JP5664271B2 - Method for producing acicular strontium carbonate particles, and acicular strontium carbonate particles - Google Patents

Method for producing acicular strontium carbonate particles, and acicular strontium carbonate particles Download PDF

Info

Publication number
JP5664271B2
JP5664271B2 JP2011011036A JP2011011036A JP5664271B2 JP 5664271 B2 JP5664271 B2 JP 5664271B2 JP 2011011036 A JP2011011036 A JP 2011011036A JP 2011011036 A JP2011011036 A JP 2011011036A JP 5664271 B2 JP5664271 B2 JP 5664271B2
Authority
JP
Japan
Prior art keywords
strontium
strontium carbonate
stirring
carbonate particles
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011011036A
Other languages
Japanese (ja)
Other versions
JP2012153537A (en
Inventor
宏宣 緒方
宏宣 緒方
寛崇 林
寛崇 林
洋之 西田
洋之 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2011011036A priority Critical patent/JP5664271B2/en
Publication of JP2012153537A publication Critical patent/JP2012153537A/en
Application granted granted Critical
Publication of JP5664271B2 publication Critical patent/JP5664271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微細かつ針状の炭酸ストロンチウム粒子の製造方法に関する。 The present invention relates to a method for producing fine and acicular strontium carbonate particles.

光学フィルムやシート、レンズ等の光学部品用途において、素材として使用される高分子ポリマーの配向複屈折を制御する目的から、炭酸ストロンチウム等の微細針状無機化合物を用いた検討がなされている。 In the use of optical parts such as optical films, sheets, and lenses, studies have been made using fine needle-like inorganic compounds such as strontium carbonate for the purpose of controlling the orientation birefringence of a polymer used as a raw material.

特許文献1には水酸化ストロンチウム水溶液もしくは懸濁液を攪拌しながら、二酸化炭素ガスを空気もしくは窒素ガスと混合して導入することで針状炭酸ストロンチウムを製造する方法が記載されている。 Patent Document 1 describes a method of producing acicular strontium carbonate by mixing a strontium hydroxide aqueous solution or suspension while stirring and introducing carbon dioxide gas with air or nitrogen gas.

また特許文献2には水酸化ストロンチウム溶液に、結晶成長を防止する薬剤として、カルボン酸のアンモニウム塩及びアルキルアンモニウム塩の存在下で二酸化炭素ガスを導入することで、針状粒子が得られることが報告されている。 Patent Document 2 discloses that acicular particles can be obtained by introducing carbon dioxide gas into a strontium hydroxide solution in the presence of an ammonium salt and an alkyl ammonium salt of a carboxylic acid as an agent for preventing crystal growth. It has been reported.

特許第4140884号公報Japanese Patent No. 4140884 特開2010−132555号公報JP 2010-132555 A

本発明は、簡便な製造ステップで、粒子径の小さい針状炭酸ストロンチウム粒子を工業的に効率よく製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for industrially efficiently producing acicular strontium carbonate particles having a small particle diameter in a simple production step.

すなわち、本発明は針状炭酸ストロンチウム粒子の製造方法であって、
粒形制御剤の存在下、ストロンチウム源と炭酸源との反応を湿式で行う工程を含み、
上記反応は、攪拌手段を備えた反応器中で、1.0×10kW/m〜1.0×10kW/mの攪拌動力密度での攪拌下で行われる
製造方法に関する。
That is, the present invention is a method for producing acicular strontium carbonate particles,
Including a step of performing a wet reaction of a strontium source and a carbonic acid source in the presence of a particle shape control agent,
The reaction is in a reactor equipped with a stirring means, a manufacturing method that is performed under stirring at a stirring power density of 1.0 × 10 2 kW / m 3 ~1.0 × 10 4 kW / m 3.

本発明の炭酸ストロンチウム粒子の製造方法により、微細な針状炭酸ストロンチウム粒子を工業的に効率よく製造することができる。また、本発明により製造された炭酸ストロンチウム粒子は、光学フィルム用途に好適である。 By the method for producing strontium carbonate particles of the present invention, fine acicular strontium carbonate particles can be produced industrially efficiently. The strontium carbonate particles produced according to the present invention are suitable for optical film applications.

本発明の好ましい実施形態の一つである、ポンプを用いた反応を概略的に表した図である。It is the figure which represented roughly reaction using a pump which is one of preferable embodiment of this invention. 実施例1で得られた炭酸ストロンチウム粒子の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of strontium carbonate particles obtained in Example 1. FIG. 実施例2で得られた炭酸ストロンチウム粒子の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of strontium carbonate particles obtained in Example 2. FIG. 比較例1で得られた炭酸ストロンチウム粒子の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of strontium carbonate particles obtained in Comparative Example 1. FIG.

(炭酸ストロンチウムの製造方法)
本発明の針状炭酸ストロンチウム粒子の製造方法は、ストロンチウム源と炭酸源との湿式反応工程を含むものであって、一定の高速攪拌下で行うことを特徴とする。
(Method for producing strontium carbonate)
The method for producing acicular strontium carbonate particles according to the present invention includes a wet reaction step of a strontium source and a carbonic acid source, and is performed under constant high-speed stirring.

ストロンチウム源は、特に限定されないが、溶液に調整可能なストロンチウム化合物、例えば水酸化ストロンチウム、塩化ストロンチウム、硝酸ストロンチウム、及び酢酸ストロンチウムからなる群から選択される一種を用いるのが好ましい。 The strontium source is not particularly limited, but it is preferable to use a strontium compound that can be adjusted to a solution, for example, one selected from the group consisting of strontium hydroxide, strontium chloride, strontium nitrate, and strontium acetate.

ストロンチウム源は、溶液状で用いるのが好ましい。ストロンチウムを含有する溶液は、その濃度が好ましくは1.25質量%〜10質量%、より好ましくは1.25質量%〜5質量%である。該ストロンチウム源含有溶液は、特に限定されないが、25℃〜80℃の温度にて調製することができる。 The strontium source is preferably used in the form of a solution. The concentration of the strontium-containing solution is preferably 1.25 to 10% by mass, more preferably 1.25 to 5% by mass. The strontium source-containing solution is not particularly limited, but can be prepared at a temperature of 25 ° C to 80 ° C.

炭酸源は、特に限定されないが、炭酸ガス(二酸化炭素ガス)、炭酸、ドライアイス等の二酸化炭素源、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム等の炭酸塩、炭酸水素ナトリウム、炭酸水素アンモニウム等の炭酸水素塩、及び尿素から選択することができる。気体状の炭酸ガスを除く他の炭酸源は、予め溶液状態に調製したのち、反応に用いるのが好ましい。 The carbonic acid source is not particularly limited, but carbon dioxide such as carbon dioxide (carbon dioxide gas), carbonic acid and dry ice, carbonates such as sodium carbonate, potassium carbonate and ammonium carbonate, carbonates such as sodium hydrogen carbonate and ammonium hydrogen carbonate. It can be selected from hydrogen salts and urea. Other carbonic acid sources except gaseous carbon dioxide are preferably prepared in a solution state and then used for the reaction.

炭酸源の濃度は、特に限定されないが、ストロンチウム源1モルに対して1.0〜1.5モルの割合で導入するのが好ましい。 The concentration of the carbonic acid source is not particularly limited, but it is preferably introduced at a ratio of 1.0 to 1.5 mol with respect to 1 mol of the strontium source.

ストロンチウム源の反応器への導入方法は、特に限定されないが、反応器内に予め導入しておくバッチ式と、連続的に導入する連続式より選択できる。バッチ式で導入不可能な反応器、例えばポンプの場合は、連続式での導入が好ましい。 The method of introducing the strontium source into the reactor is not particularly limited, but can be selected from a batch system introduced in advance into the reactor and a continuous system introduced continuously. In the case of a reactor that cannot be introduced batchwise, such as a pump, continuous introduction is preferred.

ストロンチウム源と炭酸源の反応は湿式で行われる。溶媒は特に限定されないが、水が好ましい。また水以外に水溶性の有機溶媒を含んでいてもよい。 The reaction between the strontium source and the carbonic acid source is performed wet. The solvent is not particularly limited, but water is preferable. In addition to water, a water-soluble organic solvent may be included.

本発明の特徴は反応時において一定の高速で攪拌を行う点にある。本発明において使用できる攪拌手段は、特に限定されないが、ポンプ、ミクロアジター、サンドミル、ボールミル等があげられる。高い攪拌動力密度を得るためにより好適な反応器はミクロアジター、ポンプ、及びサンドミルである。 The feature of the present invention is that stirring is performed at a constant high speed during the reaction. The stirring means that can be used in the present invention is not particularly limited, and examples thereof include a pump, a micro agitator, a sand mill, and a ball mill. More suitable reactors for obtaining high stirring power density are micro agitators, pumps, and sand mills.

ポンプにはターボ型ポンプ、容積型ポンプ、特殊型ポンプがあるが、これらのいずれも使用することができる。ターボ型ポンプの例としては、渦巻きポンプ、ディフューザポンプ等の遠心ポンプ、渦巻き斜流ポンプ、ディフューザ型斜流ポンプ等の斜流ポンプ、軸流ポンプが挙げられる。容積型ポンプとしては、ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプ等の往復ポンプ、ギヤポンプ、ベーンポンプ、ねじポンプ等の回転ポンプ、特殊型ポンプとしては、水あるいは蒸気のジェット噴射力を利用したポンプや圧縮空気を利用したポンプが挙げられる。工業的規模で実施する場合には、遠心ポンプ、斜流ポンプ、軸流ポンプ、回転ポンプが好ましい。 There are a turbo type pump, a positive displacement pump, and a special type pump, and any of these can be used. Examples of the turbo pump include a centrifugal pump such as a centrifugal pump and a diffuser pump, a mixed flow pump such as a spiral mixed flow pump and a diffuser mixed flow pump, and an axial flow pump. Positive displacement pumps include reciprocating pumps such as piston pumps, plunger pumps, and diaphragm pumps, rotary pumps such as gear pumps, vane pumps, and screw pumps. Special types of pumps include pumps that use jet injection force of water or steam and compression. An example is a pump that uses air. When implemented on an industrial scale, centrifugal pumps, mixed flow pumps, axial flow pumps, and rotary pumps are preferred.

ポンプを利用した反応の一実施形態を以下に示す。但し本発明はこの実施形態に限定されるものではない。またその概略図を図1に示す。 One embodiment of the reaction using a pump is shown below. However, the present invention is not limited to this embodiment. Moreover, the schematic is shown in FIG.

まず、ポンプの導入口より、ストロンチウム源溶液と、炭酸源溶液又は炭酸ガスと、粒径制御剤溶液とをそれぞれ連続的にポンプ内へ導入し、ポンプのケーシング内にて反応させる。反応により生成した炭酸ストロンチウムは、ポンプの排出口より懸濁液の状態で排出する。原料溶液は、それぞれ送液可能な装置、例えば上記反応用ポンプとは別の送液用ポンプ等を用いて上記反応用ポンプ内へ導入する。 First, a strontium source solution, a carbonic acid source solution or carbon dioxide gas, and a particle size controlling agent solution are successively introduced into the pump through the pump inlet, and reacted in the pump casing. Strontium carbonate produced by the reaction is discharged in a suspension state from the discharge port of the pump. The raw material solution is introduced into the reaction pump by using a device capable of feeding the liquid, for example, a liquid feed pump different from the reaction pump.

本発明において、攪拌度は攪拌動力密度によって表わすことができる。攪拌動力密度とは、反応器内の体積(m)当たりの攪拌動力(kW)であり、一定の体積の物質を攪拌する場合は、攪拌動力密度が大きいほど、高速で攪拌が行われることを意味する。 In the present invention, the degree of stirring can be represented by the stirring power density. The stirring power density is the stirring power (kW) per volume (m 3 ) in the reactor. When a certain volume of material is stirred, the higher the stirring power density, the higher the stirring speed. Means.

本発明の製造方法における攪拌動力密度は1.0×10kW/m〜1.0×10kW/mである。攪拌動力密度が1.0×10kW/m未満であれば、炭酸ストロンチウムの粒子径が大きくなる傾向があり、所望の微細粒子が得られないおそれがある。一方、1.0×10kW/mを超える攪拌動力密度は一般的な製造装置においては達成が難しく、危険性を伴う場合があり、好ましくない。 The stirring power density in the production method of the present invention is 1.0 × 10 2 kW / m 3 to 1.0 × 10 4 kW / m 3 . If the stirring power density is less than 1.0 × 10 2 kW / m 3 , the particle diameter of strontium carbonate tends to increase, and desired fine particles may not be obtained. On the other hand, a stirring power density exceeding 1.0 × 10 4 kW / m 3 is not preferable because it is difficult to achieve in a general manufacturing apparatus and may involve danger.

本発明の製造方法においては、粒径制御剤を用いる。上記粒径制御剤としては、特に限定されないが、ヒドロキシカルボン酸、多価アルコール、カルボン酸、及びこれらの塩が挙げられる。 In the production method of the present invention, a particle size controlling agent is used. Although it does not specifically limit as said particle size control agent, Hydroxycarboxylic acid, polyhydric alcohol, carboxylic acid, and these salts are mentioned.

上記ヒドロキシカルボン酸としては、特に限定されないが、グルコール酸、乳酸、クエン酸、グリセリン酸、ヒドロキシ酪酸、リンゴ酸、酒石酸、メバロン酸、及びパントイン酸が挙げられる。 The hydroxycarboxylic acid is not particularly limited, and examples thereof include glycolic acid, lactic acid, citric acid, glyceric acid, hydroxybutyric acid, malic acid, tartaric acid, mevalonic acid, and pantoic acid.

上記多価アルコールとしては、特に限定されないが、エチレングリコール、グリセリン、キシリトール、プロピレングリコール及びソルビトールが挙げられる。 Although it does not specifically limit as said polyhydric alcohol, Ethylene glycol, glycerin, xylitol, propylene glycol, and sorbitol are mentioned.

カルボン酸は、特に限定されないが、シュウ酸、酪酸、蟻酸、酢酸、プロピオン酸及び吉草酸が挙げられる。 The carboxylic acid is not particularly limited, and examples thereof include oxalic acid, butyric acid, formic acid, acetic acid, propionic acid, and valeric acid.

中でもクエン酸、リンゴ酸及びソルビトールが針状形状を発現するのに好適である。 Among these, citric acid, malic acid, and sorbitol are suitable for expressing the needle shape.

粒径制御剤は、生成する炭酸ストロンチウムに対して0.45〜4.5質量%の範囲で導入する。0.45質量%未満であると粒形制御剤としての効果が不十分となり、針状形状が得られにくい傾向がある。一方、4.5質量%を超えると生成する炭酸ストロンチウムの形状が不定形となる傾向がある。 The particle size controlling agent is introduced in the range of 0.45 to 4.5 mass% with respect to the strontium carbonate to be produced. If it is less than 0.45% by mass, the effect as a particle shape control agent becomes insufficient, and there is a tendency that a needle-like shape is difficult to obtain. On the other hand, when it exceeds 4.5 mass%, the shape of the produced strontium carbonate tends to be indefinite.

本発明の製造方法の、好ましい一実施形態を説明する。但し本発明はこの実施形態に限定されるものではない。 A preferred embodiment of the production method of the present invention will be described. However, the present invention is not limited to this embodiment.

(好ましい実施形態の一例)
ストロンチウム源を含有する溶液を準備し、
ストロンチウム源を含有する該溶液と、粒形制御剤と、気体状又は溶液状の炭酸源とを、攪拌手段を備えた反応器に導入し
該反応器内で、1.0×10kW/m〜1.0×10kW/mの攪拌動力密度での攪拌下、pHが6〜11の懸濁液を調製し
該懸濁液から、生成した針状炭酸ストロンチウム粒子を回収する。
(Example of preferred embodiment)
Preparing a solution containing a strontium source,
The solution containing a strontium source, a particle shape controlling agent, and a gaseous or solution carbonic acid source are introduced into a reactor equipped with stirring means, and 1.0 × 10 2 kW / Under stirring at a stirring power density of m 3 to 1.0 × 10 4 kW / m 3 , a suspension having a pH of 6 to 11 is prepared, and the generated acicular strontium carbonate particles are recovered from the suspension. .

まずストロンチウム源を含有する溶液を準備する。ストロンチウム源については上述のものが使用できる。溶媒については、水及び水溶性有機溶媒を利用できるが、水、又は水と水溶性有機溶媒の混合物が好ましい。 First, a solution containing a strontium source is prepared. The above-mentioned strontium sources can be used. As the solvent, water and a water-soluble organic solvent can be used, but water or a mixture of water and a water-soluble organic solvent is preferable.

次にストロンチウム源と、粒形制御剤と、炭酸源とを、攪拌手段を備えた反応器に導入する。反応器への導入の順序は特に限定されず、ストロンチウム源、粒形制御剤、炭酸源のいずれから導入してもよく、また3つの原料のうち、2つ以上を同時に導入してもよい。また原料はバッチ式で導入してもよく、反応器へ連続的に導入してもよい。炭酸源が炭酸ガスである場合には、ストロンチウム源及び粒径制御剤を反応器に導入した後、反応の進行を見ながら炭酸ガスを導入するのが好ましい。 Next, a strontium source, a particle shape controlling agent, and a carbonic acid source are introduced into a reactor equipped with stirring means. The order of introduction into the reactor is not particularly limited, and may be introduced from any of the strontium source, the particle shape control agent, and the carbonic acid source, or two or more of the three raw materials may be introduced simultaneously. In addition, the raw materials may be introduced batchwise or continuously into the reactor. When the carbon dioxide source is carbon dioxide, it is preferable to introduce carbon dioxide while monitoring the progress of the reaction after introducing the strontium source and the particle size control agent into the reactor.

炭酸源としては上述のものが使用できる。炭酸源が気体の場合には、反応器にそのまま気体として導入する。炭酸源が固体の場合、炭酸源は、その炭酸塩を含む溶液として導入することができる。溶媒については、水、水溶性有機溶媒を利用できるが、水、又は水と水溶性有機溶媒の混合物が好ましい。 The above-mentioned thing can be used as a carbonic acid source. When the carbonic acid source is a gas, it is introduced into the reactor as a gas as it is. When the carbonate source is a solid, the carbonate source can be introduced as a solution containing the carbonate. As the solvent, water or a water-soluble organic solvent can be used, but water or a mixture of water and a water-soluble organic solvent is preferable.

上記反応器内で、1.0×10kW/m〜1.0×10kW/mの攪拌動力密度で攪拌することにより、懸濁液を得る。攪拌手段としては、特に限定されないが、ミクロアジター、ポンプ、サンドミルが好ましい。ミクロアジター、ポンプ、サンドミルを用いることにより、高速での攪拌が達成できる。 In the said reactor, a suspension is obtained by stirring with the stirring power density of 1.0 * 10 < 2 > kW / m < 3 > -1.0 * 10 < 4 > kW / m < 3 >. The stirring means is not particularly limited, but a micro agitator, a pump, and a sand mill are preferable. By using a micro agitator, a pump, and a sand mill, high-speed stirring can be achieved.

本実施形態において、懸濁液のpHは6〜11である。pHは好ましくは7〜10である。 In this embodiment, the pH of the suspension is 6-11. The pH is preferably 7-10.

その後、上記懸濁液から、生成した針状炭酸ストロンチウム粒子を回収する。典型的には、懸濁液を濾過し、得られた固形分を乾燥させることにより、所望の炭酸ストロンチウム粒子を回収することができる。 Thereafter, the produced acicular strontium carbonate particles are recovered from the suspension. Typically, the desired strontium carbonate particles can be recovered by filtering the suspension and drying the resulting solids.

(炭酸ストロンチウム粒子)
本発明の製造方法により得られる炭酸ストロンチウム粒子は、平均長軸径が100〜6000nm、好ましくは100〜200nmの範囲であり、アスペクト比(=平均長軸径/平均短軸径)の平均が4〜10の範囲にある針状粒子である。
(Strontium carbonate particles)
The strontium carbonate particles obtained by the production method of the present invention have an average major axis diameter of 100 to 6000 nm, preferably 100 to 200 nm, and an average aspect ratio (= average major axis diameter / average minor axis diameter) of 4. It is an acicular particle in the range of -10.

なお、本発明において、炭酸ストロンチウムの平均長軸径は、透過型電子顕微鏡写真の粒子の長軸径を特定の個数(例えば50個、又はそれ以上)分測定し、その平均値を求めたものである。またアスペクト比は、同様に透過型電子顕微鏡写真より平均短軸径を求め、平均長軸径を平均短軸径で割った値である。 In the present invention, the average major axis diameter of strontium carbonate is obtained by measuring the major axis diameter of particles in a transmission electron micrograph for a specific number (for example, 50 or more) and obtaining the average value. It is. Similarly, the aspect ratio is a value obtained by obtaining an average minor axis diameter from a transmission electron micrograph and dividing the average major axis diameter by the average minor axis diameter.

以下、本発明の実施例について説明するが、本発明はこれらによって限定されるものではない。なお、特に断りの無い限り、「%」は「質量%」を表す。 Examples of the present invention will be described below, but the present invention is not limited to these examples. Note that “%” represents “mass%” unless otherwise specified.

[実施例1]
反応容器に60℃に加熱した水950g及び、水酸化ストロンチウム・8水和物50gを投入し、5質量%の水酸化ストロンチウム水溶液を調整した。これに2.0質量%クエン酸水溶液25ml(生成する炭酸ストロンチウムに対し1.8質量%)を添加し、よく攪拌した。反応容器にpHメータの電極を挿入し、ミクロアジターで攪拌しながら二酸化炭素ガスを500mL/分で導入した。この時の攪拌動力密度は6.6×10kW/mであった。pHが6〜8に達した時点で二酸化炭素ガスの導入を止めた。懸濁液をろ過後、固形分を105℃にて乾燥して、炭酸ストロンチウム粒子を得た。炭酸ストロンチウムの形状を透過型電子顕微鏡で観察したところ、平均長軸径100nm、アスペクト比5であった。
[Example 1]
A reaction vessel was charged with 950 g of water heated to 60 ° C. and 50 g of strontium hydroxide octahydrate to prepare a 5 mass% strontium hydroxide aqueous solution. To this, 25 ml of a 2.0% by mass aqueous citric acid solution (1.8% by mass with respect to the produced strontium carbonate) was added and stirred well. A pH meter electrode was inserted into the reaction vessel, and carbon dioxide gas was introduced at 500 mL / min while stirring with a micro agitator. The stirring power density at this time was 6.6 × 10 3 kW / m 3 . The introduction of carbon dioxide gas was stopped when the pH reached 6-8. After filtering the suspension, the solid content was dried at 105 ° C. to obtain strontium carbonate particles. When the shape of strontium carbonate was observed with a transmission electron microscope, the average major axis diameter was 100 nm and the aspect ratio was 5.

[実施例2]
80℃に加熱した水57Lに水酸化ストロンチウム・8水和物3kgを投入し、5質量%の水酸化ストロンチウム水溶液を調整した。上記手順にて調製した水酸化ストロンチウム水溶液を13L/分、二酸化炭素ガスを87L/分及び2.0質量%のクエン酸水溶液を750ml/分で連続的に1台目のポンプ(佐藤ポンプ工業株式会社製「渦巻ポンプ」、型式S−252G)に導入し炭酸化反応を行った。1台目のポンプ出口から排出された懸濁液を2台目のポンプ(株式会社横田製作所製「片吸込渦巻ポンプ」、型式UEN−0510)に連続的に投入した。この時、1台目の攪拌動力密度は5.8×10kW/mであった。2台目のポンプ出口から排出された懸濁液のpHは10.6であった。懸濁液をろ過後、固形分を105℃にて乾燥して、炭酸ストロンチウム粒子を得た。炭酸ストロンチウムの形状を透過型電子顕微鏡で観察したところ、平均長軸径230nm、アスペクト比6であった。
[Example 2]
3 kg of strontium hydroxide octahydrate was added to 57 L of water heated to 80 ° C. to prepare a 5 mass% strontium hydroxide aqueous solution. The first pump (Sato Pump Industry Co., Ltd.) was continuously prepared at 13 L / min for the strontium hydroxide aqueous solution prepared in the above procedure, 87 L / min for carbon dioxide gas, and 750 ml / min for 2.0% by mass citric acid aqueous solution. Carbonation reaction was carried out by introducing into a company “Swirl Pump”, model S-252G). The suspension discharged from the outlet of the first pump was continuously charged into a second pump (“Yokata Suction Centrifugal Pump”, model UEN-0510 manufactured by Yokota Manufacturing Co., Ltd.). At this time, the stirring power density of the first unit was 5.8 × 10 3 kW / m 3 . The pH of the suspension discharged from the outlet of the second pump was 10.6. After filtering the suspension, the solid content was dried at 105 ° C. to obtain strontium carbonate particles. When the shape of strontium carbonate was observed with a transmission electron microscope, it had an average major axis diameter of 230 nm and an aspect ratio of 6.

[比較例1]
80℃に加熱した水6750gに水酸化ストロンチウム・8水和物750gを投入し、10質量%の水酸化ストロンチウム水溶液を調整した。1段目及び2段目の反応容器に水をそれぞれ400g及び750gを投入した。攪拌機(攪拌翼を備えたミキサー)で攪拌しながら、上記手順にて調製した水酸化ストロンチウム水溶液を1段目の反応容器に60ml/分で連続的に投入し、同時に二酸化炭素ガスを280mL/分で導入して炭酸化反応を行った。1段目の反応容器から排出された懸濁液を2段目の反応容器に連続的に投入し、攪拌機で攪拌しながら二酸化炭素ガスを280mL/分で導入した。この時、1段目の攪拌動力密度は3.8kW/m3であり、2段目の攪拌動力密度は5.3kW/mであった。2段目の反応機から排出された懸濁液のpHは10.5であった。懸濁液をろ過後、固形分を105℃にて乾燥して、炭酸ストロンチウム粒子を得た。炭酸ストロンチウムの形状を透過型電子顕微鏡で観察したところ、平均長軸径420nm、アスペクト比2であった。
[Comparative Example 1]
750 g of strontium hydroxide octahydrate was added to 6750 g of water heated to 80 ° C. to prepare a 10 mass% strontium hydroxide aqueous solution. 400 g and 750 g of water were added to the first and second stage reaction vessels, respectively. While stirring with a stirrer (mixer equipped with a stirring blade), the aqueous strontium hydroxide solution prepared in the above procedure was continuously added to the first stage reaction vessel at 60 ml / min, and at the same time carbon dioxide gas was 280 mL / min. The carbonation reaction was carried out by introducing the carbon dioxide. The suspension discharged from the first-stage reaction vessel was continuously charged into the second-stage reaction vessel, and carbon dioxide gas was introduced at 280 mL / min while stirring with a stirrer. At this time, the first stage stirring power density was 3.8 kW / m 3 , and the second stage stirring power density was 5.3 kW / m 3 . The pH of the suspension discharged from the second-stage reactor was 10.5. After filtering the suspension, the solid content was dried at 105 ° C. to obtain strontium carbonate particles. When the shape of strontium carbonate was observed with a transmission electron microscope, the average major axis diameter was 420 nm and the aspect ratio was 2.

上記実施例及び比較例の条件及び結果を表1に示す。また、実施例及び比較例で得られた炭酸ストロンチウム粒子の透過型電子顕微鏡写真を図2〜4に示す。 The conditions and results of the above examples and comparative examples are shown in Table 1. In addition, transmission electron micrographs of strontium carbonate particles obtained in Examples and Comparative Examples are shown in FIGS.

Claims (5)

針状炭酸ストロンチウム粒子の製造方法であって、
粒形制御剤の存在下、ストロンチウム源と炭酸源との反応を湿式で行う工程を含み、
前記反応は、攪拌手段を備えた反応器中で、1.0×10kW/m〜1.0×10kW/mの攪拌動力密度での攪拌下で行われる
製造方法。
A method for producing acicular strontium carbonate particles,
Including a step of performing a wet reaction of a strontium source and a carbonic acid source in the presence of a particle shape control agent,
The reaction is carried out in a reactor equipped with a stirring means, 1.0 × 10 2 kW / m 3 ~1.0 × 10 manufacturing method carried out under stirring at a stirring power density of 4 kW / m 3.
ストロンチウム源を含有する溶液準備し、
ストロンチウム源を含有する該溶液と、粒形制御剤と、気体状又は溶液状の炭酸源とを、攪拌手段を備えた反応器に導入し
該反応機内で、1.0×10kW/m〜1.0×10kW/mの攪拌動力密度での攪拌下、pHが6〜11の懸濁液を調製し
該懸濁液から、生成した炭酸ストロンチウム粒子を回収する
請求項1記載の製造方法。
Preparing a solution containing a strontium source,
The solution containing a strontium source, a particle shape controlling agent, and a gaseous or solution carbonic acid source are introduced into a reactor equipped with stirring means, and 1.0 × 10 2 kW / m in the reactor. 2. A suspension having a pH of 6 to 11 is prepared under stirring at a stirring power density of 3 to 1.0 × 10 4 kW / m 3 , and the produced strontium carbonate particles are recovered from the suspension. The manufacturing method as described.
前記攪拌手段は、ミクロアジター又はサンドミルである請求項1又は2記載の製造方法。 The method according to claim 1 or 2, wherein the stirring means is a micro agitator or a sand mill. 前記攪拌手段は、ポンプである請求項1又は2記載の製造方法。 The method according to claim 1 or 2, wherein the stirring means is a pump. 前記粒形制御剤は、ヒドロキシカルボン酸、多価アルコール若しくはカルボン酸、又はそれらのいずれかの塩である請求項1〜4のいずれか一項に記載の製造方法。
The production method according to any one of claims 1 to 4, wherein the particle shape controlling agent is hydroxycarboxylic acid, polyhydric alcohol or carboxylic acid, or a salt thereof.
JP2011011036A 2011-01-21 2011-01-21 Method for producing acicular strontium carbonate particles, and acicular strontium carbonate particles Active JP5664271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011036A JP5664271B2 (en) 2011-01-21 2011-01-21 Method for producing acicular strontium carbonate particles, and acicular strontium carbonate particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011036A JP5664271B2 (en) 2011-01-21 2011-01-21 Method for producing acicular strontium carbonate particles, and acicular strontium carbonate particles

Publications (2)

Publication Number Publication Date
JP2012153537A JP2012153537A (en) 2012-08-16
JP5664271B2 true JP5664271B2 (en) 2015-02-04

Family

ID=46835693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011036A Active JP5664271B2 (en) 2011-01-21 2011-01-21 Method for producing acicular strontium carbonate particles, and acicular strontium carbonate particles

Country Status (1)

Country Link
JP (1) JP5664271B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347134B2 (en) * 2014-03-31 2018-06-27 宇部興産株式会社 Strontium carbonate fine powder and method for producing the same
EP3061728A4 (en) * 2013-10-25 2017-06-21 Ube Material Industries, Ltd. Needle-like strontium carbonate fine powder and method for producing same
JP6244164B2 (en) * 2013-10-25 2017-12-06 宇部マテリアルズ株式会社 Acicular strontium carbonate fine powder
WO2015141817A1 (en) * 2014-03-20 2015-09-24 宇部マテリアルズ株式会社 Needle-shaped strontium carbonate microparticles and dispersion liquid thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800671B2 (en) * 2004-12-15 2011-10-26 富士フイルム株式会社 Carbonate crystals, process for producing the same, and transparent optical resin composition
US20100087578A1 (en) * 2005-06-24 2010-04-08 Fujifilm Corporation Optical resin composition and method for producing the same
JP2008074634A (en) * 2006-09-19 2008-04-03 Konica Minolta Holdings Inc Manufacturing process of alkaline earth metal carbonate particle and alkaline earth metal carbonate particle
JP2009001475A (en) * 2006-12-14 2009-01-08 Sony Corp Method for manufacturing strontium carbonate fine particle
JP2010254533A (en) * 2009-04-28 2010-11-11 Nippon Chem Ind Co Ltd Method for producing strontium carbonate particle powder

Also Published As

Publication number Publication date
JP2012153537A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5664271B2 (en) Method for producing acicular strontium carbonate particles, and acicular strontium carbonate particles
CN103011226B (en) A kind of preparation method of nano-calcium carbonate of coring and increment proceed step by step
WO2016023461A1 (en) Method for preparation of a metal powder
JP2006206425A (en) Alkaline earth metal carbonate fine particles and method for manufacturing the same
CN108083316A (en) A kind of preparation method of nano rareearth oxidate powder body
JP4574517B2 (en) Method for producing vaterite disk-like calcium carbonate
KR101773622B1 (en) Generally spherical barium carbonate particles, and method for producing generally spherical barium carbonate particles
CN108190935B (en) Preparation method of strip-shaped and sheet-shaped calcium carbonate ultrafine particles
CN107572564B (en) A kind of wheat head shape porous magnesia and preparation method thereof
JPWO2007061073A1 (en) Method for producing vaterite-type calcium carbonate having a crossed disk shape, a hamburger shape or a disk shape
CN116621209A (en) Nanometer barium carbonate with controllable specific surface area and synthesis method thereof
JP5879798B2 (en) Method for producing alkaline earth metal carbonate, method for producing barium titanate, and method for producing strontium titanate
CN101020580A (en) Process of preparing nanometer level RE oxide
JP5605236B2 (en) Method for producing strontium carbonate particles and strontium carbonate particles
CN103601223A (en) Preparation method of highly dispersed nanoflake magnesium hydroxide
KR100787346B1 (en) Method for preparing cerium oxide
KR101388961B1 (en) Syntheses of zirconium oxide by hydrothermal methed
CN105753047A (en) Novel method of preparing nano zirconium oxide powder for dentistry
CN113651349B (en) Method for preparing stable spherical vaterite phase calcium carbonate in organic medium
JP5330982B2 (en) Method for producing vaterite-type calcium carbonate
JP2008074634A (en) Manufacturing process of alkaline earth metal carbonate particle and alkaline earth metal carbonate particle
JP2009234843A (en) Dawsonite particulate and method for producing the same
CN113830800A (en) Method for preparing lithium carbonate with uniform particle size distribution through low-temperature homogenization
JP2003171466A (en) Method for producing spherical fine particle of polyorganosilsesquioxane
CN108408765A (en) A kind of preparation method of rectangular tubular calcium titanate micron particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5664271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250