the shielding material 32 passes through the edge position S1 of the shielding material 12 and reaches the position shown in FIG. 12 may be irradiated with the edge and the sample, and thereafter, cutting may be performed by the ion beam IB using the edge of the shielding material 12 in that state. If the amount of protrusion of the sample with respect to d and the shielding material 32 is set to be smaller than the cutable limit length determined by the diameter of the ion beam IB, the shielding material 32 in a state where the shielding material 12 is covered with such a shielding material 32. The cross-section preparation is completed by two steps of first-stage cutting using the end face of the first and second-stage finish cutting using the end face of the shielding material 12 with the shielding material 32 retracted from the shielding material 12. Can be made. Since the shielding material 32 has only to be moved between two positions of covering the shielding material 12 and retracting from the shielding material 12, the moving mechanism and the movement control can be simplified.

また、遮蔽材32の端面を用いた第1段階の切削は、いわば荒切削であるため荒削りとなっても良い。そのため、例えば、イオンの加速電圧を仕上げ切削時よりも高めに設定して用いることにより、切削スピードを高めることができ、試料作成に要するトータルの時間を短縮することが可能となる。   Further, the first-stage cutting using the end face of the shielding material 32 is rough cutting, so it may be rough cutting. Therefore, for example, by setting the ion acceleration voltage higher than that during finish cutting, the cutting speed can be increased and the total time required for sample preparation can be shortened.

更にまた、上記のような2段階の切削を行う場合においても、第1段階の切削の際は遮蔽材32の端面がイオンビームIBのビーム中心位置にあり、第2段階の仕上げ切削の際には、遮蔽材12の端縁部がイオンビームIBのビーム中心位置にあるように、試料6、試料ホルダ7、遮蔽材12、遮蔽材32を一体でイオンビームIBに対して移動させることが好ましい。   Furthermore, even when performing the two-stage cutting as described above, the end face of the shielding material 32 is at the beam center position of the ion beam IB during the first-stage cutting, and during the second-stage finish cutting. The sample 6, the sample holder 7, the shielding material 12, and the shielding material 32 are preferably moved relative to the ion beam IB so that the edge of the shielding material 12 is at the beam center position of the ion beam IB. .

なお、実施の形態1から3の説明において、試料又は遮蔽材を移動させるためにピエゾモータを用いる例を示したが、他のモータを使用しても良い。   In the description of the first to third embodiments, the example in which the piezo motor is used to move the sample or the shielding material has been described, but another motor may be used.

以上述べたように、本発明によれば、試料にイオンビームを照射して断面試料を作製するとき、イオンビームによって削られた物質が遮蔽材や試料に再付着するリデポジションの影響を除去して、段差や汚れの無い平坦な試料断面を作製する試料作製装置及び試料作製方法を提供することができる。   As described above, according to the present invention, when producing a cross-sectional sample by irradiating the sample with the ion beam, the influence of redeposition in which the material scraped by the ion beam reattaches to the shielding material or the sample is removed. Thus, it is possible to provide a sample manufacturing apparatus and a sample manufacturing method for manufacturing a flat sample cross section without a step or dirt.

IB…イオンビーム q,r…x軸に平行な軸
Oi…イオンビーム照射軸 OL…光軸 1…真空チャンバ
2…イオン銃 3…試料ステージ引出機構 4…試料ステージ
5…試料位置調節機構 6…試料 7…試料ホルダ
10…遮蔽材位置調節機構 11…遮蔽材傾倒機構
12、32…遮蔽材 13、33…遮蔽材保持機構
14…光学顕微鏡傾倒機構 15…光学顕微鏡
16…光学顕微鏡位置調節機構 17…排気装置 18…加工室
20…制御演算装置 21,23…ピエゾモータ制御装置
22,24…ピエゾモータ
IB: ion beam q, r: axis Oi parallel to x axis ... ion beam irradiation axis OL ... optical axis 1 ... vacuum chamber 2 ... ion gun 3 ... sample stage extraction mechanism 4 ... sample stage 5 ... sample position adjusting mechanism 6 ... Sample 7 ... Sample holder 10 ... Shielding material position adjusting mechanism 11 ... Shielding material tilting mechanism 12, 32 ... Shielding material 13, 33 ... Shielding material holding mechanism 14 ... Optical microscope tilting mechanism 15 ... Optical microscope 16 ... Optical microscope position adjusting mechanism 17 ... Exhaust device 18 ... Processing chamber 20 ... Control arithmetic unit 21, 23 ... Piezomotor control device 22,24 ... Piezomotor

Claims (4)

試料の一部を遮蔽材で覆い、当該遮蔽材の端縁部を含めて前記遮蔽材側から前記試料にイオンビーム照射手段からのイオンビームを照射することにより、前記試料の前記遮蔽材に遮蔽されない切削対象部分を前記イオンビームによって切削し、前記試料の断面を作製するための試料断面作製装置であって、
その端縁部が前記試料の断面作製位置に設定される第1遮蔽材と、
前記第1遮蔽材と前記イオンビーム照射手段との間に前記イオンビームが前記第1遮蔽材の端縁部及び前記試料の断面作製位置に照射されないように配置される第2遮蔽材であって、端縁部を有し、前記イオンビーム照射手段からのイオンビームが該端縁部を含む該第2遮蔽材及び前記試料の切削対象部分に照射される第2遮蔽材と、
前記第2遮蔽材を前記イオンビームが前記第1遮蔽材の端縁部及び前記試料の断面作製位置に照射される退避位置へ移動させる第2遮蔽材位置移動手段と、
を備えたことを特徴とする試料断面作製装置。
A part of the sample is covered with a shielding material, and the shielding material of the sample is shielded by irradiating the sample with an ion beam from the ion beam irradiation means from the shielding material side including the edge of the shielding material. A sample cross-section preparation device for cutting a portion to be cut by the ion beam to produce a cross-section of the sample,
A first shielding material whose edge is set at the cross-section production position of the sample;
A second shielding material disposed between the first shielding material and the ion beam irradiation means so that the ion beam is not irradiated to an edge of the first shielding material and a cross-sectional preparation position of the sample; A second shielding material having an edge, and the ion beam from the ion beam irradiating means being irradiated to the cutting target portion of the sample and the second shielding material including the edge;
Second shielding material position moving means for moving the second shielding material to a retracted position where the ion beam is irradiated to an edge portion of the first shielding material and a cross-sectional preparation position of the sample;
An apparatus for preparing a cross section of a sample, comprising:
前記第2遮蔽材位置移動手段を制御する第2遮蔽材位置制御手段を備え、該第2遮蔽材位置制御手段は、前記第1遮蔽材の端縁部が前記試料の断面作製位置に配置される基準位置の情報を記憶すると共に、前記第2遮蔽材により試料の前記断面作成位置及び前記切削対象部分が遮蔽される状態で前記イオンビームの照射が開始されると、前記記憶した基準位置の情報に基づき、前記試料の前記第2遮蔽材に遮蔽されない部分の切削が進行するにつれて前記第2遮蔽材の端縁部が前記基準位置に向けて近づくように前記第2遮蔽材を移動させ、前記第2遮蔽材の端縁部が前記基準位置を越えて前記イオンビームが前記第1遮蔽材の端縁部及び前記第1遮蔽材に遮蔽されない部分に照射される状態となったら前記第2遮蔽材の移動を停止させるように前記第2遮蔽材位置移動手段を制御する
ことを特徴とする請求項1記載の試料断面作製装置。
A second shielding material position control means for controlling the second shielding material position moving means, wherein the second shielding material position control means is arranged such that an edge portion of the first shielding material is arranged at a cross-section preparation position of the sample; When the irradiation of the ion beam is started in a state where the cross-section creation position of the sample and the portion to be cut are shielded by the second shielding material, the reference position information is stored. Based on the information, as the cutting of the portion of the sample that is not shielded by the second shielding material proceeds, the second shielding material is moved so that the edge of the second shielding material approaches the reference position, When the edge portion of the second shielding material exceeds the reference position and the ion beam is irradiated to the edge portion of the first shielding material and the portion not shielded by the first shielding material, the second shielding material is used. I will stop moving the shield. Sample section preparation apparatus according to claim 1, wherein <br/> controlling the second shielding member position moving means.
試料の一部を遮蔽材で覆い、当該遮蔽材の端縁部を含めて前記遮蔽材側から前記試料にイオンビームを照射することにより、前記試料の前記遮蔽材に遮蔽されない切削対象部分を前記イオンビームによって切削し、前記試料の断面を作製するための試料断面作製方法であって、
前記イオンビーム照射前に、前記試料の断面作製位置に第1遮蔽材の端縁部を配置させる第1の工程と、
前記イオンビーム照射前に、前記第1遮蔽材と前記イオンビーム照射手段との間に配置される第2遮蔽材によって、試料の前記断面作成位置及び前記切削対象部分が遮蔽されるように前記第2遮蔽材と試料との相対位置を設定する第2の工程と、
前記イオンビーム照射により、前記試料の前記第2遮蔽材に遮蔽されない切削対象部分を切削する第3の工程と、
前記第3の工程の後、前記第1遮蔽材の端縁部が前記第2遮蔽材によって遮蔽されること無く前記イオンビームが前記試料の断面作製位置に照射される位置に前記第2遮蔽材を配置させイオンビーム照射を行う第4の工程と、
を有することを特徴とする試料断面作製方法
Covering a part of the sample with a shielding material, and irradiating the sample with an ion beam from the shielding material side including the edge of the shielding material, thereby cutting the portion of the sample that is not shielded by the shielding material. A sample cross-section preparation method for cutting by an ion beam to prepare a cross-section of the sample,
A first step of arranging an edge portion of the first shielding material at a cross-section preparation position of the sample before the ion beam irradiation;
Before the ion beam irradiation, the cross-section creation position of the sample and the portion to be cut are shielded by the second shielding material disposed between the first shielding material and the ion beam irradiation means. 2 a second step of setting a relative position between the shielding material and the sample;
A third step of cutting a portion to be cut that is not shielded by the second shielding material of the sample by the ion beam irradiation;
After the third step, the edge of the first shielding material is not shielded by the second shielding material, and the second shielding material is placed at a position where the ion beam is irradiated to the cross-section preparation position of the sample. A fourth step of arranging the ion beam irradiation,
A method for preparing a cross-section of a sample, comprising :
前記第3の工程において、前記試料の前記第2遮蔽材に遮蔽されない切削対象部分の切削が進行するにつれて前記切削が進行する方向に前記試料に対する前記第2遮蔽材の端縁部の位置を変化させるようにしたことを特徴とする請求項3記載の試料断面作製方法In the third step, the position of the edge of the second shielding material relative to the sample is changed in the direction in which the cutting proceeds as the cutting of the portion of the sample that is not shielded by the second shielding material proceeds. samples sectional manufacturing method according to claim 3, characterized in that so as to.
JP2010047979A 2009-03-05 2010-03-04 Sample cross-section manufacturing apparatus and manufacturing method using ion beam Active JP5420452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047979A JP5420452B2 (en) 2009-03-05 2010-03-04 Sample cross-section manufacturing apparatus and manufacturing method using ion beam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009051941 2009-03-05
JP2009051941 2009-03-05
JP2010047979A JP5420452B2 (en) 2009-03-05 2010-03-04 Sample cross-section manufacturing apparatus and manufacturing method using ion beam

Publications (2)

Publication Number Publication Date
JP2010230665A JP2010230665A (en) 2010-10-14
JP5420452B2 true JP5420452B2 (en) 2014-02-19

Family

ID=43046617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047979A Active JP5420452B2 (en) 2009-03-05 2010-03-04 Sample cross-section manufacturing apparatus and manufacturing method using ion beam

Country Status (1)

Country Link
JP (1) JP5420452B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6336894B2 (en) * 2014-11-21 2018-06-06 日本電子株式会社 Sample preparation equipment
CN107356383B (en) * 2017-07-18 2019-08-02 东北大学 A kind of shield machine cutter abrasion testing machine
JP7468402B2 (en) 2021-02-24 2024-04-16 三菱電機株式会社 How to make a sample

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345740A (en) * 1991-05-22 1992-12-01 Hitachi Ltd Convergence ion beam device
JP3263920B2 (en) * 1996-02-01 2002-03-11 日本電子株式会社 Sample preparation apparatus and method for electron microscope
JP2002221472A (en) * 2001-01-25 2002-08-09 Jeol Ltd Sample preparing device
JP4675701B2 (en) * 2005-07-08 2011-04-27 株式会社日立ハイテクノロジーズ Ion milling apparatus and ion milling method
JP4997756B2 (en) * 2005-12-20 2012-08-08 日新イオン機器株式会社 Ion beam irradiation apparatus and beam uniformity adjustment method
JP2007333682A (en) * 2006-06-19 2007-12-27 Jeol Ltd Cross-sectional sample producing apparatus using ion beam

Also Published As

Publication number Publication date
JP2010230665A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP2007333682A (en) Cross-sectional sample producing apparatus using ion beam
DE112011103860B4 (en) Ion etching apparatus and ion etching processing method
KR102056507B1 (en) Charged particle beam device and specimen observation method
JP5142240B2 (en) Charged beam apparatus and charged beam processing method
CN105008891B (en) For changing the ion implanting of etch-rate
KR102656747B1 (en) Method for preparing a sample for microstructure diagnostics, and sample for microstructure diagnostics
CN108020449B (en) Tomography sample preparation system and method with improved speed, automation and reliability
JP5420452B2 (en) Sample cross-section manufacturing apparatus and manufacturing method using ion beam
JP3711018B2 (en) TEM sample thinning method
JP2004093353A (en) Sample preparation device
JP2004087174A (en) Ion beam device, and working method of the same
KR102079069B1 (en) Sample holder, ion milling device, sample processing method, sample observation method, and sample processing and observation method
TW201624520A (en) Composite charged particle beam apparatus
TWI709738B (en) Method for preparing a sample for microstructure diagnostics, and sample for microstructure diagnostics
CN104737266A (en) Charged particle beam device and sample preparation method
JP5175008B2 (en) Micro section processing method
JP2003194681A (en) Tem sample preparation method
JP2009109236A (en) Processing method of needle-like sample for atom probe, and focused ion beam apparatus
JP3333731B2 (en) Preparation of thin section sample for transmission electron microscope
JP2010230518A (en) Thin sample preparing method
KR101539738B1 (en) Scanning Electron Microscope
JP5121667B2 (en) Sample preparation method for transmission electron microscope
CN114509326A (en) Method and microscope system for preparing a micro-sample from a volume sample
JP3106846U (en) Sample holder for charged particle beam equipment
JP7141682B2 (en) SAMPLE MANUFACTURING DEVICE AND METHOD FOR MANUFACTURING SAMPLE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150