JP5669171B2 - Method for producing alcohol or organic acid using biomass - Google Patents

Method for producing alcohol or organic acid using biomass Download PDF

Info

Publication number
JP5669171B2
JP5669171B2 JP2009238797A JP2009238797A JP5669171B2 JP 5669171 B2 JP5669171 B2 JP 5669171B2 JP 2009238797 A JP2009238797 A JP 2009238797A JP 2009238797 A JP2009238797 A JP 2009238797A JP 5669171 B2 JP5669171 B2 JP 5669171B2
Authority
JP
Japan
Prior art keywords
cellulose
water
solid
biomass
polysaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009238797A
Other languages
Japanese (ja)
Other versions
JP2011083231A (en
Inventor
一章 仁宮
一章 仁宮
憲司 高橋
憲司 高橋
宣明 清水
宣明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2009238797A priority Critical patent/JP5669171B2/en
Publication of JP2011083231A publication Critical patent/JP2011083231A/en
Application granted granted Critical
Publication of JP5669171B2 publication Critical patent/JP5669171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ケナフ、稲ワラ等の草本類、木本類、及び建築廃材等の植物由来のバイオマスからアルコール又は有機酸を製造する方法に関し、特にリグノセルロース系バイオマスからアルコール又は有機酸を製造するのに適する。   The present invention relates to a method for producing alcohol or organic acid from plant-derived biomass such as kenaf, rice straw, and other herbs, woody, and building waste, and in particular, produces alcohol or organic acid from lignocellulosic biomass. Suitable for

化石資源を除いた生物由来の資源(バイオマス)はカーボンニュートラル資源として各種活用方法が検討されている。
その中で、リグノセルロース系バイオマスを用いたエタノール生産は、食料と競合しない大きなメリットがあるものの、リグノセルロースは、セルロースがヘミセルロース及びリグニンと結合して存在し、リグニンはフェノール性の高分子化合物であり、その分離、除去が低コスト化の障害になっていた。
例えば、リグニン分解菌、リグニン分解酵素による生物的手法は処理に極めて長期間がかかる問題がある。
希硫酸処理方法は、糖の過分解や廃硫酸処理に問題がある。
特許文献1にはマイクロ波、超音波処理方法を開示するが、リグニンの除去効果が未だ充分でない。
Various uses of biogenic resources (biomass) excluding fossil resources are being considered as carbon neutral resources.
Among them, ethanol production using lignocellulosic biomass has a great merit that it does not compete with food, but lignocellulose exists as cellulose binds to hemicellulose and lignin, and lignin is a phenolic polymer compound. The separation and removal were obstacles to cost reduction.
For example, biological methods using lignin-degrading bacteria and lignin-degrading enzymes have a problem that it takes a very long time for the treatment.
The dilute sulfuric acid treatment method has problems in excessive decomposition of sugar and waste sulfuric acid treatment.
Patent Document 1 discloses a microwave and ultrasonic treatment method, but the lignin removal effect is not yet sufficient.

また、セルロースのオリゴ糖あるいは単糖への分解プロセスにおいて、希硫酸等の液体酸触媒を用いた化学的手法は、その後の酸触媒の分離や廃液処理に問題があった。
そこで、近年はセルラーゼ酵素を用いた生物的加水分解処理の方法が広く研究されている。
しかし、セルロースは、β−グルコース分子が1,4グルコシド結合により重合した高分子同士が水素結合し、水に不溶性の結晶構造を有していることから、セルラーゼ酵素との接触面積が少なく、反応が遅い問題があった。
Further, in the process of decomposing cellulose into oligosaccharides or monosaccharides, the chemical method using a liquid acid catalyst such as dilute sulfuric acid has a problem in the subsequent separation of the acid catalyst and waste liquid treatment.
In recent years, therefore, methods for biological hydrolysis using cellulase enzymes have been widely studied.
However, cellulose has a crystal structure in which β-glucose molecules are polymerized by 1,4 glucoside bonds and hydrogen bonds with each other, and has a crystal structure that is insoluble in water. There was a slow problem.

近年、特許文献2に示すようにセルロースを選択的に可溶とするイミダゾリウム系化合物も報告されている。
しかし、本発明者らの調査によるとイミダゾリウム系化合物はセルロースを溶解するもののセルラーゼ酵素及び酵母菌を添加すると、この酵素活性が失活したり、酵母菌が死滅する問題があり、また、酵素等を添加するための最小限の水を加えることでもセルロースの溶解度が低下し、セルロースが析出、沈殿してしまう。
そこで、本発明者らは上記のイミダゾリウム系化合物を用いてセルロースを可溶化した後に固体酸触媒を加えて、セルロースを酸で予備的糖化しオリゴ糖類に分解させた後に水を加え、セルロースの析出、沈殿を抑えた。
しかし、それでも酵母菌の死滅を抑えることはできなかったことから、このイミダゾリウム系化合物は酵素や酵母菌に対する毒性が高いことが明らかになった。
また特許文献3によれば、従来より第4級イミダゾリウム化合物は防菌防カビ作用を有するものとも知られていた。
さらに、イミダゾリウム系化合物/水の混合溶液から分解したオリゴ糖類を抽出・回収することを検討したが、重合度の低いオリゴ糖は水に溶けているために、イミダゾリウム系化合物/水側に留まり多くのオリゴ糖類がロスになる問題があった。
このような予備的調査に基づいて本発明者らは、非水溶性の多糖類を可溶化する細胞毒性の低い溶媒を詳細に検討した結果、本発明に至った。
In recent years, as shown in Patent Document 2, an imidazolium-based compound that selectively dissolves cellulose has also been reported.
However, according to the investigation by the present inventors, the imidazolium-based compound dissolves cellulose, but if cellulase enzyme and yeast are added, there is a problem that this enzyme activity is inactivated or yeast is killed. Even if the minimum amount of water is added to add the solubility of cellulose, the solubility of cellulose is lowered, and cellulose is precipitated and precipitated.
Therefore, the present inventors solubilized cellulose using the imidazolium-based compound described above, added a solid acid catalyst, preliminarily saccharified the cellulose with an acid, decomposed into oligosaccharides, added water, Precipitation and precipitation were suppressed.
However, it was still impossible to suppress the death of yeast, and it was revealed that this imidazolium compound is highly toxic to enzymes and yeasts.
According to Patent Document 3, it has been known that a quaternary imidazolium compound has a fungicidal and fungicidal action.
Furthermore, extraction and recovery of decomposed oligosaccharides from a mixed solution of imidazolium compound / water was studied, but since oligosaccharides with a low degree of polymerization are dissolved in water, the imidazolium compound / water side There was a problem that many oligosaccharides remained and lost.
Based on such preliminary investigations, the present inventors have studied in detail a low cytotoxic solvent that solubilizes water-insoluble polysaccharides, and as a result, the present invention has been achieved.

特表2009−528035号公報Special table 2009-528035 gazette US2009/0011473A1公報US2009 / 0011473A1 publication 特開昭52−102426公報JP 52-102426 A

本発明は、細胞毒性の低い多糖類可溶性溶媒を用いることで、植物由来のバイオマスを用いた副生成物が少なく、生産性の高いアルコール又は有機酸の製造方法の提供を目的とする。   An object of the present invention is to provide a method for producing an alcohol or organic acid with a high productivity by using a polysaccharide-soluble solvent having low cytotoxicity so that there are few by-products using plant-derived biomass.

本発明に係るエタノールの製造方法は、バイオマスを、植物由来の非水溶性多糖類を溶解でき、かつ細胞毒性の低い多糖類可溶性溶媒に溶解することで、溶解しない成分を分離除去するステップと、前記植物由来の非水溶性多糖類が溶解した溶液に固体酸触媒を加えることで前記多糖類をオリゴ糖類に分解するステップと、前記オリゴ糖類が含まれる溶液に水を加えるステップと、前記水を加えたオリゴ糖類溶液に糖化酵素及び酵母を加えるステップを有することを特徴とする。
植物由来の非水溶性多糖類としてはセルロース、ヘミセルロースが代表例であり、本発明にかかるアルコール製造方法は、植物由来のバイオマスを原料として用いた点にあり、デンプン等の水溶性多糖類が混合している場合も含まれるが、水溶性の多糖類は水を溶媒として糖化及び発酵が可能であり、本発明が特に有効なのは、セルロースがヘミセルロース及びリグニンと結合したリグノセルロース等の植物細胞壁由来のバイオマスが原料に含まれる場合である。
多糖類が溶解した多糖類可溶性溶媒溶液に固体酸触媒を加えると多糖類のグリコシド結合を一部分解し、予備的に糖化する。
本発明にて、オリゴ糖類と表現したのは、二糖類から30量体レベルの少糖類のみならず、一部単糖類にまで分解しているものを含む趣旨である。
In the method for producing ethanol according to the present invention, the biomass can be dissolved in a polysaccharide-soluble solvent that can dissolve plant-derived water-insoluble polysaccharides and has low cytotoxicity, thereby separating and removing components that do not dissolve, Decomposing the polysaccharide into oligosaccharides by adding a solid acid catalyst to the solution in which the plant-derived water-insoluble polysaccharide is dissolved; adding water to the solution containing the oligosaccharides; It has the step which adds a saccharification enzyme and yeast to the added oligosaccharide solution.
Cellulose and hemicellulose are typical examples of plant-derived water-insoluble polysaccharides, and the method for producing alcohol according to the present invention is in that plant-derived biomass is used as a raw material, and water-soluble polysaccharides such as starch are used. Although water-soluble polysaccharides are included, water-soluble polysaccharides can be saccharified and fermented using water as a solvent, and the present invention is particularly effective when derived from plant cell walls such as lignocellulose in which cellulose is combined with hemicellulose and lignin. This is a case where the biomass is contained in the raw material.
When a solid acid catalyst is added to a polysaccharide-soluble solvent solution in which the polysaccharide is dissolved, the glycosidic bond of the polysaccharide is partially broken and preliminarily saccharified.
In the present invention, the expression “oligosaccharide” is intended to include not only a disaccharide to a 30-mer level oligosaccharide but also a portion decomposed to a monosaccharide.

ここで細胞毒性の低い多糖類可溶性溶媒は、脂肪族第四級アンモニウム塩を主成分とするのがよく、特に細胞毒性の低い多糖類可溶性溶媒は、コリンに有機酸を混合したものであることが好ましい。
さらにコリンは塩化コリンがよい。
コリンは、図2に示した第四級アンモニウムの塩でXがClイオンの場合に塩化コリンとなる。
塩化コリンは融点が約270℃であることから、反応系を100℃以下に抑えるには有機酸を混合して融点を下げるのがよい。
混合有機酸としてはクエン酸、マロン酸、フタル酸等の各種有機酸が例として挙げられるが、中でもクエン酸が好ましい。
本発明で細胞毒性の低いとは、セルロース可溶化化合物として公知のイミダゾリウム系化合物より酵素や酵母菌に対する毒性が低いものをいう。
オリゴ糖類のグリコシド結合を加水分解する糖化酵素としては、セルラーゼがよく、セルロースの他にヘミセルロースも糖化するものがよい。
Here, the polysaccharide-soluble solvent having low cytotoxicity should be mainly composed of an aliphatic quaternary ammonium salt. In particular, the polysaccharide-soluble solvent having low cytotoxicity should be a mixture of choline and an organic acid. Is preferred.
Furthermore, choline chloride is good for choline.
Choline is a salt of the quaternary ammonium shown in FIG. 2 and becomes choline chloride when X is a Cl ion.
Since choline chloride has a melting point of about 270 ° C., it is preferable to mix the organic acid to lower the melting point in order to keep the reaction system below 100 ° C.
Examples of the mixed organic acid include various organic acids such as citric acid, malonic acid, and phthalic acid. Among them, citric acid is preferable.
The term “low cytotoxicity” in the present invention means a substance having lower toxicity to enzymes and yeasts than a known imidazolium compound as a cellulose-solubilizing compound.
As a saccharifying enzyme that hydrolyzes a glycosidic bond of an oligosaccharide, cellulase is preferable, and one that saccharifies hemicellulose in addition to cellulose is preferable.

固体酸触媒とは、前記多糖類可溶性溶媒及びこれに水を加えた混合溶媒中に固体として存在し、酸触媒として機能するものをいい、固液分離により、系から容易に分離できる。
固体酸触媒としては、ゼオライト、アルミナ等の無機酸化物固体酸触媒、イオン交換樹脂等に用いられる高分子固体酸触媒、アモルファスカーボン等の炭素系固体酸触媒等が例として挙げられ、これらは単独又は混合して用いられる。
さらには、糖化酵素又は/及び酵母も担体に担持して生物的処理に使用すれば、反応後に担体を引き上げることで反応系から容易に分離でき、アルコール、有機酸と多糖類可溶性溶媒等とは蒸留等により容易に分離できるので多糖類可溶性溶媒を回収し再利用できる。
The solid acid catalyst refers to a solid acid catalyst that exists as a solid in the polysaccharide-soluble solvent and a mixed solvent obtained by adding water thereto and functions as an acid catalyst, and can be easily separated from the system by solid-liquid separation.
Examples of solid acid catalysts include inorganic oxide solid acid catalysts such as zeolite and alumina, polymer solid acid catalysts used for ion exchange resins, carbon solid acid catalysts such as amorphous carbon, and the like. Or it mixes and is used.
Furthermore, if saccharifying enzyme or / and yeast is also supported on a carrier and used for biological treatment, it can be easily separated from the reaction system by pulling up the carrier after the reaction, and alcohol, organic acid and polysaccharide-soluble solvent, etc. Since it can be easily separated by distillation or the like, the polysaccharide-soluble solvent can be recovered and reused.

本発明においては、細胞毒性の低い多糖類可溶性溶媒にバイオマスを加えることで、例えば、リグノセルロースからセルロース及びヘミセルロースを可溶化し、不溶性のリグニン等を容易に固液分離できる。
この固液分離した液体に固体酸触媒を添加することで、セルロース、ヘミセルロース等の非水溶性多糖類を予備的に、酸糖化し、水を添加してもセルロース、ヘミセルロース等の析出、沈殿を抑えることが可能になり、且つ、細胞毒性の低い多糖類可溶性溶媒を用いたので、その後にそのままセルラーゼ及び酵母菌を添加することで特異的糖化及び発酵ができるので、副生成物が少なく、従来に比較して短時間、高効率にアルコール又は有機酸を製造することができる。
また、固体酸触媒を用いたことで触媒を系から容易に分離、再利用ができる。
また、糖化酵素又は/及び酵母を担体に担持させることで、それを系から容易に分離でき、多糖類可溶性溶媒の回収再利用ができる。
In the present invention, by adding biomass to a polysaccharide-soluble solvent with low cytotoxicity, for example, cellulose and hemicellulose can be solubilized from lignocellulose, and insoluble lignin and the like can be easily solid-liquid separated.
By adding a solid acid catalyst to this solid-liquid separated liquid, water-insoluble polysaccharides such as cellulose and hemicellulose are preliminarily acidified, and even if water is added, precipitation and precipitation of cellulose, hemicellulose, etc. Since a polysaccharide-soluble solvent with low cytotoxicity can be suppressed, specific saccharification and fermentation can be performed by adding cellulase and yeast as it is, and there are few by-products. Compared to the above, alcohol or organic acid can be produced in a short time and with high efficiency.
Further, by using a solid acid catalyst, the catalyst can be easily separated from the system and reused.
Further, by supporting saccharifying enzyme or / and yeast on a carrier, it can be easily separated from the system, and the polysaccharide-soluble solvent can be recovered and reused.

多糖類可溶性溶媒の細胞毒性試験結果を示す。The cytotoxicity test result of a polysaccharide soluble solvent is shown. コリンの構造式を示す。The structural formula of choline is shown.

まず始めに、多糖類可溶性溶媒の細胞毒性試験結果について説明する。
本発明に係る溶媒として塩化コリンに水を加え、容積で10%濃度に調整したものと、比較例としてイミダゾリウム系化合物(1-butyl-3-methylimidazoliumchrolide)を容積で10%濃度に水で薄めたものを用いて培地を作製し、発酵用酵母MT8−1株の培養をした。
その結果を図1のグラフに示す。
横軸が培養時間で、縦軸が酵母菌体の濃度を示す。
なお、コントロールとして水だけ加えたセルロース溶媒無添加のものの結果をあわせて示す。
培養時間に対して菌体量は増加し、20時間で10倍以上に増加した。
また、セルロース溶媒無添加のコントロールに対しても65%以上の菌体量増加率を示した。
一方、比較例のイミダゾリウム系化合物の場合は、菌体量は培養時間に対して減少した。
この結果から本発明に係る塩化コリンは、比較例のイミダゾリウム系化合物より細胞毒性が低いことを確認できた。
これは、コリンが細胞膜脂質の成分であり、塩化コリンは飼料添加物として使用されていることからも細胞毒性が低いと推定できる。
First, the cytotoxicity test results of the polysaccharide-soluble solvent will be described.
As a solvent according to the present invention, water is added to choline chloride and adjusted to a concentration of 10% by volume, and imidazolium compound (1-butyl-3-methylimidazolium chrolide) is diluted with water to a concentration of 10% by volume as a comparative example. A culture medium was prepared using the rice cake, and yeast for fermentation MT8-1 was cultured.
The result is shown in the graph of FIG.
The horizontal axis represents the culture time, and the vertical axis represents the yeast cell concentration.
In addition, as a control, the result of adding only water and adding no cellulose solvent is also shown.
The amount of bacterial cells increased with respect to the culture time, and increased to 10 times or more in 20 hours.
In addition, the cell mass increase rate was 65% or more compared to the control without addition of cellulose solvent.
On the other hand, in the case of the imidazolium compound of the comparative example, the amount of cells decreased with respect to the culture time.
From this result, it was confirmed that the choline chloride according to the present invention was less cytotoxic than the imidazolium compound of the comparative example.
This can be presumed that cytotoxicity is low because choline is a component of cell membrane lipid and choline chloride is used as a feed additive.

次に、アルコールの製造例について説明する。
塩化コリンに容積で約50%のクエン酸を加え、約80℃に加熱し液体状態にした。
これに、リグノセルロースとしてケナフパウダーを加え、24時間反応させたところ、セルロース及びヘミセルロースが可溶化し、リグニンが不溶物として残った。
濾過により固液分離し、濾液に高分子系の固体酸触媒を加え、約1時間撹拌後に、濾過により固液分離した。
濾液に塩化コリン濃度が容積で10%以下になるように水を加えた。
析出物が少し認められたが多くは、オリゴ糖類として混合溶媒に溶けていた。
さらに、セルラーゼと酵母菌を加え、約24時間、糖化、発酵させ、定法に従い膜分離したところ、エタノールが得られた。
本実施例はアルコールの製造例であるが、酵素や酵母菌の種類を変えることで、各種有機酸を製造することも可能である。
Next, production examples of alcohol will be described.
About 50% by volume of citric acid was added to choline chloride and heated to about 80 ° C. to make it liquid.
When kenaf powder was added as lignocellulose and allowed to react for 24 hours, cellulose and hemicellulose were solubilized and lignin remained as an insoluble matter.
Solid-liquid separation was performed by filtration, a polymer-based solid acid catalyst was added to the filtrate, and after stirring for about 1 hour, solid-liquid separation was performed by filtration.
Water was added to the filtrate so that the choline chloride concentration was 10% or less by volume.
Although some precipitates were observed, many were dissolved in the mixed solvent as oligosaccharides.
Further, cellulase and yeast were added, saccharified and fermented for about 24 hours, and membrane separation was performed according to a conventional method, whereby ethanol was obtained.
This example is an example of alcohol production, but various organic acids can be produced by changing the type of enzyme or yeast.

Claims (1)

リグノセルロース系バイオマスを、塩化コリンとクエン酸との混合溶媒に加えることで可溶化したセルロース又は/及びヘミセルロースを固液分離するステップと、Solid-liquid separation of cellulose or / and hemicellulose solubilized by adding lignocellulosic biomass to a mixed solvent of choline chloride and citric acid;
前記分離された液体に固体酸触媒を加えることで前記セルロース又は/及びヘミセルロースをオリゴ糖類に分解し固液分離するステップと、Decomposing the cellulose or / and hemicellulose into oligosaccharides by adding a solid acid catalyst to the separated liquid, and solid-liquid separation;
前記分離されたオリゴ糖類を含む液体に水を加え、さらにセルラーゼと酵母菌を加えることで糖化及び発酵させるステップを有することを特徴とするエタノールの製造方法。A method for producing ethanol, comprising the steps of adding water to the liquid containing the separated oligosaccharide, and further saccharifying and fermenting by adding cellulase and yeast.
JP2009238797A 2009-10-16 2009-10-16 Method for producing alcohol or organic acid using biomass Expired - Fee Related JP5669171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238797A JP5669171B2 (en) 2009-10-16 2009-10-16 Method for producing alcohol or organic acid using biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238797A JP5669171B2 (en) 2009-10-16 2009-10-16 Method for producing alcohol or organic acid using biomass

Publications (2)

Publication Number Publication Date
JP2011083231A JP2011083231A (en) 2011-04-28
JP5669171B2 true JP5669171B2 (en) 2015-02-12

Family

ID=44076688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238797A Expired - Fee Related JP5669171B2 (en) 2009-10-16 2009-10-16 Method for producing alcohol or organic acid using biomass

Country Status (1)

Country Link
JP (1) JP5669171B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0806908A2 (en) * 2007-01-23 2014-04-29 Basf Se PROCESSES FOR PREPARING A GLUCOSE PRODUCT FROM LIGNOCELLULOSTIC MATERIAL, AND FOR PREPARING A MICROBIAN METABOLISM PRODUCT, GLUCOSE PRODUCT, AND LIGNIN PRODUCT
AU2009210489A1 (en) * 2008-01-31 2009-08-13 Battelle Energy Alliance, Llc Thermophilic and thermoacidophilic biopolymer- degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods
JP2009203454A (en) * 2008-01-31 2009-09-10 Toyota Central R&D Labs Inc Method of producing cellulose decomposition product utilizing ionic liquid
JP2009189277A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Method for treating woody biomass and method for producing organic acid or alcohol

Also Published As

Publication number Publication date
JP2011083231A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US8236536B2 (en) Saccharifying cellulose
JP5190858B2 (en) Production method of low molecular weight carbohydrates from materials containing polysaccharides
HUE035521T2 (en) Conversion of biomass
WO2012102175A1 (en) Cellulosic biomass treatment method, method of producing sugar, alcohol or organic acid from cellulosic biomass
CN105392793A (en) Improved process for the organosolv treatment of lignocellulosic biomass
JP2011205933A (en) Method for producing high-concentration saccharified liquid
CN102660882A (en) Method for producing cellulose and fuel ethanol by dissolving plant straw with solvent
CN106480128B (en) Method for improving efficiency of cellulose in hydrolyzing rice straws by using lactic acid and guanidine hydrochloride
Dai et al. Multi-strategy in production of high titer gluconic acid by the fermentation of concentrated cellulosic hydrolysate with Gluconobacter oxydans
CN111534556A (en) Method for preparing high-concentration monosaccharide solution by using poplar enzyme method
JP5669171B2 (en) Method for producing alcohol or organic acid using biomass
KR101543067B1 (en) Biological pretreatment mehtods for sea algae using mixed microorganism
KR101744817B1 (en) Method for preparing galactose using agarese
JP5544507B2 (en) Method for producing degradation products from cellulose-containing materials
JP2011050950A (en) Method of producing decomposition product from cellulose-containing material
JP2012055167A (en) Method for treating cellulose-containing material and use thereof
CN113289680A (en) Two-phase catalyst, preparation method thereof and application thereof in lignocellulose biomass conversion
CN102199641A (en) Method for extracting sugar from enzymic hydrolysate of jerusalem artichoke residues
JP2012139144A (en) Method for producing sugar comprising glucose as main component
CN110628832A (en) Method for preparing straw ethanol with assistance of ionic liquid
JP6474150B2 (en) Saccharification method of biomass raw material
WO2024058256A1 (en) Method for producing monosaccharide or oligosaccharide from polysaccharide, solution used in said production method, and composition including monosaccharide or oligosaccharide
JP2010083850A (en) Saccharification of lignocellulose and ethanol fermentation method
US8497097B2 (en) Chlorine dioxide treatment of biomass feedstock
WO2018042464A1 (en) Rapid enzymatic hydrolysis of substrates for production of fermentable sugars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R150 Certificate of patent or registration of utility model

Ref document number: 5669171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees