JP5673470B2 - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP5673470B2
JP5673470B2 JP2011206064A JP2011206064A JP5673470B2 JP 5673470 B2 JP5673470 B2 JP 5673470B2 JP 2011206064 A JP2011206064 A JP 2011206064A JP 2011206064 A JP2011206064 A JP 2011206064A JP 5673470 B2 JP5673470 B2 JP 5673470B2
Authority
JP
Japan
Prior art keywords
charging
rechargeable battery
amount
electricity
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011206064A
Other languages
Japanese (ja)
Other versions
JP2013070478A (en
Inventor
正規 渡邉
正規 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011206064A priority Critical patent/JP5673470B2/en
Publication of JP2013070478A publication Critical patent/JP2013070478A/en
Application granted granted Critical
Publication of JP5673470B2 publication Critical patent/JP5673470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充電池に対する充電をおこなう充電装置に関する。   The present invention relates to a charging device that charges a rechargeable battery.

従来、充電池の充電時間を短縮するため、充電池の上限電圧より高い電圧(過電圧)で充電をおこなう技術が知られている(特許文献1参照)。特許文献1では、トリクル充電から定電流定電圧充電をおこなうようにした電池パックおよびその充電器において、トリクル充電の初期には従来通りの微小電流によるトリクル充電をおこない、トリクル充電の終了電圧よりも低い所定の切換え電圧に達すると、トリクル充電時よりも大きな中電流で充電をおこなう。これによって終了電圧に達すると定電流(CC)充電に切換わり、終止電圧をOCV電圧として、その終止電圧よりも高い過電圧を充電端子間に印加して大電流で超急速充電をおこなう。充電電流が一定値レベルに垂下すると、定電圧(CV)充電に切り換わり、過電圧を印加し、さらに充電電流が垂下すると終止電圧へ低下する。これにより、電池のセルが過充電になることを防止しつつ、多くの電荷を注入して、充電時間を短縮している。   Conventionally, in order to shorten the charging time of a rechargeable battery, a technique for performing charging at a voltage (overvoltage) higher than the upper limit voltage of the rechargeable battery is known (see Patent Document 1). In Patent Document 1, in a battery pack and its charger that perform constant current and constant voltage charging from trickle charging, the trickle charging is performed with a small current as in the past at the initial stage of trickle charging, When a low predetermined switching voltage is reached, charging is performed with a larger medium current than during trickle charging. As a result, when the end voltage is reached, switching to constant current (CC) charging is performed, the end voltage is set as the OCV voltage, and an overvoltage higher than the end voltage is applied between the charging terminals to perform ultra-rapid charging with a large current. When the charging current drops to a constant value level, switching to constant voltage (CV) charging is performed, an overvoltage is applied, and when the charging current further drops, the voltage drops to the end voltage. Thereby, while preventing the battery cell from being overcharged, a large amount of charge is injected to shorten the charging time.

特開2007−288889号公報JP 2007-288889 A

しかしながら、上述した従来技術では、通常の上限電圧以下での充電と比較して短時間で充電をおこなえるものの、過電圧を印加した後に電圧を段階的に低下させているので、充電を終了させるのに要する時間が長くなってしまうという問題点がある。上述した従来技術では、上限電圧より高い電圧での充電をおこなっている際に充電池に供給される電流が下がり始めると、段階的に電圧を低下させており、上限電圧より高い電圧での充電をおこなっている時間はごくわずかである。このような制御をおこなうのは過充電を防止するためであるが、より短時間に充電を完了させるためには、上限電圧より高い電圧状態をより長く継続させる必要がある。   However, in the above-described conventional technology, although charging can be performed in a short time compared with charging at a voltage lower than the normal upper limit voltage, the voltage is decreased stepwise after the overvoltage is applied. There is a problem that it takes a long time. In the above-described conventional technology, when the current supplied to the rechargeable battery starts to decrease while charging at a voltage higher than the upper limit voltage, the voltage is gradually reduced, and charging at a voltage higher than the upper limit voltage is performed. There is very little time to perform. Such control is performed in order to prevent overcharging, but in order to complete charging in a shorter time, it is necessary to continue a voltage state higher than the upper limit voltage for a longer time.

本発明は、このような事情を鑑みてなされたものであり、上限電圧より高い電圧での充電をおこなう際に、上限電圧より高い電圧状態の継続期間を適切に制御して、過充電を防止しつつ、より短時間で充電を完了させることができることができる充電装置を提供することを目的とする。   The present invention has been made in view of such circumstances. When charging at a voltage higher than the upper limit voltage, the duration of the voltage state higher than the upper limit voltage is appropriately controlled to prevent overcharge. However, it aims at providing the charging device which can complete charge in a shorter time.

上記目的を達成するため、本発明は、所定の充電容量を有する充電池を充電する充電制御手段と、前記充電池を充電池容量が空の状態から満充電状態にするために必要な電気量である満充電電気量と前記充電池の温度との相関関係を記録する記録手段と、前記充電池への充電をおこなう際に、前記記録手段によって記録された前記相関関係、および前記充電池の現在温度と前記充電池の現在の残存電気量に基づいて、現在の前記充電池を満充電状態にするために必要な電気量である必要電気量を推定する推定手段と、を備え、前記充電制御手段は、前記充電池の開放電圧の上限値である上限電圧より高い電圧で前記充電池を充電を行う第1充電手段と、前記上限電圧以下の電圧で充電をおこなう第2充電手段とを有し、前記記録手段は、前記第2充電手段による充電の際に、前記充電池が満充電状態になるまでに供給した電気量を、前記第2充電手段による充電によって増加した前記充電池の前記残存電気量の前記充電容量に対する割合によって除すことによって、前記満充電電気量を算出するとともに、前記充電池が取りえる温度帯における前記満充電電気量の比例関係を推定し、所定の温度における前記満充電電気量から、前記所定の温度以外の他の温度における前記満充電電気量を推定して前記相関関係を記録することにより前記相関関係を更新し、前記推定手段は、前記第1充電手段による充電の際に、前記第2充電手段による充電の際に更新された前記相関関係に基づき前記必要電気量を推定し、前記第1充電手段は、更新後の前記相関関係に基づき前記推定手段によって推定された前記必要電気量を供給すると前記上限電圧より高い電圧での充電を終了する、ことを特徴とする。 In order to achieve the above object, the present invention provides a charge control means for charging a rechargeable battery having a predetermined charge capacity, and an amount of electricity necessary to change the rechargeable battery from a state where the rechargeable battery capacity is empty to a fully charged state. A recording means for recording a correlation between the amount of fully charged electricity and the temperature of the rechargeable battery, the correlation recorded by the recording means when charging the rechargeable battery, and the rechargeable battery An estimation means for estimating a required amount of electricity, which is an amount of electricity required to bring the current rechargeable battery into a fully charged state, based on a current temperature and a current remaining amount of electricity of the rechargeable battery, and the charging The control means includes: a first charging means for charging the rechargeable battery at a voltage higher than an upper limit voltage that is an upper limit value of the open voltage of the rechargeable battery; and a second charging means for charging at a voltage equal to or lower than the upper limit voltage. Yes, and the recording means, the The ratio of the amount of electricity supplied until the rechargeable battery is fully charged during charging by the two charging means to the remaining capacity of the rechargeable battery increased by the charging by the second charging means with respect to the charging capacity. To calculate the amount of full charge electricity and to estimate the proportional relationship of the amount of full charge electricity in a temperature range that the rechargeable battery can take, and from the amount of full charge electricity at a predetermined temperature, The correlation is updated by estimating the full charge electricity amount at a temperature other than the temperature and recording the correlation, and the estimating means is configured to update the correlation when charging by the first charging means. The required amount of electricity is estimated based on the correlation updated during charging by two charging means, and the first charging means is estimated by the estimating means based on the updated correlation. It terminates the charging at the upper limit voltage higher and supplies the estimated the required quantity of electricity, characterized in that.

発明によれば、上限電圧より高い電圧での充電をおこなう際に、供給すべき電気量(必要電気量)をあらかじめ推定しておき、必要電気量の供給が完了した時点で充電を停止するので、上限電圧より高い電圧での充電をおこなう期間を適切に制御することができ、過充電を防止しつつ、より短時間に充電池の充電を完了させることができる。 According to the present invention, when charging at a voltage higher than the upper limit voltage, the amount of electricity to be supplied (necessary amount of electricity) is estimated in advance, and charging is stopped when the supply of the necessary amount of electricity is completed. Therefore, the period during which charging is performed at a voltage higher than the upper limit voltage can be appropriately controlled, and charging of the rechargeable battery can be completed in a shorter time while preventing overcharging.

発明によれば、上限電圧以下の電圧での充電時に供給した電気量を、この充電によって増加した残存電気量の割合で除すことのよって満充電電気量を算出しているので、満充電電気量を用いれば、充電池の残存電気量によらず、当該温度において充電池を満充電状態にするために必要な必要電気量を知ることができる。 According to the present invention, since the amount of electricity supplied at the time of charging at a voltage equal to or lower than the upper limit voltage is divided by the ratio of the remaining amount of electricity increased by this charging, the fully charged electricity amount is calculated. If the amount of electricity is used, it is possible to know the amount of electricity necessary to bring the rechargeable battery into a fully charged state at that temperature, regardless of the remaining amount of electricity in the rechargeable battery.

発明によれば、それぞれの温度における満充電電気量の比例関係を推定し、当該比例関係を用いて他の温度における満充電電気量を推定するので、1回の充電(1つの温度における満充電電気量)によって、すべての温度帯における満充電電気量を知ることができる。 According to the present invention, the proportional relationship of the full charge electricity amount at each temperature is estimated, and the full charge electricity amount at other temperatures is estimated using the proportional relationship. The amount of fully charged electricity in all temperature ranges can be known from the amount of charged electricity).

発明によれば、上限電圧より高い電圧での充電後の充電池の開放電圧が上限値を超えている場合、すなわち過充電状態となった場合、上限値以下となるまで充電池から電気を放電させるので、万一過充電状態となった場合でも、充電池への負荷を最小限にとどめ、充電池の劣化を防止することができる。 According to the present invention, when the open-circuit voltage of the rechargeable battery after charging at a voltage higher than the upper limit voltage exceeds the upper limit value, that is, when an overcharged state is reached, electricity is charged from the rechargeable battery until the upper limit value is reached. Since the battery is discharged, even if the battery is overcharged, the load on the rechargeable battery can be minimized and deterioration of the rechargeable battery can be prevented.

発明によれば、充電池の劣化度合いによって複数の相関関係が記録されるので、充電池の劣化度合いに応じて満充電電気量を推定することができ、例え充電池が劣化したとしても、この満充電電気量を用いれば、充電池を満充電状態にするために必要な必要電気量を的確に知ることができる。 According to the present invention, since a plurality of correlations are recorded depending on the degree of deterioration of the rechargeable battery, the full charge electricity amount can be estimated according to the degree of deterioration of the rechargeable battery. By using this amount of fully charged electricity, it is possible to accurately know the amount of electricity required to make the rechargeable battery fully charged.

発明によれば、充電池は車両に搭載され、車両駆動用の電力源として用いられるので、充電池の現在温度に基づいて必要電気量を推定することにより、幅広い温度領域での使用が予想される車両駆動用の充電池の充電制御を適切に行うことができる。 According to the present invention, since the rechargeable battery is mounted on a vehicle and used as a power source for driving the vehicle, use in a wide temperature range is expected by estimating the required amount of electricity based on the current temperature of the rechargeable battery. The charging control of the rechargeable battery for driving the vehicle can be appropriately performed.

実施の形態にかかる充電装置100の構成を示すブロック図である。It is a block diagram which shows the structure of the charging device 100 concerning embodiment. 制御部110の機能的構成を示すブロック図である。3 is a block diagram illustrating a functional configuration of a control unit 110. FIG. 記録手段211が記録する満充電電気量−温度マップの一例を示すグラフである。It is a graph which shows an example of the full charge electricity amount-temperature map which the recording means 211 records. 残存電力量−開放電圧マップの一例を示すグラフである。It is a graph which shows an example of a residual electric energy-open circuit voltage map. 電池電圧―SOCマップの一例を示すグラフである。It is a graph which shows an example of a battery voltage-SOC map. 充電装置100の動作を示すフローチャートである。4 is a flowchart showing the operation of the charging device 100. 充電装置100の動作を示すフローチャートである。4 is a flowchart showing the operation of the charging device 100. 充電池150の充電所要時間の一例を示すグラフである。6 is a graph showing an example of a required charging time of the rechargeable battery 150. 充電所要時間と電池温度の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between required charging time and battery temperature. 充電所要時間の改善率と電池温度の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the improvement rate of charge required time, and battery temperature.

以下に添付図面を参照して、この発明にかかる充電方法の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a charging method according to the present invention will be explained below in detail with reference to the accompanying drawings.

(実施の形態)
(充電装置100の構成)
図1は、実施の形態にかかる充電装置100の構成を示すブロック図である。充電装置100は、充電池150を充電する装置である。充電池150は、充電をおこなうことによって電荷を蓄えて、くり返し使用することができる電池である。なお、ここでの充電池150は、車両に搭載され、車両駆動用の電力源として用いられるものとする。
図1においては、充電池150と充電装置100とを一体に示しているが、充電池150は、充電装置100から取り外して任意の電気製品で使用することが可能である。本実施の形態において、充電池150の開放電圧(OCV:open circuit voltage)の上限を4.1Vとする。開放電圧とは、充電池150の端子間に何も接続しない状態における電圧である。また、充電池150の充電容量は50Ahとする。
(Embodiment)
(Configuration of charging device 100)
FIG. 1 is a block diagram illustrating a configuration of a charging apparatus 100 according to the embodiment. The charging device 100 is a device that charges the rechargeable battery 150. The rechargeable battery 150 is a battery that can be used repeatedly by accumulating charges by charging. Here, the rechargeable battery 150 is mounted on a vehicle and used as a power source for driving the vehicle.
In FIG. 1, the rechargeable battery 150 and the charging device 100 are shown integrally, but the rechargeable battery 150 can be removed from the charging device 100 and used in any electrical product. In the present embodiment, the upper limit of the open circuit voltage (OCV) of the rechargeable battery 150 is 4.1V. The open circuit voltage is a voltage in a state where nothing is connected between the terminals of the rechargeable battery 150. Further, the charging capacity of the rechargeable battery 150 is 50 Ah.

ここで、一般に、通常の充電装置では、開放電圧の上限値を超えない電圧でCCCV充電(定電流−定電圧充電)をおこなう。すなわち、通常の充電装置では、充電池150に対して4.1V以下で充電をおこなう。これは、過充電にともなう電池の劣化、安全性の低下などの問題を回避するためである。
一方、本実施の形態にかかる充電装置100は、充電終了後の充電池150の開放電圧が上限値を超えないように制御した上で、開放電圧の上限値を超えた電圧で充電をおこなう。これにより、充電装置100は、充電に要する時間を短縮して、短時間に充電をおこなうようにしている。
Here, generally, in a normal charging device, CCCV charging (constant current-constant voltage charging) is performed at a voltage that does not exceed the upper limit of the open circuit voltage. That is, in a normal charging device, the rechargeable battery 150 is charged at 4.1 V or less. This is to avoid problems such as deterioration of the battery and reduction in safety due to overcharge.
On the other hand, charging apparatus 100 according to the present embodiment performs charging at a voltage exceeding the upper limit value of the open circuit voltage after controlling so that the open circuit voltage of rechargeable battery 150 after charging does not exceed the upper limit value. Thereby, the charging apparatus 100 shortens the time required for charging and performs charging in a short time.

なお、充電装置100は、開放電圧の上限値を超えた電圧での充電(以下、「急速充電」という)の他、通常のように開放電圧の上限値を超えない電圧での充電(以下、「通常充電」)もおこなう。急速充電をおこなうと、一時的にではあるが開放電圧の上限値を超えるので、充電池150の劣化につながる可能性がある。このため、急速充電は、たとえば、外出先や緊急時のクイックチャージ機能として用いるのが効率的であり、充電池150の劣化を最小限に留める上で好ましい。急速充電は、たとえば1日に1回程度に制限するのが望ましい。なお、詳細は後述するが、本実施の形態による急速充電は、低温時における充電や大電流での充電で効果が高い。   The charging device 100 is charged with a voltage exceeding the upper limit value of the open circuit voltage (hereinafter referred to as “rapid charge”), as well as charging with a voltage not exceeding the upper limit value of the open circuit voltage as usual (hereinafter, Also perform “normal charging”). If rapid charging is performed, the upper limit of the open-circuit voltage is exceeded temporarily, but this may lead to deterioration of the rechargeable battery 150. For this reason, it is efficient to use the quick charge as a quick charge function when going out or in an emergency, for example, and it is preferable for minimizing the deterioration of the rechargeable battery 150. It is desirable to limit the quick charge to, for example, about once a day. Although details will be described later, the rapid charging according to the present embodiment is highly effective in charging at a low temperature or charging with a large current.

以下の説明において、特に明記しない場合、充電は、充電池150の充電容量(すななち、50A)と同じ電流でおこなうものとし、充電池150に供給可能な電流が0.5Aになった時点で充電完了したものとする(1C_0.5Acut充電)。   In the following description, unless otherwise specified, charging is performed with the same current as the charging capacity of the rechargeable battery 150 (that is, 50 A), and the current that can be supplied to the rechargeable battery 150 is 0.5 A. Assume that charging is completed at the time (1C_0.5Acut charging).

充電装置100は、充電用電源102、電流計103、電圧計104、温度センサ105、抵抗106、スイッチ107、制御部(ECU)110によって構成される。充電用電源102は、電源回路によって構成され、充電池150に充電用の電力を供給する。電流計103は、充電池150に供給される電流量および充電池150から放電される電流量を計測する。電圧計104は、充電池150の電池電圧を計測する。温度センサ105は、充電池150の温度を計測する。抵抗106およびスイッチ107は、充電池150からの放電に用いられる。   The charging device 100 includes a charging power source 102, an ammeter 103, a voltmeter 104, a temperature sensor 105, a resistor 106, a switch 107, and a control unit (ECU) 110. The charging power supply 102 is configured by a power supply circuit and supplies charging power to the rechargeable battery 150. The ammeter 103 measures the amount of current supplied to the rechargeable battery 150 and the amount of current discharged from the rechargeable battery 150. The voltmeter 104 measures the battery voltage of the rechargeable battery 150. The temperature sensor 105 measures the temperature of the rechargeable battery 150. The resistor 106 and the switch 107 are used for discharging from the rechargeable battery 150.

制御部110は、CPU、制御プログラム等を格納・記憶するROM、制御プログラムの作動領域としてのRAM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成される。
制御部110は、電流計103、電圧計104、温度センサ105などの出力値に基づいて充電池150への充電を制御する。具体的には、制御部110は、充電用電源102から充電池150に供給する電流量や充電を終了するタイミングなどを制御する。
The control unit 110 includes a CPU, a ROM that stores and stores a control program, a RAM as an operation area of the control program, an interface unit that interfaces with peripheral circuits and the like.
Control unit 110 controls charging of rechargeable battery 150 based on output values of ammeter 103, voltmeter 104, temperature sensor 105, and the like. Specifically, the control unit 110 controls the amount of current supplied from the charging power source 102 to the rechargeable battery 150, the timing for terminating charging, and the like.

図2は、制御部110の機能的構成を示すブロック図である。制御部110は前記制御プログラムを実行することにより、記録手段211、推定手段212、充電制御手段213(第1充電手段213a、第2充電手段213b)、放電制御手段214を実現する。
記録手段211は、所定の充電容量を有する充電池150を充電池容量が空の状態から満充電状態にするために必要な電気量(以下、「満充電電気量」という)と充電池150の温度との相関関係を記録する。一般に、充電池150は、その温度が低くなると内部抵抗が高くなるので、電池容量が低くなることが知られている。このような電池容量の温度変化にともなって、充電池150を満充電電気量は温度によって変化する。記録手段211は、このような満充電電気量と充電池150の温度との相関関係を、図3に示すような満充電電気量−温度マップとして記録する。
FIG. 2 is a block diagram illustrating a functional configuration of the control unit 110. The control unit 110 executes the control program to realize a recording unit 211, an estimation unit 212, a charge control unit 213 (first charging unit 213a and second charging unit 213b), and a discharge control unit 214.
The recording unit 211 stores the amount of electricity required to change the rechargeable battery 150 having a predetermined charge capacity from the empty rechargeable battery capacity to the fully charged state (hereinafter referred to as “full charge electricity amount”). Record the correlation with temperature. In general, it is known that the battery capacity of the rechargeable battery 150 decreases because the internal resistance increases as the temperature decreases. As the battery capacity changes with temperature, the amount of electricity fully charged in the rechargeable battery 150 changes depending on the temperature. The recording unit 211 records the correlation between the full charge electricity amount and the temperature of the rechargeable battery 150 as a full charge electricity amount-temperature map as shown in FIG.

図3は、記録手段211が記録する満充電電気量−温度マップの一例を示すグラフである。図3に示すような満充電電気量と温度との相関関係図を、以下「マップ」という。図3のグラフにおいて、縦軸は、満充電電気量、横軸は充電池150の温度である。また、図3において符号301で示すのは充電池150の新品時における相関関係であり、符号302に示すのは一定期間使用をくり返して電池容量が低下した充電池150の相関関係である。図3に示すように、充電池150は、その温度が低くなるにつれて電池容量が小さくなり、満充電電気量は小さくなる。   FIG. 3 is a graph showing an example of a full charge electricity amount-temperature map recorded by the recording unit 211. A correlation diagram between the amount of fully charged electricity and temperature as shown in FIG. 3 is hereinafter referred to as a “map”. In the graph of FIG. 3, the vertical axis represents the full charge electricity amount, and the horizontal axis represents the temperature of the rechargeable battery 150. Also, in FIG. 3, reference numeral 301 indicates a correlation when the rechargeable battery 150 is new, and reference numeral 302 indicates a correlation of the rechargeable battery 150 whose battery capacity has been reduced after repeated use for a certain period. As shown in FIG. 3, the battery capacity of the rechargeable battery 150 decreases as the temperature decreases, and the amount of fully charged electricity decreases.

また、充電池150は、電池として使用をしていく中で充電と放電をくり返すことによって、電池容量が低下することが知られている。このため、符号302で示す一定期間使用した状態は、符号301で示す充電池150の新品時の状態と比べて、全体的に満充電電気量が小さくなっていることがわかる。記録手段211は、充電池150に対する充電がおこなわれる毎に、満充電電気量および温度を記録して、現在の充電池150の状態に適合した相関関係を推定し、マップを更新していく。   Further, it is known that the battery capacity of the rechargeable battery 150 is reduced by repeatedly charging and discharging while being used as a battery. For this reason, it can be seen that the state in which the rechargeable battery 150 indicated by reference numeral 302 is used for a certain period of time is smaller than the state when the rechargeable battery 150 is new as indicated by reference numeral 301 as a whole. Each time the rechargeable battery 150 is charged, the recording unit 211 records the amount of fully charged electricity and temperature, estimates a correlation suitable for the current state of the rechargeable battery 150, and updates the map.

図2の説明に戻り、推定手段212は、充電池150への充電をおこなう際に、記録手段211で記録した相関関係、および充電池150の現在温度と充電池150の現在の残存電気量に基づいて、現在の充電池150を満充電状態にするために必要な電気量(以下、「必要電気量」という)を推定する。   Returning to the description of FIG. 2, the estimation unit 212 calculates the correlation recorded by the recording unit 211 when charging the rechargeable battery 150, the current temperature of the rechargeable battery 150, and the current remaining amount of electricity of the rechargeable battery 150. Based on this, the amount of electricity required to make the current rechargeable battery 150 fully charged (hereinafter referred to as “necessary amount of electricity”) is estimated.

具体的には、推定手段212は、記録手段211で記録された相関関係のマップから、現在の充電池150の状態に適したマップを選択し、現在の充電池150の温度に対応する満充電電気量を読み出す。そして、推定手段212は、満充電電気量から現在の蓄電池150の残存電気量を差引くことによって必要電気量を推定する。   Specifically, the estimation unit 212 selects a map suitable for the current state of the rechargeable battery 150 from the correlation map recorded by the recording unit 211, and the full charge corresponding to the current temperature of the rechargeable battery 150. Read the amount of electricity. Then, the estimation means 212 estimates the required amount of electricity by subtracting the current remaining amount of electricity of the storage battery 150 from the fully charged amount of electricity.

充電制御手段213は、充電用電源102を制御することによって、充電池150の開放電圧の上限値より高い電圧で充電池150を充電し、推定手段212で推定された必要電気量を充電池150に供給すると充電池150への充電を終了させる第1充電手段213aを有する。具体的には、第1充電手段213aは、充電池150の開放電圧の上限値より高い電圧(たとえば、4.2V)が上限電圧となるように、充電用電源102を制御して充電池150の充電をおこなう。この間、第1充電手段213aは、充電池150に供給された電力量を積算して、必要電力量に達したタイミングで、充電用電源102からの電力供給を停止させる。このように、あらかじめ必要充電量を推定して、必要充電量を供給したタイミングで充電を停止することによって、充電池150の開放電圧の上限値より高い電圧で充電をおこなっても、過充電を防止することができる。
また充電制御手段213は、充電用電源102を制御することによって、充電池150の開放電圧の上限値以下の電圧で充電池150を充電する第2充電手段213bを有する。具体的には、第2充電手段213bは、充電池150の開放電圧の上限値以下の電圧(たとえば、4.1V)が上限電圧となるように、充電用電源102を制御して充電池150の充電をおこなう。
The charging control unit 213 controls the charging power source 102 to charge the rechargeable battery 150 with a voltage higher than the upper limit value of the open voltage of the rechargeable battery 150, and the required amount of electricity estimated by the estimating unit 212 is charged to the rechargeable battery 150. The first charging means 213a that terminates the charging of the rechargeable battery 150 is provided. Specifically, the first charging unit 213a controls the charging power source 102 so that a voltage (for example, 4.2V) higher than the upper limit value of the open voltage of the rechargeable battery 150 becomes the upper limit voltage. Charge the battery. During this time, the first charging unit 213a accumulates the amount of power supplied to the rechargeable battery 150, and stops the power supply from the charging power source 102 when the required amount of power is reached. In this way, the necessary charge amount is estimated in advance, and charging is stopped at the timing when the necessary charge amount is supplied, so even if charging is performed at a voltage higher than the upper limit value of the open voltage of the rechargeable battery 150, overcharge is performed. Can be prevented.
The charging control unit 213 includes a second charging unit 213 b that charges the rechargeable battery 150 with a voltage that is equal to or lower than the upper limit value of the open voltage of the rechargeable battery 150 by controlling the charging power supply 102. Specifically, the second charging unit 213b controls the charging power source 102 so that a voltage equal to or lower than the upper limit value of the open voltage of the rechargeable battery 150 (for example, 4.1 V) becomes the upper limit voltage. Charge the battery.

放電制御手段214は、充電後の充電池150の開放電圧が上限値を超えている場合、上限値以下となるまで充電池150から電気を放電させる。具体的には、放電制御手段214は、充電後の充電池150の開放電圧をモニターし、開放電圧が4.1Vより高い場合、スイッチ107を閉じて抵抗106に電流が流れるようにする。このような放電の結果、開放電圧が4.1V以下になると、放電制御手段214は、スイッチ107を開けて放電を停止する。なお、放電制御手段214による放電の結果、充電池150の電圧が下がりすぎた場合(たとえば、開放電圧が4.08V以下になった場合など)には、再度充電池150への充電をおこなうようにしてもよい。   When the open circuit voltage of the rechargeable battery 150 after charging exceeds the upper limit value, the discharge control means 214 discharges electricity from the rechargeable battery 150 until it becomes equal to or lower than the upper limit value. Specifically, the discharge control means 214 monitors the open voltage of the rechargeable battery 150 after charging, and when the open voltage is higher than 4.1 V, closes the switch 107 so that a current flows through the resistor 106. As a result of such discharge, when the open-circuit voltage becomes 4.1 V or less, the discharge control means 214 opens the switch 107 and stops the discharge. In addition, when the voltage of the rechargeable battery 150 decreases too much as a result of the discharge by the discharge control means 214 (for example, when the open circuit voltage becomes 4.08 V or less), the rechargeable battery 150 is charged again. It may be.

(マップ作成方法の詳細)
つづいて、図3に示した満充電電気量―温度マップの作成方法の詳細について説明する。上述したように、充電池150は、くり返しの使用による経年劣化などによって電池容量が低下する。このため、記録手段211は、図3に示したマップの作成に先立って、充電池150の劣化状態を把握するため、満充電状態からの放電をおこない、残存電気量と開放電圧の値をマップとして記録する。
(Details of map creation method)
Next, details of a method for creating the fully charged electricity amount-temperature map shown in FIG. 3 will be described. As described above, the battery capacity of the rechargeable battery 150 decreases due to deterioration over time due to repeated use. For this reason, the recording unit 211 performs discharge from the fully charged state in order to grasp the deterioration state of the rechargeable battery 150 prior to the creation of the map shown in FIG. 3, and maps the remaining electricity amount and the open circuit voltage value. Record as.

図4は、残存電力量−開放電圧マップの一例を示すグラフである。図4のグラフにおいて、縦軸は、電池電圧、横軸は容量(放電流量)である。また、図4において符号401で示すのは充電池150の新品時における相関関係(電池容量C)であり、符号402に示すのは電池容量がCに低下した際の相関関係であり(C>C)、符号403に示すのは電池容量がCにさらに低下した際の相関関係である(C>C)。なお、図4のマップを作成する際の放電は、定量および不定量のどちらでおこなってもよい。また、図4は放電温度25℃におけるマップである。 FIG. 4 is a graph showing an example of a remaining power amount-open voltage map. In the graph of FIG. 4, the vertical axis represents battery voltage, and the horizontal axis represents capacity (discharge flow rate). In FIG. 4, reference numeral 401 indicates a correlation when the rechargeable battery 150 is new (battery capacity C 1 ), and reference numeral 402 indicates a correlation when the battery capacity is reduced to C 2 ( C 1> C 2), show the sign 403 is the correlation when the battery capacity is further reduced to C 3 (C 2> C 3 ). In addition, you may perform discharge in the case of producing the map of FIG. FIG. 4 is a map at a discharge temperature of 25 ° C.

図4のようなマップから、現在の充電池150がどのような劣化状態にあるのかを知ることができる。たとえば、満充電状態から電池容量C放電した場合(C>C)、新品状態(電池容量C)では電池電圧がVとなる。電池容量がCの場合、すなわち容量がC/C×100%劣化している場合には、満充電状態からC放電した際の電池電圧はVとなる(V>V)。また、電池容量がCの場合、すなわち容量が(C/C)×100%劣化している場合には、満充電状態からC放電した際の電池電圧はVとなる(V>V)。 From the map as shown in FIG. 4, it is possible to know what deterioration state the current rechargeable battery 150 is in. For example, if you battery capacity C 4 discharged from the fully charged state (C 3> C 4), the battery voltage in the new state (battery capacity C 1) becomes V 1. When the battery capacity is C 2 , that is, when the capacity is deteriorated by C 2 / C 1 × 100%, the battery voltage when C 4 is discharged from the fully charged state is V 2 (V 1 > V 2 ). When the battery capacity is C 3 , that is, when the capacity is deteriorated by (C 3 / C 1 ) × 100%, the battery voltage when C 4 is discharged from the fully charged state is V 3 (V 2 > V 3 ).

記録部211は、さらに、図4のマップの容量(放電流量)をSOC(state of charge:充電状態)に変換して、図5に示すような電池電圧―SOCマップを作成する。
図5は、電池電圧―SOCマップの一例を示すグラフである。図5のグラフにおいて、縦軸は、電池電圧、横軸はSOC(%)である。また、図5において符号501で示すのは充電池150の新品時における相関関係(電池容量C)であり、符号502に示すのは電池容量がCに低下した際の相関関係であり(C>C)、符号503に示すのは電池容量がCにさらに低下した際の相関関係である(C>C)。
The recording unit 211 further converts the capacity (discharge flow rate) of the map of FIG. 4 into SOC (state of charge) and creates a battery voltage-SOC map as shown in FIG.
FIG. 5 is a graph showing an example of a battery voltage-SOC map. In the graph of FIG. 5, the vertical axis represents battery voltage, and the horizontal axis represents SOC (%). In FIG. 5, reference numeral 501 indicates a correlation (battery capacity C 1 ) when the rechargeable battery 150 is new, and reference numeral 502 indicates a correlation when the battery capacity is reduced to C 2 ( C 1> C 2), show the sign 503 is the correlation when the battery capacity is further reduced to C 3 (C 2> C 3 ).

図5のようなマップから、現在の充電池のSOCを知ることができる。たとえば、電池容量がCに低下した充電池において電池電圧がVの場合、SOCはS(%)となる(図5の点線参照)。
なお、図4および図5で示したマップについて、実際には、たとえば満充電容量変化5%刻み、満充電作成温度も変化させてマップを作成するようにするのが好ましい。これにより、1回の放電操作で現在の電池劣化状態を知ることができ、どのような電圧からでも現在のSOCを求めることができる。たとえば、不定量(場合によって17Ah、31Ahなど)の劣化の場合であっても、各種劣化電池のSOC−OCVの関係から、満充電から放電した容量とそのときの開放電圧で、劣化状態で一致するマップは1つしかないので、劣化状態を把握することができる。
The current SOC of the rechargeable battery can be known from the map as shown in FIG. For example, when the battery voltage is V 4 in a rechargeable battery whose battery capacity is reduced to C 2 , the SOC is S 4 (%) (see the dotted line in FIG. 5).
4 and FIG. 5, it is preferable to actually create the map by changing the full charge capacity temperature in increments of, for example, 5% of the full charge capacity change. Thereby, the current battery deterioration state can be known by one discharge operation, and the current SOC can be obtained from any voltage. For example, even in the case of indefinite amount of degradation (17Ah, 31Ah, etc. in some cases), due to the SOC-OCV relationship of various degraded batteries, the capacity discharged from full charge and the open-circuit voltage at that time agree in the degradation state Since there is only one map to be performed, the deterioration state can be grasped.

このように、図4および図5から把握した充電池150の充電状態を用いて、記録手段211は図3に示した図3に示した満充電電気量―温度マップを作成する。記録手段211は、開放電圧の上限値以下での充電(通常充電)をおこなう際に、充電池150が満充電状態になるまでに供給した電気量を、通常充電によって増加した充電池150の残存電気量の充電容量に対する割合によって除すことによって、満充電電気量を算出する。   Thus, using the state of charge of the rechargeable battery 150 ascertained from FIGS. 4 and 5, the recording unit 211 creates the full charge electricity amount-temperature map shown in FIG. 3 shown in FIG. When the recording unit 211 performs charging (normal charging) below the upper limit value of the open-circuit voltage, the remaining amount of the rechargeable battery 150 is increased by the normal charging to the amount of electricity supplied until the rechargeable battery 150 is fully charged. The full charge electricity amount is calculated by dividing by the ratio of the electricity amount to the charge capacity.

具体的には、記録手段211は、
1.充電開始時における充電池150の充電状態(SOC)
2.充電における供給電気量
3.充電時における充電池150の温度
を記録する。上記1.が図4および図5から把握される値である。
Specifically, the recording means 211 is
1. Charging state (SOC) of rechargeable battery 150 at the start of charging
2. 2. Electricity supplied during charging Record the temperature of the rechargeable battery 150 during charging. Above 1. Are values obtained from FIGS. 4 and 5.

また、記録手段211は、充電池が取りえる温度帯における満充電電気量の比例関係を推定し、所定の温度における満充電電気量から、所定の温度以外の他の温度における満充電電気量を推定して、相関関係を記録するようにしてもよい。これは、満充電電気量は温度にほぼ比例するためである。
なお、温度による比例配分の値についても、充電池150の劣化によって比率が変化する可能性があるので、実測値を用いて逐次更新していく。
Further, the recording unit 211 estimates the proportional relationship of the full charge electricity amount in the temperature range that the rechargeable battery can take, and calculates the full charge electricity amount at a temperature other than the predetermined temperature from the full charge electricity amount at the predetermined temperature. The correlation may be recorded by estimation. This is because the amount of fully charged electricity is substantially proportional to the temperature.
It should be noted that the proportional distribution value due to temperature may also be sequentially updated using the actual measurement value because the ratio may change due to deterioration of the rechargeable battery 150.

(充電装置100の動作)
つづいて、充電装置100の動作ついて説明する。
図6および図7は、充電装置100の動作を示すフローチャートである。図6のフローチャートにおいて、充電装置100は、まず、今回の充電が急速充電であるか否かを判断する(ステップS601)。急速充電であるか否かは、たとえば、ユーザからの設定入力や充電池150の状態などによって判断する。今回の充電が急速充電である場合は(ステップS601:Yes)、図7のステップ408に移行する(結合子A)。
(Operation of charging device 100)
Next, the operation of the charging apparatus 100 will be described.
6 and 7 are flowcharts showing the operation of the charging apparatus 100. In the flowchart of FIG. 6, the charging device 100 first determines whether or not the current charging is rapid charging (step S601). Whether or not quick charging is performed is determined by, for example, setting input from the user, the state of the rechargeable battery 150, or the like. When the current charging is rapid charging (step S601: Yes), the process proceeds to step 408 in FIG. 7 (connector A).

一方、今回の充電が急速充電でない場合(ステップS601:No)、充電装置100は、通常充電をおこなう。充電装置100は、記録手段311によって、現在の充電装置100の充電状態(充電開始SOC)および現在の充電池150の温度(電池温度)を検知する(ステップS602)。つぎに、充電装置100は、充電用電源102から充電池150に電源を供給して、充電池150を充電する(ステップS603)。この間、記録手段311は、電流計103からの出力値に基づいて、充電池150に供給された電流量を積算する。   On the other hand, when the current charging is not rapid charging (step S601: No), charging device 100 performs normal charging. The charging device 100 detects the current charging state (charging start SOC) of the charging device 100 and the current temperature (battery temperature) of the rechargeable battery 150 by the recording unit 311 (step S602). Next, the charging device 100 supplies power from the charging power source 102 to the rechargeable battery 150 to charge the rechargeable battery 150 (step S603). During this time, the recording unit 311 integrates the amount of current supplied to the rechargeable battery 150 based on the output value from the ammeter 103.

充電装置100は、充電用電源102から充電値150に流れる電流量(充電電流)が0.5A以下になるまでは(ステップS604:No)、ステップS603に戻り、充電池150への充電を継続する。そして、充電電流が0.5A以下になると(ステップS604:Yes)、充電装置100は、充電値150の充電が完了したものとして充電を停止する(ステップS605)。記録手段211は、積算した電流量と充電開始SOCに基づいて必要電気量を算出し(ステップS606)、算出した必要電気量を温度と対応づけて記録してマップを更新し(ステップS607)、本フローチャートによる処理を終了する。このとき、記録手段211は、現在の充電池150の温度以外の温度における必要電気量を、ステップS606で算出した必要で流量を用いて推定して、マップの更新に用いてもよい。
以上が通常充電時における処理である。
The charging device 100 returns to step S603 and continues charging the rechargeable battery 150 until the amount of current (charging current) flowing from the charging power source 102 to the charging value 150 becomes 0.5 A or less (step S604: No). To do. Then, when the charging current becomes 0.5 A or less (step S604: Yes), the charging apparatus 100 stops charging as charging of the charging value 150 is completed (step S605). The recording unit 211 calculates a necessary amount of electricity based on the integrated current amount and the charging start SOC (step S606), records the calculated necessary amount of electricity in association with the temperature, and updates the map (step S607). The process according to this flowchart ends. At this time, the recording unit 211 may estimate the required amount of electricity at a temperature other than the current temperature of the rechargeable battery 150 using the flow rate as calculated in step S606 and use it for updating the map.
The above is the processing during normal charging.

図7の説明に移り、急速充電時の処理を説明する。図6のステップS601において、今回の充電が急速充電である場合は(ステップS601:Yes、結合子A)、充電装置100は、現在の充電装置100の充電状態(残存電気量)および現在の充電池150の電池温度を検知する(ステップS608)。つぎに、充電装置100は、推定手段212によって、ステップS608で検知した情報およびマップから今回の充電における必要充電量を推定する(ステップS609)。   Turning to the description of FIG. 7, the process at the time of quick charging will be described. In step S601 of FIG. 6, when the current charging is rapid charging (step S601: Yes, connector A), the charging device 100 determines the current charging state (remaining amount of electricity) of the charging device 100 and the current charging. The battery temperature of the battery 150 is detected (step S608). Next, the charging device 100 uses the estimation unit 212 to estimate the required charge amount for the current charging from the information and map detected in step S608 (step S609).

つづいて、充電装置100は、充電用電源102から充電池150に電源を供給して、充電池150を充電する(ステップS610)。この間、充電制御手段213は、電流計103からの出力値に基づいて、充電池150に供給された電流量を積算する。充電装置100は、充電用電源102から充電値150に供給された電流量の積算値が必要電気量以上になるまでは(ステップS611:No)、ステップS610に戻り、充電池150への充電を継続する。そして、積算値が必要電気量以上になる(ステップS611:Yes)、充電装置100は、充電値150の充電が完了したものとして充電を停止する(ステップS612)。 Subsequently, the charging device 100 supplies power from the charging power source 102 to the rechargeable battery 150 to charge the rechargeable battery 150 (step S610). During this time, the charging control unit 213 integrates the amount of current supplied to the rechargeable battery 150 based on the output value from the ammeter 103. The charging device 100 returns to step S610 to charge the rechargeable battery 150 until the integrated value of the amount of current supplied from the charging power supply 102 to the charge value 150 becomes equal to or greater than the required amount of electricity (step S611: No). continue. When the accumulated value is more than necessary quantity of electricity (step S611: Yes), charging device 100 stops the charging as the charging of the charging value 150 has been completed (step S612).

その後、充電装置100は、充電後の充電池150の開放電圧(OCV)が4.1V以下であるか否かを判断し(ステップS613)、4.1V以下である場合(ステップS613:No)、すなわち過充電状態でない場合は、そのまま本フローチャートによる処理を終了する(結合子B)。
一方、開放電圧が4.1V以下でない場合は(ステップS613:Yes)、過充電状態であるものとして、放電制御手段214によって、充電池150からの放電をおこなう(ステップS614)。なお、放電制御手段214による放電の結果、充電池150の電圧が下がりすぎた場合(たとえば、開放電圧が4.08V以下になった場合など)には、再度充電池150への充電をおこなうようにしてもよい。なお、このときの充電は、図6に示した通常充電でおこなう。
以上のようにして、充電装置100は充電池150の充電をおこなう。
Thereafter, the charging device 100 determines whether or not the open circuit voltage (OCV) of the rechargeable battery 150 after charging is 4.1 V or less (step S613), and when it is 4.1 V or less (step S613: No). That is, when the overcharge state is not established, the process according to this flowchart is terminated as it is (connector B).
On the other hand, when the open circuit voltage is not 4.1 V or less (step S613: Yes), the rechargeable battery 150 is discharged by the discharge control means 214, assuming that it is in an overcharged state (step S614). In addition, when the voltage of the rechargeable battery 150 decreases too much as a result of the discharge by the discharge control means 214 (for example, when the open circuit voltage becomes 4.08 V or less), the rechargeable battery 150 is charged again. It may be. The charging at this time is performed by the normal charging shown in FIG.
As described above, the charging device 100 charges the rechargeable battery 150.

図8は、充電池150の充電所要時間の一例を示すグラフである。図8において、横軸は充電開始からの経過時間、左軸は充電池150の電池電圧、右軸は充電池150の充電容量である。また、図8において、実線で示すのが本実施の形態にかかる充電方法(急速充電)における測定値(VA,IA)であり、点線で示すのが従来技術による充電方法(通常充電)における測定値(VB,IB)である。   FIG. 8 is a graph showing an example of the time required for charging the rechargeable battery 150. In FIG. 8, the horizontal axis represents the elapsed time from the start of charging, the left axis represents the battery voltage of the rechargeable battery 150, and the right axis represents the charging capacity of the rechargeable battery 150. In FIG. 8, the solid line indicates the measured value (VA, IA) in the charging method (rapid charging) according to the present embodiment, and the dotted line indicates the measurement in the conventional charging method (normal charging). It is a value (VB, IB).

本実施の形態にかかる充電方法では、符号VAに示すように電池電圧の上限値を4.2Vとしており、所定の充電容量CAhまで充電するまでの所要時間は、符号IAに示すようにTとなる。一方、従来技術による充電方法では、符号VBに示すように電池電圧の上限値を4.1V(開放電圧の上限値)としており、所定の充電容量CAhまで充電するまでの所要時間は、符号IBに示すようにTとなる(T<T)。このように、本実施の形態にかかる充電方法では、従来技術による充電方法と比較して、充電時の所要時間を大幅に短縮することができる。 In the charging method according to the present embodiment, the upper limit value of the battery voltage is 4.2 V as indicated by reference numeral VA, and the time required to charge to a predetermined charging capacity C X Ah is as indicated by reference numeral IA. the T 1. On the other hand, in the charging method according to the prior art, the upper limit value of the battery voltage is 4.1 V (upper limit value of the open-circuit voltage) as indicated by reference numeral VB, and the time required to charge to a predetermined charge capacity C X Ah is: As indicated by the symbol IB, T 2 is obtained (T 1 <T 2 ). As described above, in the charging method according to the present embodiment, the time required for charging can be significantly shortened as compared with the charging method according to the prior art.

図9は、充電所要時間と電池温度の関係の一例を示すグラフである。図9において、縦軸は充電所要時間、横軸は電池温度である。また、実線で示すのが本実施の形態にかかる充電方法(急速充電)における測定値であり、点線で示すのが従来技術による充電方法における測定値である。図9に示すように、特に電池温度が低温の場合において、本実施の形態にかかる充電方法では充電時間を大幅に短縮できていることがわかる。   FIG. 9 is a graph showing an example of the relationship between the required charging time and the battery temperature. In FIG. 9, the vertical axis represents the required charging time, and the horizontal axis represents the battery temperature. In addition, a solid line indicates a measured value in the charging method (rapid charging) according to the present embodiment, and a dotted line indicates a measured value in the conventional charging method. As shown in FIG. 9, it can be seen that, particularly when the battery temperature is low, the charging method according to the present embodiment can significantly reduce the charging time.

図10は、充電所要時間の改善率と電池温度の関係の一例を示すグラフであり、図9に示した本実施の形態にかかる充電方法における所要時間と従来技術による充電方法における所要時間の差分を、充電方法における所要時間で除したものである。図10に示すように、本実施の形態にかかる充電方法によって、充電時間を大幅に短縮できていることがわかる。   FIG. 10 is a graph showing an example of the relationship between the improvement rate of the required charging time and the battery temperature, and the difference between the required time in the charging method according to the present embodiment shown in FIG. 9 and the required time in the conventional charging method. Is divided by the required time in the charging method. As shown in FIG. 10, it can be seen that the charging time can be greatly shortened by the charging method according to the present embodiment.

なお、本実施の形態では、充電時に供給した電流量から満充電電気量を算出してマップを作成したが、マップの作成方法はこれにかぎらない。たとえば、蓄電池150の残存電気量別(たとえば、残存電気量率40%,45%,50%・・など)における必要電気量と電池温度との関係を、それぞれマップにしてもよい。この場合、充電時における残存電気量から今回の充電に用いるマップを選択し、充電時における電池温度から必要電気量を読み取って充電期間を制御する。   In the present embodiment, the map is created by calculating the amount of fully charged electricity from the amount of current supplied during charging, but the map creation method is not limited to this. For example, the relationship between the required electricity amount and the battery temperature for each remaining electricity amount (for example, 40%, 45%, 50%,..., Etc.) of the storage battery 150 may be mapped. In this case, a map used for the current charging is selected from the remaining amount of electricity at the time of charging, and the charging period is controlled by reading the required amount of electricity from the battery temperature at the time of charging.

また、本実施形態での充電池150は、車両に搭載され、車両駆動用の電力源として用いられるものとしたが、充電池の種別はこれに限らない。たとえば、携帯電話用やパソコン用など、種々の産業機械等の充電池に適用可能であるが、幅広い温度領域での使用が予想される車両駆動用の充電池に適用するのがより好ましい。   Moreover, although the rechargeable battery 150 in the present embodiment is mounted on a vehicle and used as a power source for driving the vehicle, the type of the rechargeable battery is not limited thereto. For example, the present invention can be applied to rechargeable batteries for various industrial machines such as mobile phones and personal computers, but is more preferably applied to rechargeable batteries for driving vehicles that are expected to be used in a wide temperature range.

以上説明したように、本実施の形態にかかる充電装置100は、上限電圧より高い電圧での充電をおこなう際に、供給すべき電気量(必要電気量)をあらかじめ推定しておき、必要電気量の供給が完了した時点で充電を停止する。これにより、上限電圧より高い電圧での充電をおこなう期間を適切に制御することができ、過充電を防止しつつ、より短時間に充電池の充電を完了させることができる。   As described above, the charging device 100 according to the present embodiment estimates the amount of electricity to be supplied (necessary amount of electricity) in advance when charging at a voltage higher than the upper limit voltage, and the necessary amount of electricity. When the supply of is completed, charging is stopped. Thereby, it is possible to appropriately control the period during which charging is performed at a voltage higher than the upper limit voltage, and it is possible to complete charging of the rechargeable battery in a shorter time while preventing overcharging.

また、充電装置100は、通常充電時に供給した電気量を、充電によって増加した残存電気量の割合で除すことのよって満充電電気量を算出している。このため、満充電電気量を用いれば、充電池の残存電気量によらず、当該温度において充電池を満充電状態にするために必要な必要電気量を知ることができる。   In addition, the charging device 100 calculates the fully charged electricity amount by dividing the amount of electricity supplied during normal charging by the ratio of the remaining electricity amount increased by charging. For this reason, if the amount of fully charged electricity is used, the amount of electricity necessary for making the rechargeable battery fully charged at the temperature can be known regardless of the remaining amount of electricity of the rechargeable battery.

また、充電装置100は、それぞれの温度における満充電電気量の比例関係を推定し、当該比例関係を用いて他の温度における満充電電気量を推定する。これにより、1回の充電(1つの温度における満充電電気量)によって、すべての温度帯における満充電電気量を知ることができる。   Moreover, the charging device 100 estimates the proportional relationship of the full charge electricity amount at each temperature, and estimates the full charge electricity amount at other temperatures using the proportional relationship. Thereby, the amount of full charge electricity in all temperature zones can be known by one charge (the amount of full charge electricity at one temperature).

また、充電装置100は、充電後の充電池の開放電圧が上限値を超えている場合、すなわち過充電状態となった場合、上限値以下となるまで充電池から電気を放電させる。これにより、万一過充電状態となった場合でも、充電池への負荷を最小限にとどめ、充電池の劣化を防止することができる。   Moreover, the charging device 100 discharges electricity from a rechargeable battery until it becomes below an upper limit, when the open circuit voltage of the rechargeable battery after charge exceeds the upper limit, ie, when it will be in an overcharge state. Thereby, even if it becomes an overcharged state, the load to a rechargeable battery can be minimized and deterioration of a rechargeable battery can be prevented.

100……充電装置、102……充電用電源、103……電流計、104……電圧計、105……温度センサ、106……抵抗、107……スイッチ、110……制御部(ECU)、211……記録手段、212……推定手段、213……充電制御手段、213a……第1充電手段、213b……第2充電手段、214……放電制御手段。   DESCRIPTION OF SYMBOLS 100 ... Charging apparatus, 102 ... Charging power supply, 103 ... Ammeter, 104 ... Voltmeter, 105 ... Temperature sensor, 106 ... Resistance, 107 ... Switch, 110 ... Control part (ECU), 211 ... recording means, 212 ... estimating means, 213 ... charge control means, 213a ... first charging means, 213b ... second charging means, 214 ... discharge control means.

Claims (4)

所定の充電容量を有する充電池を充電する充電制御手段と、
前記充電池を充電池容量が空の状態から満充電状態にするために必要な電気量である満充電電気量と前記充電池の温度との相関関係を記録する記録手段と、
前記充電池への充電をおこなう際に、前記記録手段によって記録された前記相関関係、および前記充電池の現在温度と前記充電池の現在の残存電気量に基づいて、現在の前記充電池を満充電状態にするために必要な電気量である必要電気量を推定する推定手段と、を備え、
前記充電制御手段は、前記充電池の開放電圧の上限値である上限電圧より高い電圧で前記充電池を充電を行う第1充電手段と、前記上限電圧以下の電圧で充電をおこなう第2充電手段とを有し、
前記記録手段は、前記第2充電手段による充電の際に、前記充電池が満充電状態になるまでに供給した電気量を、前記第2充電手段による充電によって増加した前記充電池の前記残存電気量の前記充電容量に対する割合によって除すことによって、前記満充電電気量を算出するとともに、前記充電池が取りえる温度帯における前記満充電電気量の比例関係を推定し、所定の温度における前記満充電電気量から、前記所定の温度以外の他の温度における前記満充電電気量を推定して前記相関関係を記録することにより前記相関関係を更新し、
前記推定手段は、前記第1充電手段による充電の際に、前記第2充電手段による充電の際に更新された前記相関関係に基づき前記必要電気量を推定し、
前記第1充電手段は、更新後の前記相関関係に基づき前記推定手段によって推定された前記必要電気量を供給すると前記上限電圧より高い電圧での充電を終了する、
ことを特徴とする充電装置。
Charging control means for charging a rechargeable battery having a predetermined charging capacity;
A recording means for recording a correlation between a full charge electricity amount, which is an amount of electricity required to change the rechargeable battery capacity from an empty state to a fully charged state, and a temperature of the rechargeable battery;
When charging the rechargeable battery, the current rechargeable battery is filled based on the correlation recorded by the recording means and the current temperature of the rechargeable battery and the current remaining amount of electricity of the rechargeable battery. An estimation means for estimating a necessary amount of electricity that is necessary to obtain a charged state, and
The charging control means includes a first charging means for charging the rechargeable battery at a voltage higher than an upper limit voltage that is an upper limit value of the open voltage of the rechargeable battery, and a second charging means for charging at a voltage equal to or lower than the upper limit voltage. It has a door,
In the charging by the second charging means, the recording means increases the amount of electricity supplied until the rechargeable battery is fully charged by charging by the second charging means. Dividing the amount of charge to the charge capacity, calculating the full charge electricity amount, estimating a proportional relationship of the full charge electricity amount in a temperature range that can be taken by the rechargeable battery, and obtaining the full charge amount at a predetermined temperature. From the amount of charged electricity, update the correlation by estimating the fully charged amount of electricity at a temperature other than the predetermined temperature and recording the correlation,
The estimation means estimates the required amount of electricity based on the correlation updated at the time of charging by the second charging means at the time of charging by the first charging means,
The first charging unit ends charging at a voltage higher than the upper limit voltage when the necessary amount of electricity estimated by the estimating unit is supplied based on the updated correlation.
A charging device characterized by that.
前記第1充電手段による充電後の前記充電池の前記開放電圧が前記上限値を超えている
場合、前記上限値以下となるまで前記充電池から電気を放電させる放電制御手段をさらに
含んだことを特徴とする請求項に記載の充電装置。
When the open voltage of the rechargeable battery after being charged by the first charging means exceeds the upper limit value, the battery pack further includes discharge control means for discharging electricity from the rechargeable battery until the upper limit value is reached. The charging device according to claim 1 , wherein:
前記記録手段は、前記充電池の劣化度合いによって複数の前記相関関係を記録することを特徴とする請求項1または2に記載の充電装置。 It said recording means, the charging device according to claim 1 or 2, characterized in that to record a plurality of the correlation by the degree of deterioration of the rechargeable battery. 前記充電池は車両に搭載され、前記車両の駆動用の電力源として用いられることを特徴とする請求項1乃至3に何れか1項記載の充電装置。 The charging device according to any one of claims 1 to 3 , wherein the rechargeable battery is mounted on a vehicle and used as a power source for driving the vehicle.
JP2011206064A 2011-09-21 2011-09-21 Charger Expired - Fee Related JP5673470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206064A JP5673470B2 (en) 2011-09-21 2011-09-21 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206064A JP5673470B2 (en) 2011-09-21 2011-09-21 Charger

Publications (2)

Publication Number Publication Date
JP2013070478A JP2013070478A (en) 2013-04-18
JP5673470B2 true JP5673470B2 (en) 2015-02-18

Family

ID=48475553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206064A Expired - Fee Related JP5673470B2 (en) 2011-09-21 2011-09-21 Charger

Country Status (1)

Country Link
JP (1) JP5673470B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033155B2 (en) * 2013-03-29 2016-11-30 日立オートモティブシステムズ株式会社 Battery control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2823167B2 (en) * 1988-02-22 1998-11-11 ソニー株式会社 Charging device
JP3136677B2 (en) * 1991-07-31 2001-02-19 ソニー株式会社 Overcharge and overdischarge prevention circuit for secondary battery
JP3228668B2 (en) * 1996-02-07 2001-11-12 東芝電池株式会社 Power supply using secondary battery pack
JP2003164072A (en) * 2001-11-28 2003-06-06 Hitachi Ltd Power failure compensation power unit
WO2008026477A1 (en) * 2006-08-29 2008-03-06 Nec Corporation Method and device for estimating soc value of secondary battery and degradation judging method and device
JP5228322B2 (en) * 2006-08-30 2013-07-03 トヨタ自動車株式会社 Power storage device deterioration evaluation system, vehicle, power storage device deterioration evaluation method, and computer-readable recording medium storing a program for causing a computer to execute the deterioration evaluation method
JP4978662B2 (en) * 2009-06-24 2012-07-18 トヨタ自動車株式会社 CHARGE STATE ESTIMATION DEVICE AND CHARGE STATE ESTIMATION METHOD

Also Published As

Publication number Publication date
JP2013070478A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
CN102565716B (en) Apparatus for calculating residual capacity of secondary battery
CN108663620B (en) Power battery pack state of charge estimation method and system
US20160011273A1 (en) Method and apparatus for determining a capacity of a battery
CN111239611B (en) Calculation method for calibrating PACKSOC based on single battery capacity
JP5839210B2 (en) Battery charging apparatus and method
US20080150491A1 (en) Method Of Estimating The State-Of-Charge And Of The Use Time Left Of A Rechageable Battery, And Apparatus For Executing Such A Method
JP7211420B2 (en) Parameter estimation device, parameter estimation method and computer program
CN107852011A (en) Method and apparatus for optimizing fast battery charging
CN106663960A (en) Battery system
JP7041800B2 (en) Battery capacity estimation device and method, battery management device and method equipped with this
KR101825617B1 (en) Apparatus and method for changing using-band of battery
JP2016532866A (en) Estimating the deterioration state of electric batteries
EP1897201A1 (en) Method and apparatus of controlling for charging/discharging voltage of battery
JP6449609B2 (en) Secondary battery charging rate estimation method and charging rate estimation device
WO2012157747A1 (en) Method for controlling battery assembly and control device
US11095130B2 (en) Power storage apparatus for estimating an open-circuit voltage
CN111175664B (en) Method for determining aging state of battery, controller and vehicle
JP2010142039A (en) Electrical energy storage device
KR20180079772A (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
CN107037368A (en) Estimate the method and electric power controller of the active volume of battery
JP2013121242A (en) Soc estimation device and battery pack
JP6324332B2 (en) Charge / discharge control device and control method for lithium ion battery
WO2013084663A1 (en) Battery charging amount control device and method
CN104348366B (en) The manufacture method of capacitor electrode source apparatus, voltage monitoring device, voltage monitoring method and capacitor electrode source apparatus
CN109444750A (en) A kind of capacity of lead acid battery predictor method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees