JP5663230B2 - Oxide superconducting wire and method for producing the same - Google Patents

Oxide superconducting wire and method for producing the same Download PDF

Info

Publication number
JP5663230B2
JP5663230B2 JP2010169298A JP2010169298A JP5663230B2 JP 5663230 B2 JP5663230 B2 JP 5663230B2 JP 2010169298 A JP2010169298 A JP 2010169298A JP 2010169298 A JP2010169298 A JP 2010169298A JP 5663230 B2 JP5663230 B2 JP 5663230B2
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
hot
laminate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010169298A
Other languages
Japanese (ja)
Other versions
JP2012033281A (en
Inventor
智 羽生
智 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010169298A priority Critical patent/JP5663230B2/en
Publication of JP2012033281A publication Critical patent/JP2012033281A/en
Application granted granted Critical
Publication of JP5663230B2 publication Critical patent/JP5663230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、基材上に中間層と酸化物超電導層と安定化層を備えた積層構造の酸化物超電導線材とその製造方法に関する。   The present invention relates to an oxide superconducting wire having a laminated structure including an intermediate layer, an oxide superconducting layer, and a stabilizing layer on a substrate, and a method for producing the same.

近年になって発見されたRE−123系酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)は、液体窒素温度以上で超電導性を示し、電流損失が低いため、実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体あるいは磁気コイル等として使用することが要望されている。この酸化物超電導体を線材に加工するための方法として、強度が高く、耐熱性もあり、線材に加工することが容易な金属を長尺のテープ状に加工し、この金属基材テープ上に酸化物超電導層を形成する方法が研究されている。 RE-123 oxide superconductor discovered in recent years (REBa 2 Cu 3 O 7-X, where RE is a rare earth element including Y) exhibits superconductivity above liquid nitrogen temperature and has low current loss. It is considered as a very promising material for practical use, and it is desired to process it into a wire and use it as a power supply conductor or a magnetic coil. As a method for processing this oxide superconductor into a wire, a metal having high strength, heat resistance, and easy to process into a wire is processed into a long tape shape, and this metal base tape is Methods for forming oxide superconducting layers have been studied.

更に、酸化物超電導体は電気的異方性を有しているので、基材上に酸化物超電導層を形成する場合、結晶の配向制御を行う必要があり、その方法の一例として、基材上に中間層を介して酸化物超電導層を積層する技術が知られている。この中間層を利用する技術の一例として、イオンビームアシスト成膜法(IBAD法:Ion Beam Assisted Deposition)が知られており、この方法は、スパッタリング法によりターゲットから叩き出した構成粒子を基材上に堆積させる際、イオン銃から発生されたアルゴンイオン等を同時に斜め方向(例えば、45度方向)から照射しながら中間層を堆積させる方法として知られている。このIBAD法によれば、高い2軸配向性を示す中間層を基材上に成膜できるので、この中間層上に酸化物超電導薄膜を形成することにより、超電導特性の優れた酸化物超電導導体を得ることができる。   Furthermore, since the oxide superconductor has electrical anisotropy, it is necessary to control crystal orientation when forming an oxide superconducting layer on the substrate. A technique is known in which an oxide superconducting layer is stacked on an intermediate layer. As an example of a technique using this intermediate layer, an ion beam assisted deposition method (IBAD method: Ion Beam Assisted Deposition) is known. This method uses constituent particles struck from a target by a sputtering method on a substrate. It is known as a method of depositing an intermediate layer while simultaneously irradiating argon ions generated from an ion gun or the like from an oblique direction (for example, 45 degrees direction). According to this IBAD method, an intermediate layer exhibiting high biaxial orientation can be formed on a base material. Therefore, by forming an oxide superconducting thin film on this intermediate layer, an oxide superconducting conductor having excellent superconducting properties. Can be obtained.

また、前記酸化物超電導導体にあっては、酸化物超電導層上に、薄い銀の安定化層を形成し、その上に銅などの良導電性金属材料からなる厚い安定化層を設けた2層構造の安定化層を積層する構造が採用されている。そして、この2層構造の安定化層を形成する技術の一例として、酸化物超電導層の上にスパッタリングにより薄いAgの安定化層を設けた後、全体を硫酸銅水溶液中に浸漬し、この硫酸銅水溶液をめっき浴として用いる電気めっきによりAgの安定化層上にCuの安定化層を形成する技術が知られている。(特許文献1参照)   Further, in the oxide superconducting conductor, a thin silver stabilizing layer is formed on the oxide superconducting layer, and a thick stabilizing layer made of a highly conductive metal material such as copper is provided thereon. A structure in which a stabilization layer having a layer structure is stacked is employed. As an example of a technique for forming the stabilization layer having the two-layer structure, a thin Ag stabilization layer is formed on the oxide superconducting layer by sputtering, and the whole is immersed in an aqueous copper sulfate solution. A technique for forming a Cu stabilization layer on an Ag stabilization layer by electroplating using an aqueous copper solution as a plating bath is known. (See Patent Document 1)

前記Agの安定化層は、酸化物超電導層を酸素熱処理する際に酸素量の変動を調節する目的のためにも設けられており、Cuの安定化層は、酸化物超電導層が超電導状態から常電導状態に遷移しようとしたとき、該酸化物超電導層の電流を転流させるバイパスとして機能させるための目的で設けられている。   The Ag stabilizing layer is also provided for the purpose of adjusting fluctuations in the amount of oxygen when the oxide superconducting layer is subjected to oxygen heat treatment, and the Cu stabilizing layer is formed from the superconducting state of the oxide superconducting layer. It is provided for the purpose of functioning as a bypass for commutating the current in the oxide superconducting layer when attempting to transition to the normal conducting state.

また、酸化物超電導導体において、安定化層を複合した構造として、基板、バッファ層、マルチフィラメント超電導体層、安定化層からなる構造であって、基板上に複数設けたマルチフィラメント超電導体層を金属の安定化層で覆ってカプセル化した構造が知られている。(特許文献2参照)   Further, in the oxide superconductor, a structure composed of a substrate, a buffer layer, a multifilament superconductor layer, and a stabilization layer as a structure in which a stabilization layer is combined, and a plurality of multifilament superconductor layers provided on the substrate are provided. A structure encapsulated by a metal stabilization layer is known. (See Patent Document 2)

特開2007−80780号公報JP 2007-80780 A 特表2009−544144号公報Special table 2009-544144

前記従来技術において、酸化物超電導層上にAgの安定化層を形成する場合、スパッタ法により成膜することがあるが、スパッタ法によるAgの成膜では、酸化物超電導層の上面側への成膜は可能であるものの、それ以外の、例えば、酸化物超電導層の側面側には安定化層を満足には形成できない問題がある。このため、前記電解めっきを行う従来技術では、硫酸銅溶液中に線材を浸漬する過程でAgの安定化層が存在しない部分、例えば、酸化物超電導層の側面側、中間層の側面側などの部分は、直に硫酸銅溶液に浸漬されことになるので、酸化物超電導層または中間層の浸漬部分が劣化するおそれを有している。   In the prior art, when an Ag stabilization layer is formed on an oxide superconducting layer, it may be formed by a sputtering method, but in the Ag film formation by a sputtering method, the upper surface side of the oxide superconducting layer is formed. Although film formation is possible, there is a problem that other than that, for example, the stabilization layer cannot be satisfactorily formed on the side surface of the oxide superconducting layer. For this reason, in the prior art in which the electrolytic plating is performed, a portion where there is no Ag stabilizing layer in the process of immersing the wire in the copper sulfate solution, such as the side surface side of the oxide superconducting layer, the side surface side of the intermediate layer, etc. Since the portion is directly immersed in the copper sulfate solution, the immersed portion of the oxide superconducting layer or the intermediate layer may be deteriorated.

また、Agの安定化層に覆われていない部分に大きなダメージを受けなかったとしても、Agの安定化層上に優先的にCuのめっき層が析出するので、酸化物超電導層の側面側のカバーなども考慮すると、めっき時間を長くしてCuのめっき層を充分に成長させて酸化物超電導層の側面側までめっき層が到達するように厚くめっき処理する必要が生じるので、めっき時間が極めて長くなる問題がある。
一方、前記従来技術において、Agの安定化層を酸化物超電導線材の全周にカプセル化する技術にあっては、前述の課題は解消できるものの、高価なAgを超電導線材の全周に付着する必要があり、コストの向上が避けられない問題がある。
Even if the portion not covered by the Ag stabilization layer is not damaged significantly, a Cu plating layer is preferentially deposited on the Ag stabilization layer, so that the side surface side of the oxide superconducting layer is Considering the cover, etc., it is necessary to increase the plating time so that the Cu plating layer is sufficiently grown and the plating layer reaches the side of the oxide superconducting layer. There is a problem that becomes longer.
On the other hand, in the prior art, in the technique of encapsulating the Ag stabilizing layer around the entire circumference of the oxide superconducting wire, the above-mentioned problems can be solved, but expensive Ag is attached to the entire circumference of the superconducting wire. There is a problem that an increase in cost is inevitable.

本発明は、以上のような従来の実情に鑑みなされたものであり、基材と中間層と酸化物超電導層とAgの安定化基層からなる酸化物超電導積層体の周面にAl溶融めっき層を配し、その上に電解めっきによる金属製の安定化層を積層した構造を採用し、Agの使用量を抑えてコストアップを避けつつ酸化物超電導層の側面側を含めて酸化物超電導積層体の周面をAl溶融めっき層と金属製の安定化層で覆って保護した構造を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and an Al hot-dip plating layer is formed on the peripheral surface of an oxide superconducting laminate comprising a base material, an intermediate layer, an oxide superconducting layer, and an Ag stabilizing base layer. Oxide superconducting laminate including the side of the oxide superconducting layer while reducing the amount of Ag used and avoiding cost increases An object of the present invention is to provide a structure in which the peripheral surface of the body is protected by covering with an Al hot-dip plating layer and a metal stabilization layer.

本発明は、上記課題を解決するために、基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられたAgの安定化基層とを備えて酸化物超電導積層体が構成され、該酸化物超電導積層体の周面側に該周面全体を覆うAl溶融めっき層が被覆され、該Al溶融めっき層の外周側に電解めっきによる金属製の安定化層が積層されてなることを特徴とする。
本発明は、前記Al溶融めっき層の厚さが1〜20μmの範囲とされてなることが好ましい。
In order to solve the above problems, the present invention comprises a base material, an intermediate layer and an oxide superconducting layer provided on the base material, and an Ag stabilizing base layer provided on the oxide superconducting layer. The oxide superconducting laminate is configured, and the peripheral surface side of the oxide superconducting laminate is coated with an Al molten plating layer covering the entire peripheral surface, and the outer peripheral side of the Al molten plated layer is made of metal by electrolytic plating. The stabilizing layer is laminated.
In the present invention, it is preferable that the thickness of the Al hot-dip plating layer is in the range of 1 to 20 μm.

本発明の製造方法は、基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられたAgの安定化基層とを備えて酸化物超電導積層体が構成され、該酸化物超電導積層体の周面側に該周面全体を覆うAl溶融めっき層が被覆され、該Al溶融めっき層の外周側に電解めっきによる金属製の安定化層が積層されてなる酸化物超電導線材を製造する方法であって、前記酸化物超電導積層体をアルミニウム溶湯に浸漬して引き上げ、前記酸化物超電導積層体の全周を被覆する所定の厚さのAl溶融めっき層を形成した後、Cuの電解めっき液に浸漬して電解することによりCuの安定化層をAl溶融めっき層の全周に形成することを特徴とする。
本発明の製造方法において、前記Al溶融めっき層の厚さを1〜20μmの範囲とすることが好ましい。
The production method of the present invention comprises a base material, an intermediate layer provided on the base material, an oxide superconducting layer, and an Ag stabilizing base layer provided on the oxide superconducting layer. A laminated body is configured, and an Al hot-dip plating layer covering the entire peripheral face is coated on the peripheral face side of the oxide superconducting laminate, and a metal stabilization layer by electrolytic plating is provided on the outer peripheral side of the Al hot-dip plating layer. A method of manufacturing a laminated oxide superconducting wire, wherein the oxide superconducting laminate is dipped in a molten aluminum and pulled up to cover the entire circumference of the oxide superconducting laminate with a predetermined thickness of Al melt After the plating layer is formed, the Cu stabilization layer is formed on the entire circumference of the Al hot-dip plating layer by being immersed in an electrolytic plating solution of Cu and performing electrolysis.
In the manufacturing method of this invention, it is preferable to make the thickness of the said Al hot dipping layer into the range of 1-20 micrometers.

本発明によれば、基材上に形成されている酸化物超電導層の表面側をAgの安定化基層で覆って保護するとともに、酸化物超電導層の側面側及び基材の裏面側とAgの安定化基層の表面側、即ち、酸化物超電導積層体の全周をAl溶融めっき層で覆って保護するので、電解めっきによる安定化層の形成時に酸化物超電導積層体や中間層の側面側がめっき液による浸漬を受けるおそれが無くなり、超電導特性の劣化を防止できる。
酸化物超電導積層体のほぼ全周をAl溶融めっき層が覆うので、Al溶融めっき層の外周側に形成する電解めっきによる安定化層の付着性が良くなる。
Al溶融めっき層の厚さを1〜20μmの範囲とすることにより、酸化物超電導積層体の側面側の保護が充分で電解めっき時に安定的なめっきが全周に可能であり、ムラのない電解めっき層による安定化層を得ることができる。
According to the present invention, the surface side of the oxide superconducting layer formed on the base material is protected by being covered with the stabilizing base layer of Ag, and the side surface side of the oxide superconducting layer, the back surface side of the base material, and the Ag The surface side of the stabilizing base layer, that is, the entire circumference of the oxide superconducting laminate is covered with an Al hot-dip plating layer to protect it, so that the oxide superconducting laminate and the side surface side of the intermediate layer are plated when the stabilizing layer is formed by electrolytic plating. There is no risk of being immersed in the liquid, and deterioration of superconducting characteristics can be prevented.
Since the Al molten plating layer covers almost the entire periphery of the oxide superconducting laminate, the adhesion of the stabilization layer formed by electrolytic plating formed on the outer peripheral side of the Al molten plated layer is improved.
By making the thickness of the Al hot-dipped layer in the range of 1 to 20 μm, the protection of the side surface of the oxide superconducting laminate is sufficient, and stable plating can be performed all around the electrolytic plating, and there is no uneven electrolysis. A stabilization layer by a plating layer can be obtained.

本発明に係る酸化物超電導線材の第1実施形態を示す概略断面図。1 is a schematic cross-sectional view showing a first embodiment of an oxide superconducting wire according to the present invention. 図1に示す酸化物超電導線材に組み込まれている酸化物超電導積層体の概略断面図。FIG. 2 is a schematic cross-sectional view of an oxide superconducting laminate incorporated in the oxide superconducting wire shown in FIG. 1. 図2に示す酸化物超電導積層体の層構造を詳細に示す構成図。The block diagram which shows in detail the layer structure of the oxide superconducting laminated body shown in FIG. イオンビームアシスト成膜法を実施するための装置構成と成膜状態の一例を示す説明図。Explanatory drawing which shows an example of the apparatus structure for implementing an ion beam assist film-forming method, and a film-forming state. 溶融Al槽内のアルミニウム溶湯に酸化物超電導積層体を浸漬して引き上げている状態を示す説明図。Explanatory drawing which shows the state which immerses and raises an oxide superconducting laminated body in the molten aluminum in a molten Al tank.

以下、本発明に係る酸化物超電導線材の実施形態について図面に基づいて説明する。
図1は本発明に係る第1実施形態の酸化物超電導線材1を模式的に示す概略斜視図であり、図2は該酸化物超電導線材1に組み込まれている酸化物超電導積層体2の概略構成図、図3は該酸化物超電導積層体2の積層構造の詳細を示す構成図である。
酸化物超電導積層体2はテープ状の基材3の上に、中間層5と酸化物超電導層6と安定化基層7を積層してなり、この酸化物超電導積層体2を中心部に備え、その全周面を覆うようにAl溶融めっき層8とCuの電解めっき層による安定化層9が形成され、安定化層9の全周面を覆うように樹脂製の被覆層10が形成され、酸化物超電導線材1が構成されている。
前記酸化物超電導積層体2は、より詳細には図3に示す如く、基材3の上面に拡散防止層11とベッド層12と配向層15とキャップ層16とからなる中間層5が積層され、その上に酸化物超電導層6と安定化基層7を積層して構成されているが、図1、図2では図示の簡略化のために中間層5を1層のように描いている。なお、拡散防止層11とベッド層12は必須ではなく、場合によっては略しても良い。
Hereinafter, embodiments of an oxide superconducting wire according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view schematically showing the oxide superconducting wire 1 according to the first embodiment of the present invention, and FIG. 2 is an outline of the oxide superconducting laminate 2 incorporated in the oxide superconducting wire 1. FIG. 3 is a block diagram showing details of the laminated structure of the oxide superconducting laminate 2.
The oxide superconducting laminate 2 is formed by laminating an intermediate layer 5, an oxide superconducting layer 6 and a stabilizing base layer 7 on a tape-like substrate 3, and this oxide superconducting laminate 2 is provided at the center. A stabilizing layer 9 made of an Al hot-dip plating layer 8 and an electrolytic plating layer of Cu is formed so as to cover the entire peripheral surface, and a resin coating layer 10 is formed so as to cover the entire peripheral surface of the stabilizing layer 9, An oxide superconducting wire 1 is configured.
In more detail, the oxide superconducting laminate 2 is formed by laminating an intermediate layer 5 comprising a diffusion prevention layer 11, a bed layer 12, an alignment layer 15 and a cap layer 16 on the upper surface of a base material 3, as shown in FIG. The oxide superconducting layer 6 and the stabilizing base layer 7 are laminated thereon. In FIG. 1 and FIG. 2, the intermediate layer 5 is drawn as one layer for the sake of simplicity. The diffusion preventing layer 11 and the bed layer 12 are not essential and may be omitted depending on circumstances.

前記基材3は、通常の超電導線材の基材として使用することができ、高強度であれば良く、長尺のケーブルとするためにテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種金属材料、もしくはこれら各種金属材料上にセラミックスを配したもの、等が挙げられる。各種耐熱性の金属の中でも、ニッケル合金が好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適であり、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。基材3の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmの範囲とすることができる。   The base material 3 can be used as a base material of a normal superconducting wire, has only to be high strength, is preferably in the form of a tape for making a long cable, and is made of a heat-resistant metal. Is preferred. Examples thereof include various metal materials such as nickel alloys such as stainless steel and hastelloy, or ceramics arranged on these various metal materials. Among various heat resistant metals, nickel alloys are preferable. Especially, if it is a commercial item, Hastelloy (trade name made by US Haynes Co., Ltd.) is suitable. Any type can be used. What is necessary is just to adjust the thickness of the base material 3 suitably according to the objective, Usually, it can be set as the range of 10-500 micrometers.

拡散防止層11は、基材3の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成され、その厚さは例えば10〜400nmである。拡散防止層11の厚さが10nm未満となると、基材3の構成元素の拡散を十分に防止できなくなる虞がある。一方、拡散防止層11の厚さが400nmを超えると、拡散防止層11の内部応力が増大し、これにより、他の層を含めて全体が基材3から剥離しやすくなる虞がある。また、拡散防止層11の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すれば良い。 The diffusion prevention layer 11 is formed for the purpose of preventing the diffusion of the constituent elements of the base material 3, and silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or consists GZO (Gd 2 Zr 2 O 7 ) or the like, a thickness of 10~400nm example. When the thickness of the diffusion preventing layer 11 is less than 10 nm, there is a possibility that the diffusion of the constituent elements of the substrate 3 cannot be sufficiently prevented. On the other hand, when the thickness of the diffusion preventing layer 11 exceeds 400 nm, the internal stress of the diffusion preventing layer 11 increases, and there is a possibility that the whole including the other layers is easily peeled off from the substrate 3. Further, since the crystallinity of the diffusion preventing layer 11 is not particularly limited, it may be formed by a film forming method such as a normal sputtering method.

ベッド層12は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。このようなベッド層12は、例えば、イットリア(Y)などの希土類酸化物であり、組成式(α2x(β(1−x)で示されるものが例示できる。より具体的には、Er、CeO、Dy3、Er、Eu、Ho、La等を例示することができる。このベッド層12は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜100nmである。また、ベッド層12の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すれば良い。 The bed layer 12 has high heat resistance and is intended to reduce interfacial reactivity, and is used to obtain the orientation of a film disposed thereon. Such a bed layer 12 is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and is represented by a composition formula (α 1 O 2 ) 2x2 O 3 ) (1-x). It can be illustrated. More specifically, Er 2 O 3, CeO 2 , Dy 2 O 3, Er 2 O 3, Eu 2 O 3, Ho 2 O 3, can be exemplified La 2 O 3 and the like. The bed layer 12 is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 100 nm, for example. Further, since the crystallinity of the bed layer 12 is not particularly limited, it may be formed by a film forming method such as a normal sputtering method.

配向層15は、単層構造あるいは複層構造のいずれでも良く、その上に積層されるキャップ層16の結晶配向性を制御するために2軸配向する物質から選択される。配向層15の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。
この配向層15をIBAD(Ion-Beam-Assisted Deposition)法により良好な結晶配向性(例えば結晶配向度15゜以下)で成膜するならば、その上に形成するキャップ層16の結晶配向性を良好な値(例えば結晶配向度5゜前後)とすることができ、これによりキャップ層16の上に成膜する酸化物超電導層6の結晶配向性を良好なものとして優れた超電導特性を発揮できる酸化物超電導層6を得るようにすることができる。
例えば、GdZr、MgO又はZrO−Y(YSZ)からなる配向層15は、IBAD法における結晶配向度を表す指標であるΔφ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
The alignment layer 15 may have either a single layer structure or a multi-layer structure, and is selected from materials that are biaxially aligned in order to control the crystal orientation of the cap layer 16 laminated thereon. Specifically, preferred materials for the alignment layer 15 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
If the orientation layer 15 is formed with a good crystal orientation (for example, a crystal orientation degree of 15 ° or less) by an IBAD (Ion-Beam-Assisted Deposition) method, the crystal orientation of the cap layer 16 formed thereon is increased. A good value (for example, a degree of crystal orientation of about 5 °) can be obtained, and thereby the superconducting characteristics can be exhibited with good crystal orientation of the oxide superconducting layer 6 formed on the cap layer 16. The oxide superconducting layer 6 can be obtained.
For example, the alignment layer 15 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) has a small value of Δφ (FWHM: full width at half maximum) that is an index indicating the degree of crystal orientation in the IBAD method. This is particularly preferable because it can be performed.

前記IBAD法による配向層15は例えば図4に示す装置により成膜される。
図4に示す装置は、拡散防止層11とベッド層12を備えたテープ状の基材3をその長手方向に走行するための走行系(図示略)と、その表面が基材3の表面に対して斜めに向いて対峙されたターゲット21と、ターゲット21にイオンを照射するスパッタビーム照射装置22と、基材3の表面に対して斜め方向からイオン(希ガスイオンと酸素イオンの混合イオン)を照射するイオン源23とを有しており、これらの各装置は真空容器(図示略)内に配置されている。
The alignment layer 15 by the IBAD method is formed by, for example, the apparatus shown in FIG.
The apparatus shown in FIG. 4 includes a running system (not shown) for running the tape-like base material 3 provided with the diffusion prevention layer 11 and the bed layer 12 in the longitudinal direction, and the surface thereof is on the surface of the base material 3. A target 21 that is opposed obliquely to the surface, a sputter beam irradiation device 22 that irradiates the target 21 with ions, and ions (mixed ions of rare gas ions and oxygen ions) obliquely with respect to the surface of the substrate 3. These devices are arranged in a vacuum vessel (not shown).

図4に示す装置によって基材3のベッド層12上に配向層15を形成するには、真空容器の内部を減圧雰囲気とし、スパッタビーム照射装置22及びイオン源23を作動させる。これにより、スパッタビーム照射装置22からターゲット21にイオンを照射し、ターゲット21の構成粒子を叩き出すか蒸発させてベッド層12上に堆積する。これと同時に、イオン源23から、希ガスイオンと酸素イオンとの混合イオンを放射し、基材3の表面(ベッド層12)に対して所定の入射角度(θ)で照射する。
このように、ベッド層12の表面に、ターゲット21の構成粒子を堆積させつつ、所定の入射角度でイオン照射を行うことにより、形成されるスパッタ膜の特定の結晶軸がイオンの入射方向に固定され、結晶のc軸が金属基板の表面に対して垂直方向に配向するとともに、結晶のa軸及びb軸が面内において一定方向に配向する。このため、IBAD法によってベッド層12上に形成された配向層102は、高い面内配向度、例えばΔφ=12〜16゜程度を得ることができる。
In order to form the alignment layer 15 on the bed layer 12 of the substrate 3 using the apparatus shown in FIG. 4, the inside of the vacuum vessel is set in a reduced pressure atmosphere, and the sputter beam irradiation apparatus 22 and the ion source 23 are operated. As a result, the target 21 is irradiated with ions from the sputtering beam irradiation apparatus 22, and the constituent particles of the target 21 are beaten or evaporated to be deposited on the bed layer 12. At the same time, mixed ions of rare gas ions and oxygen ions are radiated from the ion source 23 and irradiated onto the surface of the substrate 3 (bed layer 12) at a predetermined incident angle (θ).
In this way, by irradiating ions at a predetermined incident angle while depositing the constituent particles of the target 21 on the surface of the bed layer 12, the specific crystal axis of the formed sputtered film is fixed in the ion incident direction. Then, the c-axis of the crystal is oriented in a direction perpendicular to the surface of the metal substrate, and the a-axis and b-axis of the crystal are oriented in a certain direction in the plane. Therefore, the alignment layer 102 formed on the bed layer 12 by the IBAD method can obtain a high in-plane alignment degree, for example, Δφ = 12 to 16 °.

次に、キャップ層16は、上述のように面内結晶軸が配向した配向層15表面に成膜されることによってエピタキシャル成長し、その後、横方向に粒成長して、結晶粒が面内方向に自己配向し得る材料、であれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、ZrO、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
例えばCeOによって構成される。キャップ層16は、上述のように自己配向していることにより、配向層15よりも更に高い面内配向度、例えばΔφ=4〜6゜程度を得ることができる。
Next, the cap layer 16 is epitaxially grown by being formed on the surface of the alignment layer 15 in which the in-plane crystal axes are oriented as described above, and thereafter the grains are grown in the lateral direction so that the crystal grains are in the in-plane direction. material capable of self-orientation, a is not particularly limited as long as it, specifically as preferred, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, Ho 2 O 3, Nd 2 O 3 etc. can be illustrated. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
For example constituted by CeO 2. Since the cap layer 16 is self-aligned as described above, a higher in-plane orientation degree, for example, Δφ = about 4 to 6 °, can be obtained.

例えば、CeO層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが望ましい。PLD法によるCeO層の成膜条件としては、基材温度約500〜1000℃、約0.6〜100Paの酸素ガス雰囲気中で行うことができる。
CeO層の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましい。但し、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲、より好ましくは100〜5000nmの範囲とすることができる。
For example, the CeO 2 layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is desirable to use the PLD method in that a high film formation rate can be obtained. The film formation conditions for the CeO 2 layer by the PLD method can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.
The film thickness of the CeO 2 layer may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates, so that it can be in the range of 50 to 5000 nm, more preferably in the range of 100 to 5000 nm.

酸化物超電導層6は公知のもので良く、具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものを例示できる。この酸化物超電導層6として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示することができる。
酸化物超電導層6は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、PLD(パルスレーザー蒸着)法、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)又はCVD法を用いることができる。
The oxide superconducting layer 6 may be a known one, and specifically, a material made of REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd) is exemplified. it can. Examples of the oxide superconducting layer 6 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ).
The oxide superconducting layer 6 is laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). In particular, from the viewpoint of productivity, the PLD (pulse laser deposition) method, the TFA-MOD method (organic metal deposition method using trifluoroacetate, coating pyrolysis method) or the CVD method may be used. it can.

ここで前述のように、良好な配向性を有するキャップ層16上に酸化物超電導層6を形成すると、このキャップ層16上に積層される酸化物超電導層6もキャップ層16の配向性に整合するように結晶化する。よって前記キャップ層16上に形成された酸化物超電導層6は、結晶配向性に乱れが殆どなく、この酸化物超電導層6を構成する結晶粒の1つ1つにおいては、基材10の厚さ方向に電気を流しにくいc軸が配向し、基材10の長さ方向にa軸どうしあるいはb軸どうしが配向している。従って得られた酸化物超電導層6は、結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が殆どないので、基材10の長さ方向に電気を流し易くなり、十分に高い臨界電流密度が得られる。   Here, as described above, when the oxide superconducting layer 6 is formed on the cap layer 16 having a good orientation, the oxide superconducting layer 6 laminated on the cap layer 16 also matches the orientation of the cap layer 16. Crystallize as follows. Therefore, the oxide superconducting layer 6 formed on the cap layer 16 is hardly disturbed in crystal orientation, and in each of the crystal grains constituting the oxide superconducting layer 6, the thickness of the base material 10 is reduced. The c-axis that hardly allows electricity to flow is oriented in the vertical direction, and the a-axis or the b-axis is oriented in the length direction of the substrate 10. Therefore, the obtained oxide superconducting layer 6 is excellent in quantum connectivity at the crystal grain boundary, and hardly deteriorates in the superconducting characteristics at the crystal grain boundary. High critical current density can be obtained.

前記酸化物超電導層6の上に積層されている安定化基層7はAgなどの良電導性かつ酸化物超電導層6と接触抵抗が低くなじみの良い金属材料からなる層として形成される。
なお、安定化基層7をAgから構成する理由として、酸化物超電導層6に酸素をドープするアニール工程においてドープした酸素を酸化物超電導層6から逃避し難くする性質を有する点を挙げることができる。Agの安定化基層7を成膜するには、スパッタ法などの成膜法を採用し、その厚さを1〜30μm程度に形成できる。
The stabilizing base layer 7 laminated on the oxide superconducting layer 6 is formed as a layer made of a metal material having good conductivity such as Ag and low contact resistance with the oxide superconducting layer 6.
The reason why the stabilization base layer 7 is made of Ag is that it has the property of making it difficult for the oxygen doped in the oxide superconducting layer 6 to escape from the oxide superconducting layer 6 in the annealing step of doping the oxide superconducting layer 6 with oxygen. . In order to form the Ag stabilizing base layer 7, a film forming method such as a sputtering method is employed, and the thickness thereof can be formed to about 1 to 30 μm.

図2、図3に示す構造の酸化物超電導積層体2は、酸化物超電導層6の上面をAgの安定化基層7で覆ってカバーしているが、酸化物超電導層6の両側面側は特に保護されておらず、露出されており、酸化物超電導層6が湿気などにより特性が劣化するおそれがあること、酸化物超電導層6の露出部分に後工程の処理でダメージを与えると、超電導特性が劣化するおそれがあること、などを考慮し、何らかのカバーで保護する必要がある。
本実施形態においては、酸化物超電導層6を保護するために、以下に説明するAl溶融めっきによるAl溶融めっき層8と電解めっきによるCuの安定化層9を形成して酸化物超電導積層体2の全周をカバーする構造を採用する。
The oxide superconducting laminate 2 having the structure shown in FIG. 2 and FIG. 3 covers and covers the upper surface of the oxide superconducting layer 6 with an Ag stabilizing base layer 7. If the oxide superconducting layer 6 is not protected and exposed, the characteristics of the oxide superconducting layer 6 may be deteriorated due to moisture or the like, and the exposed portion of the oxide superconducting layer 6 is damaged in the subsequent process. In consideration of the possibility that the characteristics will deteriorate, it is necessary to protect it with some kind of cover.
In the present embodiment, in order to protect the oxide superconducting layer 6, an Al hot-dip plating layer 8 by Al hot-dip plating and a Cu stabilization layer 9 by electrolytic plating described below are formed to form the oxide superconducting laminate 2. Adopt a structure that covers the entire circumference.

酸化物超電導積層体2の製造工程についてこれまで説明してきたように、テープ状の長尺の基材10の上に、拡散防止層11、ベッド層12、配向層15、キャップ層16の各層を成膜する過程においては、真空雰囲気において雰囲気を制御して行う成膜法を駆使し、テープ状の長尺の基材10を成膜装置の内部で移動させながら、必要に応じて数100℃の高温度に繰り返し加熱しながら各層を成膜するが、このため、基材10の側面側と裏面側は、繰り返し成膜雰囲気に曝されながら、成膜する層によっては数100℃の高温に加熱される。
このため、基材1の側面側と裏面側には、拡散防止層11、ベッド層12、配向層15、キャップ層16を成膜する工程を経る内に、不要な堆積物や高温生成物などが僅かに付着することが原因となるとともに、基材1を構成する材料がハステロイである場合、電解めっきの付きが特に悪いことを勘案し、Al溶融めっきによりAl溶融めっき層8をテープ状の酸化物超電導積層体2の全周を覆うように必要な厚さ形成する。
Al溶融めっき層8を形成する手段の一例として、図5に示す溶融槽30にアルミニウム溶湯(溶融Al浴)31を収容し、アルミニウム溶湯31の内部に設けた耐熱金属製のローラからなる案内部材32を介して酸化物超電導積層体2を走行させ、アルミニウム溶湯31の内部を通過させる間に酸化物超電導積層体2の周面に必要厚さのAl溶融めっき層8を形成することができる。Al溶融めっき層8の被覆厚さは酸化物超電導積層体2がアルミニウム溶湯31を通過する際の速度、時間を調節することで厚さを調整することができる。アルミニウム溶湯31の温度は例えば680〜710℃程度することができる。また、アルミニウム溶湯31を構成する溶湯は純Alであっても再生Alであっても良く、酸化物超電導層6に悪影響を与えない添加元素を付加したAl合金溶湯であっても良い。
ここで形成するAl溶融めっき層8の膜厚は、1μm〜20μmの範囲であることが好ましく、1〜10μmの範囲がより好ましい。
As described so far for the manufacturing process of the oxide superconducting laminate 2, each layer of the diffusion prevention layer 11, the bed layer 12, the alignment layer 15, and the cap layer 16 is formed on the tape-like long base material 10. In the process of forming a film, a film forming method performed by controlling the atmosphere in a vacuum atmosphere is used to move the tape-like long base material 10 within the film forming apparatus, and several hundred degrees Celsius as necessary. Each layer is formed while being repeatedly heated to a high temperature. However, depending on the layer to be formed, the side surface side and the back surface side of the base material 10 are repeatedly exposed to a film forming atmosphere. Heated.
For this reason, unnecessary deposits and high-temperature products are formed on the side surface side and the back surface side of the base material 1 through the process of forming the diffusion prevention layer 11, the bed layer 12, the alignment layer 15, and the cap layer 16. In the case where the material constituting the substrate 1 is Hastelloy, in consideration of the fact that the electroplating is particularly bad, the Al hot-dip plating layer 8 is formed into a tape-like shape by Al hot-dip plating. A necessary thickness is formed so as to cover the entire circumference of the oxide superconducting laminate 2.
As an example of means for forming the Al molten plating layer 8, a guide member comprising a molten aluminum (molten Al bath) 31 in a melting tank 30 shown in FIG. 5 and a heat resistant metal roller provided inside the molten aluminum 31. While the oxide superconducting laminate 2 is caused to travel through 32 and passes through the inside of the molten aluminum 31, the Al molten plating layer 8 having a required thickness can be formed on the peripheral surface of the oxide superconducting laminate 2. The coating thickness of the Al hot-dipped layer 8 can be adjusted by adjusting the speed and time when the oxide superconducting laminate 2 passes through the molten aluminum 31. The temperature of the aluminum melt 31 can be about 680-710 degreeC, for example. The molten metal constituting the molten aluminum 31 may be pure Al or recycled Al, or may be an Al alloy molten metal to which an additive element that does not adversely affect the oxide superconducting layer 6 is added.
The film thickness of the Al hot-dip plating layer 8 formed here is preferably in the range of 1 μm to 20 μm, and more preferably in the range of 1 to 10 μm.

Al溶融めっき層8の膜厚が、1μm未満では、薄すぎて酸化物超電導積層体2の全周を覆う場合に特に基材1の裏面側にムラが出やすく、Al溶融めっき層8に厚さムラが生じた場合は、Al溶融めっき層6の上に電解めっきによりCuの安定化層9を形成する際、電解集中を生じて電解めっきに支障を来すか、電解めっきのムラの原因となる。
Al溶融めっき層8の膜厚が、20μmを超える場合、厚くなりすぎて硬くなり、可撓性を損なうことになり易く、部分的な応力集中が発生し易く、超電導特性を劣化させる歪が生じるなどの不具合を生じる。また、Al溶融めっき層8の膜厚が20μmを超えるような場合、後述する高温度(640〜710℃程度)のアルミニウム溶湯31に酸化物超電導積層体2を浸漬する時間が長くなるので、酸化物超電導積層体2がアルミニウム溶湯31の熱で特性劣化するおそれがある。
If the thickness of the Al hot-dipped layer 8 is less than 1 μm, unevenness tends to occur on the back side of the base material 1 particularly when the entire surface of the oxide superconducting laminate 2 is covered and the Al hot-dipped layer 8 is thick. When unevenness occurs, when forming the Cu stabilizing layer 9 on the Al hot-dip plated layer 6 by electrolytic plating, it causes electrolytic concentration to hinder electrolytic plating, or causes the unevenness of electrolytic plating. Become.
When the thickness of the Al hot-dipped layer 8 exceeds 20 μm, it becomes too thick and hard, and flexibility is likely to be lost, partial stress concentration is likely to occur, and distortion that degrades the superconducting characteristics occurs. This causes malfunctions. Further, when the thickness of the Al hot-dipped layer 8 exceeds 20 μm, the time for immersing the oxide superconducting laminate 2 in the molten aluminum 31 at a high temperature (about 640 to 710 ° C.) described later becomes longer. There is a possibility that the superconducting laminate 2 may deteriorate in characteristics due to the heat of the molten aluminum 31.

以上説明した本実施形態の酸化物超電導線材1によれば、基材3上に中間層5を介し形成されている酸化物超電導層6の表面側をAgの安定化基層7で覆って保護するとともに、酸化物超電導層6の両側面側及び基材3の裏面側とAgの安定化基層7の表面側、即ち、酸化物超電導積層体2の全周をAl溶融めっき層8で覆って保護するので、Cuの電解めっきを行う場合の硫酸銅溶液に浸漬して電解処理する安定化層9の形成時、酸化物超電導積層体2の両側面、即ち、中間層15の両側面側、具体的には、拡散防止層11とベッド層12と配向層15とキャップ層16の両側面側と酸化物超電導層6の両側面側がいずれも硫酸銅溶液による浸漬を受けるおそれが無くなり、超電導特性の劣化を防止できる。 また、酸化物超電導積層体2の全周面をAl溶融めっき層8とCuの安定化層9で完全に覆うことができるので、酸化物超電導線材1を湿分の雰囲気中で長期間使用しても湿分が酸化物超電導層6側に侵入するおそれを回避することができ、酸化物超電導線材1の特性劣化も防止できる。   According to the oxide superconducting wire 1 of the present embodiment described above, the surface side of the oxide superconducting layer 6 formed on the base material 3 via the intermediate layer 5 is covered and protected by the Ag stabilizing base layer 7. In addition, both sides of the oxide superconducting layer 6 and the back side of the base material 3 and the surface side of the Ag stabilizing base layer 7, that is, the entire circumference of the oxide superconducting laminate 2 are covered with an Al molten plating layer 8 for protection. Therefore, when forming the stabilization layer 9 that is immersed in a copper sulfate solution and electrolytically processed when performing electrolytic plating of Cu, both sides of the oxide superconducting laminate 2, that is, both sides of the intermediate layer 15, Specifically, the diffusion preventing layer 11, the bed layer 12, the alignment layer 15, the cap layer 16 and the both sides of the oxide superconducting layer 6 are not susceptible to being immersed in the copper sulfate solution, and the superconducting characteristics are improved. Deterioration can be prevented. Further, since the entire peripheral surface of the oxide superconducting laminate 2 can be completely covered with the Al hot-dip plating layer 8 and the Cu stabilizing layer 9, the oxide superconducting wire 1 can be used in a humid atmosphere for a long period of time. However, the risk of moisture entering the oxide superconducting layer 6 side can be avoided, and deterioration of the characteristics of the oxide superconducting wire 1 can also be prevented.

本実施形態の酸化物超電導線材1にあっては、酸化物超電導積層体2のほぼ全周をAl溶融めっき層8がムラ無く覆うので、Al溶融めっき層8の外周側に電解めっきを行う場合の電解めっきの付きが良くなり、ムラのない電解めっきができるので、厚さムラのない安定化層9の形成ができ、安定化層9の付着性も良くなる。
また、Al溶融めっき層8の厚さを1〜20μmの好適な範囲とすることにより、酸化物超電導積層体2の側面側の保護が充分であって、電解めっき時に安定的なめっきが全周に可能であり、ムラのない電解めっき層である安定化層9を備えた酸化物超電導線材1を得ることができる。
In the oxide superconducting wire 1 of this embodiment, since the Al hot-dipped layer 8 covers almost the entire circumference of the oxide superconducting laminate 2 without unevenness, the outer periphery of the Al hot-dipped layer 8 is subjected to electrolytic plating. Since the electroplating is improved and the electroplating can be performed without unevenness, the stabilization layer 9 can be formed without unevenness in thickness, and the adhesion of the stabilization layer 9 can be improved.
Further, by setting the thickness of the Al hot-dipped layer 8 within a suitable range of 1 to 20 μm, the side surface side of the oxide superconducting laminate 2 is sufficiently protected, and stable plating during electrolytic plating can be performed all around. Therefore, the oxide superconducting wire 1 having the stabilizing layer 9 which is an electroplating layer without unevenness can be obtained.

「実施例1」
ハステロイC276(米国ヘインズ社商品名)からなる幅10mm、厚さ0.1mm、長さ1000mmのテープ状の基材を用意し、このテープ状基材の表面を平均粒径3μmのアルミナ砥粒を用いて研磨し、表面を鏡面に仕上げた。
このテープ基材をエタノール、アセトンの有機溶剤を用いて脱脂、洗浄した。
次に、イオンビームスパッタ法を用いてテープ基材の表面にAlからなる厚さ100nmの拡散防止層を形成し、更にその上にイオンビームスパッタ法を用いてYからなる厚さ30nmのベッド層を形成した。イオンビームスパッタ法の実施にあたりテープ状の基材はスパッタ装置の内部においてリールに巻回しておき、一方のリールから他方のリールに繰り出す間に成膜できるようにしてテープ状基材の全長にわたり、拡散防止層とベッド層を形成した。
次に、図4に示す構造のイオンビームアシストスパッタ装置を用いてIBAD法を実施し、イオンビームアシスト蒸着によりベッド層上に厚さ5〜10nmのMgOの配向層を形成した。この場合、アシストイオンビームの入射角度は、テープ状基材成膜面の法線に対し、45゜とした。IBAD法の実施にあたりテープ状の基材はスパッタ装置の内部においてリールに巻回しておき、一方のリールから他方のリールに繰り出す間に成膜できるようにしてテープ状基材の全長にわたり、MgOの配向層を形成した。
"Example 1"
A tape-shaped substrate having a width of 10 mm, a thickness of 0.1 mm, and a length of 1000 mm made of Hastelloy C276 (trade name of Haynes, USA) was prepared, and the surface of the tape-shaped substrate was coated with alumina abrasive grains having an average particle diameter of 3 μm. And polished to a mirror finish.
The tape substrate was degreased and washed using an organic solvent of ethanol and acetone.
Next, a diffusion prevention layer having a thickness of 100 nm made of Al 2 O 3 is formed on the surface of the tape substrate by using ion beam sputtering, and further made of Y 2 O 3 by using ion beam sputtering. A bed layer having a thickness of 30 nm was formed. In carrying out the ion beam sputtering method, the tape-like base material is wound around a reel inside the sputtering apparatus, and can be formed while being fed from one reel to the other reel, over the entire length of the tape-like base material, A diffusion prevention layer and a bed layer were formed.
Next, an IBAD method was performed using an ion beam assisted sputtering apparatus having a structure shown in FIG. 4, and an MgO alignment layer having a thickness of 5 to 10 nm was formed on the bed layer by ion beam assisted deposition. In this case, the incident angle of the assist ion beam was set to 45 ° with respect to the normal line of the tape-shaped substrate film forming surface. In carrying out the IBAD method, the tape-like base material is wound around a reel inside the sputtering apparatus, and the film is formed while being fed from one reel to the other reel so that the entire length of the tape-like base material is covered with MgO. An alignment layer was formed.

続いてパルスレーザー蒸着法(PLD法)を用いてMgOの配向層上にCeOの厚さ500nmのキャップ層を形成した。更に、このキャップ層上にパルスレーザー蒸着法によりGdBaCu7−xの厚さ1μmの酸化物超電導層を形成した。パルスレーザー蒸着法の実施にあたり成膜装置内部でテープ状の基材をリールからリールへ供給する間に成膜するようにした
次に、スパッタ法により酸化物超電導層上に厚さ10μmのAgの安定化基層を形成した。このスパッタ法においてもテープ状の基材をリールからリールへ供給する間に成膜できるようにしている。次に、酸素アニールを500℃で行い、取り出した。以上の方法により、テープ状の長尺の基材上に拡散防止層とベッド層と配向層とキャップ層と酸化物超電導層と安定化基層を備えた構造の酸化物超電導積層体を形成した。
Subsequently, a cap layer of CeO 2 having a thickness of 500 nm was formed on the MgO alignment layer using a pulsed laser deposition method (PLD method). Further, an oxide superconducting layer having a thickness of 1 μm of GdBa 2 Cu 3 O 7-x was formed on the cap layer by a pulse laser deposition method. In carrying out the pulse laser deposition method, a film-formation apparatus was formed while a tape-shaped substrate was supplied from reel to reel. Next, a 10 μm thick Ag was formed on the oxide superconducting layer by sputtering. A stabilizing base layer was formed. Also in this sputtering method, a film can be formed while a tape-shaped substrate is supplied from reel to reel. Next, oxygen annealing was performed at 500 ° C. and then taken out. By the above method, an oxide superconducting laminate having a structure including a diffusion preventing layer, a bed layer, an orientation layer, a cap layer, an oxide superconducting layer, and a stabilizing base layer was formed on a long tape-like substrate.

前記酸化物超電導積層体をリールに巻き込み、このリールから送り出すことで700℃のAl浴に浸漬し、Al浴中に設けた耐熱金属製のリールを経由してAl浴中を通過させた後、Al浴の外部に設けた別のリールに巻き取るようにして酸化物超電導積層体をAl浴に浸漬してから引き出すAl溶融めっきを施した。Al浴を通過する際の酸化物超電導積層体の移動速度は、2〜3m/分の速度の範囲で調整し、Al浴に酸化物超電導積層体が浸漬される時間を4秒〜6秒の間で調整することでAl溶融めっき層の膜厚を調整した。
このAl溶融めっき処理により、酸化物超電導積層体の全周面を覆うように以下の表1に示す膜厚のAl溶融めっき層を形成した。
次に、Al溶融めっき層形成後の酸化物超電導積層体を硫酸銅水溶液のめっき液中に浸漬して電解Cuめっきを行い、厚さ5μmのCuの電解めっき層を形成した。硫酸銅水溶液に浸漬する際、Al溶融めっき層を備えた酸化物超電導積層体をリールから繰り出して電解めっき液に浸漬後、めっき液から引き出して他のリールに巻き取るようにしてAl溶融めっき層を備えたテープ状の酸化物超電導積層体の全長にわたり、Cuの電解めっき層からなる安定化層を形成した。
The oxide superconducting laminate is wound on a reel, and immersed in an Al bath at 700 ° C. by feeding out from the reel, and after passing through an Al bath via a heat-resistant metal reel provided in the Al bath, The oxide superconducting laminate was dipped in an Al bath and wound up on another reel provided outside the Al bath, and then Al hot dipping was performed. The moving speed of the oxide superconducting laminate when passing through the Al bath is adjusted within a range of 2 to 3 m / min, and the time during which the oxide superconducting laminate is immersed in the Al bath is 4 seconds to 6 seconds. The film thickness of the Al hot dipping layer was adjusted by adjusting the gap between the two.
By this Al hot dipping treatment, an Al hot dipped layer having a film thickness shown in Table 1 below was formed so as to cover the entire peripheral surface of the oxide superconducting laminate.
Next, the oxide superconducting laminate after the formation of the Al molten plating layer was immersed in a plating solution of an aqueous copper sulfate solution to perform electrolytic Cu plating, thereby forming a 5 μm thick Cu electrolytic plating layer. When immersed in an aqueous copper sulfate solution, the oxide superconducting laminate provided with an Al molten plating layer is drawn out from the reel and immersed in the electrolytic plating solution, and then drawn out from the plating solution and wound on another reel to obtain an Al molten plating layer. A stabilization layer made of an electrolytic plating layer of Cu was formed over the entire length of the tape-shaped oxide superconducting laminate including

Figure 0005663230
Figure 0005663230

表1に示す結果から明らかなように、Al溶融めっき層の膜厚について、1〜20μmの範囲とすれば、Al溶融めっき層のムラのない、よって、Cuの電解めっき層である安定化層にムラを生じることがなく、超電導特性の劣化も生じることのない、酸化物超電導線材を提供できることが明らかとなった。   As is clear from the results shown in Table 1, if the thickness of the Al hot-dip plating layer is in the range of 1 to 20 μm, there is no unevenness of the Al hot-dip plating layer, and thus a stabilization layer that is an electrolytic plating layer of Cu. It has become clear that it is possible to provide an oxide superconducting wire that does not cause unevenness and does not cause deterioration of superconducting characteristics.

「実施例2」
実施例1において行った工程とほぼ同じ工程を行い、酸化物超電導積層体を形成するとともに、Al溶融めっき処理を施す前の酸化物超電導積層体に対し、常圧(大気圧)プラズマ処理により酸化物超電導積層体の全体をプラズマに曝す処理を行い、この後、Al溶融めっき層の形成と電解めっき層の形成を行った。
"Example 2"
Substantially the same steps as in Example 1 are performed to form an oxide superconducting laminate, and the oxide superconducting laminate before being subjected to Al hot dipping treatment is oxidized by atmospheric pressure (atmospheric pressure) plasma treatment. The whole superconducting laminate was treated with plasma, and thereafter, an Al hot-dip plating layer and an electrolytic plating layer were formed.

この結果、基材裏面側の濡れ性が向上し、0.5μm厚のAl溶融めっき層を形成した試料においても基材裏面側に生じるAl溶融めっきのムラの割合が減少した。このことから、拡散防止層とベッド層と配向層とキャップ層と酸化物超電導層と安定化基層を形成する際の成膜雰囲気に順次曝露されて酸化物超電導積層体の基材裏面側に種々の不純物や析出物が存在していたとしても、大気圧プラズマ処理により酸化物超電導積層体の表面活性度を向上させることができ、これに伴いAl溶融めっき層と電解めっき層のムラを無くしてめっき付着性の良好な酸化物超電導線材を提供できることが判明した。   As a result, the wettability on the back surface side of the base material was improved, and the proportion of unevenness of the Al hot dip plating generated on the back surface side of the base material was reduced even in the sample in which the 0.5 μm thick Al hot dip layer was formed. From this, it is exposed to the film-forming atmosphere when forming the diffusion prevention layer, the bed layer, the orientation layer, the cap layer, the oxide superconducting layer, and the stabilizing base layer, and various materials are applied to the back side of the substrate of the oxide superconducting laminate. Even if impurities and precipitates exist, the surface activity of the oxide superconducting laminate can be improved by atmospheric pressure plasma treatment, which eliminates unevenness of the Al hot-dip plating layer and the electrolytic plating layer. It has been found that an oxide superconducting wire with good plating adhesion can be provided.

本発明は、例えば超電導モータ、限流器など、各種電力機器に用いられる酸化物超電導線材に利用することができる。   The present invention can be used for an oxide superconducting wire used in various electric power devices such as a superconducting motor and a current limiting device.

1…酸化物超電導線材、2…酸化物超電導積層体、3…基材、5…中間層、6…酸化物超電導層、7…安定化基層、8…Al溶融めっき層、9…電解めっき層、10…被覆層、11…拡散防止層、12…ベッド層、15…配向層、16…キャップ層、21…ターゲット、22…スパッタビーム照射装置、23…イオン源、30…Al溶融槽、31…アルミニウム溶湯(溶融Al浴)。   DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting wire, 2 ... Oxide superconducting laminated body, 3 ... Base material, 5 ... Intermediate | middle layer, 6 ... Oxide superconducting layer, 7 ... Stabilization base layer, 8 ... Al hot dip plating layer, 9 ... Electrolytic plating layer DESCRIPTION OF SYMBOLS 10 ... Coating layer, 11 ... Diffusion prevention layer, 12 ... Bed layer, 15 ... Orientation layer, 16 ... Cap layer, 21 ... Target, 22 ... Sputter beam irradiation apparatus, 23 ... Ion source, 30 ... Al melting tank, 31 ... Molten aluminum (molten Al bath).

Claims (4)

基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられたAgの安定化基層とを備えて酸化物超電導積層体が構成され、該酸化物超電導積層体の周面側に該周面全体を覆うAl溶融めっき層が被覆され、該Al溶融めっき層の外周側に電解めっきによる金属製の安定化層が積層されてなることを特徴とする酸化物超電導線材。   An oxide superconducting laminate comprising a base material, an intermediate layer provided on the base material, an oxide superconducting layer, and an Ag stabilizing base layer provided on the oxide superconducting layer; The peripheral surface side of the oxide superconducting laminate is covered with an Al hot-dip plating layer covering the entire peripheral surface, and a metal stabilization layer is formed by electrolytic plating on the outer peripheral side of the Al hot-dip plating layer. Oxide superconducting wire. 前記Al溶融めっき層の厚さが1〜20μmの範囲とされてなることを特徴とする請求項1に記載の酸化物超電導線材。   2. The oxide superconducting wire according to claim 1, wherein the thickness of the Al hot-dip plating layer is in the range of 1 to 20 [mu] m. 基材と、該基材上に設けられた中間層と酸化物超電導層と、該酸化物超電導層上に設けられたAgの安定化基層とを備えて酸化物超電導積層体が構成され、該酸化物超電導積層体の周面側に該周面全体を覆うAl溶融めっき層が被覆され、該Al溶融めっき層の外周側に電解めっきによる金属製の安定化層が積層されてなる酸化物超電導線材を製造する方法であって、前記酸化物超電導積層体をアルミニウム溶湯に浸漬して引き上げ、前記酸化物超電導積層体の全周を被覆する所定の厚さのAl溶融めっき層を形成した後、Cuの電解めっき液に浸漬して電解することによりCuの安定化層をAl溶融めっき層の全周に形成することを特徴とする酸化物超電導線材の製造方法。   An oxide superconducting laminate comprising a base material, an intermediate layer provided on the base material, an oxide superconducting layer, and an Ag stabilizing base layer provided on the oxide superconducting layer; An oxide superconducting structure in which an Al molten plating layer covering the entire peripheral surface is coated on the peripheral surface side of the oxide superconducting laminate, and a metal stabilization layer is formed on the outer peripheral side of the Al molten plating layer by electrolytic plating. A method of manufacturing a wire, wherein the oxide superconducting laminate is dipped in a molten aluminum and pulled up, and after forming an Al molten plating layer having a predetermined thickness covering the entire circumference of the oxide superconducting laminate, A method for producing an oxide superconducting wire, characterized in that a Cu stabilizing layer is formed on the entire circumference of an Al hot-dip plating layer by being immersed in an electrolytic plating solution of Cu and electrolyzing. 前記Al溶融めっき層の厚さを1〜20μmの範囲とすることを特徴とする請求項3に記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to claim 3, wherein the thickness of the Al hot-dip plating layer is in the range of 1 to 20 μm.
JP2010169298A 2010-07-28 2010-07-28 Oxide superconducting wire and method for producing the same Expired - Fee Related JP5663230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169298A JP5663230B2 (en) 2010-07-28 2010-07-28 Oxide superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169298A JP5663230B2 (en) 2010-07-28 2010-07-28 Oxide superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012033281A JP2012033281A (en) 2012-02-16
JP5663230B2 true JP5663230B2 (en) 2015-02-04

Family

ID=45846500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169298A Expired - Fee Related JP5663230B2 (en) 2010-07-28 2010-07-28 Oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP5663230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459583B1 (en) * 2013-09-11 2014-11-10 주식회사 서남 Superconductor and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335051A (en) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive tape with stabilizing layer and manufacture thereof
JP3623868B2 (en) * 1996-03-11 2005-02-23 同和鉱業株式会社 High durability oxide superconductor and manufacturing method thereof
KR100995907B1 (en) * 2008-12-03 2010-11-22 한국전기연구원 Method to make round wire and superconducting wire using superconducting tape

Also Published As

Publication number Publication date
JP2012033281A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5634166B2 (en) Oxide superconducting wire and method for producing the same
RU2643162C2 (en) Superconductor and method of its manufacturing
JP4800740B2 (en) Rare earth tape-shaped oxide superconductor and method for producing the same
JP4411265B2 (en) Rare earth tape-shaped oxide superconductor and method for producing the same
JP4602911B2 (en) Rare earth tape oxide superconductor
JP5244337B2 (en) Tape-shaped oxide superconductor
KR101664465B1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
JP6688564B2 (en) Method for manufacturing oxide superconducting wire
JP5693398B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP5663230B2 (en) Oxide superconducting wire and method for producing the same
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
JP5597511B2 (en) Oxide superconducting wire and method for producing the same
JP5865587B2 (en) Oxide superconducting wire and method for producing the same
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP5701281B2 (en) Oxide superconducting wire
JP2012150914A (en) High-resistance material composite oxide superconducting wire material
US20130130916A1 (en) Superconducting thin film and method of manufacturing superconducting thin film
JP2012252825A (en) Substrate for oxide superconductive wire material and oxide superconductive wire material
JP5663244B2 (en) Method for producing enamel-coated superconducting wire
JP5597516B2 (en) Superconducting wire manufacturing method
WO2020212194A1 (en) Sealed superconductor tape
JP2012018829A (en) Superconductive wire material and manufacturing method thereof
JP2012209189A (en) Oxide superconducting wire material and method for manufacturing the same
JP2015032362A (en) Method of producing oxide superconductive wire rod
JP2011249162A (en) Method for manufacturing superconducting wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R151 Written notification of patent or utility model registration

Ref document number: 5663230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees