JP5667758B2 - Slaked lime, method for producing the same, and acid gas removing agent - Google Patents
Slaked lime, method for producing the same, and acid gas removing agent Download PDFInfo
- Publication number
- JP5667758B2 JP5667758B2 JP2009273129A JP2009273129A JP5667758B2 JP 5667758 B2 JP5667758 B2 JP 5667758B2 JP 2009273129 A JP2009273129 A JP 2009273129A JP 2009273129 A JP2009273129 A JP 2009273129A JP 5667758 B2 JP5667758 B2 JP 5667758B2
- Authority
- JP
- Japan
- Prior art keywords
- slaked lime
- surface area
- specific surface
- bet specific
- inorganic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明は、有機化合物を含有せず、しかも高比表面積を有する新規な消石灰、その製造方法、および酸性ガス除去剤に関するものであり、さらに詳しくは、生石灰を水と反応させる消化工程において二酸化ケイ素含有の無機化合物を利用することで得られる、有機化合物を含有せず、かつ高比表面積を有する新規な消石灰、その製造方法、およびごみ焼却場など使用される酸性ガス除去剤として有用な新規消石灰に関するものである。 The present invention relates to a novel slaked lime that does not contain an organic compound and has a high specific surface area, a method for producing the same, and an acid gas remover. More specifically, the present invention relates to silicon dioxide in a digestion process in which quick lime is reacted with water. New slaked lime that does not contain organic compounds and has a high specific surface area, a production method thereof, and a novel slaked lime useful as an acid gas removal agent used in refuse incineration plants, etc., obtained by using inorganic compounds contained It is about.
消石灰は水酸化カルシウムとも呼ばれ、工業的には石灰石を焼成した生石灰と呼ばれる酸化カルシウムと水(消化水)とを反応させて製造されているものである。この消石灰は、強い塩基性を示すことから、自治体などのごみ焼却炉で発生する塩化水素ガスなどの酸性ガスを含む排ガス煙道に粉体のまま吹き込まれているのが通常である。粉体のまま吹き込まれることから、酸性ガスとの反応は、消石灰の固体表面で起こるため、その反応性を高める目的でBET比表面積を高めた消石灰の開発がこれまで行なわれてきた。 Slaked lime is also called calcium hydroxide and is industrially produced by reacting calcium oxide called quick lime obtained by firing limestone and water (digested water). Since this slaked lime shows strong basicity, it is usually blown in powder form into an exhaust gas flue containing an acid gas such as hydrogen chloride gas generated in a municipal waste incinerator. Since it is blown in powder form, the reaction with acid gas occurs on the solid surface of slaked lime. Therefore, the development of slaked lime with an increased BET specific surface area has been carried out for the purpose of increasing its reactivity.
これまで、消石灰を主成分とする酸性ガス除去剤として、有機化合物および無機化合物が添加剤あるいは混合剤として使用されており、多くの特許出願がなされている。 So far, organic compounds and inorganic compounds have been used as additives or admixtures as acid gas removal agents mainly composed of slaked lime, and many patent applications have been filed.
まず、有機化合物を添加剤とする代表的なものとして、特許文献1では、オキシカルボン酸、エタノールアミン類、エチレングリコール類などを消化水に加えて消石灰を製造する方法、特許文献2では、エタノールを多量に含む消化水に加えて消石灰とする方法が記載されている。 First, as a typical example using an organic compound as an additive, Patent Document 1 discloses a method for producing slaked lime by adding oxycarboxylic acid, ethanolamines, ethylene glycol and the like to digested water, and Patent Document 2 discloses ethanol. Is described in addition to digestive water containing a large amount of slaked lime.
高いBET比表面積を有する消石灰を得るために、消化水に加えられる物質は有機化合物であることが特徴であり、消化を遅らせる、いわゆる消化遅延剤としての働きを有し、消石灰のBET比表面積を高めるのに好適な有機化合物が使用されている。 In order to obtain slaked lime having a high BET specific surface area, the substance added to the digestive water is characterized by an organic compound, which has a function as a so-called digestion retardant that delays digestion, and reduces the BET specific surface area of slaked lime. Organic compounds suitable for enhancing are used.
また、消石灰そのもののBET比表面積を高める方法ではないが、無機化合物を混合剤とした酸性ガス処理剤の製造方法の一例として、特許文献3および特許文献4が挙げられる。特許文献3は、酸化カルシウムを供給できる物質をあらかじめ水と混合して分散液として、この分散液に二酸化ケイ素などを供給できる物質を混合投入して得られる非固結性の酸性ガス処理剤の製造方法である。 Moreover, although it is not the method of raising the BET specific surface area of slaked lime itself, patent document 3 and patent document 4 are mentioned as an example of the manufacturing method of the acidic gas processing agent which used the inorganic compound as the mixing agent. Patent Document 3 discloses a non-solidifying acid gas treating agent obtained by mixing a substance capable of supplying calcium oxide with water in advance as a dispersion and mixing and introducing a substance capable of supplying silicon dioxide or the like to the dispersion. It is a manufacturing method.
特許文献4は、高BET比表面積の消石灰に珪藻土などの無機化合物を混合して、酸性ガス処理剤として使用し、処理後の集塵装置であるバグフィルターの差圧の低減を目的としたものである。 Patent document 4 mixes inorganic compounds, such as diatomaceous earth, with slaked lime with a high BET specific surface area, and uses it as an acid gas treating agent, and aims at reduction of the differential pressure of the bag filter which is a dust collector after processing. It is.
以上の特許文献で示されるように、有機化合物は、消石灰のBET比表面積を高める目的で、原料生石灰と水とを反応させる消化工程で添加されているのに対し、無機化合物は消石灰への非固結性付与などの物性改善の目的で、消化工程後あるいは消石灰粉体に混合して利用されているのが現状である。
消石灰のBET比表面積を高めるために、消化工程に有機化合物を使用すると、得られた消石灰中に有機化合物が残存し、ごみ焼却炉での酸性ガスに、高BET比表面積消石灰を吹き込んで処理すると、酸性ガス処理後の集塵灰である飛灰をセメント原料などに利用する場合においては、化学的酸素供給量(COD)が増加することが考えられ、無視できない問題となっている。また、焼却炉では200℃近い酸性ガスに吹き込んで処理されるので、極微量ながら一酸化炭素を発生する可能性もある。 When an organic compound is used in the digestion process in order to increase the BET specific surface area of slaked lime, the organic compound remains in the obtained slaked lime, and a high BET specific surface area slaked lime is blown into the acid gas in the incinerator. When fly ash, which is dust collection ash after acid gas treatment, is used as a raw material for cement or the like, the chemical oxygen supply amount (COD) may be increased, which is a problem that cannot be ignored. Moreover, since it processes by injecting into acidic gas near 200 degreeC in an incinerator, there is a possibility that carbon monoxide may be generated with a very small amount.
このように、従来の製造方法では、高いBET比表面積を持つ消石灰を得るために使用している有機化合物により、CODの増加や一酸化炭素の発生といった問題がある。したがって、これらの問題を解決することは、工業的にも、また環境負荷の低減という点からも大きな意味がある。 Thus, in the conventional manufacturing method, there exists a problem of an increase in COD and generation | occurrence | production of carbon monoxide by the organic compound used in order to obtain the slaked lime with a high BET specific surface area. Therefore, solving these problems is significant both industrially and from the viewpoint of reducing the environmental load.
これまで、高比表面積の消石灰を得るためには、エタノールやエチレングリコール類といったアルコールなどの有機化合物を消化水に添加して消石灰を製造してきたが、本質的に有機化合物であることが、CODや一酸化炭素を引き上げる要因となっている。本発明者らは、鋭意研究を重ねた結果、消石灰の比表面積を高めるに好適な無機化合物を、特許文献3および特許文献4のように消化工程の後で混合添加するのではなく、原料の生石灰と水とを反応させる工程において加えることで、製造された消石灰そのものの比表面積を高められることを見いだし、本発明に至った。 So far, in order to obtain slaked lime with a high specific surface area, slaked lime has been produced by adding an organic compound such as alcohol such as ethanol or ethylene glycol to digested water, but COD is essentially an organic compound. It is a factor that raises carbon monoxide. As a result of intensive research, the present inventors have not mixed and added an inorganic compound suitable for increasing the specific surface area of slaked lime after the digestion step as in Patent Document 3 and Patent Document 4, but It was found that the specific surface area of the manufactured slaked lime itself can be increased by adding it in the step of reacting quicklime and water, and the present invention has been achieved.
本発明は、原料生石灰と水を反応させる消化工程において、二酸化ケイ素含有の無機化合物を添加させることで、有機化合物を含有せず、かつBET比表面積が15m2/g以上の高BET比表面積を有する消石灰を提供するものである。 The present invention provides a high BET specific surface area that does not contain an organic compound and has a BET specific surface area of 15 m 2 / g or more by adding a silicon dioxide-containing inorganic compound in the digestion step of reacting raw lime and water. The slaked lime is provided.
本発明の消石灰は、二酸化ケイ素を含有した無機化合物を原料生石灰に対して0.01〜20重量%を消化工程で添加することで、有機化合物を含有せず、かつBET比表面積が15m2/g以上の高BET比表面積を有する消石灰を得ることができる。 The slaked lime of the present invention does not contain an organic compound and has a BET specific surface area of 15 m2 / Slaked lime having a high BET specific surface area of g or more can be obtained.
本発明により、これまで消石灰のBET比表面積を高めるために使用されてきた有機化合物の代用として無機化合物を使用でき、製造された消石灰をごみ焼却炉などで酸性ガス処理剤として使用すれば、CODや一酸化炭素を抑えることができるようになり、環境負荷が低減されると期待される。 According to the present invention, an inorganic compound can be used as a substitute for an organic compound that has been used to increase the BET specific surface area of slaked lime so far, and if the produced slaked lime is used as an acid gas treatment agent in a garbage incinerator or the like, COD And carbon monoxide can be suppressed, and the environmental impact is expected to be reduced.
本発明は、原料の生石灰と水とを反応させる消化工程において、二酸化ケイ素を含む無機化合物としてシリカゲル、珪藻土、ゼオライト、アロフェン、イモゴライト、酸性白土、活性白土の二酸化ケイ素を含む粘土鉱物あるいは人工鉱物の1種あるいは2種以上を添加することが大きな特徴である。これらの無機化合物は、消化反応に寄与するものであり、消化工程後に添加しても、得られる消石灰のBET比表面積は高くならない。 In the digestion process of reacting raw lime and water as raw materials, the present invention is an inorganic compound containing silicon dioxide, silica gel, diatomaceous earth, zeolite, allophane, imogolite, acidic clay, clay mineral or artificial mineral containing activated clay. A major feature is the addition of one or more. These inorganic compounds contribute to the digestion reaction, and even when added after the digestion step, the BET specific surface area of the obtained slaked lime does not increase.
本発明で使用される無機化合物であるが、シリカゲル、珪藻土、ゼオライト、アロフェン、イモゴライト、酸性白土、活性白土の二酸化ケイ素を含む粘土鉱物あるいは人工鉱物の1種あるいは2種以上を使用することができる。当然ながら、これらを含有するものであっても差し支えない。例えば、アロフェンやイモゴライトを含有している鹿沼土、味噌土、あかほやなどでもよい。また、酸性白土や活性白土に含まれる主成分のモンモリロナイト、ハロイサイトなども使用しても構わないし、触媒などとして使用された後のこれらの粘土鉱物あるいは人工鉱物なども使用しても差し支えない。 Although it is an inorganic compound used in the present invention, one kind or two or more kinds of clay minerals or artificial minerals containing silica dioxide, silica gel, diatomaceous earth, zeolite, allophane, imogolite, acid clay and activated clay can be used. . Of course, these may be contained. For example, Kanuma soil, miso soil, and akahoya containing allophane and imogolite may be used. Moreover, the main components montmorillonite and halloysite contained in acid clay and activated clay may be used, and these clay minerals or artificial minerals after being used as a catalyst may also be used.
これまでのように、有機化合物を使用すれば、一酸化炭素やCODの発生など環境負荷が懸念されるが、本発明では、無機化合物を使用することで、有機化合物を使用しないためCODや一酸化炭素の発生量の低減ができる。 As described above, if an organic compound is used, there is a concern about environmental burden such as generation of carbon monoxide and COD. However, in the present invention, since an organic compound is not used by using an inorganic compound, COD and The amount of carbon oxide generated can be reduced.
本発明で使用される無機化合物の中には、比表面積100m2/g以上のものもあり、消石灰との乾式混合でも比表面積を高くする効果はあるが、これは単なる加重平均で算出される比表面積となるだけである。本発明は、これらの無機化合物を消化の工程で共存させることで、乾式混合以上の比表面積を有する消石灰を提供することができる。 Some inorganic compounds used in the present invention have a specific surface area of 100 m 2 / g or more, and there is an effect of increasing the specific surface area even by dry mixing with slaked lime, but this is calculated by a simple weighted average. It only becomes the specific surface area. This invention can provide the slaked lime which has a specific surface area more than dry mixing by making these inorganic compounds coexist in the process of digestion.
本発明で用いられる無機化合物の作用については、明らかではないが、オキシカルボン酸などと同じようにカルシウムイオンを捕捉することによるものと考えられる。 The action of the inorganic compound used in the present invention is not clear, but is thought to be due to capturing calcium ions in the same manner as oxycarboxylic acid and the like.
また、生石灰と水との消化工程の条件であるが、消化温度、消化水量、消化時間などだけでなく、原料である生石灰の粒度や活性度なども、生石灰と水とが反応さえすればどのような条件下であっても問題ない。 Moreover, although it is the condition of the digestion process of quicklime and water, not only the digestion temperature, the amount of digestion, and the digestion time, but also the particle size and activity of the raw quicklime, as long as the quicklime and water react There is no problem even under such conditions.
本発明での無機化合物の使用量は、原料の生石灰に対して、0.01〜20重量%の添加であれば、BET比表面積を15m2/g以上とすることができる。0.01重量%未満の添加であると、得られる消石灰のBET比表面積は15m2/g以上にはならず、また、20重量%を越えて添加すると、得られる消石灰のBET比表面積は20重量%添加時に比べてほとんど差がなくなり、BET比表面積の増加の効果が見られなくなる。コストおよびBET比表面積の増加の効果から、無機化合物の使用量は0.1〜5重量%が好ましい。 If the usage-amount of the inorganic compound in this invention is 0.01-20 weight% addition with respect to the raw quicklime, a BET specific surface area can be 15 m < 2 > / g or more. When the addition is less than 0.01% by weight, the BET specific surface area of the obtained slaked lime does not exceed 15 m 2 / g, and when added over 20% by weight, the BET specific surface area of the obtained slaked lime is 20 There is almost no difference compared with the case of addition by weight%, and the effect of increasing the BET specific surface area is not seen. From the cost and the effect of increasing the BET specific surface area, the amount of the inorganic compound used is preferably 0.1 to 5% by weight.
得られる消石灰のBET比表面積については、下限を15m2/gとし、上限を定めないものとする。原料生石灰の性質などにより数値が異なってくるし、消化温度、時間などの消化条件により変動するし、また、工業的に製造する場合には試験室での実験値より高い値となる傾向があるためである。 About the BET specific surface area of the obtained slaked lime, a minimum shall be 15 m < 2 > / g and an upper limit shall not be defined. The numerical value varies depending on the properties of raw lime, etc., varies depending on digestion conditions such as digestion temperature and time, and tends to be higher than experimental values in laboratories for industrial production. It is.
こうした消石灰を製造するには、これらの無機化合物を消化水に添加させるか、生石灰に添加しておくか、さらには、消化水、生石灰と別途に添加してもよく、生石灰が水と反応する際に共存してさえおればよい。 In order to produce such slaked lime, these inorganic compounds are added to digested water, added to quick lime, or may be added separately from digested water and quick lime, and quick lime reacts with water. It only has to coexist.
本発明を用いて工業的に高比表面積を有する消石灰を製造するには、消化水中に本発明の特許請求項に記載された無機化合物を分散させ、消化機に投入される生石灰量に応じて、ほぼ同量の消化水の量を制御して加えるなどの方法で、生石灰と消化水を反応させ、熟成機で熟成させた後、気流乾燥機などで乾燥及び分級する、いわゆる半湿式消化法で製造することができる。 In order to produce slaked lime having a high specific surface area industrially using the present invention, the inorganic compound described in the claims of the present invention is dispersed in digested water, and according to the amount of quick lime charged into the digester. So-called semi-wet digestion method, in which quick lime and digestion water are reacted by a method such as controlling the amount of digestion water to be added in the same amount, aging with an aging machine, and then drying and classifying with an air dryer etc. Can be manufactured.
また、本発明の請求項に記載された無機化合物を生石灰量に対して過剰の消化水に、生石灰を投入しスラリー状として、振動篩などで分級し、フィルタープレスなどでろ過して、気流乾燥機などで乾燥及び分級する湿式消化法であっても製造することできるし、生石灰に対して同量以下の消化水で消化する乾式消化法であってもよい。コスト面と得られる消石灰のBET比表面積の数値から、半湿式消化法を採用することが望ましいが、どの消化法であって差し支えない。 In addition, the inorganic compound described in the claims of the present invention is charged into excess digestive water with respect to the amount of quick lime, put quick lime into a slurry, classified with a vibrating sieve, etc., filtered with a filter press, etc., and air-dried It can be produced even by a wet digestion method that is dried and classified by a machine or the like, or may be a dry digestion method in which digestion water is digested with the same amount or less of quick lime. Although it is desirable to adopt the semi-wet digestion method from the viewpoint of cost and the BET specific surface area of the obtained slaked lime, any digestion method can be used.
こうして得られた消石灰は、ごみ焼却場などで発生する酸性ガスの除去剤として使用することができ、CODや一酸化炭素の発生を低減することが期待できる。 The slaked lime obtained in this way can be used as a removal agent for acid gas generated in a garbage incineration plant or the like, and can be expected to reduce the generation of COD and carbon monoxide.
以下に実施例により具体的に説明するが、本発明は当該実施例のみに限定されるものではない。なお、本実施例で使用した無機化合物のBET比表面積、水分、二酸化ケイ素含有量を表1に示す。表2には、本実施例の結果を示すが、記載のCOD値は、環境省告示46号に準じて得た溶出液をJIS K 0102 17に準じ、過マンガン酸カリウムで測定した結果である。 Examples will be described in detail below, but the present invention is not limited to the examples. In addition, Table 1 shows the BET specific surface area, moisture, and silicon dioxide content of the inorganic compounds used in this example. Table 2 shows the results of the present example. The described COD values are the results of measuring the eluate obtained according to Ministry of the Environment Notification No. 46 with potassium permanganate according to JIS K 010217. .
(比較例1)60℃の水400gに、3〜13mmの粒状生石灰60gを攪拌しながら添加して15分消化させた。消化後、150μmの篩で分級し、篩通過分をろ過し、110℃で一昼夜乾燥して消石灰を得た。このもののBET比表面積を測定したところ、11.8m2/gであった。また、このもののCOD値は4.0ppmであった。 (Comparative Example 1) To 400 g of water at 60 ° C., 60 g of granular quicklime of 3 to 13 mm was added with stirring and digested for 15 minutes. After digestion, it was classified with a 150 μm sieve, and the part passing through the sieve was filtered and dried at 110 ° C. overnight to obtain slaked lime. It was 11.8 m < 2 > / g when the BET specific surface area of this thing was measured. The COD value of this product was 4.0 ppm.
(比較例2)60℃の水400gに、ジエチレングリコールを0.6g(生石灰に対して1重量%)を分散させ、攪拌しながら3〜13mmの粒状生石灰60gを添加して15分消化させた以外は、比較例1と同じように実施した。得られた消石灰のBET比表面積は31.7m2/gであった。また、このもののCOD値は220ppmであった。 (Comparative Example 2) Except for dispersing 0.6 g of diethylene glycol (1% by weight based on quick lime) in 400 g of water at 60 ° C., adding 60 g of 3-13 mm granular quick lime with stirring, and digesting for 15 minutes. Was carried out in the same manner as in Comparative Example 1. The obtained slaked lime had a BET specific surface area of 31.7 m 2 / g. The COD value of this product was 220 ppm.
(比較例3)60℃の水400gに、3〜13mmの粒状生石灰60gを攪拌しながら添加して15分消化させ、ゼオライトを0.6g(生石灰に対して1重量%)を添加して5分間攪拌を続けた。その後、150μmの篩で分級し、篩通過分をろ過し、110℃で一昼夜乾燥して消石灰を得た。このもののBET比表面積を測定したところ、11.4m2/gであった。また、このもののCOD値は4.8ppmであった。 (Comparative Example 3) 60 g of granular quicklime of 3 to 13 mm was added to 400 g of water at 60 ° C. with stirring and digested for 15 minutes, and 0.6 g of zeolite (1% by weight with respect to quicklime) was added. Stirring was continued for a minute. Then, it classified with a 150 micrometers sieve, the part which passed the sieve was filtered, and it dried at 110 degreeC all day and night, and obtained slaked lime. It was 11.4 m < 2 > / g when the BET specific surface area of this thing was measured. The COD value of this product was 4.8 ppm.
(実施例1)60℃の水400gに、ゼオライトを0.6g(生石灰に対して1重量%)を分散させ、攪拌しながら3〜13mmの粒状生石灰60gを添加して15分消化させた。消化後、150μmの篩で分級した。150μmの篩上には、ほとんど残渣が見られなかった。篩通過分をろ過し、110℃で一昼夜乾燥して、BET比表面積を測定したところ、27.1m2/gであった。実施例1と消石灰中のゼオライト量と同じになるように、比較例1で得られた消石灰と使用したゼオライトを乾式混合した場合のBET比表面積の荷重平均値は11.7m2/gと計算された。明らかに実施例1で得られた消石灰BET比表面積のほうが、高い数値が得られた。また、このもののCOD値は5.1ppmで比較例2の数値より低下した。 (Example 1) 0.6 g of zeolite (1 wt% with respect to quicklime) was dispersed in 400 g of water at 60 ° C, and 60 g of 3 to 13 mm granular quicklime was added with stirring and digested for 15 minutes. After digestion, it was classified with a 150 μm sieve. Almost no residue was found on the 150 μm sieve. The portion passing through the sieve was filtered, dried overnight at 110 ° C., and the BET specific surface area was measured. As a result, it was 27.1 m 2 / g. The load average value of the BET specific surface area was calculated to be 11.7 m 2 / g when the slaked lime obtained in Comparative Example 1 and the used zeolite were dry-mixed so as to have the same amount of zeolite in slaked lime as in Example 1. It was done. Obviously, a higher numerical value was obtained for the slaked lime BET specific surface area obtained in Example 1. Further, the COD value of this product was 5.1 ppm, which was lower than that of Comparative Example 2.
(実施例2〜6)各無機化合物0.6gを用いて実施例1と同様に実施し、同じように乾式混合した場合のBET比表面積との比較を行い、いずれの場合においても、各実施例で得られた消石灰BET比表面積のほうが、高い数値が得られ、COD値も比較例2の数値より低下した。BET比表面積およびCOD値を比較例1、比較例2、比較例3および実施例1とともに結果を表2に示す。 (Examples 2 to 6) Each of the inorganic compounds was used in the same manner as in Example 1 using 0.6 g, and compared with the BET specific surface area when dry-mixed in the same manner. A higher numerical value was obtained for the slaked lime BET specific surface area obtained in the example, and the COD value was also lower than that of Comparative Example 2. Table 2 shows the BET specific surface area and COD value together with Comparative Example 1, Comparative Example 2, Comparative Example 3, and Example 1.
(実施例7)ゼオライト9g(生石灰に対して15重量%)を用いて実施例1と同様に実施し、同じように乾式混合した場合のBET比表面積との比較を行い、本実施例で得られた消石灰BET比表面積のほうが高い数値が得られ、COD値も比較例2の数値より低下した。BET比表面積とCOD値の結果を同じく表2に示す。 (Example 7) Using 9 g of zeolite (15% by weight based on quick lime), the same as in Example 1 was performed, and the BET specific surface area was compared in the case of dry mixing in the same manner. A higher numerical value was obtained for the obtained slaked lime BET specific surface area, and the COD value was also lower than that of Comparative Example 2. The results of BET specific surface area and COD value are also shown in Table 2.
(実施例8)ゼオライト12g(生石灰に対して20重量%)を用いて実施例1と同様に実施し、同じように乾式混合した場合のBET比表面積との比較を行い、本実施例で得られた消石灰BET比表面積のほうが高い数値が得られ、COD値も比較例2の数値より低下した。BET比表面積とCOD値の結果を同じく表2に示す。 (Example 8) This was carried out in the same manner as in Example 1 using 12 g of zeolite (20% by weight with respect to quicklime), and compared with the BET specific surface area when dry-mixed in the same manner. A higher numerical value was obtained for the obtained slaked lime BET specific surface area, and the COD value was also lower than that of Comparative Example 2. The results of BET specific surface area and COD value are also shown in Table 2.
(比較例4)ゼオライト15g(生石灰に対して25重量%)を用いて実施例1と同様に実施した結果を表2に示す。 (Comparative Example 4) Table 2 shows the results obtained in the same manner as in Example 1 using 15 g of zeolite (25% by weight based on quick lime).
(実施例9)活性白土A0.3g(生石灰に対して0.5重量%)を用いて実施例1と同様に実施し、同じように乾式混合した場合のBET比表面積との比較を行い、本実施例で得られた消石灰BET比表面積のほうが高い数値が得られた。また、COD値も比較例2の数値より低下した。BET比表面積とCOD値の結果を同じく表2に示す。 (Example 9) Conducted in the same manner as in Example 1 using 0.3 g of activated clay A (0.5 wt% with respect to quicklime), and compared with the BET specific surface area when dry-mixed in the same manner, A higher numerical value was obtained for the slaked lime BET specific surface area obtained in this example. Also, the COD value was lower than the numerical value of Comparative Example 2. The results of BET specific surface area and COD value are also shown in Table 2.
(実施例10)活性白土A0.06g(生石灰に対して0.1重量%)を用いて実施例1と同様に実施し、同じように乾式混合した場合のBET比表面積との比較を行い、本実施例で得られた消石灰BET比表面積のほうが、高い数値が得られ、COD値も比較例2の数値より低下した。BET比表面積とCOD値の結果を同じく表2に示す。 (Example 10) Performed in the same manner as in Example 1 using 0.06 g of activated clay A (0.1 wt% with respect to quicklime), and compared with the BET specific surface area when dry-mixed in the same manner, A higher numerical value was obtained for the slaked lime BET specific surface area obtained in this example, and the COD value was also lower than that of Comparative Example 2. The results of BET specific surface area and COD value are also shown in Table 2.
(実施例11)活性白土A0.006g(生石灰に対して0.01重量%)を用いて実施例1と同様に実施し、同じように乾式混合した場合のBET比表面積との比較を行い、本実施例で得られた消石灰BET比表面積のほうが、高い数値が得られ、COD値も比較例2の数値より低下した。BET比表面積とCOD値の結果を同じく表2に示す。 (Example 11) Activated clay A 0.006 g (0.01 wt% based on quick lime) was used in the same manner as in Example 1 and compared with the BET specific surface area when dry-mixed in the same manner. A higher numerical value was obtained for the slaked lime BET specific surface area obtained in this example, and the COD value was also lower than that of Comparative Example 2. The results of BET specific surface area and COD value are also shown in Table 2.
(比較例5)活性白土A0.003g(生石灰に対して0.005重量%)を用いて実施例1と同様に実施した。結果を同じく表2に示す。 (Comparative example 5) It implemented like Example 1 using 0.003g of activated clay A (0.005 weight% with respect to quicklime). The results are also shown in Table 2.
(実施例12)60℃の水400mlに、ゼオライト、アロフェン含有土、シリカゲル、活性白土A、酸性白土、珪藻土を各0.1gを分散させ、攪拌しながら3〜13mmの粒状生石灰60gを添加して15分消化させた。消化後、150μmの篩で分級した。150μmの篩上には、ほとんど残渣が見られなかった。通過分をろ過し、110℃で一昼夜乾燥して、BET比表面積を測定したところ、28.7m2/gであった。本実施例と消石灰中の各無機化合物の量が同じになるように、比較例1で得られた消石灰と使用した無機化合物を乾式混合した場合のBET比表面積の荷重平均値は13.1m2/gと計算された。明らかに本実施例で得られた消石灰BET比表面積のほうが、高い数値が得られた。また、このもののCODは4.4ppmであった。明らかに、比較例2のCODの数値より低下した。BET比表面積とCOD値の結果を表2に示す。 (Example 12) To 400 ml of water at 60 ° C, 0.1 g each of zeolite, allophane-containing soil, silica gel, activated clay A, acid clay, and diatomaceous earth was dispersed, and 60 g of granular quicklime of 3 to 13 mm was added with stirring. Digested for 15 minutes. After digestion, it was classified with a 150 μm sieve. Almost no residue was found on the 150 μm sieve. The passage was filtered, dried overnight at 110 ° C., and the BET specific surface area was measured. As a result, it was 28.7 m 2 / g. The load average value of the BET specific surface area when dry mixing the slaked lime obtained in Comparative Example 1 and the inorganic compound used so that the amount of each inorganic compound in the slaked lime is the same as that of this example is 13.1 m 2. / G. Obviously, a higher numerical value was obtained for the slaked lime BET specific surface area obtained in this example. The COD of this product was 4.4 ppm. Apparently, it was lower than the COD value of Comparative Example 2. Table 2 shows the results of the BET specific surface area and the COD value.
(比較例6)25℃の水60gに、攪拌しながら1mm以下の粉末状生石灰60gを添加して10分消化させた。消化後、110℃で一昼夜乾燥して消石灰を得た。得られた消石灰を粉砕して、150μm全通として、このもののBET比表面積を測定したところ、13.6m2/gであった。また、このもののCOD値は4.3ppmであった。 (Comparative Example 6) 60 g of powdered quicklime of 1 mm or less was added to 60 g of water at 25 ° C. with stirring, and digested for 10 minutes. After digestion, slaked lime was obtained by drying overnight at 110 ° C. The obtained slaked lime was pulverized and the BET specific surface area of this product was measured as a whole of 150 μm, and it was 13.6 m 2 / g. The COD value of this product was 4.3 ppm.
(比較例7)25℃の水60gにジエチレングリコール0.6gを分散させ、攪拌しながら1mm以下の粉末状生石灰60gを添加して10分消化させた以外は、比較例6と同様に実施した。得られた消石灰のBET比表面積とCOD値は、それぞれ、35.2m2/g、360ppmであった。 (Comparative Example 7) Comparative Example 6 was carried out in the same manner as Comparative Example 6 except that 0.6 g of diethylene glycol was dispersed in 60 g of water at 25 ° C, and 60 g of powdered quicklime of 1 mm or less was added and digested for 10 minutes while stirring. The obtained slaked lime had a BET specific surface area and a COD value of 35.2 m 2 / g and 360 ppm, respectively.
(実施例13)25℃の水60gにシリカゲル0.6gを分散させ、攪拌しながら1mm以下の粉末状生石灰60gを添加して10分消化させた。消化後、110℃で一昼夜乾燥して消石灰を得た。得られた消石灰を粉砕して、150μm全通として、このもののBET比表面積を測定したところ、30.0m2/gであった。本実施例と消石灰中のシリカゲル量が同じになるように、比較例6で得られた消石灰と使用したシリカゲルを乾式混合した場合のBET比表面積の荷重平均値は15.7m2/gと計算された。明らかに本実施例で得られた消石灰BET比表面積のほうが、高い数値が得られた。このもののCOD値は5.0ppmであり、比較例7の数値より低下した。 (Example 13) 0.6 g of silica gel was dispersed in 60 g of water at 25 ° C., and 60 g of powdered quicklime having a size of 1 mm or less was added and digested for 10 minutes while stirring. After digestion, slaked lime was obtained by drying overnight at 110 ° C. The obtained slaked lime was pulverized and the BET specific surface area of this product was measured as 150 μm, and it was 30.0 m 2 / g. The load average value of the BET specific surface area was calculated to be 15.7 m 2 / g when the slaked lime obtained in Comparative Example 6 and the used silica gel were dry-mixed so that the amount of silica gel in this example and slaked lime was the same. It was done. Obviously, a higher numerical value was obtained for the slaked lime BET specific surface area obtained in this example. The COD value of this product was 5.0 ppm, which was lower than that of Comparative Example 7.
(実施例14〜17)各無機化合物0.6gを用いて実施例13と同様に実施した。それぞれの実施例と消石灰中の無機化合物の量が同じになるように、比較例6で得られた消石灰と各無機化合物を乾式混合した場合のBET比表面積とそれぞれの実施例で得られた消石灰のBET比表面積との比較を行い、いずれの場合においても、実施例で得られた消石灰BET比表面積のほうが、高い数値が得られ、COD値も比較例7の数値より低下した。BET比表面積およびCOD値を比較例6、比較例7および実施例13とともに結果を表2に示す。 (Examples 14-17) It implemented similarly to Example 13 using each inorganic compound 0.6g. The slaked lime obtained in each example and the BET specific surface area when dry mixing the slaked lime obtained in Comparative Example 6 and each inorganic compound so that the amount of the inorganic compound in each slaked lime is the same as each example. In each case, the slaked lime BET specific surface area obtained in the examples was higher in value, and the COD value was also lower than that in Comparative Example 7. The BET specific surface area and COD value are shown in Table 2 together with Comparative Example 6, Comparative Example 7 and Example 13.
(比較例8)25℃の水40gに、攪拌しながら1mm以下の粉末状生石灰60gを添加して10分消化させた。消化後、110℃で一昼夜乾燥して消石灰を得た。得られた消石灰を粉砕して、150μm全通として、このもののBET比表面積を測定したところ、13.1m2/gであった。このもののCOD値は4.2ppmであった。結果を表2に示す。 (Comparative Example 8) To 40 g of water at 25 ° C., 60 g of powdered quicklime of 1 mm or less was added with stirring and digested for 10 minutes. After digestion, slaked lime was obtained by drying overnight at 110 ° C. The obtained slaked lime was pulverized and the BET specific surface area of this product was measured as a whole of 150 μm. As a result, it was 13.1 m 2 / g. The COD value of this product was 4.2 ppm. The results are shown in Table 2.
(比較例9)25℃の水40gにジエチレングリコール0.6gを分散させ、攪拌しながら1mm以下の粉末状生石灰を添加して10分消化させた以外は、比較例7と同様に実施した。得られた消石灰のBET比表面積とCOD値は、それぞれ、35.2m2/g、350ppmであった。結果を表2に示す。 (Comparative Example 9) The same procedure as in Comparative Example 7 was conducted, except that 0.6 g of diethylene glycol was dispersed in 40 g of water at 25 ° C, and 1 mm or less of powdered quicklime was added and digested for 10 minutes while stirring. The obtained slaked lime had a BET specific surface area and a COD value of 35.2 m 2 / g and 350 ppm, respectively. The results are shown in Table 2.
(実施例18)25℃の水40gにシリカゲル0.6gを分散させ、攪拌しながら1mm以下の粉末状生石灰を添加して10分消化させた。消化後、110℃で一昼夜乾燥して消石灰を得た。得られた消石灰を粉砕して、150μm全通として、このもののBET比表面積を測定したところ、29.3m2/gであった。本実施例と消石灰中のシリカゲル量が同じになるように、比較例7で得られた消石灰と使用したシリカゲルを乾式混合した場合のBET比表面積の荷重平均値は15.4m2/gと計算された。明らかに本実施例で得られた消石灰BET比表面積のほうが、高い数値が得られた。また、このもののCOD値は5.0ppmで、比較例9の数値より低下した。BET比表面積およびCOD値の結果を表2に示す。 (Example 18) 0.6 g of silica gel was dispersed in 40 g of water at 25 ° C, and 1 mm or less of powdered quicklime was added with stirring to digest for 10 minutes. After digestion, slaked lime was obtained by drying overnight at 110 ° C. The obtained slaked lime was pulverized and the BET specific surface area of this product was measured as a whole of 150 μm. As a result, it was 29.3 m 2 / g. The load average value of the BET specific surface area when the slaked lime obtained in Comparative Example 7 and the used silica gel were dry-mixed so that the amount of silica gel in this example and slaked lime was the same was calculated as 15.4 m 2 / g. It was done. Obviously, a higher numerical value was obtained for the slaked lime BET specific surface area obtained in this example. The COD value of this product was 5.0 ppm, which was lower than the numerical value of Comparative Example 9. The results of BET specific surface area and COD value are shown in Table 2.
本実施例の生石灰60gに対して、消化水量400gは湿式消化、消化水量60gは半湿式消化、40gは乾式消化といわれるものである。ジエチレングリコール等の有機化合物を使用した場合、湿式消化では、ろ過という脱水工程が含まれることから、COD値は他の消化法に比べて低くなる。本実施例のように、湿式消化でもジエチレングリコールを原料生石灰に対して1重量%使用してもCOD値は220ppm程度であるが、無機化合物を添加すれば、COD値は一桁台の数値となる。 With respect to 60 g of quicklime in this example, 400 g of digested water is called wet digestion, 60 g of digested water is called semi-wet digestion, and 40 g is called dry digestion. When an organic compound such as diethylene glycol is used, the wet digestion includes a dehydration step called filtration, so that the COD value is lower than other digestion methods. As in this example, the COD value is about 220 ppm even with wet digestion even when 1% by weight of diethylene glycol is used with respect to the raw quicklime, but if an inorganic compound is added, the COD value becomes a single digit value. .
以上のように、本発明により、有機化合物を含有しない、かつ高BET比表面積を持つ消石灰を提供でき、これを酸性ガス除去剤として使用すれば、明らかにCODを低減することができ、しいては一酸化炭素の発生も低減できる。
Claims (6)
前記原料生石灰に対して0.01重量%〜20重量%の二酸化ケイ素含有の無機化合物と、残部の前記原料生石灰と、不可避混合物とから得られ、
前記二酸化ケイ素含有の無機化合物は、前記原料生石灰と水とを反応させる前記消化工程において、添加され、
前記二酸化ケイ素含有の無機化合物は、アロフェン、イモゴライト、酸性白土およびシリカゲルの少なくとも1種である消石灰。 A slaked lime having a BET specific surface area of 15 m 2 / g or more and obtained through a digestion process of raw quicklime and water,
Obtained from 0.01 wt% to 20 wt% of an inorganic compound containing silicon dioxide with respect to the raw quicklime, the balance of the raw quicklime, and the inevitable mixture,
The silicon dioxide-containing inorganic compound is added in the digestion step of reacting the raw quicklime and water,
The silicon dioxide-containing inorganic compound is slaked lime that is at least one of allophane, imogolite, acidic clay, and silica gel.
前記原料生石灰に対して0.01重量%〜20重量%の二酸化ケイ素含有の無機化合物と、残部の前記原料生石灰と、不可避混合物とから得られ、
前記二酸化ケイ素含有の無機化合物は、前記原料生石灰と水とを反応させる前記消化工程において、添加され、
前記二酸化ケイ素含有の無機化合物は、アロフェン、イモゴライト、酸性白土およびシリカゲルの少なくとも1種である消石灰の製造方法。 A method for producing slaked lime having a BET specific surface area of 15 m 2 / g or more and obtained through a digestion step of raw quicklime and water,
Obtained from 0.01 wt% to 20 wt% of an inorganic compound containing silicon dioxide with respect to the raw quicklime, the balance of the raw quicklime, and the inevitable mixture,
The silicon dioxide-containing inorganic compound is added in the digestion step of reacting the raw quicklime and water,
The method for producing slaked lime, wherein the silicon dioxide-containing inorganic compound is at least one of allophane, imogolite, acid clay, and silica gel.
The acidic gas removal agent which contains the slaked lime in any one of Claims 1-3 as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009273129A JP5667758B2 (en) | 2009-12-01 | 2009-12-01 | Slaked lime, method for producing the same, and acid gas removing agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009273129A JP5667758B2 (en) | 2009-12-01 | 2009-12-01 | Slaked lime, method for producing the same, and acid gas removing agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011116573A JP2011116573A (en) | 2011-06-16 |
JP5667758B2 true JP5667758B2 (en) | 2015-02-12 |
Family
ID=44282365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009273129A Active JP5667758B2 (en) | 2009-12-01 | 2009-12-01 | Slaked lime, method for producing the same, and acid gas removing agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5667758B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013166133A (en) * | 2012-02-16 | 2013-08-29 | Kotegawa Sangyo Kk | Acidic gas remover and method of removing acidic gas |
JP5895035B2 (en) * | 2013-12-13 | 2016-03-30 | 奥多摩工業株式会社 | Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent |
WO2018184702A1 (en) | 2017-04-07 | 2018-10-11 | S.A. Lhoist Recherche Et Developpement | Process for flue gas treatment and products for use in said process |
WO2019016927A1 (en) * | 2017-07-20 | 2019-01-24 | 株式会社ジャパンブルーエナジー | Hydrogen chloride removing agent |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04354538A (en) * | 1991-05-31 | 1992-12-08 | Babcock Hitachi Kk | Catalyst for denitrifying exhaust gas and exhaust gas treating device |
JPH09108541A (en) * | 1995-10-17 | 1997-04-28 | Ryoko Sekkai Kogyo Kk | Method for treating exhaust gas of incinerator |
JPH09110423A (en) * | 1995-10-17 | 1997-04-28 | Ryoko Sekkai Kogyo Kk | Calcium hydroxide composition |
JP3273907B2 (en) * | 1996-12-24 | 2002-04-15 | 菱光石灰工業株式会社 | Method for producing exhaust gas treating agent |
JP4029443B2 (en) * | 1997-07-24 | 2008-01-09 | 奥多摩工業株式会社 | Incinerator flue blowing agent and exhaust gas treatment method |
JP2003093837A (en) * | 2001-09-26 | 2003-04-02 | Okutama Kogyo Co Ltd | Exhaust gas treatment agent |
-
2009
- 2009-12-01 JP JP2009273129A patent/JP5667758B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011116573A (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Trivedi et al. | Characterization and valorization of biomass ashes | |
KR101925418B1 (en) | Method for producing phosphate fertilizer | |
KR101753823B1 (en) | Manufacturing high quality desulfrutization lime method using shell for wet desulfurization | |
CN110655339A (en) | Process method for preparing ceramsite by sludge and inorganic solid waste | |
JP5667758B2 (en) | Slaked lime, method for producing the same, and acid gas removing agent | |
JP7383545B2 (en) | Cement manufacturing method | |
KR101735096B1 (en) | Sludge solidified agent and preparation method of solidified material using the same | |
JP5683066B2 (en) | Cement-based solidified material using dry sludge powder and method for producing the same | |
KR20120103906A (en) | Carbon dioxide absorbent using recycled waste and concrete including the same | |
CN107445498A (en) | A kind of preparation method of phosphogypsum powder coal ash composite gelled material | |
JP2010042970A (en) | Slaked lime and method for producing the same | |
JP2014237582A (en) | Hydrated lime, manufacturing method of hydrated lime and acidic gas removing agent | |
JP3684410B2 (en) | Sewage sludge treatment method and treated sewage sludge | |
JP2013086030A (en) | Method for treating dolomite sludge and soil improving material | |
KR101365546B1 (en) | Method for treatment of phosphoric gypsum using flue gas desulfurization dust | |
JP5748418B2 (en) | How to improve dewaterability of incinerated ash | |
KR101236862B1 (en) | Soil Conditioner manufacturing method utilizing sewage sludge | |
KR101076137B1 (en) | a production method of an artificial aggregate and an artificial aggregate produced by the same | |
KR20100088237A (en) | The construction material utilizing sludge and its manufacturing method | |
Gautam et al. | 6 Calcium Oxide | |
CN115156240B (en) | Method for recycling desulfurization ash | |
KR102641129B1 (en) | Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues | |
CN111068535B (en) | Drying recycling method for purified slag of modified asphalt spraying sewage | |
JP5618439B2 (en) | Slaked lime, method for producing slaked lime, and acid gas remover | |
KR102678446B1 (en) | Media for removing hydrogen sulfide and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100326 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20121105 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140923 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5667758 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |