JP2003164072A - Power failure compensation power unit - Google Patents

Power failure compensation power unit

Info

Publication number
JP2003164072A
JP2003164072A JP2001361882A JP2001361882A JP2003164072A JP 2003164072 A JP2003164072 A JP 2003164072A JP 2001361882 A JP2001361882 A JP 2001361882A JP 2001361882 A JP2001361882 A JP 2001361882A JP 2003164072 A JP2003164072 A JP 2003164072A
Authority
JP
Japan
Prior art keywords
battery
charging
power failure
power
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361882A
Other languages
Japanese (ja)
Inventor
Toyokazu Okawa
豊和 大川
Katsutoshi Shinohara
克利 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001361882A priority Critical patent/JP2003164072A/en
Publication of JP2003164072A publication Critical patent/JP2003164072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly charge a secondary battery based on a charged ratio of the battery calculated by measuring a charging and discharging amounts of the battery, in a power failure compensation power unit equipped with a secondary battery as a NiCd battery or a Ni hydrogen battery, a charging circuit and a control circuit. <P>SOLUTION: There is provided a battery charging/discharging current measuring circuit that uses a V-F converter. The charging and discharging amounts are calculated by integrating measured charging and discharging currents. An SCO of the battery is calculated by the charging and discharging amounts. In charging the battery, the SCO control is made rapidly charge the battery until the SCO is restored 100%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非常用照明や情報
機器等停電時においても使用することを必要とする電気
機器の停電補償電源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power failure compensating power supply device for electric equipment such as emergency lighting and information equipment which must be used even during a power failure.

【0002】[0002]

【従来の技術】従来、NiCd電池やNi水素電池に代
表される二次電池を急速充電する手段として、これら二
次電池の満充電時以降電圧が降下しかつ温度が上昇する
特性を利用して、充電中の電池端子電圧を監視しピーク
電圧後の降下電圧を検出することにより充電を終了する
降下電圧検出制御(以降−△V検出制御と称す)や、電池
温度上昇を監視し任意温度に到達した場合充電を終了す
る温度制御を用いた充電回路が用いられてきた。また、
上記−△V制御や温度制御を行わず電池の急速充電を行
う手段として、停電補償電源において停電時間を計時し
この時間より必要充電時間を算出し、急速充電を行う方
法が特開平5−184082号公報に述べられている。
2. Description of the Related Art Conventionally, as a means for rapidly charging a secondary battery represented by a NiCd battery or a Ni hydrogen battery, the characteristics of the voltage drop and the temperature rise after full charge of these secondary batteries are utilized. , Drop voltage detection control (hereinafter referred to as-△ V detection control) that terminates charging by monitoring the battery terminal voltage during charging and detecting the drop voltage after the peak voltage, and monitor the battery temperature rise to an arbitrary temperature. Charging circuits have been used that use temperature control to terminate charging when reached. Also,
As means for rapidly charging the battery without performing the -ΔV control or temperature control, there is a method of measuring the power failure time in a power failure compensation power source, calculating the required charging time from this time, and performing the quick charging. It is described in the official gazette.

【0003】[0003]

【発明が解決しようとする課題】NiCd電池やNi水
素電池に代表される二次電池の急速充電回路に−△V検
出制御や温度制御を用いる場合、電池電圧や電池温度を
検出する電圧検出回路や温度検出回路、センサー等が必
要となり、かつこれら電池の特性として周囲温度が高く
なるにつれ、充電時の電圧ピーク値が減少しかつピーク
の形状も緩やかになることから、より高精度な電圧検出
回路、温度検出回路が必要になるという問題があった。
さらに、−△V検出や温度上昇が発生する毎に微少では
あるが電池の劣化が生じるため、停電頻度が多く、充放
電サイクル回数が多い環境使用された場合、電池寿命が
短くなる問題があった。一方、停電補償電源装置におい
て停電時間により必要充電時間を算出し急速充電する場
合、適正な充電時間を算出するためには停電時に停電補
償電源装置に接続される負荷の消費電力が一定である必
要があることから、情報装置等機器の運転率、条件によ
り消費電力が変動する負荷に接続される停電補償電源装
置には適用できないという問題があった。
When using -ΔV detection control or temperature control in a rapid charging circuit of a secondary battery represented by NiCd battery or Ni hydrogen battery, a voltage detection circuit for detecting battery voltage or battery temperature. And a temperature detection circuit, a sensor, etc. are required, and as the ambient temperature rises as a characteristic of these batteries, the voltage peak value at the time of charging decreases and the peak shape also becomes gentle. There is a problem that a circuit and a temperature detection circuit are required.
Further, since the battery deteriorates although it is slight each time -V detection or temperature rise occurs, there is a problem that the battery life becomes short when used in an environment where the frequency of power failure is high and the number of charge / discharge cycles is high. It was On the other hand, in the power failure compensation power supply, when calculating the required charging time based on the power failure time and performing rapid charging, the power consumption of the load connected to the power failure compensation power supply must be constant in order to calculate the appropriate charging time. Therefore, there is a problem that it cannot be applied to a power failure compensating power supply device connected to a load whose power consumption fluctuates depending on the operating rate and conditions of devices such as information devices.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題を解
決するために、V−Fコンバータによる電池の充放電電
流測定回路を設け、計測した充放電電流を積算すること
により充放電量を算出し、これら充放電量により電池の
SOCを算出し、充電時このSOCが100%に復帰す
るまで急速充電を行うSOC制御を行うものである。
In order to solve the above problems, the present invention provides a charge / discharge current measuring circuit for a battery using a VF converter, and integrates the measured charge / discharge current to determine the charge / discharge amount. The SOC control of the battery is performed by calculating and calculating the SOC of the battery from these charge / discharge amounts, and performing rapid charging until the SOC returns to 100% during charging.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。図1は本発明を用いた停電補償電源装置
の一回路例である。二次電池8の正極は急速充電用スイ
ッチSW1、電流制限抵抗5を介し、電源部2の電池充
電電源2dに接続されると共に、放電スイッチSW2を
介し放電端子11より停電時負荷に接続される。ここ
で、本例では停電時直流出力を想定しているが、スイッ
チSW2と放電端子11の間に直交変換回路(インバー
タ)を設けることにより、交流出力も可能である。ま
た、スイッチSW1に補充電用電流制限抵抗6、逆流防
止ダイオード7を並列接続し、このときの抵抗6の定数
は、スイッチSW1がOFFの補充電状態での最大電流
が電流率(満充電状態の電池を1hで放電し終える電流
値を1Cと定義する)で0.1C以下の任意の値になる
ように選定する。なお、本実施例では、ON時の電力損
失の削減のためSW1、SW2に接点スイッチを用いて
いるが、ON、OFF時の高速性を必要とする場合はト
ランジスタ等の半導体スイッチを使用してもよい。一
方、二次電池の負極側はシャント抵抗9に接続され、シ
ャント抵抗9の電圧をV−Fコンバータ回路4によりク
ロック信号に変換し制御マイコン3の充放電カウンタ
(以下CDCと称す)3cでカウントすることにより、電
池の充放電量を検出する。ここで、V−Fコンバータ回
路4に、図4に示すがごとく出力クロック周波数が入力
電圧の絶対値に比例している入出力特性のものを使用す
ることにより、電池の充放電時の電流の増減に比例し
て、V−Fコンバータ回路4から出力されるクロック信
号の周波数が増減することにより、結果的にCDCのカ
ウント速度も電池の充放電柱の電流の増減に比例させる
ことができ、CDCの値を電池の充電または放電量に対
応させることが可能となる。制御用マイコン3は上記C
DC3cの他に、初期充電タイマー3a、SOCカウン
タ(以下SOCCと称す)3bを内蔵し、商用AC電源1
0に接続された停電検出回路1からの停電検出信号が入
力され、これらカウンタ、制御信号によりスイッチSW
1、SW2それぞれを制御する。また、電源部2には先
の電池充電電源2dの他に本回路の駆動電源である制御
電源2aを含んでおり、制御電源2aには通常運転時用
電力として商用AC電源10からの入力を整流回路2b
で直流化したものと、停電時用電力として電池からの入
力がダイオード2cを介して接続される。ここで、通常
運転時に整流回路2bからの電力のみを使用するために
は、整流回路2bの出力電圧を電池の最大電圧より高く
設定しておくだけでよい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit example of a power failure compensating power supply device using the present invention. The positive electrode of the secondary battery 8 is connected to the battery charging power supply 2d of the power supply unit 2 via the quick charging switch SW1 and the current limiting resistor 5, and is connected to the load at the time of power failure from the discharging terminal 11 via the discharging switch SW2. . Here, in this example, DC output at the time of power failure is assumed, but AC output is also possible by providing an orthogonal conversion circuit (inverter) between the switch SW2 and the discharge terminal 11. Further, the switch SW1 is connected in parallel with the auxiliary charging current limiting resistor 6 and the backflow prevention diode 7, and the constant of the resistor 6 at this time is the maximum current in the auxiliary charging state in which the switch SW1 is OFF (current rate (full charging state). The current value at which the battery is completely discharged in 1 h is defined as 1 C), and the value is selected to be an arbitrary value of 0.1 C or less. In this embodiment, contact switches are used for SW1 and SW2 in order to reduce power loss at the time of ON, but when high speed at ON / OFF is required, semiconductor switches such as transistors are used. Good. On the other hand, the negative electrode side of the secondary battery is connected to the shunt resistor 9, and the voltage of the shunt resistor 9 is converted into a clock signal by the VF converter circuit 4 to charge / discharge the counter of the control microcomputer 3.
The charge / discharge amount of the battery is detected by counting with 3c (hereinafter referred to as CDC). Here, by using the V-F converter circuit 4 having the input / output characteristic in which the output clock frequency is proportional to the absolute value of the input voltage as shown in FIG. Since the frequency of the clock signal output from the V-F converter circuit 4 increases or decreases in proportion to the increase or decrease, the count speed of the CDC can also be proportional to the increase or decrease in the current of the charge / discharge column of the battery as a result. The CDC value can be made to correspond to the charge or discharge amount of the battery. The control microcomputer 3 is the above-mentioned C
In addition to the DC 3c, an initial charging timer 3a and an SOC counter (hereinafter referred to as SOCC) 3b are built in, and a commercial AC power source 1
The power failure detection signal from the power failure detection circuit 1 connected to 0 is input, and the switch SW is activated by these counters and control signals.
1 and SW2 are controlled respectively. In addition to the battery charging power source 2d, the power source unit 2 includes a control power source 2a that is a drive power source for this circuit. The control power source 2a receives an input from the commercial AC power source 10 as power for normal operation. Rectifier circuit 2b
The DC input is connected to the input from the battery as power for power failure via the diode 2c. Here, in order to use only the electric power from the rectifier circuit 2b during the normal operation, it is only necessary to set the output voltage of the rectifier circuit 2b higher than the maximum voltage of the battery.

【0006】次に本発明の制御フローを図2を用いて説
明する。運転を開始(S1)するとCDCをクリアし(S
2)、停電検出信号を調べ停電判定(S3)を行う。停電
でない場合は放電スイッチSW2をOFFし(S4)未放
電状態の継続または放電の終了を行う。次に、急速充電
中かを判定し(S5)、急速充電中であればCDCは充電
量に対応して更新されることより、SOCCにCDCの
値を加え(S6)、CDCをクリアし(S7)、急速充電中
でない場合は電池の漏れ電流回復のための補充電状態で
あるから、S6、S7は実行せず、SOCCは更新しな
い。つぎに、SOCCと予め設定しておいたSOC=1
00%に対応するカウンタ値Nfulを比較し(S8)、
SOCCがNful以上であればSW1をOFFするこ
とで(S9)補充状態の継続または急速充電の終了を行
い、SOCCがNful未満であればSW1をONにす
ることで(S10)急速充電の継続または新規投入を行
う。以上を停電判定(S3)より繰り返す。一方、停電判
定(S3)で停電中と判定された場合は、SW1をOF
F、SW2をONする(S11)ことにより、急速充電中
であれば充電を停止し放電を開始する。このとき、商用
AC電源が遮断され電池充電電源2dの出力も無くなる
ことから、電池の補充電も停止する。放電が開始される
ことによりCDCは放電量に対応して更新されることよ
り、SOCCからCDCの値を減算し(S12)、CD
Cをクリアする(S13)。つぎに、SOCCと予め設
定しておいたSOC=0%に対応するカウンタ値Nem
pを比較し(S14)、SOCCがNemp以下の場合は
SW2をOFFし(S15)、放電を終了するとともに電
池残量無しのアラームを表示し(S16)、運転を終了す
る(S17)。一方、S14においてSOCCがNemp
より大きい場合は、停電判定(S3)より繰り返す。S
OCC、CDCは充電、放電の時間ではなく、電池の充
電または放電量に対応した値であるから、上記手段によ
れば停電時負荷に消費電力が変動する機器を接続した場
合でも、停電復帰後に放電量に対応した適切な急速充電
を行うことが可能である。
Next, the control flow of the present invention will be described with reference to FIG. When the operation is started (S1), the CDC is cleared (S
2) Check the power failure detection signal and judge the power failure (S3). If it is not a power failure, the discharge switch SW2 is turned off (S4) to continue the undischarged state or to end the discharge. Next, it is determined whether or not the rapid charging is in progress (S5). If the rapid charging is in progress, the CDC is updated corresponding to the charge amount. Therefore, the value of the CDC is added to SOCC (S6), and the CDC is cleared ( S7): If the battery is not being rapidly charged, it is in the auxiliary charging state for recovering the leakage current of the battery. Therefore, S6 and S7 are not executed and SOCC is not updated. Next, SOC and SOC set in advance = 1
The counter value Nful corresponding to 00% is compared (S8),
If SOCC is Nful or more, SW1 is turned off (S9) to continue the replenishment state or end the rapid charging, and if SOCC is less than Nful, SW1 is turned on (S10) to continue rapid charging or Make a new input. The above is repeated from the power failure judgment (S3). On the other hand, if it is determined in the power outage determination (S3) that there is a power outage, SW1 is turned off.
By turning on F and SW2 (S11), if rapid charging is in progress, charging is stopped and discharging is started. At this time, the commercial AC power supply is cut off and the output of the battery charging power supply 2d also disappears, so that the auxiliary charging of the battery is also stopped. The CDC is updated corresponding to the discharge amount when the discharge is started, so the value of the CDC is subtracted from the SOCC (S12), and the CD
Clear C (S13). Next, the counter value Nem corresponding to SOCC and SOC = 0% preset.
p is compared (S14), and when SOCC is Nemp or less, SW2 is turned off (S15), discharging is ended and an alarm indicating that the battery is not charged is displayed (S16), and the operation is ended (S17). On the other hand, at S14, SOCC is Nemp.
If it is larger, the process is repeated from the power failure determination (S3). S
Since OCC and CDC are values corresponding to the amount of charge or discharge of the battery, not the time of charge or discharge, according to the above means, even when a device whose power consumption fluctuates is connected to the load during a power failure, after the power failure is restored. It is possible to perform appropriate rapid charging corresponding to the amount of discharge.

【0007】一方、実運用時において本回路を搭載した
停電補償電源装置の据付け時や工事等で長期に渡り電源
遮断状態であった直後は、電池の自己放電等の影響によ
り実際の電池残量とSOCCの値に差が生じる可能性が
ある。この差を解消する手殿として、SOCCの初期化
の一手段を図3のフローチャートを用いて説明する。電
源投入をトリガに初期化を開始し(S21)するととも
に、図1の回路によれば自動的に補充電状態となり、初
期充電タイマーをクリア、スタートさせる (S22、S
23)。次に停電判定(S24)を行い、停電でなけれ
ば補充電は自動継続され(S25)、初期充電タイマ−と
予め設定しておいた任意時間Tendと比較し(S26)、
Tend以上であればSOCCに満充電状態に対応するNf
ulをセットし(S27)初期化を終了し、Tend未満で
あれば停電判定(S24)から繰り返す。ここで、Ten
dは補充電動作において完全放電状態の電池を満充電状
態にできる時間を設定し、補充電時の電流レートは−△
Vの発生しない1/10〜1/30C間の任意の値に設定すれば
よい。また、停電判定(S24)において、停電であれ
ば、補充電自動的に停止され(S29)、装置の電源を
遮断し(S30)停電復帰後電源の再投入を行う。以上を
行うことより、電池の残量がどのような状態であって
も、SOCCとの差を解消し、図2の制御フローに示す
運転に入ることが可能となる。
On the other hand, during actual operation, immediately after the power interruption power supply device equipped with this circuit is installed and immediately after the power is cut off for a long period of time due to construction, etc., the actual remaining battery level is affected by the self-discharge of the battery. And SOCC values may differ. As means for eliminating this difference, one means of initializing SOCC will be described with reference to the flowchart of FIG. When the power is turned on as a trigger, initialization is started (S21), and according to the circuit of FIG. 1, the auxiliary charge state is automatically set, and the initial charge timer is cleared and started (S22, S
23). Next, a power failure determination (S24) is performed, and if not a power failure, supplementary charging is automatically continued (S25), and the initial charge timer is compared with a preset arbitrary time Tend (S26).
If it is more than Tend, Nf corresponding to SOCC fully charged state
ul is set (S27), initialization is completed, and if less than Tend, power failure determination (S24) is repeated. Where Ten
d is the time during which the fully discharged battery can be fully charged during supplementary charging, and the current rate during supplementary charging is-△
It may be set to any value between 1/10 and 1 / 30C where V does not occur. In the power failure determination (S24), if there is a power failure, supplementary charging is automatically stopped (S29), the power supply of the device is shut off (S30), and the power supply is turned on again after the power failure is restored. By performing the above, it is possible to eliminate the difference from SOCC and to start the operation shown in the control flow of FIG. 2 regardless of the state of the remaining battery level.

【0008】[0008]

【発明の効果】本発明によれば、NiCdまたはNi水
素電池に代表される二次電池に対し−△V検出制御や温
度制御を行うこと無く急速充電が可能となり、高精度な
電池電圧検出回路や温度検出回路が不要となる。また、
急速充電の制御を放電時間でなく、充電、放電量を用い
て行うことより、消費電力が変動する負荷に給電する装
置にも適用が可能となる。
According to the present invention, a secondary battery represented by a NiCd or Ni hydrogen battery can be rapidly charged without performing -ΔV detection control or temperature control, and a highly accurate battery voltage detection circuit. And a temperature detection circuit are unnecessary. Also,
By controlling the quick charge by using the charge and discharge amounts instead of the discharge time, it is possible to apply to a device that supplies power to a load whose power consumption fluctuates.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】本発明の一実施例を示す制御フローである。FIG. 2 is a control flow showing an embodiment of the present invention.

【図3】本発明の一実施例を示す初期化のフローチャー
トである。
FIG. 3 is a flowchart of initialization showing an embodiment of the present invention.

【図4】本発明の一実施例を示すV−Fコンバータの特
性図である。
FIG. 4 is a characteristic diagram of a VF converter showing an embodiment of the present invention.

フロントページの続き Fターム(参考) 2G016 CA01 CB12 CB22 CB32 CC02 CC04 CC06 CC07 CC10 CC11 CC12 CC17 CC18 CC21 CC23 CC27 CD02 CD04 CD09 CD14 CE00 5G003 AA01 BA01 CA06 CC02 DA07 DA12 DA18 EA05 GC05 5H030 AS03 BB01 FF41 Continued front page    F term (reference) 2G016 CA01 CB12 CB22 CB32 CC02                       CC04 CC06 CC07 CC10 CC11                       CC12 CC17 CC18 CC21 CC23                       CC27 CD02 CD04 CD09 CD14                       CE00                 5G003 AA01 BA01 CA06 CC02 DA07                       DA12 DA18 EA05 GC05                 5H030 AS03 BB01 FF41

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 NiCd電池またはNi水素電池に代表
される二次電池、充電回路及び制御回路を搭載した停電
補償電源装置において、電池の充電、放電量を計測する
ことにより電池の充電率(以下SOCと称し、満充電、
完全放電状態をそれぞれ100%、0%とした%値で表
わす)を算出し、このSOCを基準に急速充電を行うこ
とを特徴とした二次電池の充電回路。
1. In a power failure compensating power supply device equipped with a secondary battery represented by a NiCd battery or a Ni hydrogen battery, a charging circuit and a control circuit, the charging rate of the battery (hereinafter Called SOC, fully charged,
The charging circuit for the secondary battery is characterized in that a complete discharge state is represented by% values with 100% and 0% respectively, and rapid charging is performed based on this SOC.
【請求項2】 請求項1を搭載した停電補償電源装置。2. A power failure compensating power supply device equipped with claim 1.
JP2001361882A 2001-11-28 2001-11-28 Power failure compensation power unit Pending JP2003164072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361882A JP2003164072A (en) 2001-11-28 2001-11-28 Power failure compensation power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361882A JP2003164072A (en) 2001-11-28 2001-11-28 Power failure compensation power unit

Publications (1)

Publication Number Publication Date
JP2003164072A true JP2003164072A (en) 2003-06-06

Family

ID=19172472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361882A Pending JP2003164072A (en) 2001-11-28 2001-11-28 Power failure compensation power unit

Country Status (1)

Country Link
JP (1) JP2003164072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019342A (en) * 2009-07-09 2011-01-27 Solic:Kk Power supply device for automatic door
EP2242163A3 (en) * 2006-04-21 2011-02-09 Tridonic GmbH & Co KG Battery circuit in an emergency light
JP2013070478A (en) * 2011-09-21 2013-04-18 Mitsubishi Motors Corp Charger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2242163A3 (en) * 2006-04-21 2011-02-09 Tridonic GmbH & Co KG Battery circuit in an emergency light
JP2011019342A (en) * 2009-07-09 2011-01-27 Solic:Kk Power supply device for automatic door
JP2013070478A (en) * 2011-09-21 2013-04-18 Mitsubishi Motors Corp Charger

Similar Documents

Publication Publication Date Title
US5479084A (en) Battery discharging apparatus
US6967465B2 (en) DC power source unit with battery charging function
US5363312A (en) Method and apparatus for battery control
JP2007327772A (en) Method and apparatus for determining abnormality of battery pack, battery pack, and its battery charger
WO2011001649A1 (en) Electric power supply device
JPH07235332A (en) Method for charging secondary battery
JP2001281306A (en) Chargeable battery residual capacity detector
JP2008043174A (en) Control device for electric vehicle
JP2007285739A (en) Method and apparatus for determining remaining capacity of battery, and battery pack using it
US20110031975A1 (en) Battery-Driven Power Tool and Battery Pack Therefor
JP4812368B2 (en) Charger with life diagnosis function for power capacitors
JP2002354708A (en) Uninterruptible power supply
JP2003164072A (en) Power failure compensation power unit
JP2005010032A (en) Battery power detecting method, small electrical equipment using the method and battery pack
JPH09285029A (en) Secondary battery charger
JP2003317811A (en) Charge monitoring device
JP3081392B2 (en) How to display the battery charge capacity during charging
JPH09285024A (en) Battery control method and power supply control circuit of personal computer
JPH02119069A (en) Battery checker
JP3119952B2 (en) Charge control device and charge control method
TWI763242B (en) Power supply circuit and power distribution method thereof
EP0450145B1 (en) Method and apparatus for battery control
JP3369606B2 (en) How to display the battery charge capacity during charging
JPH0420885A (en) Method for monitoring residual amount of electric power of secondary battery
JPH04140678A (en) Method for monitoring amount of remaining power of secondary cell