JP5971499B2 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP5971499B2
JP5971499B2 JP2014526665A JP2014526665A JP5971499B2 JP 5971499 B2 JP5971499 B2 JP 5971499B2 JP 2014526665 A JP2014526665 A JP 2014526665A JP 2014526665 A JP2014526665 A JP 2014526665A JP 5971499 B2 JP5971499 B2 JP 5971499B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
microcrystalline
amorphous
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014526665A
Other languages
Japanese (ja)
Other versions
JPWO2014016931A1 (en
Inventor
護 有本
護 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2014016931A1 publication Critical patent/JPWO2014016931A1/en
Application granted granted Critical
Publication of JP5971499B2 publication Critical patent/JP5971499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、太陽電池及びその製造方法に関する。   The present invention relates to a solar cell and a manufacturing method thereof.

特許文献1には、光電変換効率を向上し得る太陽電池として、p側電極とn側電極との両方が裏面側に設けられた裏面接合型の太陽電池が記載されている。特許文献1に記載の太陽電池は、半導体材料からなる基板の一主面の第1の領域の上に設けられた第1の半導体層と、一主面の第2の領域の上に設けられた第2の半導体層とを有する。第1及び第2の半導体層の一方がp型であり、他方がn型である。第2の半導体層は、第2の領域上から、第1の半導体層の上に跨がって設けられている。第1の領域において、第1の半導体層と第2の半導体層との間には、再結合層が設けられている。この再結合層は、p側電極とp型非晶質半導体層11pとの間を低抵抗化するための層である。第2の半導体層と再結合層との間には、実質的に真性なi型半導体層が配されている。   Patent Document 1 describes a back junction solar cell in which both a p-side electrode and an n-side electrode are provided on the back side as a solar cell that can improve photoelectric conversion efficiency. The solar cell described in Patent Document 1 is provided on a first semiconductor layer provided on a first region of one principal surface of a substrate made of a semiconductor material and on a second region on one principal surface. And a second semiconductor layer. One of the first and second semiconductor layers is p-type and the other is n-type. The second semiconductor layer is provided over the first semiconductor layer from the second region. In the first region, a recombination layer is provided between the first semiconductor layer and the second semiconductor layer. This recombination layer is a layer for reducing the resistance between the p-side electrode and the p-type amorphous semiconductor layer 11p. A substantially intrinsic i-type semiconductor layer is disposed between the second semiconductor layer and the recombination layer.

WO2010/098445 A1号公報WO2010 / 098445 A1

太陽電池の光電変換効率をさらに改善したいという要望がある。   There is a desire to further improve the photoelectric conversion efficiency of solar cells.

本発明の主な目的は、改善された光電変換効率を有する太陽電池を提供することにある。   A main object of the present invention is to provide a solar cell having improved photoelectric conversion efficiency.

本発明に係る太陽電池は、半導体材料からなる基板と、実質的に真性なi型半導体層と、第1のアモルファス半導体層と、第1の微結晶半導体層と、第2の微結晶半導体層と、第2のアモルファス半導体層とを備える。i型半導体層は、基板の一主面の上に配されている。第1のアモルファス半導体層は、i型半導体層の一部分の上に配されている。第1のアモルファス半導体層は、一の導電型を有する。第1の微結晶半導体層は、第1のアモルファス半導体層の上に配されている。第1の微結晶半導体層は、一の導電型を有する。第2の微結晶半導体層は、第1の微結晶半導体層の上に配されている。第2の微結晶半導体層は、他の導電型を有する。第2のアモルファス半導体層は、第2の微結晶半導体層の上と、i型半導体層の第2の微結晶半導体層からの露出部の上とに跨がって配されている。第2のアモルファス半導体層は、他の導電型を有する。第2のアモルファス半導体層と第2の微結晶半導体層とが接触している。   A solar cell according to the present invention includes a substrate made of a semiconductor material, a substantially intrinsic i-type semiconductor layer, a first amorphous semiconductor layer, a first microcrystalline semiconductor layer, and a second microcrystalline semiconductor layer. And a second amorphous semiconductor layer. The i-type semiconductor layer is disposed on one main surface of the substrate. The first amorphous semiconductor layer is disposed on a part of the i-type semiconductor layer. The first amorphous semiconductor layer has one conductivity type. The first microcrystalline semiconductor layer is disposed on the first amorphous semiconductor layer. The first microcrystalline semiconductor layer has one conductivity type. The second microcrystalline semiconductor layer is disposed on the first microcrystalline semiconductor layer. The second microcrystalline semiconductor layer has another conductivity type. The second amorphous semiconductor layer is arranged over the second microcrystalline semiconductor layer and the exposed portion of the i-type semiconductor layer from the second microcrystalline semiconductor layer. The second amorphous semiconductor layer has another conductivity type. The second amorphous semiconductor layer and the second microcrystalline semiconductor layer are in contact with each other.

本発明に係る太陽電池の製造方法では、半導体材料からなる基板の一主面の上に、実質的に真性なi型半導体層を形成する。i型半導体層の上に、一の導電型を有する第1のアモルファス半導体層と、一の導電型を有する第1の微結晶半導体層と、他の導電型を有する第2の微結晶半導体層とをこの順番で形成する。第1のアモルファス半導体層並びに第1及び第2の微結晶半導体層の一部分をエッチングにより除去し、i型半導体層を部分的に露出させる。第2の微結晶半導体層の上と、i型半導体層の露出部の上とに跨がるように、他の導電型を有する第2のアモルファス半導体層を形成する。   In the method for manufacturing a solar cell according to the present invention, a substantially intrinsic i-type semiconductor layer is formed on one main surface of a substrate made of a semiconductor material. On the i-type semiconductor layer, a first amorphous semiconductor layer having one conductivity type, a first microcrystalline semiconductor layer having one conductivity type, and a second microcrystalline semiconductor layer having another conductivity type Are formed in this order. A part of the first amorphous semiconductor layer and the first and second microcrystalline semiconductor layers are removed by etching to partially expose the i-type semiconductor layer. A second amorphous semiconductor layer having another conductivity type is formed so as to straddle over the second microcrystalline semiconductor layer and the exposed portion of the i-type semiconductor layer.

本発明によれば、改善された光電変換効率を有する太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solar cell which has the improved photoelectric conversion efficiency can be provided.

図1は、本発明の一実施形態に係る太陽電池の略図的断面図である。FIG. 1 is a schematic cross-sectional view of a solar cell according to an embodiment of the present invention. 図2は、本発明の一実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 2 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in one embodiment of the present invention.

以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。   Hereinafter, an example of the preferable form which implemented this invention is demonstrated. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.

また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。   Moreover, in each drawing referred in embodiment etc., the member which has a substantially the same function shall be referred with the same code | symbol. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.

(太陽電池1の構成)
図1に示されるように、太陽電池1は、半導体材料からなる基板10nを有する。基板10nは、n型またはp型の導電型を有する。本実施形態では、具体的には、基板10nの導電型は、n型である。基板10nは、例えば、n型の結晶半導体材料などにより構成することができる。具体的には、基板10nは、例えば、n型の結晶シリコンにより構成することができる。なお、結晶半導体材料には、単結晶半導体材料と多結晶半導体材料とが含まれるものとする。結晶シリコンには、単結晶シリコンと多結晶シリコンとが含まれるものとする。
(Configuration of solar cell 1)
As shown in FIG. 1, the solar cell 1 has a substrate 10n made of a semiconductor material. The substrate 10n has n-type or p-type conductivity. In the present embodiment, specifically, the conductivity type of the substrate 10n is n-type. The substrate 10n can be made of, for example, an n-type crystalline semiconductor material. Specifically, the substrate 10n can be composed of, for example, n-type crystalline silicon. Note that the crystalline semiconductor material includes a single crystal semiconductor material and a polycrystalline semiconductor material. Crystalline silicon includes single crystal silicon and polycrystalline silicon.

基板10nは、主として受光する第1の主面10aと第2の主面10bとを有する。第1の主面10aは、受光面側に位置する。ここで、「受光面」とは、2つの主面のうち、主として受光する側の主面をいう。   Substrate 10n has a first main surface 10a and a second main surface 10b that mainly receive light. The first main surface 10a is located on the light receiving surface side. Here, the “light receiving surface” means a main surface on the side of mainly receiving light, out of the two main surfaces.

第1の主面10aの上には、半導体層17i、半導体層17n及び保護層18がこの順番で設けられている。半導体層17iは、実質的に真性なi型半導体材料からなる。半導体層17iは、例えば、i型アモルファスシリコンにより構成することができる。半導体層17iの厚みは、実質的に発電に寄与しない程度の厚み(例えば、0.1nm〜25nm程度)であることが好ましい。半導体層17nの導電型は、基板10nと同じ導電型であるn型である。半導体層17nは、例えばn型アモルファスシリコンにより構成することができる。保護層18は、例えば、窒化珪素などにより構成することができる。保護層18は、半導体層17nを保護する機能とともに、入射光の表面反射を抑制する機能を有していてもよい。   On the first main surface 10a, a semiconductor layer 17i, a semiconductor layer 17n, and a protective layer 18 are provided in this order. The semiconductor layer 17i is made of a substantially intrinsic i-type semiconductor material. The semiconductor layer 17i can be made of, for example, i-type amorphous silicon. The thickness of the semiconductor layer 17i is preferably a thickness that does not substantially contribute to power generation (for example, about 0.1 nm to 25 nm). The conductivity type of the semiconductor layer 17n is an n-type which is the same conductivity type as the substrate 10n. The semiconductor layer 17n can be made of, for example, n-type amorphous silicon. The protective layer 18 can be made of, for example, silicon nitride. The protective layer 18 may have a function of suppressing surface reflection of incident light as well as a function of protecting the semiconductor layer 17n.

基板10nの第2の主面10bの上には、実質的に真性なi型半導体層11iaが配されている。i型半導体層11iaは、第2の主面10bの実質的に全体の上に配されている。i型アモルファス半導体層11iaは、発電に実質的に寄与しない程度の厚み(例えば、0.1nm〜25nm程度)を有する。i型アモルファス半導体層11iaは、例えばi型アモルファスシリコンにより構成することができる。   A substantially intrinsic i-type semiconductor layer 11ia is disposed on the second main surface 10b of the substrate 10n. The i-type semiconductor layer 11ia is disposed on substantially the entire second main surface 10b. The i-type amorphous semiconductor layer 11ia has a thickness that does not substantially contribute to power generation (for example, about 0.1 nm to 25 nm). The i-type amorphous semiconductor layer 11ia can be made of, for example, i-type amorphous silicon.

i型半導体層11iaの一部分の上には、第1のアモルファス半導体層11naが配されている。このため、i型半導体層11iaの一部分は、第1のアモルファス半導体層11naから露出している。第1のアモルファス半導体層11naは、基板10nと同じ導電型を有する。具体的には、第1のアモルファス半導体層11naの導電型は、n型である。もっとも、第1のアモルファス半導体層11naは、基板10nと異なる導電型を有していてもよい。第1のアモルファス半導体層11naは、例えばn型アモルファスシリコンにより構成することができる。第1のアモルファス半導体層11naの厚みは、例えば、1nm〜30nm程度とすることができる。   A first amorphous semiconductor layer 11na is disposed on a part of the i-type semiconductor layer 11ia. For this reason, a part of the i-type semiconductor layer 11ia is exposed from the first amorphous semiconductor layer 11na. The first amorphous semiconductor layer 11na has the same conductivity type as the substrate 10n. Specifically, the conductivity type of the first amorphous semiconductor layer 11na is n-type. However, the first amorphous semiconductor layer 11na may have a conductivity type different from that of the substrate 10n. The first amorphous semiconductor layer 11na can be made of, for example, n-type amorphous silicon. The thickness of the first amorphous semiconductor layer 11na can be, for example, about 1 nm to 30 nm.

第1のアモルファス半導体層11naの上には、微結晶半導体層13が配されている。微結晶半導体層13の厚みは、例えば、2nm〜60nm程度であることが好ましく、2nm〜30nmであることがより好ましい。   A microcrystalline semiconductor layer 13 is disposed on the first amorphous semiconductor layer 11na. The thickness of the microcrystalline semiconductor layer 13 is, for example, preferably about 2 nm to 60 nm, and more preferably 2 nm to 30 nm.

微結晶半導体層13は、第1の微結晶半導体層13ncと、第2の微結晶半導体層13pcとを有する。第1の微結晶半導体層13ncは、第1のアモルファス半導体層11naの上に設けられている。第1の微結晶半導体層13ncは、第1のアモルファス半導体層11naと接している。第1の微結晶半導体層13ncは、第1のアモルファス半導体層11naと同じ導電型を有する。具体的には、第1の微結晶半導体層13ncの導電型は、n型である。第1の微結晶半導体層13ncは、例えば、n型微結晶シリコンにより構成することができる。第1の微結晶半導体層13ncの厚みは、例えば、1nm〜30nm程度であることが好ましく、1nm〜15nmであることがより好ましい。   The microcrystalline semiconductor layer 13 includes a first microcrystalline semiconductor layer 13nc and a second microcrystalline semiconductor layer 13pc. The first microcrystalline semiconductor layer 13nc is provided on the first amorphous semiconductor layer 11na. The first microcrystalline semiconductor layer 13nc is in contact with the first amorphous semiconductor layer 11na. The first microcrystalline semiconductor layer 13nc has the same conductivity type as the first amorphous semiconductor layer 11na. Specifically, the conductivity type of the first microcrystalline semiconductor layer 13nc is n-type. The first microcrystalline semiconductor layer 13nc can be made of, for example, n-type microcrystalline silicon. The thickness of the first microcrystalline semiconductor layer 13nc is, for example, preferably about 1 nm to 30 nm, and more preferably 1 nm to 15 nm.

第2の微結晶半導体層13pcは、第1の微結晶半導体層13ncの上に配されている。第2の微結晶半導体層13pcは、第1の微結晶半導体層13ncと、後述する第2のアモルファス半導体層12paとのそれぞれと接している。第2の微結晶半導体層13pcは、第1の微結晶半導体層13ncとは異なる導電型を有する。具体的には、第2の微結晶半導体層13pcの導電型は、p型である。第2の微結晶半導体層13pcは、例えば、p型微結晶シリコンにより構成することができる。第2の微結晶半導体層13pcの厚みは、例えば、1nm〜30nm程度であることが好ましく、1nm〜15nmであることがより好ましい。   The second microcrystalline semiconductor layer 13pc is disposed on the first microcrystalline semiconductor layer 13nc. The second microcrystalline semiconductor layer 13pc is in contact with each of the first microcrystalline semiconductor layer 13nc and a second amorphous semiconductor layer 12pa described later. Second microcrystalline semiconductor layer 13pc has a conductivity type different from that of first microcrystalline semiconductor layer 13nc. Specifically, the conductivity type of the second microcrystalline semiconductor layer 13pc is p-type. The second microcrystalline semiconductor layer 13pc can be made of, for example, p-type microcrystalline silicon. The thickness of the second microcrystalline semiconductor layer 13pc is, for example, preferably about 1 nm to 30 nm, and more preferably 1 nm to 15 nm.

ここで、微結晶半導体層とは、半導体結晶粒を複数個含む層をいう。微結晶半導体層には、実質的に半導体結晶粒のみからなる層が含まれる。また、微結晶半導体層は、半導体結晶粒に加え、半導体のアモルファス領域を有していてもよい。従って、微結晶半導体層は、半導体結晶粒を複数含む層であって、アモルファス半導体層と同様に半導体のアモルファス領域を含む層であってもよい。   Here, the microcrystalline semiconductor layer refers to a layer including a plurality of semiconductor crystal grains. The microcrystalline semiconductor layer includes a layer that substantially includes only semiconductor crystal grains. The microcrystalline semiconductor layer may include an amorphous region of a semiconductor in addition to the semiconductor crystal grains. Therefore, the microcrystalline semiconductor layer is a layer including a plurality of semiconductor crystal grains, and may be a layer including an amorphous region of a semiconductor similarly to the amorphous semiconductor layer.

第2の微結晶半導体層13pcと、i型半導体層11iaの第2の微結晶半導体層13pcからの露出部との上には、第2のアモルファス半導体層12paが配されている。第2のアモルファス半導体層12paは、第2の微結晶半導体層13pcの上と、i型半導体層11iaの第2の微結晶半導体層13pcからの露出部の上とに跨がって配されている。第2のアモルファス半導体層12paと第2の微結晶半導体層13pcとの間には、i型半導体層は設けられていない。第2のアモルファス半導体層12paは、第2の微結晶半導体層13pcと直接接触している。第2のアモルファス半導体層12paは、基板10nとは異なる導電型を有する。具体的には、第2のアモルファス半導体層12paの導電型は、p型である。第2のアモルファス半導体層12paは、例えば、p型アモルファスシリコンにより構成することができる。第2のアモルファス半導体層12paの厚みは、例えば、1nm〜30nm程度とすることができる。   A second amorphous semiconductor layer 12pa is disposed on the second microcrystalline semiconductor layer 13pc and the exposed portion of the i-type semiconductor layer 11ia from the second microcrystalline semiconductor layer 13pc. The second amorphous semiconductor layer 12pa is arranged over the second microcrystalline semiconductor layer 13pc and the exposed portion of the i-type semiconductor layer 11ia from the second microcrystalline semiconductor layer 13pc. Yes. An i-type semiconductor layer is not provided between the second amorphous semiconductor layer 12pa and the second microcrystalline semiconductor layer 13pc. The second amorphous semiconductor layer 12pa is in direct contact with the second microcrystalline semiconductor layer 13pc. The second amorphous semiconductor layer 12pa has a conductivity type different from that of the substrate 10n. Specifically, the conductivity type of the second amorphous semiconductor layer 12pa is p-type. The second amorphous semiconductor layer 12pa can be made of, for example, p-type amorphous silicon. The thickness of the second amorphous semiconductor layer 12pa can be, for example, about 1 nm to 30 nm.

第2のアモルファス半導体層12paは、複数のアモルファス半導体層により構成されていてもよい。第2のアモルファス半導体層12paは、例えば、p型ドーパント濃度が相対的に低いアモルファス半導体層と、p型ドーパント濃度が相対的に高いアモルファス半導体層との積層体により構成されていてもよい。   The second amorphous semiconductor layer 12pa may be composed of a plurality of amorphous semiconductor layers. The second amorphous semiconductor layer 12pa may be configured by, for example, a stacked body of an amorphous semiconductor layer having a relatively low p-type dopant concentration and an amorphous semiconductor layer having a relatively high p-type dopant concentration.

第2のアモルファス半導体層12paの微結晶半導体層13の上に位置する部分の上には、n側電極16nが設けられている。一方、第2のアモルファス半導体層12paの微結晶半導体層13が設けられていない領域に位置する部分の上には、p側電極15pが設けられている。電極15p、16nは、例えば、Ag、Cuなどの金属の少なくとも一種により構成することができる。   An n-side electrode 16n is provided on a portion of the second amorphous semiconductor layer 12pa located on the microcrystalline semiconductor layer 13. On the other hand, a p-side electrode 15p is provided on a portion of the second amorphous semiconductor layer 12pa located in a region where the microcrystalline semiconductor layer 13 is not provided. The electrodes 15p and 16n can be made of at least one of metals such as Ag and Cu, for example.

太陽電池1では、第1のアモルファス半導体層11naと第2のアモルファス半導体層12paとの間に、微結晶半導体層13が設けられている。この微結晶半導体層13は、第1のアモルファス半導体層11naと、n側電極16nとの間を低抵抗化する層である。微結晶半導体層13は、再結合中心となり得る欠陥準位を有する。このため、微結晶半導体層13において、電子と正孔との再結合とが生じやすい。よって、微結晶半導体層13を介して電流が流れる。   In the solar cell 1, the microcrystalline semiconductor layer 13 is provided between the first amorphous semiconductor layer 11na and the second amorphous semiconductor layer 12pa. The microcrystalline semiconductor layer 13 is a layer that lowers the resistance between the first amorphous semiconductor layer 11na and the n-side electrode 16n. The microcrystalline semiconductor layer 13 has a defect level that can be a recombination center. For this reason, recombination of electrons and holes is likely to occur in the microcrystalline semiconductor layer 13. Therefore, current flows through the microcrystalline semiconductor layer 13.

(太陽電池1の製造方法)
次に、太陽電池1の製造方法の一例について説明する。
(Manufacturing method of solar cell 1)
Next, an example of the manufacturing method of the solar cell 1 will be described.

まず、半導体材料からなる基板10nの第2の主面10bの上に、i型半導体層21iaを形成する。このi型半導体層21iaは、i型半導体層11iaを構成するためのものである。i型半導体層21iaの厚みは、i型半導体層11iaの厚みよりも大きい。i型半導体層21iaは、例えば、CVD(Chemical Vapor Deposition)法により形成することができる。   First, the i-type semiconductor layer 21ia is formed on the second main surface 10b of the substrate 10n made of a semiconductor material. This i-type semiconductor layer 21ia is for constituting the i-type semiconductor layer 11ia. The thickness of the i-type semiconductor layer 21ia is larger than the thickness of the i-type semiconductor layer 11ia. The i-type semiconductor layer 21ia can be formed by, for example, a CVD (Chemical Vapor Deposition) method.

次に、i型半導体層21iaの上に、一の導電型(本実施形態ではn型)を有する第1のアモルファス半導体層21naと、一の導電型を有する第2の微結晶半導体層23ncと、他の導電型(本実施形態ではp型)を有する第2の微結晶半導体層23pcとをこの順番で形成する。これらの半導体層21na、23nc、23pcも、i型半導体層21iaと同様に、例えば、CVD(Chemical Vapor Deposition)法により形成することができる。   Next, on the i-type semiconductor layer 21ia, a first amorphous semiconductor layer 21na having one conductivity type (n-type in this embodiment), a second microcrystalline semiconductor layer 23nc having one conductivity type, and Then, the second microcrystalline semiconductor layer 23pc having another conductivity type (p-type in this embodiment) is formed in this order. These semiconductor layers 21na, 23nc, and 23pc can also be formed by, for example, a CVD (Chemical Vapor Deposition) method, similarly to the i-type semiconductor layer 21ia.

次に、第1のアモルファス半導体層21na並びに第1及び第2の微結晶半導体層23nc、23pcの一部分をエッチングにより除去することにより、i型半導体層21iaからi型半導体層11iaを形成すると共に、第1のアモルファス半導体層21na並びに第1及び第2の微結晶半導体層23nc、23pcから、第1のアモルファス半導体層11na並びに第1及び第2の微結晶半導体層13nc、13pcを形成する。第1のアモルファス半導体層21na並びに第1及び第2の微結晶半導体層23nc、23pcのエッチングは、第1のアモルファス半導体層21na並びに第1及び第2の微結晶半導体層23nc、23pcを溶解させやすく、i型半導体層21iaを溶解させにくいエッチング液を用いて行うことが好ましい。このようなエッチング液としては、例えば、フッ酸を含むエッチング液などが挙げられる。   Next, by removing a part of the first amorphous semiconductor layer 21na and the first and second microcrystalline semiconductor layers 23nc and 23pc by etching, the i-type semiconductor layer 11ia is formed from the i-type semiconductor layer 21ia, and The first amorphous semiconductor layer 11na and the first and second microcrystalline semiconductor layers 13nc and 13pc are formed from the first amorphous semiconductor layer 21na and the first and second microcrystalline semiconductor layers 23nc and 23pc. The etching of the first amorphous semiconductor layer 21na and the first and second microcrystalline semiconductor layers 23nc and 23pc facilitates dissolution of the first amorphous semiconductor layer 21na and the first and second microcrystalline semiconductor layers 23nc and 23pc. It is preferable to use an etchant that hardly dissolves the i-type semiconductor layer 21ia. Examples of such an etchant include an etchant containing hydrofluoric acid.

次に、第2の微結晶半導体層13pcの上と、i型半導体層11iaの第2の微結晶半導体層13pcからの露出部の上とに跨がるように、第2のアモルファス半導体層12paを形成する。この第2のアモルファス半導体層12paも、例えば、CVD(Chemical Vapor Deposition)法により形成することができる。   Next, the second amorphous semiconductor layer 12pa extends over the second microcrystalline semiconductor layer 13pc and the exposed portion of the i-type semiconductor layer 11ia from the second microcrystalline semiconductor layer 13pc. Form. The second amorphous semiconductor layer 12pa can also be formed by, for example, a CVD (Chemical Vapor Deposition) method.

その後、電極15p、16nを形成することにより太陽電池1を完成させることができる。電極15p、16nは、例えば、メッキや導電性ペーストの印刷などにより形成することができる。   Thereafter, the solar cell 1 can be completed by forming the electrodes 15p and 16n. The electrodes 15p and 16n can be formed by, for example, plating or printing of a conductive paste.

上述のように、特許文献1に記載の太陽電池では、第2の半導体層と再結合層との間に、実質的に真性なi型半導体層が配されている。このi型半導体層によって、第2の半導体層と再結合層との間の電気抵抗率が高くなっている。   As described above, in the solar cell described in Patent Document 1, a substantially intrinsic i-type semiconductor layer is disposed between the second semiconductor layer and the recombination layer. This i-type semiconductor layer increases the electrical resistivity between the second semiconductor layer and the recombination layer.

一方、太陽電池1では、第2の微結晶半導体層13pcと第2のアモルファス半導体層12paとの間にはi型半導体層が設けられておらず、第2の微結晶半導体層13pcと第2のアモルファス半導体層12paとが接触している。このため、第2の微結晶半導体層13pcと第2のアモルファス半導体層12paとの間の電気抵抗率を低くすることができる。従って、改善された光電変換効率を実現することができる。   On the other hand, in the solar cell 1, no i-type semiconductor layer is provided between the second microcrystalline semiconductor layer 13pc and the second amorphous semiconductor layer 12pa, and the second microcrystalline semiconductor layer 13pc and the second microcrystalline semiconductor layer 13pc In contact with the amorphous semiconductor layer 12pa. For this reason, the electrical resistivity between the second microcrystalline semiconductor layer 13pc and the second amorphous semiconductor layer 12pa can be lowered. Therefore, improved photoelectric conversion efficiency can be realized.

また、i型半導体層11iaを形成した後は、基板10nの第2の主面10bが露出しない。このため、第2の主面10bのパッシベーション性の低下を抑制することができる。また、第2の微結晶半導体層13pcと第2のアモルファス半導体層12paとの間にi型半導体層を設ける必要が必ずしもないため、太陽電池1の製造工程を簡略化することができる。   Further, after the i-type semiconductor layer 11ia is formed, the second main surface 10b of the substrate 10n is not exposed. For this reason, the fall of the passivation property of the 2nd main surface 10b can be suppressed. In addition, since it is not always necessary to provide an i-type semiconductor layer between the second microcrystalline semiconductor layer 13pc and the second amorphous semiconductor layer 12pa, the manufacturing process of the solar cell 1 can be simplified.

1…太陽電池
10n…基板
10a…第1の主面
10b…第2の主面
11ia…i型アモルファス半導体層
11na…第1のアモルファス半導体層
12pa…第2のアモルファス半導体層
13…微結晶半導体層
13nc…第1の微結晶半導体層
13pc…第2の微結晶半導体層
15p…p側電極
16n…n側電極
DESCRIPTION OF SYMBOLS 1 ... Solar cell 10n ... Board | substrate 10a ... 1st main surface 10b ... 2nd main surface 11ia ... i-type amorphous semiconductor layer 11na ... 1st amorphous semiconductor layer 12pa ... 2nd amorphous semiconductor layer 13 ... Microcrystalline semiconductor layer 13 nc: first microcrystalline semiconductor layer 13 pc: second microcrystalline semiconductor layer 15 p: p-side electrode 16 n: n-side electrode

Claims (3)

半導体材料からなる基板と、
前記基板の一主面の上に配された実質的に真性なi型半導体層と、
前記i型半導体層の一部分の上に配されており、一の導電型を有する第1のアモルファス半導体層と、
前記第1のアモルファス半導体層の上に配されており、前記一の導電型を有する第1の微結晶半導体層と、
前記第1の微結晶半導体層の上に配されており、他の導電型を有する第2の微結晶半導体層と、
前記第2の微結晶半導体層の上と、前記i型半導体層の前記第2の微結晶半導体層からの露出部の上とに跨がって配されており、前記他の導電型を有する第2のアモルファス半導体層と、
を備え、
前記第2のアモルファス半導体層と前記第2の微結晶半導体層とが接触している、太陽電池。
A substrate made of a semiconductor material;
A substantially intrinsic i-type semiconductor layer disposed on one major surface of the substrate;
A first amorphous semiconductor layer disposed on a portion of the i-type semiconductor layer and having one conductivity type;
A first microcrystalline semiconductor layer disposed on the first amorphous semiconductor layer and having the one conductivity type;
A second microcrystalline semiconductor layer disposed on the first microcrystalline semiconductor layer and having another conductivity type;
It extends over the second microcrystalline semiconductor layer and the exposed portion of the i-type semiconductor layer from the second microcrystalline semiconductor layer, and has the other conductivity type. A second amorphous semiconductor layer;
With
A solar cell in which the second amorphous semiconductor layer and the second microcrystalline semiconductor layer are in contact with each other.
前記一の導電型がn型であり、前記他の導電型がp型である、請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the one conductivity type is n-type and the other conductivity type is p-type. 半導体材料からなる基板の一主面の上に、実質的に真性なi型半導体層を形成する工程と、
前記i型半導体層の上に、一の導電型を有する第1のアモルファス半導体層と、前記一の導電型を有する第1の微結晶半導体層と、他の導電型を有する第2の微結晶半導体層とをこの順番で形成する工程と、
前記第1のアモルファス半導体層並びに第1及び第2の微結晶半導体層の一部分をエッチングにより除去し、前記i型半導体層を部分的に露出させる工程と、
前記第2の微結晶半導体層の上と、前記i型半導体層の露出部の上とに跨がるように、前記他の導電型を有する第2のアモルファス半導体層を形成する工程と、
を有する太陽電池の製造方法。
Forming a substantially intrinsic i-type semiconductor layer on one main surface of a substrate made of a semiconductor material;
On the i-type semiconductor layer, a first amorphous semiconductor layer having one conductivity type, a first microcrystalline semiconductor layer having the one conductivity type, and a second microcrystal having another conductivity type. Forming a semiconductor layer in this order;
Removing a part of the first amorphous semiconductor layer and the first and second microcrystalline semiconductor layers by etching to partially expose the i-type semiconductor layer;
Forming a second amorphous semiconductor layer having the other conductivity type so as to straddle over the second microcrystalline semiconductor layer and an exposed portion of the i-type semiconductor layer;
The manufacturing method of the solar cell which has this.
JP2014526665A 2012-07-26 2012-07-26 Solar cell and manufacturing method thereof Active JP5971499B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068922 WO2014016931A1 (en) 2012-07-26 2012-07-26 Solar cell and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2014016931A1 JPWO2014016931A1 (en) 2016-07-07
JP5971499B2 true JP5971499B2 (en) 2016-08-17

Family

ID=49996766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014526665A Active JP5971499B2 (en) 2012-07-26 2012-07-26 Solar cell and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5971499B2 (en)
WO (1) WO2014016931A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163632A1 (en) 2015-11-02 2017-05-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Photovoltaic device and method for manufacturing the same
CN113964216B (en) * 2021-09-22 2023-10-27 泰州隆基乐叶光伏科技有限公司 Back contact battery and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998619B2 (en) * 2003-09-24 2007-10-31 三洋電機株式会社 Photovoltaic element and manufacturing method thereof
JP2009152222A (en) * 2006-10-27 2009-07-09 Kyocera Corp Manufacturing method of solar cell element
JP5052309B2 (en) * 2007-12-03 2012-10-17 三菱電機株式会社 Photovoltaic device and manufacturing method thereof
JP5461028B2 (en) * 2009-02-26 2014-04-02 三洋電機株式会社 Solar cell

Also Published As

Publication number Publication date
WO2014016931A1 (en) 2014-01-30
JPWO2014016931A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5461028B2 (en) Solar cell
JP5879515B2 (en) Manufacturing method of solar cell
JP5485062B2 (en) Solar cell manufacturing method and solar cell
JP2013219065A (en) Solar cell and method for manufacturing the same
JP6893331B2 (en) Solar cell
WO2012132835A1 (en) Solar cell
JP2013030615A (en) Solar cell
JP6156748B2 (en) Manufacturing method of semiconductor device
JP5971499B2 (en) Solar cell and manufacturing method thereof
JP6136024B2 (en) Manufacturing method of solar cell
JP6369680B2 (en) Solar cell
JP5820987B2 (en) Solar cell
JP5645734B2 (en) Solar cell element
JP6053082B1 (en) Photovoltaic power generation element and manufacturing method thereof
JP5967555B2 (en) Solar cell
JP5963024B2 (en) Solar cell manufacturing method and solar cell
JP6083539B2 (en) Solar cell
WO2012132834A1 (en) Solar cell and method for producing solar cell
JP5950136B2 (en) Solar cell
WO2012132932A1 (en) Solar cell and method for producing solar cell
JP5816800B2 (en) Manufacturing method of solar cell
JP6206843B2 (en) Solar cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160628

R151 Written notification of patent or utility model registration

Ref document number: 5971499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151