JP5672548B2 - Hydrogen recovery device - Google Patents

Hydrogen recovery device Download PDF

Info

Publication number
JP5672548B2
JP5672548B2 JP2011085042A JP2011085042A JP5672548B2 JP 5672548 B2 JP5672548 B2 JP 5672548B2 JP 2011085042 A JP2011085042 A JP 2011085042A JP 2011085042 A JP2011085042 A JP 2011085042A JP 5672548 B2 JP5672548 B2 JP 5672548B2
Authority
JP
Japan
Prior art keywords
gas
reforming
hydrogen
cog
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011085042A
Other languages
Japanese (ja)
Other versions
JP2012218964A (en
JP2012218964A5 (en
Inventor
岩村征治
Original Assignee
有限会社アイエンジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社アイエンジ filed Critical 有限会社アイエンジ
Priority to JP2011085042A priority Critical patent/JP5672548B2/en
Publication of JP2012218964A publication Critical patent/JP2012218964A/en
Publication of JP2012218964A5 publication Critical patent/JP2012218964A5/en
Application granted granted Critical
Publication of JP5672548B2 publication Critical patent/JP5672548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、COG中にはおよそ30容積%(以下容積は省略する)の炭化水素(主にメタン)と50%あまりの水素が含まれており、この30%の炭化水素を水蒸気改質することにより水素を増量して回収する技術に関する。 In the present invention, COG contains approximately 30% by volume (hereinafter, volume is omitted) of hydrocarbons (mainly methane) and 50% of hydrogen, and the 30% hydrocarbons are steam reformed. This relates to a technique for increasing and recovering hydrogen.

COGから水素を回収する技術としておよそ50%の水素をそのままPSAを使って分離回収する例はあるけれども30%のメタンガスが無駄となり、非効率的で一般的とはいえない。水素の回収率を上げるためには30%のメタンガスを水蒸気改質して水素を増量として回収する開発は行われているがまだ実用化されていない。 As a technique for recovering hydrogen from COG, there is an example in which approximately 50% of hydrogen is separated and recovered using PSA as it is, but 30% of methane gas is wasted, which is inefficient and uncommon. In order to increase the recovery rate of hydrogen, development has been carried out to recover 30% of methane gas by steam reforming to increase the amount of hydrogen, but it has not yet been put into practical use.

一般的な水蒸気改質装置は、改質反応熱を伝熱管を通して間接的に伝えているために改質触媒の充填された多数の伝熱管内を通過するメタンガスなど炭化水素ガスは圧縮する必要があり、水蒸気も原料ガスに見合った圧力が必要となる。Since a general steam reformer indirectly transfers reforming reaction heat through a heat transfer tube, it is necessary to compress hydrocarbon gas such as methane gas that passes through a number of heat transfer tubes filled with a reforming catalyst. In addition, water vapor requires a pressure that matches the source gas.

また、COG中のメタンガス濃度が30%と薄く含有量が少ないために水蒸気改質を行う場合メタンガス量に対し原料となるガス量が多くなり、改質装置が大きくなって不経済で実用性に課題がある Also, since the methane gas concentration in the COG is as thin as 30% and the content is small, the amount of gas used as a raw material is larger than the amount of methane gas when steam reforming is performed, and the reformer becomes large, making it uneconomical and practical. There are challenges .

本発明の改質反応器は循環ガスとCOGと水蒸気の混合ガス(以下原料ガスという)が触媒充填層に対してクロスフローするため、ガス通過面積を大きくとることができ、ガス容積を減らす必要はなく、ほとんど常圧で設備の設計が出来る。In the reforming reactor of the present invention, since the mixed gas of circulation gas, COG and water vapor (hereinafter referred to as raw material gas) cross-flows with respect to the catalyst packed bed, the gas passage area can be increased and the gas volume needs to be reduced. No, the equipment can be designed almost at normal pressure.

改質反応熱を供給する手段として、オフガスを燃料としたラジアントチューブバーナを触媒充填層内に挿入し改質触媒と共に原料ガスを加熱することで改質反応器の構造を単純にできる。As a means for supplying the reforming reaction heat, the structure of the reforming reactor can be simplified by inserting a radiant tube burner using off-gas as fuel into the catalyst packed bed and heating the raw material gas together with the reforming catalyst.

ルーバ間に触媒を充填した縦型反応器は大容量のガス処理に適しており反応ガスを循環させてガス量を増大させても設備費や敷地面積への影響が少ないという特徴があり、縦型反応器を使用することで、反応ガスの一部をじゅんかんさせて見かけ上の効率が悪くとも即ち低活性の触媒を利用しても一定の反応率を確保できるようにする。A vertical reactor filled with a catalyst between louvers is suitable for large-capacity gas processing, and there is a feature that even if the reaction gas is circulated to increase the amount of gas, there is little impact on equipment costs and site area. By using a type reactor, it is possible to ensure a certain reaction rate even if the apparent efficiency is low, that is, a low activity catalyst is used, by partially pulverizing the reaction gas.

請求項1の発明は、水蒸気改質装置を低圧で運転することができるためCOGを圧縮するための動力を必要としない。Since the steam reforming apparatus can be operated at a low pressure, the power for compressing the COG is not required.

また、水蒸気改質を行う場合、大量の水蒸気を使用するため、水蒸気の潜熱だけで改質反応熱に近い熱量を必要としこの潜熱は回収できないが、本発明においては装置を低圧で運転するために工場内の廃蒸気を使用することが出来、改質反応用の水蒸気潜熱分の熱量を節約することができる。In addition, when steam reforming is performed, a large amount of steam is used, so that a heat amount close to the reforming reaction heat is required only by the latent heat of the steam, and this latent heat cannot be recovered, but in the present invention, the apparatus is operated at a low pressure. In addition, waste steam in the factory can be used, and the amount of latent heat of steam for the reforming reaction can be saved.

従来の間接加熱方式の場合は構造的に改質触媒の取替えが難しいため、寿命の長い高品質の触媒が使われているが、本発明の改質反応器は改質触媒の取替えが容易でありまたラジアントチューブバーナを充填層内に挿入する構造のために充填量が増える(SVが小さくなる)ので触媒活性は良くなくてもあるいは寿命が短くとも問題とならずより安価な触媒を使用することが出来る。In the case of the conventional indirect heating method, since it is difficult to replace the reforming catalyst structurally, a high-quality catalyst with a long life is used. However, the reforming reactor of the present invention can easily replace the reforming catalyst. In addition, since the filling amount is increased due to the structure in which the radiant tube burner is inserted into the packed bed (SV is reduced), even if the catalytic activity is not good or the life is short, there is no problem and a cheaper catalyst is used. I can do it.

反応ガスを循環することにより反応器出口の反応ガス中のメタン濃度に対する反応器入口のメタン濃度が低下するため改質反応器の水素転化率が60%〜70%と低くても装置としての水素転化率を90%以上に確保できる。By circulating the reaction gas, the methane concentration at the reactor inlet with respect to the methane concentration in the reaction gas at the reactor outlet is lowered. Therefore, even if the hydrogen conversion rate of the reforming reactor is as low as 60% to 70%, The conversion rate can be secured at 90% or more.

COG中にはすでに50%の水素が存在することを考慮して、水素回収量を犠牲にしてCOガスの変成プロセス、あるいは反応ガスの循環プロセスのいずれか、あるいはいずれも省略することで設備費の低減を図ることもできる。Considering that 50% hydrogen is already present in the COG, the equipment cost can be reduced by omitting either the CO gas modification process or the reaction gas circulation process at the expense of hydrogen recovery. Can also be reduced.

他の発明として、ラジアントチューブバーナを充填層内で使用する場合、ガス加熱の場合と異なり総括伝熱係数が低下しバーナ表面温度が上がりバーナ外筒の材質によっては燃焼ガス温度を下げる必要が出てくるがドーナツ状板をバーナ外筒に取り付けることにより伝熱面積を増加させて総括伝熱係数の低下分をカバーし、ガスを加熱する場合と同等の燃焼ガス温度で使用できるようにすると共に、ラジアントチューブバーナを改質反応器の両側壁に交互に取り付けることでラジアントチューブの表面温度のばらつきの影響を少なくすることが可能となる。As another invention, when a radiant tube burner is used in the packed bed, unlike the case of gas heating, the overall heat transfer coefficient decreases, the burner surface temperature rises, and depending on the material of the burner outer cylinder, it is necessary to lower the combustion gas temperature. However, by attaching a donut-shaped plate to the burner outer cylinder, the heat transfer area is increased to cover the decrease in the overall heat transfer coefficient, so that it can be used at the same combustion gas temperature as when heating the gas. By alternately attaching radiant tube burners to both side walls of the reforming reactor, it becomes possible to reduce the influence of variations in the surface temperature of the radiant tube.

以下は本願発明のCOGから水素を回収する装置に関して説明するものでオフガスの発熱量を確保する目的でCO変成プロセスを省略した場合の例を示す。In the following, an apparatus for recovering hydrogen from COG according to the present invention will be described, and an example in which the CO conversion process is omitted for the purpose of securing the calorific value of off-gas will be shown.

PSA回収率を80%と仮定し、296Nm/hの水素を回収するとした場合表1に示すとおり240Nm /hのCOGと213Nm /hの廃蒸気が必要となり、水素転化率は(1−32/96)x100=66.7%を確保する必要がありガス出口温度を平衡温度まで上げる必要がある。Assuming a PSA recovery rate of 80% and recovering 296 Nm 3 / h hydrogen, 240 Nm 3 / h COG and 213 Nm 3 / h waste steam are required as shown in Table 1, and the hydrogen conversion rate is ( It is necessary to ensure 1−32 / 96) × 100 = 66.7%, and it is necessary to raise the gas outlet temperature to the equilibrium temperature.

この時の循環ガス比は2044/584=3.5である。The circulating gas ratio at this time is 2044/584 = 3.5.

なお、実質の水素転化率は(1−7/71)x100=90.1%である。The substantial hydrogen conversion is (1-7 / 71) × 100 = 90.1%.

Figure 0005672548
Figure 0005672548

図1は、本発明の全体フローを示すもので相対するルーバ111内に改質触媒130を充填し、複数基のガス加熱用ラジアントチューブバーナ120を触媒充填層内に挿入した改質反応器110において原料ガスは水平にルーバ111および触媒充填層を横切って流れ、その間に加熱され改質反応が進む。FIG. 1 shows the overall flow of the present invention. A reforming reactor 110 in which a reforming catalyst 130 is filled in opposing louvers 111 and a plurality of gas heating radiant tube burners 120 are inserted in the catalyst packed bed. In FIG. 2, the raw material gas flows horizontally across the louver 111 and the catalyst packed bed, and is heated during that time so that the reforming reaction proceeds.

改質された反応ガスは一部が抽出ガスとして抜き出され、COG加熱器151によりCOGと熱交換し、さらにガス冷却器152により冷却脱水された後、PSA153により水素は分離回収される。
水素を分離回収した後のオフガスはメタン、水素、一酸化炭素を含み発熱量も高いためにガス加熱用ラジアントチューブバーナ用の燃料として使用される。
A part of the reformed reaction gas is extracted as an extraction gas , heat-exchanged with COG by a COG heater 151, further cooled and dehydrated by a gas cooler 152, and then hydrogen is separated and recovered by a PSA 153.
The off-gas after separating and recovering hydrogen contains methane, hydrogen, and carbon monoxide and has a high calorific value, and is therefore used as a fuel for a radiant tube burner for gas heating.

一方、残りの反応ガスは、反応ガス循環ファン140により昇圧され、原料用のCOGと廃水蒸気と共に改質反応器110に導入される。On the other hand, the remaining reaction gas is pressurized by the reaction gas circulation fan 140 and introduced into the reforming reactor 110 together with the raw material COG and waste water vapor.

図2は、実施例における改質反応器の大きさを示す平面図で、反応器の空間速度SVを2000/H(改質反応率67%)として触媒充填量VmはV=2495.4/2000=1.25mとなり触媒充填厚さを0.8mとすればガス通過面積は1.56mとなる。FIG. 2 is a plan view showing the size of the reforming reactor in the example. When the space velocity SV of the reactor is 2000 / H (reforming reaction rate 67%) , the catalyst charging amount Vm 3 is V = 2495.4. / 2000 = 0.8 m Tosureba gas passage area of 1.25 m 3 next catalyst packing thickness becomes 1.56 2.

本願発明により、ガス中の炭化水素濃度と水素濃度がある一定以上であればガス循環比を変更することで炭化水素を改質して水素として回収することが出来る。According to the present invention , if the hydrocarbon concentration and the hydrogen concentration in the gas are above a certain level, the hydrocarbon can be reformed and recovered as hydrogen by changing the gas circulation ratio .

反応ガス循環によるCOG水素回収装置の全体フロー図である。It is the whole COG hydrogen recovery apparatus flow chart by reaction gas circulation . 実施例における改質反応器の大きさを示す平断面図である。It is a plane sectional view which shows the magnitude | size of the reforming reactor in an Example. 実施例における改質反応器の大きさを示す側断面図である。It is a sectional side view which shows the magnitude | size of the reforming reactor in an Example.

110 改質反応器 111 ルーバ
120 ラジアントチューブバーナ 130 改質触媒
140 反応ガス循環ファン 141 廃蒸気加熱器
151 COG加熱器 152 抽出ガス冷却器
153 PSA 154 チラーユニット
110 Reforming reactor 111 Louver 120 Radiant tube burner 130 Reforming catalyst 140 Reaction gas circulation fan 141 Waste steam heater 151 COG heater 152 Extraction gas cooler 153 PSA 154 Chiller unit

Claims (1)

側壁と二つの相対するルーバ(鎧状壁)に囲まれた空間に改質触媒を充填し、その充填層内にオフガスを燃料とした加熱用のラジアントチューブバーナを配備した改質反応器と反応器から出た改質反応ガスの一部を抽出してCOガス変成器、熱回収用熱交換器、ガス冷却器を経てPSAにて水素を分離回収する水素分離回収装置と残りの改質反応ガスを循環させ、原料となるコークス炉ガス(以下COGという)と工場内の低圧低温の廃蒸気を加えて当該改質反応器に導入するガス循環装置よりなるCOG中の水素を増量して回収する水素回収装置。Reacting with a reforming reactor in which a space surrounded by a side wall and two opposing louvers (armored walls) is filled with a reforming catalyst, and a heating radiant tube burner using off-gas as fuel is provided in the packed bed. Extraction of part of reforming reaction gas from the reactor and separation and recovery of hydrogen with PSA via CO gas converter, heat exchanger for heat recovery , and gas cooler, and the remaining reforming reaction circulating the gas, (hereinafter referred to as COG) coke oven gas as a raw material by the addition of low pressure low temperature waste steam in the plant to increase hydrogen in COG consisting gas circulator introduced into the reforming reactor recovery To recover hydrogen .
JP2011085042A 2011-04-07 2011-04-07 Hydrogen recovery device Expired - Fee Related JP5672548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085042A JP5672548B2 (en) 2011-04-07 2011-04-07 Hydrogen recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085042A JP5672548B2 (en) 2011-04-07 2011-04-07 Hydrogen recovery device

Publications (3)

Publication Number Publication Date
JP2012218964A JP2012218964A (en) 2012-11-12
JP2012218964A5 JP2012218964A5 (en) 2012-12-27
JP5672548B2 true JP5672548B2 (en) 2015-02-18

Family

ID=47270879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085042A Expired - Fee Related JP5672548B2 (en) 2011-04-07 2011-04-07 Hydrogen recovery device

Country Status (1)

Country Link
JP (1) JP5672548B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153102A (en) * 1985-12-24 1987-07-08 Osaka Gas Co Ltd Production of hydrogen gas using coke oven gas as raw material
JPS63162504A (en) * 1986-12-25 1988-07-06 Kuwanashi Reaction furnace for producing city gas
JPH10287401A (en) * 1997-04-09 1998-10-27 Mitsubishi Electric Corp Reforming equipment
JP2000285950A (en) * 1999-03-31 2000-10-13 Sanyo Electric Co Ltd Catalyst reaction device for fuel cell
JP2002080203A (en) * 2000-07-07 2002-03-19 Nippon Soken Inc Reformer
JP2008513339A (en) * 2004-09-21 2008-05-01 ウスター ポリテクニック インスティチュート Reactor and method for steam reforming
FR2898518B1 (en) * 2006-03-17 2009-01-16 Inst Francais Du Petrole INTERNAL COMBUSTION HEAT EXCHANGER REACTOR FOR ENDOTHERMIC REACTION IN FIXED BED
JP2010083740A (en) * 2008-10-03 2010-04-15 Aienji:Kk Hydrogen production apparatus
JP2010095424A (en) * 2008-10-20 2010-04-30 Aienji:Kk Steam reforming reactor for hydrogen production

Also Published As

Publication number Publication date
JP2012218964A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Spallina et al. Chemical looping reforming in packed-bed reactors: modelling, experimental validation and large-scale reactor design
EP2543743B1 (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
RU2599762C2 (en) Method of producing hydrogen by steam reforming oil fraction with optimised production of steam
EP2961854B1 (en) Direct reduction process with improved product quality and process gas efficiency
US20110314966A1 (en) Method and apparatus for direct reduction ironmaking
CN103781724A (en) Apparatus for producing a synthetic gas including carbon monoxide and hydrogen, and method therefor
RU2618008C2 (en) Method for modernization of ammonia plants using natural gas
JP2003171102A (en) Plate shaped steam reformer
CN102701149A (en) Water heat-transfer shift process for by-product high-grade steam energy-saving deep conversion
JP6019893B2 (en) Blast furnace operation method
US9266805B2 (en) System and method for producing gasoline or dimethyl ether
JP5640786B2 (en) How to operate a blast furnace or steelworks
JP3771357B2 (en) Hydrogen production method
CN109831927A (en) For generating electricity and producing H2The method and power generator including solid oxide fuel cell (SOFC) of gas
JP2010013422A (en) Methanol synthesis reactor and methanol synthesis method
JP5672548B2 (en) Hydrogen recovery device
CN204134611U (en) A kind of catalyst cleaning cooler
WO2019008317A1 (en) Methanol synthesis process
CN104058368B (en) A kind of hydrocarbonaceous tail gas reforming process and system
NO812839L (en) METHOD AND APPARATUS FOR GAS REDUCTION OF IRON ORE TO IRON FUNGI
CN216155477U (en) Methanol skid-mounted hydrogen production machine
CN206705674U (en) Steam reforming furnace
CN103911196A (en) Method and apparatus for utilizing plant waste gas to prepare natural gas
CN203269817U (en) Improved production device for preparing isobutene from isobutane through dehydrogenation
CN109957427A (en) A kind of insulation fix bed methanation of pyrolysis gas of biomass and decarburization process for upgrading

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R150 Certificate of patent or registration of utility model

Ref document number: 5672548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees