JP5664591B2 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP5664591B2
JP5664591B2 JP2012100933A JP2012100933A JP5664591B2 JP 5664591 B2 JP5664591 B2 JP 5664591B2 JP 2012100933 A JP2012100933 A JP 2012100933A JP 2012100933 A JP2012100933 A JP 2012100933A JP 5664591 B2 JP5664591 B2 JP 5664591B2
Authority
JP
Japan
Prior art keywords
silicon substrate
cell
solar cell
identification information
individual identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012100933A
Other languages
Japanese (ja)
Other versions
JP2013229466A (en
Inventor
渡部 武紀
武紀 渡部
大塚 寛之
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012100933A priority Critical patent/JP5664591B2/en
Publication of JP2013229466A publication Critical patent/JP2013229466A/en
Application granted granted Critical
Publication of JP5664591B2 publication Critical patent/JP5664591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、安価で高い光電変換効率を有する太陽電池セル及びその製造方法に関するものである。   The present invention relates to an inexpensive solar cell having high photoelectric conversion efficiency and a method for manufacturing the same.

太陽電池は、光エネルギーを電力に変換する半導体素子であり、pn接合型、pin型、ショットキー型などがあり、特にpn接合型が広く用いられている。また、太陽電池をその基板材料を基に分類すると、シリコン結晶系太陽電池、アモルファス(非晶質)シリコン系太陽電池、化合物半導体系太陽電池の3種類に大きく分類され、シリコン結晶系太陽電池は、更に単結晶系太陽電池と多結晶系太陽電池に分類される。   A solar cell is a semiconductor element that converts light energy into electric power, and includes a pn junction type, a pin type, a Schottky type, and the pn junction type is widely used. Further, when solar cells are classified based on their substrate materials, they are broadly classified into three types: silicon crystal solar cells, amorphous (amorphous) silicon solar cells, and compound semiconductor solar cells. Further, it is classified into a single crystal solar cell and a polycrystalline solar cell.

一例として、p型半導体基板を用いたpn接合型太陽電池の受光面の概観を図1に、裏面概観を図2に示す。受光面には、光励起したキャリアを集電するためのフィンガー電極102が数mm間隔で設けられ、フィンガー電極からのキャリアを集電するためのバスバー電極101が2〜4本設けられる。受光面電極は、導電性の観点から銀(Ag)が用いられることが多い。裏面には、ほぼ全面にアルミニウム(Al)202が製膜され、集電用のバスバー電極201が2〜4本設けられる。   As an example, FIG. 1 shows an overview of the light receiving surface of a pn junction solar cell using a p-type semiconductor substrate, and FIG. 2 shows an overview of the back surface. On the light receiving surface, finger electrodes 102 for collecting photoexcited carriers are provided at intervals of several millimeters, and two to four bus bar electrodes 101 for collecting carriers from the finger electrodes are provided. Silver (Ag) is often used for the light-receiving surface electrode from the viewpoint of conductivity. On the back surface, aluminum (Al) 202 is formed on almost the entire surface, and 2 to 4 bus bar electrodes 201 for current collection are provided.

断面の概観を図3に示す。受光面には基板の導電型と反対の薄い拡散層303を設け、その上に反射防止膜302として窒化珪素(SiNx)膜や酸化珪素(SiO2)膜が形成されることが多い。301は受光面集電用のフィンガー電極であり、305は裏面電極として設けられるAlである。 An overview of the cross section is shown in FIG. A thin diffusion layer 303 opposite to the conductivity type of the substrate is provided on the light receiving surface, and a silicon nitride (SiNx) film or a silicon oxide (SiO 2 ) film is often formed thereon as the antireflection film 302. Reference numeral 301 denotes a finger electrode for collecting a light receiving surface, and reference numeral 305 denotes Al provided as a back electrode.

また、裏面電極間に開口部を設け、裏面からも光を取り込む両面受光型の太陽電池は、上記図3の構造のセルに比べ高い光電変換効率を有する。受光面構造は図1と同じであるが、裏面構造が異なる。裏面概観を図4に示す。裏面には集電用電極402が数mm間隔で設けられており、裏面電極は導電性の観点からAgが用いられることが多い。   In addition, a double-sided solar cell in which an opening is provided between the back electrodes and light is also taken from the back surface has higher photoelectric conversion efficiency than the cell having the structure shown in FIG. The light receiving surface structure is the same as in FIG. 1, but the back surface structure is different. A rear view is shown in FIG. Current collecting electrodes 402 are provided at intervals of several mm on the back surface, and Ag is often used for the back surface electrode from the viewpoint of conductivity.

両面受光型の太陽電池の断面の概観を図5に示す。受光面構造は図1と同じであるが、裏面には集電用電極506が局所的に設けられる。裏面の電極以外の領域は、SiNx膜やSiO2膜などの絶縁膜、あるいはこれらの積層した膜505で保護(パッシベーション)される。 An overview of a cross section of a double-sided light receiving solar cell is shown in FIG. The light receiving surface structure is the same as in FIG. 1, but a current collecting electrode 506 is locally provided on the back surface. The region other than the back electrode is protected (passivated) by an insulating film such as a SiNx film or a SiO 2 film, or a film 505 in which these layers are stacked.

以上のような太陽電池セルを大量生産する際は製造年月日等の識別記号や番号をセルそのものに刻印しておくことが、製造履歴の調査などに有効である。この方法として、電極形状を変化させてセルの個体識別を行う方法が開示されている(例えば、実開平05−093054号公報(特許文献1))。しかしながら、この方法は電極材料を必要以上に消費してしまうほか、受光面積を低下させてしまう等の不具合が生じ好ましくない。   When mass-producing solar cells such as those described above, it is effective for investigation of manufacturing history and the like to mark the cell itself with identification symbols and numbers such as date of manufacture. As this method, a method of performing individual identification of a cell by changing an electrode shape is disclosed (for example, Japanese Utility Model Laid-Open No. 05-093054 (Patent Document 1)). However, this method is not preferable because it consumes an electrode material more than necessary and causes problems such as reducing the light receiving area.

このため、セルそのものにレーザー等で直接刻印する方法が広く用いられており、例えば、特表2009−528687号公報(特許文献2)などで公知となっている。   For this reason, a method of directly engraving the cell itself with a laser or the like is widely used, and is known, for example, in Japanese translations of PCT publication No. 2009-528687 (Patent Document 2).

実開平05−093054号公報Japanese Utility Model Publication No. 05-093054 特表2009−528687号公報Special table 2009-5286687

しかしながら、セル化後のレーザー等によるセルへの直接刻印方法は、セル表面に傷をつけて発生キャリアの再結合を生じやすくしてしまう。また、特許文献2はセル化工程初期に刻印する方法であるが、この場合実効的な受光面積を減少させてしまうことになり、いずれもセル特性低下の原因となる。また、発電に必要な機能とは無関係な印字をすることとなり、美観を損ねてしまう。特に両面受光型太陽電池の場合には、基板両面が外部に曝されることになるため、発電に不必要な模様を基板上に持たせることは出来る限り回避する必要がある。   However, the direct marking method on the cell using a laser or the like after forming the cell easily damages the cell surface and easily causes recombination of the generated carriers. Further, Patent Document 2 is a method of marking at the initial stage of the cell forming process. In this case, however, the effective light receiving area is reduced, and both of them cause deterioration of cell characteristics. In addition, printing is irrelevant to the functions necessary for power generation, and the aesthetics are impaired. In particular, in the case of a double-sided light-receiving solar cell, both surfaces of the substrate are exposed to the outside, and thus it is necessary to avoid giving the pattern unnecessary for power generation as much as possible.

本発明は、上記事情に鑑みなされたもので、美観を損なわず、かつセル特性を低下させることなく、太陽電池セルの識別情報がマーキングされた太陽電池セル及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a solar cell in which identification information of the solar cell is marked and a manufacturing method thereof without deteriorating aesthetics and without deteriorating cell characteristics. And

本発明は、上記目的を達成するため、下記の太陽電池セル及びその製造方法を提供する。
〔1〕 一方の面にpn接合を有するシリコン基板と、該シリコン基板の表裏面それぞれに形成されたバスバー電極を含む電極とを備える太陽電池セルであって、前記シリコン基板の前記pn接合形成面とは反対面の前記バスバー電極直下の表層かつ局所に特定の金属不純物を拡散した箇所を電界励起発光(EL)法により暗部として観察されるセルの個体識別情報部として有することを特徴とする太陽電池セル。
〔2〕 前記金属不純物がFeであることを特徴とする〔1〕に記載の太陽電池セル。
〔3〕 前記セルの個体識別情報部の数が1〜40であることを特徴とする〔1〕又は〔2〕に記載の太陽電池セル。
〔4〕 前記セルの個体識別情報部のシリコン基板面における大きさが2〜20mmであることを特徴とする〔1〕〜〔3〕のいずれかに記載の太陽電池セル。
〕 前記セルの個体識別情報部の配置パターンは、当該太陽電池セルの個体識別情報を示すものであることを特徴とする〔1〕〜〔〕のいずれかに記載の太陽電池セル。
一方の面にpn接合を有するシリコン基板と、該シリコン基板の表裏面それぞれに形成されたバスバー電極を含む電極とを備える太陽電池セルの製造方法であって、特定の金属不純物をシリコン基板の前記pn接合を形成する面とは反対面となる面の前記バスバー電極直下となる位置に付着させた状態で熱拡散処理を行い、前記金属不純物をシリコン基板のその面の表層かつ局所に拡散させて、電界励起発光(EL)法により暗部として観察されるセルの個体識別情報部をシリコン基板面に形成することを特徴とする太陽電池セルの製造方法。
〕 前記金属不純物は、Feであることを特徴とする〔〕に記載の太陽電池セルの製造方法。
〕 前記シリコン基板面への前記金属不純物の付着は、該金属不純物からなる部材をシリコン基板面の所定位置に接触させることにより行うことを特徴とする〔〕又は〔〕に記載の太陽電池セルの製造方法。
〕 前記熱拡散処理は、前記pn接合となる拡散層を形成する熱処理、又は反射防止膜形成前の熱酸化処理と兼ねて行われることを特徴とする〔6〕〜〔8〕のいずれかに記載の太陽電池セルの製造方法。
〔10〕 前記熱拡散処理は、1,000℃以下で行うことを特徴とする〔6〕〜〔9〕のいずれかに記載の太陽電池セルの製造方法。
In order to achieve the above object, the present invention provides the following solar battery cell and manufacturing method thereof.
A solar cell comprising a silicon substrate having a pn junction in [1] one surface and an electrode comprising a bus bar electrode front and back surfaces are formed on each of the silicon substrate, the pn junction formed of the silicon substrate It has a surface layer directly below the bus bar electrode on the opposite side of the surface and a portion where a specific metal impurity is locally diffused as an individual identification information portion of a cell observed as a dark portion by an electric field excitation light emission (EL) method Solar cell.
[2] The solar battery cell according to [1], wherein the metal impurity is Fe.
[3] The solar cell according to [1] or [2], wherein the number of individual identification information portions of the cell is 1 to 40.
[4] The solar cell according to any one of [1] to [3], wherein a size of the individual identification information portion of the cell on the surface of the silicon substrate is 2 to 20 mm.
[ 5 ] The solar cell according to any one of [1] to [ 4 ], wherein the arrangement pattern of the individual identification information section of the cell indicates individual identification information of the solar cell.
A silicon substrate having a pn junction in [6] one surface, a method of manufacturing a solar cell comprising an electrode comprising a front and back surface bus bar electrodes formed on each of the silicon substrate, a specific metal impurities A thermal diffusion process is performed in a state where the silicon substrate is attached to a position directly below the bus bar electrode on the surface opposite to the surface forming the pn junction, and the metal impurity is formed on the surface layer and the local surface of the silicon substrate. A method for manufacturing a solar cell, comprising: forming an individual identification information portion of a cell observed as a dark portion by an electric field excitation light emission (EL) method on a silicon substrate surface.
[ 7 ] The method for producing a solar battery cell according to [ 6 ], wherein the metal impurity is Fe.
[ 8 ] The attachment of the metal impurity to the silicon substrate surface is performed by bringing a member made of the metal impurity into contact with a predetermined position of the silicon substrate surface. [ 6 ] or [ 7 ] A method for producing a solar battery cell.
[ 9 ] Any one of [6] to [8] , wherein the thermal diffusion treatment is performed in combination with a heat treatment for forming a diffusion layer to be the pn junction or a thermal oxidation treatment before forming the antireflection film. The manufacturing method of the photovoltaic cell of crab.
[10] The method for manufacturing a solar cell according to any one of [6] to [9], wherein the thermal diffusion treatment is performed at 1,000 ° C. or lower.

本発明によれば、セルの個体識別情報部は必要最小限の大きさで局所的に配置されるので基板表面にダメージを与えず、太陽電池セルとしての特性を低下させることはなく、電界励起発光(EL)法によって太陽電池セルを発光させた場合に所定パターンのセルの個体識別情報部がシリコン基板の所定位置で暗部として観察されるので、当該太陽電池セルの個体識別が可能となる。また、通常はそのセルの個体識別情報部が肉眼で見えないことから美観を損なうこともない。   According to the present invention, the individual identification information portion of the cell is locally arranged with the minimum necessary size, so that the substrate surface is not damaged and the characteristics as a solar cell are not deteriorated. When the solar cell is caused to emit light by the light emission (EL) method, the individual identification information portion of the cell having a predetermined pattern is observed as a dark portion at a predetermined position on the silicon substrate, so that the individual identification of the solar cell is possible. Further, since the individual identification information part of the cell is usually not visible with the naked eye, the aesthetic appearance is not impaired.

本発明に係る太陽電池セルの前提となるpn接合型太陽電池セルの受光面側の構成例を示す概観図である。It is a general-view figure which shows the structural example by the side of the light-receiving surface of the pn junction type photovoltaic cell used as the premise of the photovoltaic cell which concerns on this invention. 本発明に係る太陽電池セルの前提となるpn接合型太陽電池セルの裏面側の構成例を示す概観図である。It is a general-view figure which shows the structural example by the side of the back surface of the pn junction type photovoltaic cell used as the premise of the photovoltaic cell which concerns on this invention. 本発明に係る太陽電池セルの前提となるpn接合型太陽電池セルの構成例を示す断面図である。It is sectional drawing which shows the structural example of the pn junction type photovoltaic cell used as the premise of the photovoltaic cell which concerns on this invention. 本発明に係る太陽電池セルの前提となる高効率太陽電池の裏面側の構成例を示す概観図である。It is a general-view figure which shows the structural example by the side of the back surface of the high efficiency solar cell used as the premise of the photovoltaic cell which concerns on this invention. 本発明に係る太陽電池セルの前提となる高効率太陽電池の構成例を示す断面図である。It is sectional drawing which shows the structural example of the high efficiency solar cell used as the premise of the photovoltaic cell which concerns on this invention. 本発明に係る太陽電池セルの構成例を示す断面図である。It is sectional drawing which shows the structural example of the photovoltaic cell which concerns on this invention. 本発明に係る太陽電池セルの製造方法の一例を示す断面図であり、(a)はシリコン基板に金属不純物を付与した状態、(b)はエミッタ層とセルの個体識別情報部を形成した状態、(c)は反射防止膜及び裏面電極を形成した状態、(d)は受光面電極を形成した状態を示す。It is sectional drawing which shows an example of the manufacturing method of the photovoltaic cell which concerns on this invention, (a) is the state which provided the metal impurity to the silicon substrate, (b) is the state which formed the individual identification information part of the emitter layer and the cell (C) shows a state in which an antireflection film and a back electrode are formed, and (d) shows a state in which a light receiving surface electrode is formed. 本発明に係る太陽電池セルの製造方法で用いるセルの個体識別情報部形成用の治具の構成例を示す斜視図である。It is a perspective view which shows the structural example of the jig | tool for individual identification information part formation of the cell used with the manufacturing method of the photovoltaic cell concerning this invention.

以下に、本発明に係る太陽電池セル及びその製造方法の構成について説明する。
図6は、本発明に係る太陽電池セルの構成例を示す断面図である。
本発明の太陽電池セルは、図6に示すように、第1導電型のシリコン基板601と、シリコン基板601の受光面側に設けられる第1導電型と反対の導電型(第2導電型)の高濃度選択拡散層であるエミッタ層603と、エミッタ層603上に設けられる反射防止膜605と、反射防止膜605上に設けられる受光面電極607と、シリコン基板601の非受光面(裏面)の所定位置にシリコン基板601内に特定の金属不純物が拡散した状態で設けられるセルの個体識別情報部604と、シリコン基板601の非受光面側に設けられる裏面電極606とを備える。
Below, the structure of the photovoltaic cell which concerns on this invention, and its manufacturing method is demonstrated.
FIG. 6 is a cross-sectional view showing a configuration example of a solar battery cell according to the present invention.
As shown in FIG. 6, the solar cell of the present invention includes a first conductivity type silicon substrate 601 and a conductivity type opposite to the first conductivity type provided on the light receiving surface side of the silicon substrate 601 (second conductivity type). An emitter layer 603 which is a high concentration selective diffusion layer, an antireflection film 605 provided on the emitter layer 603, a light receiving surface electrode 607 provided on the antireflection film 605, and a non-light receiving surface (back surface) of the silicon substrate 601. And a back surface electrode 606 provided on the non-light-receiving surface side of the silicon substrate 601 and a cell individual identification information portion 604 provided in a state where specific metal impurities are diffused in the silicon substrate 601.

ここで、セルの個体識別情報部604は、電界励起発光(EL)法により暗部として観察される領域であって、シリコン基板601の裏面に局所的に所定パターンで配置されてなるものである。   Here, the cell individual identification information portion 604 is a region observed as a dark portion by an electric field excitation light emission (EL) method, and is locally arranged in a predetermined pattern on the back surface of the silicon substrate 601.

ここでいう電界励起発光法(以下、EL法)とは、pn接合及び電極を有するシリコン基板に順方向電圧を印加した際の発光状態を検知する方法であり、例えばシリコン太陽電池セルの場合は、裏面バスバー電極及び受光面バスバー電極にプローブを押し当て、数100mV〜数Vの電圧を印加して、1,100nm付近の波長の発光をCCD(Charge Coupled Device)カメラ等で検知するものである。   The electric field excitation light emission method (hereinafter referred to as EL method) is a method for detecting a light emission state when a forward voltage is applied to a silicon substrate having a pn junction and an electrode. For example, in the case of a silicon solar cell. The probe is pressed against the back surface bus bar electrode and the light receiving surface bus bar electrode, a voltage of several hundred mV to several V is applied, and light emission with a wavelength near 1,100 nm is detected by a CCD (Charge Coupled Device) camera or the like. .

このとき、シリコン基板601において通常の発光がある箇所は明部として観察され、シリコン基板601の少数キャリアライフタイムが低い箇所では発光の少ない暗部として観察される。   At this time, a portion where normal light emission is present in the silicon substrate 601 is observed as a bright portion, and a portion where the minority carrier lifetime of the silicon substrate 601 is low is observed as a dark portion where light emission is small.

セルの個体識別情報部604は、シリコン基板601にFe、Au、Pt、Ni、S、Mn、Ag、Co、Zn、Cu、Ta、Mo、Nb、Zr、W、Ti、V、Cr、Alなどのいずれかの特定の金属不純物を熱拡散したもの(金属汚染箇所)であることが好ましく、ここで用いる金属不純物としてはFeが好適である。このセルの個体識別情報部604は、意図的にシリコン基板601を汚染した領域ともいえる。   The cell identification information portion 604 is formed on the silicon substrate 601 with Fe, Au, Pt, Ni, S, Mn, Ag, Co, Zn, Cu, Ta, Mo, Nb, Zr, W, Ti, V, Cr, Al. It is preferable that any specific metal impurity such as the above is thermally diffused (metal contamination site), and Fe is suitable as the metal impurity used here. The individual identification information part 604 of the cell can be said to be an area where the silicon substrate 601 is intentionally contaminated.

シリコン中に鉄(Fe)などの特定の金属不純物が拡散すると、少数キャリアライフタイムは低下する。したがって、シリコン基板601面内に局所的に特定の金属不純物を拡散させてEL像を観察すれば、セルの個体識別情報部604のみが周囲に比べて暗くなる像が得られる。   When a specific metal impurity such as iron (Fe) diffuses into silicon, the minority carrier lifetime decreases. Therefore, if an EL image is observed by diffusing specific metal impurities locally in the surface of the silicon substrate 601, an image in which only the individual identification information portion 604 of the cell becomes darker than the surroundings can be obtained.

このとき、セルの個体識別情報部604の少数キャリアライフタイムは低下しているので、太陽電池セルの特性は低下する可能性があるが、セルの個体識別情報部604を必要最小限の大きさにすれば、これによるセルの特性低下は生じない。詳しくは、セルの個体識別情報部604のシリコン基板601の基板面における大きさが2〜20mmであることが好ましい。大きさが2mm未満ではEL法によるパターン認識が困難となる場合があり、20mmを超えると該セルの個体識別情報部604による少数キャリアライフタイムの低下の影響でセル特性を低下させるおそれがある。   At this time, since the minority carrier lifetime of the cell individual identification information unit 604 is decreased, the characteristics of the solar battery cell may be decreased. However, the cell individual identification information unit 604 has a minimum necessary size. In this case, the cell characteristics do not deteriorate due to this. Specifically, the size of the individual identification information portion 604 of the cell on the substrate surface of the silicon substrate 601 is preferably 2 to 20 mm. If the size is less than 2 mm, pattern recognition by the EL method may be difficult, and if it exceeds 20 mm, the cell characteristics may be deteriorated due to the influence of the minority carrier lifetime reduction by the individual identification information unit 604 of the cell.

また、セルの個体識別情報部604は、電極直下のシリコン基板601に形成されていることがセル特性の低下を抑制する上で好ましく、特に幅広のバスバー電極の下に形成されることが好適である。   In addition, it is preferable that the cell individual identification information portion 604 is formed on the silicon substrate 601 immediately below the electrode in order to suppress deterioration of cell characteristics, and it is particularly preferable that the cell individual identification information portion 604 is formed below the wide bus bar electrode. is there.

また、セルの個体識別情報部604は、シリコン基板601の基板面上で円形、矩形等の定形の略幾何学形状を呈していることがEL法によりパターン認識する上で好ましい。   In addition, it is preferable that the cell individual identification information portion 604 has a regular, substantially geometric shape such as a circle or rectangle on the substrate surface of the silicon substrate 601 for pattern recognition by the EL method.

このように、セルの個体識別情報部604は、EL法により明るく光るセル全体の中で点状の暗部が所定パターンで配置されたものとして観察されるが、この暗部の配置パターンと数字又は文字との対応を予め決めておけば、その太陽電池セル自体に関する情報を表示するものとして利用することができる。特に、太陽電池セル量産の際は、シリコン基板601の所定の位置のセルの個体識別情報部604(暗部)の有無の関係と、番号ないし文字との対応を予め割り当てておけば、太陽電池セルの個体識別としての情報の表示が可能となる。例えば、太陽電池セル製造の時間毎、日毎、ロット毎等に、セルの個体識別情報部604の配置パターンを変えればよく、セルの個体識別情報部604(暗部)の個数は最大でも40あれば十分である。すなわち、セルの個体識別情報部604の数が1〜40であることが好ましい。
なお、セルの個体識別情報部604は、通常時には肉眼では見えないため、太陽電池セルの美観を損ねることがない。
As described above, the cell individual identification information portion 604 is observed as a point-shaped dark portion arranged in a predetermined pattern in the whole cell that shines brightly by the EL method. Can be used for displaying information related to the solar cell itself. In particular, in the case of mass production of solar cells, if the relationship between the presence / absence of the individual identification information portion 604 (dark portion) of a cell at a predetermined position on the silicon substrate 601 and the correspondence between numbers and characters are allocated in advance, the solar cells It is possible to display information as individual identification. For example, the arrangement pattern of the cell individual identification information part 604 may be changed for each hour, day, lot, etc. of solar cell production, and the maximum number of cell individual identification information parts 604 (dark parts) is 40. It is enough. That is, it is preferable that the number of the individual identification information parts 604 of a cell is 1-40.
Note that the cell individual identification information portion 604 is not normally visible to the naked eye, and thus does not impair the aesthetic appearance of the solar battery cell.

本発明の太陽電池セルの製造方法の例について、図7に基づいて説明する。ここでは、製造方法の一例として単結晶シリコン基板を用いた場合を基に述べるが、シリコン基板としては単結晶シリコンだけでなく、多結晶シリコン基板を用いても同様の効果が得られる。また、本発明は以下の方法で作製された太陽電池セルに限られるものではない。   The example of the manufacturing method of the photovoltaic cell of this invention is demonstrated based on FIG. Here, a case where a single crystal silicon substrate is used as an example of the manufacturing method will be described, but the same effect can be obtained by using not only single crystal silicon but also a polycrystalline silicon substrate as the silicon substrate. Moreover, this invention is not restricted to the photovoltaic cell produced with the following method.

(基板の準備(図7(a)))
高純度シリコンにホウ素あるいはガリウムのようなIII族元素をドープし、比抵抗0.1〜5Ω・cmとしたアズカット単結晶{100}p型シリコン基板601の表面のスライスダメージを、濃度5〜60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、ふっ酸と硝酸の混酸などを用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法いずれの方法によって作製されてもよいが、より安価に作製できるCZ法の方が好ましい。
(Preparation of substrate (FIG. 7A))
Slicing damage on the surface of an as-cut single crystal {100} p-type silicon substrate 601 having a specific resistance of 0.1 to 5 Ω · cm by doping high purity silicon with a group III element such as boron or gallium has a concentration of 5 to 60 Etching is performed using a high-concentration alkali such as sodium hydroxide or potassium hydroxide of mass%, or a mixed acid of hydrofluoric acid and nitric acid. The single crystal silicon substrate may be produced by either the CZ method or the FZ method, but the CZ method is preferred because it can be produced at a lower cost.

引き続き、基板表面にテクスチャと呼ばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ溶液(濃度1〜10質量%、温度60〜100℃)中に10〜30分程度浸漬することで容易に作製される。上記溶液中に、所定量の2−プロパノールを溶解させ、反応を促進させることが多い。   Subsequently, minute unevenness called texture is formed on the substrate surface. Texture is an effective way to reduce solar cell reflectivity. The texture should be immersed for about 10 to 30 minutes in an alkali solution (concentration: 1 to 10% by mass, temperature: 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, etc. Easy to make. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction.

テクスチャ形成後、塩酸、硫酸、硝酸、ふっ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。経済的及び効率的見地から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5〜5質量%の過酸化水素水を混合させ、60〜90℃に加温して洗浄してもよい。   After texture formation, washing is performed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or the like, or a mixture thereof. From an economic and efficient standpoint, washing in hydrochloric acid is preferred. In order to improve the cleanliness, 0.5 to 5 mass% hydrogen peroxide solution may be mixed in the hydrochloric acid solution and heated to 60 to 90 ° C. for washing.

次に、後述する熱処理前の段階で、本発明の構成を具現化するために、シリコン基板601の裏面(pn接合形成面とは反対面)側に汚染源として金属不純物602を付与する。   Next, in order to embody the configuration of the present invention, a metal impurity 602 is applied as a contamination source to the back surface (the surface opposite to the pn junction formation surface) of the silicon substrate 601 at a stage before the heat treatment described later.

シリコン基板601の基板面への金属不純物602の付与は、前記特定の金属不純物からなる金属部材をシリコン基板面の所定位置に接触させることにより金属不純物602を付着させる方法が簡便であり好適である。例えば、図8に示す治具(印刷機)を用いると、所定のパターンで配置された特定の金属不純物からなるロッド部材803の先端部をシリコン基板601に接触させることで金属不純物602の付与が可能である。   For the application of the metal impurity 602 to the substrate surface of the silicon substrate 601, a method of attaching the metal impurity 602 by bringing a metal member made of the specific metal impurity into contact with a predetermined position on the silicon substrate surface is simple and preferable. . For example, when the jig (printing machine) shown in FIG. 8 is used, the metal impurity 602 is applied by bringing the tip of a rod member 803 made of a specific metal impurity arranged in a predetermined pattern into contact with the silicon substrate 601. Is possible.

図8に示す治具は、予め一定の間隔で複数行及び複数列に開口部802を設けた(図8では、2行×6列に円形の開口部802を設けている)基盤801と、開口部802に挿入され立設されたFe等の特定の金属不純物からなる円柱形状のロッド部材803とを備えている。これによれば、任意の開口部802にロッド部材803を立設することで、任意のパターンでのロッド部材803の接触ができ、その結果、セルの個体識別情報部の任意のパターンでの配置が可能である。   The jig shown in FIG. 8 is provided with a base 801 in which openings 802 are provided in a plurality of rows and a plurality of columns at predetermined intervals (in FIG. 8, circular openings 802 are provided in 2 rows × 6 columns); And a cylindrical rod member 803 made of a specific metal impurity such as Fe inserted in the opening 802 and standing. According to this, by arranging the rod member 803 in an arbitrary opening 802, the rod member 803 can be contacted in an arbitrary pattern, and as a result, the cell's individual identification information section is arranged in an arbitrary pattern Is possible.

なお、基盤801は、シリコン基板601の基板面に対応する形状を有しており、太陽電池セルとしてのシリコン基板601の所定の位置(例えば電極形成位置)に対応する位置に開口部802が設けられている。例えば、図8では、図1のバスバー電極101に対応するように、2行×6列に円形の開口部802が設けられている。   Note that the base 801 has a shape corresponding to the substrate surface of the silicon substrate 601, and an opening 802 is provided at a position corresponding to a predetermined position (for example, an electrode formation position) of the silicon substrate 601 as a solar battery cell. It has been. For example, in FIG. 8, circular openings 802 are provided in 2 rows × 6 columns so as to correspond to the bus bar electrodes 101 in FIG. 1.

また、ロッド部材803のシリコン基板601の基板面に接触する先端部分は、幾何学形状(図8では円形)を有していることが好ましい。それにより形成されるセルの個体識別情報部の配置パターンの認識が容易になる。   Moreover, it is preferable that the front-end | tip part which contacts the board | substrate surface of the silicon substrate 601 of the rod member 803 has a geometric shape (circle in FIG. 8). This facilitates the recognition of the arrangement pattern of the individual identification information part of the formed cell.

(エミッタ層及びセルの個体識別情報部の形成(図7(b)))
次に、オキシ塩化リンを用いた気相拡散法(例えば、800〜950℃、窒素と酸素の混合ガス雰囲気中で保持時間0〜4時間程度の熱処理条件)によりエミッタ層(n+層)603を形成する。一般的なシリコン太陽電池は、pn接合を受光面にのみ形成する必要があり、これを達成するためにシリコン基板601同士を2枚重ね合わせた状態で熱処理したりして、裏面にpn接合ができないような工夫を施す必要がある。また、上記気相拡散法に限らず、リンなどのドープ材を含む拡散剤をシリコン基板601の一表面上のみに塗布して熱処理し、エミッタ層603を形成してもよい。
(Formation of individual identification information portion of emitter layer and cell (FIG. 7B))
Next, an emitter layer (n + layer) 603 is formed by a vapor phase diffusion method using phosphorus oxychloride (for example, a heat treatment condition of 800 to 950 ° C. and a retention time of about 0 to 4 hours in a mixed gas atmosphere of nitrogen and oxygen). Form. In general silicon solar cells, it is necessary to form a pn junction only on the light-receiving surface, and in order to achieve this, heat treatment is performed in a state where two silicon substrates 601 are overlapped, and the pn junction is formed on the back surface. It is necessary to devise something that cannot be done. Further, the emitter layer 603 may be formed by applying a diffusing agent including a doping material such as phosphorus to only one surface of the silicon substrate 601 and performing heat treatment, without being limited to the vapor phase diffusion method.

この熱処理により、エミッタ層603の形成とともに、金属不純物602はシリコン基板601中に拡散され、局所的なセルの個体識別情報部604が形成される。このような方法を用いることで、ロッド部材803の接触箇所においてのみ少数キャリアライフタイムを低下させることができる。このセルの個体識別情報部(金属汚染箇所)604は、セル化の後にEL法により観察することで点状の暗部として認識される。なお、セルの個体識別情報部604の箇所では少数キャリアライフタイムを低下させてしまうことから、セル特性の低下の可能性が懸念されるが、前述のように所定の小ささで所定数のセルの個体識別情報部604を所定位置に配置したことによる局所的な少数キャリアライフタイムの低下ではセル特性は殆ど低下しない。   With this heat treatment, the emitter layer 603 is formed, and the metal impurities 602 are diffused into the silicon substrate 601 to form local cell individual identification information portions 604. By using such a method, the minority carrier lifetime can be reduced only at the contact point of the rod member 803. The individual identification information portion (metal contamination portion) 604 of the cell is recognized as a dot-like dark portion by observing by EL method after cell formation. In addition, since the minority carrier lifetime is lowered at the location of the individual identification information portion 604 of the cell, there is a concern that the cell characteristic may be lowered. However, as described above, a predetermined number of cells with a predetermined small size. When the individual identification information portion 604 is placed at a predetermined position, the cell characteristics are hardly deteriorated when the local minority carrier lifetime is reduced.

また、本熱処理工程における拡散処理は高温であるため、通常シリコン基板601は石英のボート等に移載されるが、この移載時に前述したようなシリコン基板601に図8の治具のロッド部材803を接触させる工程を設けるだけで、処理時間を延ばすことなく金属不純物の付与(付着)処理が可能である。   In addition, since the diffusion process in this heat treatment process is high temperature, the silicon substrate 601 is usually transferred to a quartz boat or the like, and the rod member of the jig shown in FIG. By only providing a step of bringing 803 into contact, it is possible to apply (attach) metal impurities without extending the processing time.

(ガラス層除去、反射防止膜及び裏面電極形成(図7(c)))
拡散処理後、表面にできたガラスをふっ酸などで除去し、受光面側に反射防止膜605の形成を行う。反射防止膜605としては、SiNx、SiO2、フッ化マグネシウム、酸化アルミニウム、酸化チタン、酸化タンタル、硫化亜鉛等が用いられ、膜厚は50〜150nm程度(材料の屈折率に依存する)で十分な反射防止効果が得られる。SiNx膜を用いる場合は、プラズマCVD装置を用い約100nm製膜する。反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、プロセス圧力の調整、反応ガスの希釈、更には、基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。
(Glass layer removal, antireflection film and back electrode formation (FIG. 7C))
After the diffusion treatment, the glass formed on the surface is removed with hydrofluoric acid or the like, and an antireflection film 605 is formed on the light receiving surface side. The antireflection film 605, SiNx, SiO 2, magnesium fluoride, aluminum oxide, titanium oxide, tantalum oxide, zinc sulfide or the like is used, the film thickness (depending on the refractive index of the material) 50 to 150 nm approximately with sufficient A good anti-reflection effect. In the case of using a SiNx film, a film of about 100 nm is formed using a plasma CVD apparatus. As the reaction gas, monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and the reaction gas diluted. Furthermore, when polycrystalline silicon is used for the substrate, hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.

高い光電変換効率を得るためには、上記CVD処理の前に薄い熱酸化を施すことが有効である。シリコン基板601を800〜1,000℃の酸素雰囲気中で保持時間0〜60分程度処理することで、数〜数10nmのSiO2膜が形成される。この熱酸化処理工程も処理温度が高温であるため、通常、シリコン基板601は石英のボート等に移載される。そのため、前述したエミッタ層603形成処理の際にセルの個体識別情報部604を形成するのに代えて、この移載時に、例えば図8に示す治具を用いてシリコン基板601の基板面にロッド部材803先端部を接触させて金属不純物602を付着させ、熱酸化処理を行うことで、この接触箇所のみ少数キャリアライフタイムを低下させることができる。この場合もセル化の後にEL法により観察することで所定の配置パターンの暗部を認識することが可能となる。 In order to obtain high photoelectric conversion efficiency, it is effective to perform thin thermal oxidation before the CVD process. By processing the silicon substrate 601 in an oxygen atmosphere at 800 to 1,000 ° C. for a holding time of about 0 to 60 minutes, a SiO 2 film of several to several tens of nm is formed. Since the thermal oxidation process is also performed at a high temperature, the silicon substrate 601 is usually transferred to a quartz boat or the like. Therefore, instead of forming the cell individual identification information portion 604 in the emitter layer 603 formation process described above, a rod is attached to the substrate surface of the silicon substrate 601 using, for example, a jig shown in FIG. The minority carrier lifetime can be reduced only at the contact point by bringing the tip of the member 803 into contact to attach the metal impurity 602 and performing thermal oxidation treatment. Also in this case, it is possible to recognize a dark portion of a predetermined arrangement pattern by observing by EL method after cell formation.

次に、シリコン基板601の裏面のほぼ全面にAlを裏面電極606として製膜する。Al膜の形成には、蒸着法、スパッタ法等のPVD法や、Al粉末を有機物バインダで混合したペーストをスクリーン版を用いて印刷するスクリーン印刷法が用いられる。Alの膜厚は1〜10μmあれば十分である。   Next, Al is formed as a back electrode 606 on almost the entire back surface of the silicon substrate 601. For the formation of the Al film, a PVD method such as a vapor deposition method or a sputtering method, or a screen printing method in which a paste obtained by mixing Al powder with an organic binder is printed using a screen plate is used. A film thickness of 1 to 10 μm is sufficient.

次いで、シリコン基板601の同じ面に集電用のバスバー電極(非図示)を製膜する。集電電極の材質は、銀(Ag)、銅(Cu)、白金(Pt)、金(Au)が使用でき、これらの固溶体でもかまわない。抵抗を小さく抑える必要があることから、AgもしくはCuあるいはこれらの固溶体が好ましい。上記同様、蒸着法、スパッタ法等のPVD法を用いたり、各金属粉末を有機物バインダで混合したペーストをスクリーン版を用いて印刷するスクリーン印刷法のいずれを用いても形成することができる。
製膜後、5〜30分間、500〜900℃の温度で熱処理することで、Al電極と基板の電気的接触性(コンタクト抵抗)が改善される。
Next, a current-collecting bus bar electrode (not shown) is formed on the same surface of the silicon substrate 601. Silver (Ag), copper (Cu), platinum (Pt), and gold (Au) can be used as the material for the current collecting electrode, and these solid solutions may be used. Since it is necessary to keep the resistance small, Ag or Cu or a solid solution thereof is preferable. Similarly to the above, it can be formed by any of PVD methods such as vapor deposition and sputtering, and screen printing methods in which a paste obtained by mixing each metal powder with an organic binder is printed using a screen plate.
By performing heat treatment at a temperature of 500 to 900 ° C. for 5 to 30 minutes after film formation, the electrical contact property (contact resistance) between the Al electrode and the substrate is improved.

(受光面電極形成(図7(d))
受光面電極607も蒸着法、スパッタ法、スクリーン印刷法いずれかの方法で形成される。スクリーン印刷法の場合は、Ag粉末とガラスフリットを有機物バインダと混合したAgペーストをスクリーン印刷した後、熱処理によりSiNx膜にAg粉末を貫通させ(ファイアースルー)、受光面電極607とシリコン基板601を導通させる。
(Light-receiving surface electrode formation (FIG. 7D))
The light receiving surface electrode 607 is also formed by any one of a vapor deposition method, a sputtering method, and a screen printing method. In the case of the screen printing method, an Ag paste in which Ag powder and glass frit are mixed with an organic binder is screen-printed, and then the Ag powder is passed through the SiNx film by heat treatment (fire-through). Conduct.

以上のように、本発明の太陽電池セルの製造方法によれば、熱処理工程の直前にシリコン基板601の所定の箇所に局所的に金属不純物602を付与し、熱処理を施すので、肉眼では観察できないが、EL法により暗部が所定パターンで配置された模様として観察できるセルの個体識別情報部604を形成することが可能となる。   As described above, according to the method for manufacturing a solar cell of the present invention, the metal impurity 602 is locally applied to a predetermined portion of the silicon substrate 601 immediately before the heat treatment step, and the heat treatment is performed. However, it becomes possible to form the cell individual identification information portion 604 that can be observed as a pattern in which dark portions are arranged in a predetermined pattern by the EL method.

なお、工数の削減という観点から、裏面電極606形成及び受光面電極607の焼成は一度に行うことも可能であるし、受光面電極607を先に形成するなどの形成順序も変更可能である。   From the viewpoint of reducing the number of steps, the back electrode 606 formation and the light receiving surface electrode 607 can be performed at once, and the order of formation such as forming the light receiving surface electrode 607 first can be changed.

また、上記例では、金属不純物付与処理をエミッタ層603形成の熱処理工程の直前、熱酸化工程の直前のいずれかの工程前に実施すればよい。あるいは、CVD処理工程前等の他のシリコン基板601が加熱される工程の直前に施してもよい。   In the above example, the metal impurity application process may be performed immediately before the heat treatment process for forming the emitter layer 603 or before any process immediately before the thermal oxidation process. Alternatively, it may be performed immediately before the process of heating another silicon substrate 601 such as before the CVD process.

また、上記では裏面電極606としてシリコン基板601の裏面にAlを全面に製膜した構成例を提示しているが、裏面電極606を櫛歯状とし電極部以外をSiNx膜やSiO2膜で保護した両面受光型太陽電池セルにも、本発明は適用可能である。本発明により、美観を損なわない両面受光型太陽電池セルを供給できる。 Further, in the above presents a configuration example was formed of Al on the entire back surface of the silicon substrate 601 as a back electrode 606, but protects the non-electrode portion and the back electrode 606 and the comb-shaped with SiNx film or SiO 2 film The present invention is also applicable to the double-sided light receiving solar cell. According to the present invention, a double-sided light-receiving solar cell that does not impair the beauty can be supplied.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

本発明の有効性を確認するため、図6に示す本発明の太陽電池セル(実施例1)と図3に示す通常構成の太陽電池セル(比較例1)それぞれを作製し、比較を行った。   In order to confirm the effectiveness of the present invention, the solar cell of the present invention (Example 1) shown in FIG. 6 and the solar cell of the normal configuration shown in FIG. 3 (Comparative Example 1) were prepared and compared. .

[実施例1]
厚さ200μm、比抵抗1Ω・cmの、ホウ素ドープ{100}p型アズカットシリコン基板6枚に対し、熱濃水酸化カリウム水溶液によりダメージ層を除去後、水酸化カリウム/2−プロパノール水溶液中に浸漬しテクスチャ形成を行い、引き続き塩酸/過酸化水素混合溶液中で洗浄を行った。
次に、図8に示すFe製のロッド部材803(円形先端部の径5mm)を所定パターンで配置した治具を用いて、ロッド部材803の先端部をシリコン基板裏面に接触させ、次いで石英ボートへ裏面同士を重ねて移載した。
次に、シリコン基板について、オキシ塩化リン雰囲気下、870℃で熱処理し、エミッタ層(n+層)を形成した。シート抵抗は約36Ωとなった。熱拡散処理後、ふっ酸にてシリコン基板におけるガラスを除去し、洗浄、乾燥した。
以上の処理の後、プラズマCVD装置を用いて、シリコン基板にSiNx膜を受光面反射防止膜として約95nm形成した。
次いで、シリコン基板の裏面のほぼ全面にAlペーストをスクリーン印刷法にて印刷し、200℃のホットプレート上で乾燥させた。
引続き、裏面Ag電極、受光面Ag電極をスクリーン印刷法にて順次形成し乾燥させた。この後、ベルト炉にて850℃に加熱した空気雰囲気下で熱処理を行い、シリコン基板と電極の電気的接触の改善を行った。
[Example 1]
After removing the damaged layer with a hot concentrated potassium hydroxide aqueous solution on six boron-doped {100} p-type as-cut silicon substrates having a thickness of 200 μm and a specific resistance of 1 Ω · cm, Dipping and texture formation were followed by washing in a hydrochloric acid / hydrogen peroxide mixed solution.
Next, the tip of the rod member 803 is brought into contact with the back surface of the silicon substrate using a jig in which a rod member 803 made of Fe (circular tip diameter 5 mm) shown in FIG. Reprinted with the back surfaces overlapped.
Next, the silicon substrate was heat-treated at 870 ° C. in a phosphorus oxychloride atmosphere to form an emitter layer (n + layer). The sheet resistance was about 36Ω. After the thermal diffusion treatment, the glass on the silicon substrate was removed with hydrofluoric acid, washed and dried.
After the above processing, a SiNx film was formed to a thickness of about 95 nm as a light-receiving surface antireflection film on a silicon substrate using a plasma CVD apparatus.
Next, Al paste was printed on almost the entire back surface of the silicon substrate by a screen printing method and dried on a hot plate at 200 ° C.
Subsequently, a back surface Ag electrode and a light receiving surface Ag electrode were sequentially formed by a screen printing method and dried. Thereafter, heat treatment was performed in an air atmosphere heated to 850 ° C. in a belt furnace to improve electrical contact between the silicon substrate and the electrode.

[比較例1]
実施例1において、シリコン基板にテクスチャ形成、洗浄後、金属不純物の付与を行わず、そのままシリコン基板の裏面同士を重ねて移載してエミッタ層を形成し、それ以外は実施例1と同じ条件で太陽電池セルを作製した。
[Comparative Example 1]
In Example 1, after forming and cleaning the texture on the silicon substrate, metal impurities are not applied, and the back surface of the silicon substrate is transferred as it is to form an emitter layer. Otherwise, the same conditions as in Example 1 A solar battery cell was produced.

以上によって作製された太陽電池セルは、外観上は肉眼による違いは確認できなかった。しかしながら、EL法にて順方向に6アンペアの電流を流した際の発光を観察した結果、実施例1では、エミッタ層の熱拡散処理前に金属不純物(Fe)を付与した全ての箇所に対応して暗点が確認された。一方、比較例1ではEL法による暗点は確認されなかった。   The solar cell produced as described above could not be confirmed with the naked eye in appearance. However, as a result of observing light emission when a current of 6 amperes flows in the forward direction by the EL method, in Example 1, it corresponds to all the places to which the metal impurity (Fe) was added before the thermal diffusion treatment of the emitter layer. And a dark spot was confirmed. On the other hand, in Comparative Example 1, no dark spot was confirmed by the EL method.

次に、作製された太陽電池をセル25℃、100mW/cm2、スペクトルAM1.5グローバルの擬似太陽光照射時の電気特性を測定した。表1に、その結果(6枚の平均値)を示す。
実施例1は、意図的に汚染物質(特定の金属不純物)を付着させ拡散させたものの、形成されたセルの個体識別情報部(金属汚染箇所)が小さかったため、太陽電池特性の低下は見られず、比較例1と同等であった。
Next, the electric characteristics at the time of irradiating pseudo solar light with a cell of 25 ° C., 100 mW / cm 2 , and a spectrum AM of 1.5 global were measured. Table 1 shows the result (average value of 6 sheets).
In Example 1, although contaminants (specific metal impurities) were intentionally attached and diffused, since the individual identification information part (metal contamination part) of the formed cell was small, there was a decrease in solar cell characteristics. It was equivalent to Comparative Example 1.

101 受光面バスバー電極
102、301、501、607 受光面電極(フィンガー電極)
103、203、304、403、504、601 シリコン基板
201、401 裏面バスバー電極
202、305、606 裏面電極
302、502、605 反射防止膜(パッシベーション膜)
303、503、603 拡散層(エミッタ層)
402、506 裏面フィンガー電極
505 パッシベーション膜
602 金属不純物(汚染源)
604 セルの個体識別情報部(金属汚染箇所)
801 基盤
802 開口部
803 ロッド部材
101 Light-receiving-surface busbar electrode 102, 301, 501, 607 Light-receiving-surface electrode (finger electrode)
103, 203, 304, 403, 504, 601 Silicon substrate 201, 401 Back side bus bar electrode 202, 305, 606 Back side electrode 302, 502, 605 Antireflection film (passivation film)
303, 503, 603 Diffusion layer (emitter layer)
402, 506 Back finger electrode 505 Passivation film 602 Metal impurity (contamination source)
604 Cell individual identification information section (metal contamination location)
801 Base 802 Opening 803 Rod member

Claims (10)

一方の面にpn接合を有するシリコン基板と、該シリコン基板の表裏面それぞれに形成されたバスバー電極を含む電極とを備える太陽電池セルであって、前記シリコン基板の前記pn接合形成面とは反対面の前記バスバー電極直下の表層かつ局所に特定の金属不純物を拡散した箇所を電界励起発光(EL)法により暗部として観察されるセルの個体識別情報部として有することを特徴とする太陽電池セル。 A silicon substrate having a pn junction on one surface, a solar cell comprising an electrode comprising a bus bar electrode front and back surfaces are formed on each of the silicon substrate, and the pn junction formation surface of the silicon substrate A solar cell having a surface layer directly below the bus bar electrode on the opposite surface and a portion where a specific metal impurity is locally diffused as an individual identification information portion of a cell observed as a dark portion by an electric field excitation light emission (EL) method . 前記金属不純物がFeであることを特徴とする請求項1に記載の太陽電池セル。The solar cell according to claim 1, wherein the metal impurity is Fe. 前記セルの個体識別情報部の数が1〜40であることを特徴とする請求項1又は2に記載の太陽電池セル。   The number of the individual identification information part of the said cell is 1-40, The photovoltaic cell of Claim 1 or 2 characterized by the above-mentioned. 前記セルの個体識別情報部のシリコン基板面における大きさが2〜20mmであることを特徴とする請求項1〜3のいずれか1項に記載の太陽電池セル。   The solar cell according to any one of claims 1 to 3, wherein a size of the individual identification information portion of the cell on the surface of the silicon substrate is 2 to 20 mm. 前記セルの個体識別情報部の配置パターンは、当該太陽電池セルの個体識別情報を示すものであることを特徴とする請求項1〜のいずれか1項に記載の太陽電池セル。 The solar cell according to any one of claims 1 to 4 , wherein the arrangement pattern of the individual identification information part of the cell indicates individual identification information of the solar cell. 一方の面にpn接合を有するシリコン基板と、該シリコン基板の表裏面それぞれに形成されたバスバー電極を含む電極とを備える太陽電池セルの製造方法であって、特定の金属不純物をシリコン基板の前記pn接合を形成する面とは反対面となる面の前記バスバー電極直下となる位置に付着させた状態で熱拡散処理を行い、前記金属不純物をシリコン基板のその面の表層かつ局所に拡散させて、電界励起発光(EL)法により暗部として観察されるセルの個体識別情報部をシリコン基板面に形成することを特徴とする太陽電池セルの製造方法。 A silicon substrate having a pn junction on one surface, a method of manufacturing a solar cell comprising an electrode comprising a front and back surface bus bar electrodes formed on each of the silicon substrate, a specific metal impurities of the silicon substrate Thermal diffusion treatment is performed in a state of being attached to a position directly below the bus bar electrode on a surface opposite to the surface forming the pn junction, and the metal impurities are diffused locally on the surface of the surface of the silicon substrate. A method for manufacturing a solar cell, comprising forming an individual identification information portion of a cell observed as a dark portion by an electric field excitation light emission (EL) method on a silicon substrate surface. 前記金属不純物は、Feであることを特徴とする請求項に記載の太陽電池セルの製造方法。 The method for manufacturing a solar battery cell according to claim 6 , wherein the metal impurity is Fe. 前記シリコン基板面への前記金属不純物の付着は、該金属不純物からなる部材をシリコン基板面の所定位置に接触させることにより行うことを特徴とする請求項又はに記載の太陽電池セルの製造方法。 The solar cell manufacturing method according to claim 6 or 7 , wherein the metal impurity is attached to the silicon substrate surface by bringing a member made of the metal impurity into contact with a predetermined position on the silicon substrate surface. Method. 前記熱拡散処理は、前記pn接合となる拡散層を形成する熱処理、又は反射防止膜形成前の熱酸化処理と兼ねて行われることを特徴とする請求項6〜8のいずれか1項に記載の太陽電池セルの製造方法。 9. The heat diffusion treatment according to claim 6 , wherein the thermal diffusion treatment is performed in combination with a heat treatment for forming a diffusion layer to be the pn junction or a thermal oxidation treatment before the formation of the antireflection film. Manufacturing method of solar cell. 前記熱拡散処理は、1,000℃以下で行うことを特徴とする請求項6〜9のいずれか1項に記載の太陽電池セルの製造方法。The method of manufacturing a solar battery cell according to any one of claims 6 to 9, wherein the thermal diffusion treatment is performed at 1,000 ° C or lower.
JP2012100933A 2012-04-26 2012-04-26 Solar cell and manufacturing method thereof Active JP5664591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100933A JP5664591B2 (en) 2012-04-26 2012-04-26 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100933A JP5664591B2 (en) 2012-04-26 2012-04-26 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013229466A JP2013229466A (en) 2013-11-07
JP5664591B2 true JP5664591B2 (en) 2015-02-04

Family

ID=49676812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100933A Active JP5664591B2 (en) 2012-04-26 2012-04-26 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5664591B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129481A1 (en) * 2015-02-09 2016-08-18 シャープ株式会社 Photoelectric conversion element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111424A (en) * 1983-11-22 1985-06-17 Toshiba Corp Formation of allignment mark
JP3496058B2 (en) * 2001-05-01 2004-02-09 独立行政法人産業技術総合研究所 Semiconductor substrate surface passivation method and semiconductor substrate
JP4035042B2 (en) * 2002-12-19 2008-01-16 京セラ株式会社 Method for manufacturing solar cell element
JP2010054365A (en) * 2008-08-28 2010-03-11 Nisshinbo Holdings Inc Solar battery inspecting apparatus, solar battery inspecting method, program and solar battery inspecting system
DE102009018653B4 (en) * 2009-03-04 2015-12-03 SolarWorld Industries Thüringen GmbH Method for the production of semiconductor devices using doping techniques
JP5659632B2 (en) * 2010-08-27 2015-01-28 株式会社Sumco Boron-doped p-type silicon wafer iron concentration analysis method and analyzer, silicon wafer, and silicon wafer manufacturing method

Also Published As

Publication number Publication date
JP2013229466A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
TWI521724B (en) Solar cells and solar modules
JP5649580B2 (en) Manufacturing method of solar cell
ES2976484T3 (en) Method for producing a photovoltaic solar cell with at least one heterojunction
TWI587534B (en) Solar cells and solar modules
JP4334455B2 (en) Solar cell module
US20170278998A1 (en) Manufacturing method for solar cell and solar cell
EP3712968B1 (en) Solar cell manufacturing method
CN103563095B (en) Solaode and manufacture method thereof
CN101814547A (en) Method for preparing selective emitter crystalline silicon solar cell
Shanmugam et al. Electrical and microstructural analysis of contact formation on lightly doped phosphorus emitters using thick-film Ag screen printing pastes
CN105324849A (en) Back-contact-type solar cell
KR101597532B1 (en) The Manufacturing Method of Back Contact Solar Cells
TWI649884B (en) Solar cell with high photoelectric conversion efficiency and manufacturing method of solar cell with high photoelectric conversion efficiency
KR20120011110A (en) Wafer type solar cell and method for manufacturing the same
JP5785466B2 (en) Solar cell and method for manufacturing solar cell
JP4780953B2 (en) Solar cell element and solar cell module using the same
JP5664591B2 (en) Solar cell and manufacturing method thereof
Edler Development of bifacial n-type solar cells for industrial application
CN103367526B (en) A kind of manufacture method of rear side local contact silicon solar cell
CN210073868U (en) PERC solar cell with selectively enhanced front passivation
JP5971499B2 (en) Solar cell and manufacturing method thereof
Lu et al. Laser doping through anodic aluminium oxide silicon solar cell
EP3716341B1 (en) Solar cell and solar cell module
JP5994895B2 (en) Manufacturing method of solar cell
JP2012023227A (en) Method of manufacturing solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5664591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150