JP5662926B2 - LED lighting heat sink - Google Patents
LED lighting heat sink Download PDFInfo
- Publication number
- JP5662926B2 JP5662926B2 JP2011280062A JP2011280062A JP5662926B2 JP 5662926 B2 JP5662926 B2 JP 5662926B2 JP 2011280062 A JP2011280062 A JP 2011280062A JP 2011280062 A JP2011280062 A JP 2011280062A JP 5662926 B2 JP5662926 B2 JP 5662926B2
- Authority
- JP
- Japan
- Prior art keywords
- heat sink
- surface portion
- vertical
- vertical side
- led lighting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims description 44
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 25
- 238000005452 bending Methods 0.000 claims description 11
- 239000008207 working material Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 description 19
- 230000017525 heat dissipation Effects 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- 238000005286 illumination Methods 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
Description
本発明は、発光ダイオード(LED)素子を発光源とするLED照明が、発光時に発生する熱を周囲の空間に放熱するためのLED照明用ヒートシンクに関するものである。 The present invention relates to a heat sink for LED lighting, in which LED lighting using a light emitting diode (LED) element as a light source radiates heat generated during light emission to the surrounding space.
発光ダイオード(LED)素子を発光源とする照明は、低消費電力であり且つ長寿命であることから徐々に市場に浸透し始めている。その中でも、近年特に注目を集めているのが、自動車のヘッドライトなどの車載LED照明であり、その車載LED照明を応用して、建物等その他の分野の埋め込み照明でもLED照明への置き換えが始まっている。 Lighting that uses a light emitting diode (LED) element as a light source is gradually penetrating the market due to its low power consumption and long life. Among these, in-vehicle LED lighting, such as automobile headlights, has attracted particular attention in recent years. Application of the in-vehicle LED lighting has begun to replace LED lighting in other fields such as buildings. ing.
しかしながら、このLED照明の発光源であるLED素子は熱に非常に弱く、許容温度を超えると発光効率が低下し、更には、その寿命にも影響を及ぼしてしまうという問題がある。この問題を解決するためには、LED素子の発光時の熱を周囲の空間に放熱する必要があるため、LED照明には大型のヒートシンクが備えられている。 However, the LED element which is a light emitting source of this LED illumination is very weak to heat, and there is a problem that when the temperature exceeds the allowable temperature, the light emission efficiency is lowered, and further, the life is affected. In order to solve this problem, since it is necessary to dissipate heat at the time of light emission of the LED element to the surrounding space, the LED lighting is provided with a large heat sink.
このLED照明用ヒートシンクには、アルミニウム(アルミニウム合金を含む)を材料としたアルミダイキャスト製のものが多く採用されており、特許文献1〜4には、それらヒートシンクのうち代表的な構成のヒートシンクが開示されている。これらのヒートシンクは、LED光源が正面側に配置固定された基板部と、その基板部の背面側に間隔を置いて突出する複数枚の平行に配置されたフィン部を有しており、基板部並びにフィン部の表面積を大きくすることにより放熱が増加し、一定の放熱性を得ることができる。 Many LED die heat sinks made of aluminum (including an aluminum alloy) are used, and Patent Documents 1 to 4 disclose heat sinks having typical configurations among these heat sinks. Is disclosed. These heat sinks have a substrate part in which the LED light source is arranged and fixed on the front side, and a plurality of parallelly arranged fin parts protruding at intervals on the back side of the substrate part. In addition, by increasing the surface area of the fin portion, the heat dissipation increases, and a certain heat dissipation property can be obtained.
ところが、従来のヒートシンクHの基本的な構成は、図8に示すような、LED素子(光源)Lが正面側に配置固定された基板部10と、その基板部10の背面側に間隔を置いて突出する複数枚の平行に配置されたフィン部20を有してなるものであり、これを自動車のヘッドライトやテールランプなどの車載照明用としてハウジングに組み込んで適用する場合、限られた狭い空間に設置されることになる。 However, the basic structure of the conventional heat sink H is as shown in FIG. 8, in which an LED element (light source) L is disposed and fixed on the front side, and an interval is provided on the back side of the substrate unit 10. A plurality of fin portions 20 arranged in parallel and projecting in parallel, and when this is incorporated and applied to a housing for in-vehicle lighting such as an automobile headlight or tail lamp, a limited narrow space Will be installed.
このため、基板部10やフィン部20の位置する放熱空間も閉鎖された容積の小さい状態となり、空気の対流がほとんどないことから、このような設置環境下では対流による放熱がほとんど期待できず、放射による放熱が中心となり、上記従来のようにフィンなどにより放熱面積を増加させるヒートシンクの構造ではこの放射による放熱が不十分であり、全体として効率的な放熱が達成できない問題を抱えていた。 For this reason, the heat radiation space where the substrate part 10 and the fin part 20 are located is also in a closed volume and there is almost no air convection, so in such an installation environment almost no heat dissipation by convection can be expected, Heat dissipation by radiation is the center, and the heat sink structure in which the heat radiation area is increased by fins or the like as described above has a problem that heat radiation by radiation is insufficient and efficient heat dissipation cannot be achieved as a whole.
すなわち、放射による場合は図の右下に表示したX、Y、Z軸方向(3次元方向)での投影面積の大きさがその効率を左右することになり、この投影面積が大きいほど放射効率が向上することになる。同図8のヒートシンクは、Y方向の投影面積は基板部10の平面とフィン部20の平面の合計となるので良いが、Z方向のそれは基板部の側面とフィン部20の側面の合計で櫛歯状となり空間が多いため、基板部10の長さとフィン部20の高さを掛けた総面積の50%に満たない小さな面積となる。またX方向の投影面積は基板部10の正面とフィン部20の正面の合計となり、フィン部10が4枚あるにもかかわらずこれらが重複して1枚と同じ投影面積であり、放熱面積当りの放射効率が低いことになる。 That is, in the case of radiation, the size of the projected area in the X, Y, and Z axis directions (three-dimensional directions) displayed in the lower right of the figure affects the efficiency, and the radiation efficiency increases as the projected area increases. Will be improved. In the heat sink of FIG. 8, the projected area in the Y direction may be the sum of the plane of the substrate portion 10 and the plane of the fin portion 20, but that in the Z direction is the sum of the side surface of the substrate portion and the side surface of the fin portion 20. Since it is tooth-shaped and has a lot of space, it becomes a small area less than 50% of the total area obtained by multiplying the length of the substrate portion 10 and the height of the fin portion 20. Further, the projected area in the X direction is the total of the front surface of the substrate portion 10 and the front surface of the fin portion 20, and even though there are four fin portions 10, these are the same projected area as one and overlap each other. The radiation efficiency is low.
また、従来のヒートシンクのフィン部20を多数設けて放熱性を上げることも考えられているが、アルミダイキャストで一体成型した構造であるため、大量製造時の生産性が低いことや、ダイカスト成型後に離型材を除去するための脱脂工程、鋳物表面を平滑化するためのショットブラスト工程などの多くの後処理が必要となり、製造コストが非常に高くなる不利を有していた。 In addition, it is considered to increase the heat dissipation by providing a large number of fin portions 20 of the conventional heat sink. However, since the structure is integrally formed by aluminum die casting, the productivity at the time of mass production is low, and die casting is performed. Many post-treatments such as a degreasing process for removing the release material later and a shot blasting process for smoothing the casting surface are necessary, which has a disadvantage that the manufacturing cost becomes very high.
本発明は、上記の問題を解消し、板状のアルミニウム材(アルミニウム板)から比較的簡便な加工方法で製作することができ、しかも、閉鎖された空間内に適用、設置される場合であっても効率的に放熱を行うことができるLED照明用ヒートシンクを提供することを課題とするものである。 The present invention solves the above-described problems, can be manufactured from a plate-like aluminum material (aluminum plate) by a relatively simple processing method, and is applied and installed in a closed space. However, an object of the present invention is to provide a heat sink for LED lighting that can efficiently dissipate heat.
請求項1記載の発明は、板状のアルミニウム材で製作されたLED照明用ヒートシンクにおいて、前記アルミニウム材のブランクを折り曲げ加工して一体的に成形されたものであって、水平平面部と垂直正面部が交互に連続した階段状の基板部からなるとともに該基板部の水平平面部又は/及び垂直正面部の表面にLED素子の装着部が形成されており、前記基板部の水平平面部又は/及び垂直正面部の片側又は両側の端部にこれらと垂直な垂直側面部を有することを特徴とするLED照明用ヒートシンクである。 According to the first aspect of the present invention, in the LED lighting heat sink made of a plate-like aluminum material, the aluminum material blank is bent and integrally formed, and the horizontal plane portion and the vertical front surface are formed. And the mounting portion of the LED element is formed on the surface of the horizontal plane portion or / and the vertical front portion of the substrate portion. The horizontal plane portion of the substrate portion or / And a heat sink for LED lighting characterized by having a vertical side surface portion perpendicular to these at one or both ends of the vertical front portion .
請求項2記載の発明は、前記板状のアルミニウム材が塑性加工材である請求項1に記載のLED照明用ヒートシンクである。 The invention according to claim 2 is the heat sink for LED lighting according to claim 1, wherein the plate-like aluminum material is a plastic working material.
請求項3記載の発明は、前記基板部の水平平面部又は/及び垂直正面部の肉厚が前記垂直側面部のそれより厚く構成してなる請求項2に記載のLED照明用ヒートシンクである。 According to a third aspect of the invention, a horizontal flat portion and / or LED lighting heat sink according to claim 2, the thickness of the vertical front face portion is configured thicker than that of the vertical side portion of the substrate portion.
請求項4記載の発明は、前記垂直側面部同士、若しくは垂直側面部と同基板部の水平平面部又は/及び垂直正面部が重ね合わされてなる請求項2又は3に記載のLED照明用ヒートシンクである。 The invention according to claim 4 is the heat sink for LED lighting according to claim 2 or 3 , wherein the vertical side surfaces, or the horizontal side surfaces and / or the vertical front surface of the substrate portion are overlapped with each other. is there.
請求項5記載の発明は、前記基板部の水平平面部又は/及び垂直正面部の表面に形成されるLED素子の装着部がコイニング加工により形成されたものである請求項1〜4のいずれかに記載のLED照明用ヒートシンクである。 Invention of claim 5, claim 1-4 mounting portion of the LED elements formed on a horizontal plane portion and / or the surface of the vertical front portion of the substrate section and is formed by coining It is a heat sink for LED illumination as described in above.
請求項6記載の発明は、車に搭載されるものである請求項1〜5のいずれかに記載のLED照明用ヒートシンクである。 The invention according to claim 6 is the heat sink for LED lighting according to any one of claims 1 to 5 , which is mounted on a vehicle.
本発明によれば、以下の優れた効果が提供される。
(イ)ヒートシンクの3次元方向における投影面積が大きく、従って、その適用、設置箇所(場所)が閉鎖された空気による対流がない(又は少ない)空間においても、LED発光源からの熱を効率的に放射することができ、全体として有利に放熱性を向上させることが可能となる。
(ロ)アルミニウム板から形成される簡単な構造のヒートシンクであるので、シートやコイルなどの圧延板や、押出しなどにより加工された板を打ち抜き、切断などによって得られるブランクを折り曲げることにより比較的容易に製作することができ、また軽量であるため車載用などのLED照明用のヒートシンクとして好適である。
According to the present invention, the following excellent effects are provided.
(B) The projected area in the three-dimensional direction of the heat sink is large, and therefore the heat from the LED light source can be efficiently used even in the space where there is no (or few) convection due to air where the application and installation location (place) are closed. It is possible to radiate the heat and the heat dissipation can be advantageously improved as a whole.
(B) Since it is a heat sink with a simple structure formed from an aluminum plate, it is relatively easy to punch a rolled plate such as a sheet or coil, or a plate processed by extrusion, and then fold a blank obtained by cutting or the like. In addition, since it is lightweight, it is suitable as a heat sink for LED lighting such as in-vehicle use.
以下、本発明を添付図面に示す実施形態などを中心に詳細に説明する。
先ず、本発明に係るLED照明用ヒートシンクの基本的な実施形態を示す図1に基づきその全体形状の概念について具体的に説明する。
ここにおいて、本発明に係るヒートシンクHは図1に示すように、一定の等しい肉厚を有する板状のアルミニウム(その合金を含む)材から形成された、全体が階段状の形状を有する基板部1により構成されている。すなわち、この基板部1は、階段の上部より、同じ矩形状を有する垂直正面部B1、水平平面部A、垂直正面部B2の順に、互いに直角をなした水平平面部と垂直正面部とが交互に連続して一体化された形状(構造)となっている。この基板部1の、水平平面部Aの表面中央には膨出したLED素子装着部Lが設けられている。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the accompanying drawings.
First, based on FIG. 1 which shows basic embodiment of the heat sink for LED illumination which concerns on this invention, the concept of the whole shape is demonstrated concretely.
Here, as shown in FIG. 1, the heat sink H according to the present invention is formed of a plate-like aluminum (including its alloy) material having a constant and equal thickness, and has a stepped shape as a whole. 1. That is, in this board part 1, from the upper part of the stairs, the horizontal plane part and the vertical front part perpendicular to each other are alternately arranged in the order of the vertical front part B1, the horizontal plane part A, and the vertical front part B2 having the same rectangular shape. The shape (structure) is integrated continuously. A bulged LED element mounting portion L is provided at the center of the surface of the horizontal plane portion A of the substrate portion 1.
そして、本ヒートシンクHのこの基板部1の両側の端部には、さらにこの基板部1に垂直な側板部2が一体的に設けられている。すなわち、基板部1の上部の垂直正面部B1にはその両側にそれぞれ同正面部B1と直角をなしてその後方に向かって連続して配置された垂直側面部C1及び垂直側面部C2を有する。また、基板部1の水平平面部Aの両側の端部には、それぞれ同水平平面部Aと直角をなしてその下方に向かって連続して配置された垂直側面部C3及び垂直側面部C4を有する。さらに、基板部1の下部の垂直正面部B2にはその両側にそれぞれ同正面部B2と直角をなしてその前方に向かって連続して配置された垂直側面部C5及び垂直側面部C6を有する。 Further, side plate portions 2 perpendicular to the substrate portion 1 are integrally provided at both ends of the heat sink H on both sides of the substrate portion 1. That is, the vertical front part B1 on the upper part of the substrate part 1 has a vertical side face part C1 and a vertical side face part C2 that are arranged at right angles to the front face part B1 and are continuously arranged toward the rear thereof. Further, the vertical side surface portion C3 and the vertical side surface portion C4, which are arranged at right angles to the horizontal flat surface portion A and continuously downward, are arranged at both ends of the horizontal flat surface portion A of the substrate portion 1, respectively. Have. Furthermore, the vertical front part B2 at the lower part of the substrate part 1 has a vertical side part C5 and a vertical side part C6 which are arranged at right angles to the front part B2 and continuously toward the front on both sides thereof.
これらヒートシンクHを構成する基板部1及び側板部2の肉厚は、全体の大きさなどにもよるがその剛性、放熱性及び軽量化の観点から一般的には0.5〜5mmとすることが望ましい。 The thickness of the substrate portion 1 and the side plate portion 2 constituting the heat sink H is generally 0.5 to 5 mm from the viewpoint of rigidity, heat dissipation and weight reduction, although it depends on the overall size and the like. Is desirable.
なお、アルミニウム材としては特に限定するものではないが、熱伝導率および成形性に優れたJIS1000系の純アルミニウム、JIS3000系のアルミニウム合金、JIS5000系のアルミニウム合金など用いることが望ましい。 The aluminum material is not particularly limited, but it is desirable to use a JIS 1000 series pure aluminum, a JIS 3000 series aluminum alloy, a JIS 5000 series aluminum alloy, etc. that are excellent in thermal conductivity and formability.
上記の基本的な実施形態のヒートシンクHの製作方法について図2に基づいて以下に説明する。
先ず、図2の上図に示すように圧延により製造した板状のアルミニウムコイル材10を打ち抜き加工して、図1のヒートシンクHの立体形状に合わせた展開図の平面形状に相当する1枚のブランク11を得る。このブランク11は図2の下図の通り、全体が矩形状を有しており、その両側部にそれぞれ二箇所、計四箇所に切欠部Kを有している。この切欠部Kはブランク11の長さを三等分した位置にあり、ブランク11の長辺側の端部から中央側に所定の長さで平行に伸びる帯状を呈したものである。なお、アルミニウムコイル材10はこの代わりに圧延により製造したシート材を用いても良い。
A method of manufacturing the heat sink H of the basic embodiment will be described below with reference to FIG.
First, as shown in the upper diagram of FIG. 2, a plate-like aluminum coil material 10 manufactured by rolling is punched, and one sheet corresponding to the planar shape of the developed view matched to the three-dimensional shape of the heat sink H of FIG. A blank 11 is obtained. As shown in the lower diagram of FIG. 2, the blank 11 has a rectangular shape as a whole. The blank 11 has two portions on both sides thereof and four notches K in total. The notch K is located at a position obtained by dividing the length of the blank 11 into three equal parts, and has a belt-like shape extending in parallel from the end on the long side of the blank 11 to the center with a predetermined length. The aluminum coil material 10 may be a sheet material manufactured by rolling instead.
次に、このブランク11の表面中央位置にコイニング加工により上方に膨出した直方体状のLED素子装着部Lを形成する。 Next, a rectangular parallelepiped LED element mounting portion L bulging upward by coining is formed at the center of the surface of the blank 11.
次いで、このブランク11の各部の折り曲げ加工を行なう。図2の下図においては、図1のヒートシンクHの立体形状を構成する各部の名称に対応する符号と同一の符号をブランク11の平面に区画して記載した。1は基板部、2は側板部である。破線部は連続した各部の境界線であり、折り曲げ加工を行なう際の曲げ線(折り目)を示すものである。 Next, each part of the blank 11 is bent. 2, the same reference numerals as those corresponding to the names of the respective parts constituting the three-dimensional shape of the heat sink H in FIG. 1 is a board | substrate part, 2 is a side-plate part. A broken line portion is a boundary line between successive portions, and indicates a bend line (fold) at the time of bending.
そこで、先ずブランク11のB1面部をC1面部、C2面部と一体的にA面部との境界線となる曲げ線Xを中心に上方に直角に折り曲げ、またB2面部をC5面部、C6面部と一体的にA面部との境界線となる曲げ線Xを中心に下方に直角に折り曲げて、図1の上部の垂直正面部B1、中間部の水平平面部A及び下部の垂直正面部B2からなる階段状に交互に連続した基板部1を成形する。次いで、C1面部とC2面部をB1面部とのそれぞれ境界線となる曲げ線Xを中心に後方(図2では下方)に直角に折り曲げて図1の垂直正面部B1の両側端部にこれと連続した垂直側面部C1及び垂直側面部C2を成形する。次いで、C5面部とC6面部をB2面部とのそれぞれ境界線となる曲げ線Xを中心に前方(図2では下方)に直角に折り曲げて図1の垂直正面部B2の両側端部にこれと連続した垂直側面部C5及び垂直側面部C6を成形する。さらに、C3面部とC4面部をA面部とのそれぞれ境界線となる曲げ線Xを中心に下方に直角に折り曲げて図1の水平平面部Aの両側端部にこれと連続した垂直側面部C3及び垂直側面部C4を成形する。 Therefore, first, the B1 surface portion of the blank 11 is bent upward at a right angle around the bend line X that is the boundary line between the C1 surface portion and the C2 surface portion and the A surface portion, and the B2 surface portion is integrated with the C5 surface portion and the C6 surface portion. 1 is bent downward at a right angle around a bend line X that is a boundary line with the A surface portion, and is formed in a staircase shape composed of an upper vertical front portion B1, an intermediate horizontal plane portion A, and a lower vertical front portion B2 in FIG. The substrate portions 1 that are alternately continuous are formed. Next, the C1 surface portion and the C2 surface portion are bent at a right angle rearward (downward in FIG. 2) around the bend line X that is a boundary line between the B1 surface portion and continuous to both end portions of the vertical front portion B1 in FIG. The formed vertical side surface portion C1 and vertical side surface portion C2 are formed. Next, the C5 surface portion and the C6 surface portion are bent at a right angle forward (downward in FIG. 2) around the bend line X that is a boundary line between the B2 surface portion and continuous to both end portions of the vertical front portion B2 in FIG. The formed vertical side surface portion C5 and vertical side surface portion C6 are formed. Further, the C3 surface portion and the C4 surface portion are bent downward at a right angle around a bend line X that is a boundary line between the A surface portion and the vertical side surface portion C3 that is continuous with both sides of the horizontal plane portion A in FIG. The vertical side surface portion C4 is formed.
以上のブランク11の折り曲げ加工によって図1の実施形態のLED照明用ヒートシンクHの製作が完了する。なお、本実施形態のヒートシンクHの製作のためのブランク11の折り曲げ加工における各部の加工の順序は上述した方法に特に限定されない。加工の順序を適宜入れ替えても同様に本ヒートシンクHの製作を行なうことができる。 Production of the LED lighting heat sink H of the embodiment of FIG. 1 is completed by bending the blank 11 described above. In addition, the processing order of each part in the bending process of the blank 11 for manufacture of the heat sink H of this embodiment is not specifically limited to the method mentioned above. Even if the order of processing is appropriately changed, the heat sink H can be similarly manufactured.
このように、図1の実施形態のLED照明用ヒートシンクHは圧延などの塑性加工により得たアルミニウム板を素材としてこれを打ち抜き加工、コイニング加工及び折り曲げ加工するだけで容易に製作することができ、しかも薄板材で組合せた構造であるため極めて軽量であり且つ十分な剛性を保持している。また、従来のダイキャスト製のものに比べてその製作コストを大幅に軽減できるものである。 As described above, the heat sink H for LED lighting in the embodiment of FIG. 1 can be easily manufactured by simply punching, coining and bending an aluminum plate obtained by plastic processing such as rolling. Moreover, since the structure is a combination of thin plate materials, it is extremely lightweight and has sufficient rigidity. Further, the manufacturing cost can be greatly reduced as compared with the conventional die-cast one.
次に、本発明に係るヒートシンクHを空気の対流のない閉鎖した空間に設置してLED照明を行う場合の放熱の原理、作用について図1に示した実施形態を例にとって図3により説明する。ここで、各部からの熱Qの放射方向を矢印で示し、周囲の閉鎖空間をSで示している。 Next, the principle and action of heat radiation when the LED lighting is performed by installing the heat sink H according to the present invention in a closed space without air convection will be described with reference to FIG. 3 by taking the embodiment shown in FIG. 1 as an example. Here, the radiation direction of the heat Q from each part is indicated by an arrow, and the surrounding closed space is indicated by S.
先ず、水平平面部AのLED素子装着部Lに装着されたLED素子を発光させると、これに伴ってLED素子の発する熱が水平平面部Aに、LED素子装着部Lを通じて伝導する。これに引き続き,水平平面部Aに伝導された熱は、垂直平面部B1、B2、垂直側面部C3、C4に伝導する。そして、水平平面部Aに伝導された熱Qは同平面部の表裏面からその直角方向(図の上下方向、裏面からの熱Qの矢印は省略)に周囲の閉鎖空間(放熱空間)Sに放射される。また垂直正面部B1、B2に伝達された熱Qは同平面部の表裏面からその直角方向(図の前後方向、B2裏面からの熱Qの矢印は省略)の同空間Sに放射される。さらに、垂直側面部C3、C4に伝道された熱Qは同側面部の表面からそれぞれその直角方向(図の右及び左方向、裏面からの熱Qの矢印は省略)の同空間Sに放射される。 First, when the LED element mounted on the LED element mounting portion L of the horizontal plane portion A is caused to emit light, heat generated by the LED element is conducted to the horizontal plane portion A through the LED element mounting portion L. Subsequently, the heat conducted to the horizontal plane portion A is conducted to the vertical plane portions B1 and B2 and the vertical side surface portions C3 and C4. Then, the heat Q conducted to the horizontal plane portion A enters the surrounding closed space (heat radiation space) S in the direction perpendicular to the front and back surfaces of the plane portion (the vertical direction in the figure, the arrow of the heat Q from the back surface is omitted). Radiated. Further, the heat Q transmitted to the vertical front portions B1 and B2 is radiated from the front and back surfaces of the flat surface portion to the same space S in the perpendicular direction (the front-rear direction in the figure, the arrow of the heat Q from the B2 back surface is omitted). Further, the heat Q transmitted to the vertical side surface portions C3 and C4 is radiated from the surface of the side surface portion to the same space S in the perpendicular direction (right and left directions in the drawing, and the arrow of the heat Q from the back surface is omitted). The
一方、垂直正面部B1に伝導された一部の熱Qは垂直側面部C1、C2に伝導し、同両側面部の表裏面からそれぞれ直角方向(図の右及び左方向)に周囲の同空間Sに放射される。また、垂直正面部B2に伝導された一部の熱Qは垂直側面部C5、C6に伝導し、同両側面部の表裏面からそれぞれ直角方向(図の右及び左方向)に周囲の同空間Sに放射される。 On the other hand, a part of the heat Q conducted to the vertical front part B1 is conducted to the vertical side parts C1 and C2, and the surrounding space S in the right-angle direction (right and left directions in the figure) from the front and back surfaces of the both side parts. To be emitted. Further, a part of the heat Q conducted to the vertical front part B2 is conducted to the vertical side parts C5 and C6, and the surrounding space S in the right-angle direction (right and left directions in the figure) from the front and back surfaces of the both side parts. To be emitted.
なお、垂直側面部C1〜C6は、C1とC2、C3とC4及びC5とC6とが互いに向かい合っているため水平平面部Aや垂直正面部B1、B2に比べて放射による放熱は少ない。これは、例えばC1とC2についてみると、C1の表面(図の右面)及びC2の表面(図の左面)からの熱Qはそれぞれその直角方向に周囲の空間Sに直接放射され、十分放熱されるが、他方、裏面C1の裏面(図の左面)から直角方向に放射される熱QとC2裏面(図の右面)から直角方向に放射される熱Qは両者が交差することになり、互いに熱を吸収し合い、周囲の空間Sへの放熱が妨げられるからである。 In addition, since the vertical side surfaces C1 to C6 are such that C1 and C2, C3 and C4, and C5 and C6 face each other, heat radiation due to radiation is less than that of the horizontal plane portion A and the vertical front portions B1 and B2. For example, in the case of C1 and C2, the heat Q from the surface of C1 (the right side in the figure) and the surface of C2 (the left side in the figure) is directly radiated to the surrounding space S in the perpendicular direction, and is sufficiently dissipated. On the other hand, the heat Q radiated from the back surface of the back surface C1 (the left surface in the figure) in the perpendicular direction and the heat Q radiated from the C2 back surface (the right surface in the figure) at a right angle intersect each other. This is because heat is absorbed and heat dissipation to the surrounding space S is hindered.
このように、図1の基本的な実施形態に代表される本発明に係るヒートシンクは水平平面部と垂直正面部が交互に連続した階段状の基板部からなるため、また基板部の両側端部に垂直側面部を有するため、その放熱の効率が放射によって支配される対流の生じにくい閉鎖された放熱空間においても、X、Y、Zの方向すなわち3次元の方向に対する投影面積が非常に大きいため放射効率が高く、優れた放熱性を有することが分かる。 As described above, the heat sink according to the present invention represented by the basic embodiment of FIG. 1 is composed of a step-like substrate portion in which the horizontal plane portion and the vertical front portion are alternately continued. In the closed heat radiation space where the efficiency of heat dissipation is dominated by radiation and the convection is less likely to occur, the projected area in the X, Y, Z direction, that is, the three-dimensional direction is very large. It can be seen that the radiation efficiency is high and the heat dissipation is excellent.
次に、図1の実施形態と全体形状が共通する本発明に係る他の実施形態につき説明することにする。この実施形態のヒートシンク自体は図示しないが、図1の階段状の基板部1(水平平面部A、垂直正面部B1及び垂直正面部B2)と、この基板部1の両側の端部に設けられた垂直側面部(C1、C2、C3、C4、C5、C6)との肉厚が異なるだけで、それ以外は図1のものと全く同じ形状を有したものである。
この実施形態についてコイニング加工後のブランクの形態を示した図4に基づいて具体的に説明する。
Next, another embodiment according to the present invention having the same overall shape as the embodiment of FIG. 1 will be described. Although the heat sink itself of this embodiment is not illustrated, it is provided at the stepped substrate portion 1 (horizontal plane portion A, vertical front portion B1 and vertical front portion B2) of FIG. The vertical side surface portions (C1, C2, C3, C4, C5, and C6) differ only in thickness, and the other portions have exactly the same shape as that of FIG.
This embodiment will be specifically described based on FIG. 4 showing the form of the blank after coining.
ブランク11は、全体として矩形状を有し、その両側部にそれぞれ二箇所、計四箇所に切欠部Kを有しており、しかも中央部の肉厚の厚い基板部1と両側の肉厚の薄い側板部2からなるその幅方向に肉厚の異なるブランクである。
このブランク11の製法について述べると、圧延により製造した肉厚の異なる2種の板状のアルミニウムコイル材を用意し、これをそれぞれ打ち抜き加工あるいは切断加工して得た肉厚の厚い板1枚と肉厚の薄い板2枚を溶接して一体化する。Wは溶接ビード部を示す。そして、これの長さを三等分した位置に端部から中央側に所定の長さで平行に伸びる帯状の切欠部Kを穿設する。
The blank 11 has a rectangular shape as a whole, has two portions on each side, and four notches K in total, and has a thick substrate portion 1 at the center and a thickness on both sides. It is a blank having a different thickness in the width direction composed of the thin side plate portion 2.
The manufacturing method of this blank 11 will be described. Two types of plate-like aluminum coil materials with different thicknesses produced by rolling are prepared, and one thick plate obtained by punching or cutting each. Two thin plates are welded together. W shows a weld bead part. Then, a strip-like cutout K extending in parallel with a predetermined length is formed from the end to the center side at a position obtained by dividing the length into three equal parts.
このブランク11を先の実施形態で説明した折り曲げ加工を行なうことにより、本実施形態に係るヒートシンクHを容易に製作することができる。本実施形態に係るヒートシンクHは、図1に示したものと同一の立体形状であるが、階段状を構成する基板部1すなわち同図の垂直正面部B1、水平平面部A及び垂直正面部B2の肉厚が、側板部2すなわち垂直側面部C1、C2、C3、C4、C5及びC6の肉厚よりも厚いことを特徴とする。具体的には、基板部1の肉厚は0.5〜5mm、側板部2の肉厚は0.25〜2.5mmとすることが好ましい。 The heat sink H according to this embodiment can be easily manufactured by bending the blank 11 described in the previous embodiment. The heat sink H according to the present embodiment has the same three-dimensional shape as that shown in FIG. 1, but the substrate portion 1 constituting the step shape, that is, the vertical front portion B1, the horizontal plane portion A, and the vertical front portion B2 in FIG. Is thicker than the thickness of the side plate portion 2, that is, the vertical side surface portions C1, C2, C3, C4, C5 and C6. Specifically, the thickness of the substrate portion 1 is preferably 0.5 to 5 mm, and the thickness of the side plate portion 2 is preferably 0.25 to 2.5 mm.
この実施形態によれば、図1に示した実施形態のものに比べて、ヒートシンクの骨格となる階段状の基板部1の剛性をより高めることができると同時に熱伝導率をより高く維持することができ、その放熱性をさらに向上させることができる。 According to this embodiment, compared to the embodiment shown in FIG. 1, the rigidity of the stepped substrate portion 1 that becomes the skeleton of the heat sink can be further increased, and at the same time, the thermal conductivity can be maintained higher. The heat dissipation can be further improved.
次に、図1の実施形態と全体形状が共通する本発明に係るさらに他の実施形態につき、上記と同様にコイニング加工後のブランクの形態を示した図5に基づいて具体的に説明する。このブランク11は、全体として矩形状を有し、その両側部にそれぞれ二箇所、計四箇所に切欠部Kを有しており、中央部の肉厚の厚い基板部1と両側の肉厚の薄い側板部2からなるものでブランクの形状としては上記に説明したもの同じものである。但し、このブランク11は肉厚の異なる2種の板状のアルミニウムコイル材から得た板を溶接して一体化したものとは異なる。 Next, still another embodiment according to the present invention having the same overall shape as that of the embodiment of FIG. 1 will be specifically described based on FIG. 5 showing the form of the blank after coining similarly to the above. This blank 11 has a rectangular shape as a whole, has two portions on each side, and four notches K in total, and has a thick substrate portion 1 at the center and a thickness on both sides. It consists of the thin side plate part 2, and the shape of the blank is the same as described above. However, this blank 11 is different from the one obtained by welding and integrating plates obtained from two types of plate-like aluminum coil materials having different thicknesses.
すなわち、このブランク11は中央部の肉厚の厚い基板部1と両側の肉厚の薄い側板部2を有するアルミニウム押出材からなる。ブランク11を製造するにはその断面形状に相当する金型を用いて押出加工し、その後切欠部Kを設ければ良い。また、このブランク11を先の実施形態で説明した折り曲げ加工を行なうことにより、同様にして本実施形態に係るヒートシンクHを容易に製作することができる。 That is, the blank 11 is made of an aluminum extruded material having a thick substrate portion 1 at the center and thin side plates 2 on both sides. In order to manufacture the blank 11, extrusion may be performed using a mold corresponding to the cross-sectional shape, and then a notch K may be provided. In addition, by performing the bending process described in the previous embodiment on the blank 11, the heat sink H according to the present embodiment can be easily manufactured in the same manner.
この実施形態のものも、図1に示した実施形態のものに比べてヒートシンクHの骨格となる階段状の基板部1の剛性をより高めることができると同時に熱伝導率をより高く維持することができ、その放熱性をさらに向上させることができる。また、加えて、打ち抜き加工や溶接をすることなく、均質で一体の幅方向に肉厚の異なるブランク11を押出加工により製造できることから、ヒートシンクの製作工程が図2に示したものに比べてより簡単となる。 Also in this embodiment, compared to the embodiment shown in FIG. 1, it is possible to further increase the rigidity of the stepped substrate portion 1 that becomes the skeleton of the heat sink H and at the same time maintain higher thermal conductivity. The heat dissipation can be further improved. In addition, since the blank 11 having a uniform and different thickness in the width direction can be manufactured by extrusion without punching or welding, the heat sink manufacturing process is more than that shown in FIG. It will be easy.
図1のヒートシンクは基本的な全体形状を表した実施形態であり、本発明はこれに限定されるものではない。例えば、図1のものは上下の垂直用面部B1、B2とその間の水平平面部Aからなる三面で構成された1段の階段状を有するものであるが放熱空間への投影面積をさらに増加させるために、これらを四面以上に構成し、段数を2段以上にしても良い。また、図1では階段状を構成する水平平面部Aと垂直正面部B1、B2が全て等しい長さと幅の同じ矩形(長方形)となったものであるが、これらの長さと幅を変更して異なった長方形を交互に連続させたもの、つまり階段(1段)の幅と奥行き及び高さがそれぞれ異なった形状でも良い。さらに、階段がその段によって幅方向(左右)にずれた変則形状のものでもかまわない。 The heat sink of FIG. 1 is an embodiment showing a basic overall shape, and the present invention is not limited to this. For example, the one in FIG. 1 has a one-step staircase shape composed of three surfaces consisting of upper and lower vertical surface portions B1 and B2 and a horizontal plane portion A therebetween, but further increases the projected area to the heat radiation space. Therefore, these may be configured to have four or more surfaces and the number of steps may be two or more. In FIG. 1, the horizontal plane part A and the vertical front parts B1 and B2 constituting the staircase are all rectangular (rectangular) having the same length and width, but these lengths and widths are changed. Different rectangles may be alternately arranged, that is, the stairs (one step) may have different widths, depths, and heights. Furthermore, the staircase may have an irregular shape shifted in the width direction (left and right) by the step.
また、図1においては、垂直正面部B1、水平平面部A及び垂直正面部B2の両側に、それぞれ垂直側面部C1、C2、同C3、C4及び同5、C6備えたものを示しているが、このうち垂直側面部B1、B2の両側端部にある垂直側面部C1、C2及びC5、C6の全部あるいは片側の側面部を省略しても良い。 Further, FIG. 1 shows that the vertical side surface portions C1, C2, C3, C4, and 5, 6 are provided on both sides of the vertical front surface portion B1, the horizontal flat surface portion A, and the vertical front surface portion B2, respectively. Of these, all or one of the side surfaces C1, C2 and C5, C6 at both ends of the side surfaces B1, B2 may be omitted.
次に、図1の実施形態と全体形状が異なる本発明に係るLED照明用ヒートシンクの別の実施形態について図6に基づいて説明する。
ここにおいて本実施形態のLED照明用ヒートシンクは、図1の実施形態と同様に一定の等しい肉厚を有する板状のアルミニウム(その合金を含む)材から形成された、全体が階段状の形状を有する基板部1により構成されている。図1の形態と異なる点は、先ず、基板部1の構成として垂直正面部B1の上部にこれと直角をなしてその後方に向かって連続して配置された水平平面部A1をさらに有しており、二段の階段状を呈していることである。
Next, another embodiment of the heat sink for LED lighting according to the present invention, which is different in overall shape from the embodiment of FIG. 1, will be described with reference to FIG.
Here, the LED lighting heat sink of this embodiment is formed of a plate-like aluminum (including its alloy) material having a constant and equal wall thickness as in the embodiment of FIG. It is comprised by the board | substrate part 1 which has. 1 differs from the embodiment shown in FIG. 1 in that the substrate portion 1 further includes a horizontal plane portion A1 that is disposed at the upper part of the vertical front portion B1 at a right angle to the rear and continuously toward the rear. It has a two-step staircase shape.
次に、本実施形態のものでは基板部1の両側の端部に設けられた側板部2の構造が図1とは大きく異なる。水平平面部Aの両側の端部にはこれと直角をなしてその下方に向かって最下端(垂直正面部B2の下端位置)まで連続して配置された垂直側面部C1及びC2を有する。また、垂直正面部B1の両側の端部にはこれと直角をなしてその前方に向かって水平平面部A2の全幅の途中(三分の二の幅)まで連続して配置された垂直側面部C31及びC32を有する。そして、水平平面部A2の両側の端部にはこれと直角をなしてその下方に向かって連続して配置された垂直側面部C33及びC34を有する。 Next, in the present embodiment, the structure of the side plate portion 2 provided at both end portions of the substrate portion 1 is greatly different from that in FIG. At the end portions on both sides of the horizontal plane portion A, there are vertical side surface portions C1 and C2 which are arranged continuously at right angles to the lower end (the lower end position of the vertical front surface portion B2) downward. In addition, the vertical side surfaces arranged continuously at the ends of the both sides of the vertical front portion B1 at right angles to the front of the vertical front portion B1 up to the middle of the entire width of the horizontal plane portion A2 (width of two thirds). C31 and C32. And it has the perpendicular | vertical side part C33 and C34 which were arrange | positioned continuously at the edge part of the both sides of horizontal plane part A2 at right angles to this, and the downward direction.
また、垂直側面部C1及びC2には、それぞれの上部と下部の位置に前方に向かって突出して垂直側面部C31及びC32とC33及びC34の表面の一部(後部側)を外接して覆う重合フランジ部P1及びP2を備える。さらに、垂直側面部C33及びC34にも、それぞれの中央部の位置に前方に向かって突出して垂直側面部C5及びC6の表面の一部(後部側)を外接して覆う重合フランジ部P3を備える。 Further, the vertical side surfaces C1 and C2 are superposed so as to protrude forward at respective upper and lower positions and to circumscribe and partially cover the surfaces (rear side) of the vertical side surfaces C31, C32, C33 and C34. The flange parts P1 and P2 are provided. Further, the vertical side surfaces C33 and C34 are also provided with overlapping flange portions P3 projecting forward at the positions of the respective central portions and circumscribing and covering a part (rear side) of the surfaces of the vertical side surfaces C5 and C6. .
上記した本実施形態のヒートシンクHの制作方法について図7に基づいて以下に説明する。
先ず、図7の上図に示すように圧延により製造した板状のアルミニウムコイル材10を打ち抜き加工して、図6のヒートシンクHの立体形状に合わせた展開図の平面形状に相当する1枚のブランク11を得る。このブランク11は図7の下図の通り、全体がT字状を有しており、周囲に計六箇所の切欠部K1〜K3が設けられている。すなわち、その頭部11aの両下部(図の手前両側)にそれぞれ一箇所の切欠部K1を、またその胴部11bの両側部にそれぞれ二箇所の切欠部K2、K3を有している。切欠部K1は2段の鍵状、切欠部K2は帯状、切欠部K3は1段の鍵状の形状となっている。
The production method of the heat sink H of the above-described embodiment will be described below with reference to FIG.
First, as shown in the upper drawing of FIG. 7, a plate-like aluminum coil material 10 manufactured by rolling is punched out, and one sheet corresponding to the planar shape of the developed view matched to the three-dimensional shape of the heat sink H of FIG. A blank 11 is obtained. As shown in the lower diagram of FIG. 7, the blank 11 has a T-shape as a whole and is provided with a total of six cutout portions K1 to K3 around the blank 11. That is, it has one notch K1 at both lower portions (both sides in the figure) of the head 11a, and two notches K2 and K3 at both sides of the body 11b. The cutout portion K1 has a two-stage key shape, the cutout portion K2 has a band shape, and the cutout portion K3 has a one-step key shape.
次に、このブランク11の表面中央位置にコイニング加工により上方に膨出した直方体状のLED素子装着部Lを形成する。 Next, a rectangular parallelepiped LED element mounting portion L bulging upward by coining is formed at the center of the surface of the blank 11.
次いで、このブランク11の各部の折り曲げ加工を行なう。図7の下図においては、図6のヒートシンクHの立体形状を構成する各部の名称に対応する符号と同一の符号をブランク11の平面に区画して記載した。1は基板部、2は側板部である。破線部は連続した各部の境界線であり、折り曲げ加工を行なう際の曲げ線(折り目)を示すものである。 Next, each part of the blank 11 is bent. In the lower diagram of FIG. 7, the same reference numerals as those corresponding to the names of the respective parts constituting the three-dimensional shape of the heat sink H of FIG. 1 is a board | substrate part, 2 is a side-plate part. A broken line portion is a boundary line between successive portions, and indicates a bend line (fold) at the time of bending.
そこで、先ずブランク11のB1面部を、C31面部、C32面部、A1面部、C1面部及びC2面部と一体的にA2面部との境界線となる曲げ線Xを中心に上方に直角に折り曲げる。また、B2面部をC5面部、C6面部と一体的にA2面部との境界線となる曲げ線Xを中心に下方に直角に折り曲げる。さらにA1面部をC1面部、C2面部と一体的にB1面部との境界線となる曲げ線Xを中心に後方(図7では下方)に直角に折り曲げる。こうして図6の上部から水平平面部A1、垂直正面部B1、水平平面部A2及び垂直正面部B2の順で階段状に交互に連続した基板部1を成形する。 Therefore, first, the B1 surface portion of the blank 11 is bent upward at a right angle around the bend line X that is a boundary line with the A2 surface portion integrally with the C31 surface portion, the C32 surface portion, the A1 surface portion, the C1 surface portion, and the C2 surface portion. Further, the B2 surface part is bent downward at a right angle around the bend line X that is a boundary line with the A2 surface part integrally with the C5 surface part and the C6 surface part. Further, the A1 surface portion is bent at a right angle rearward (downward in FIG. 7) around the bend line X which is a boundary line between the C1 surface portion and the C2 surface portion and the B1 surface portion. In this way, the board | substrate part 1 which continued in order of the horizontal plane part A1, the vertical front part B1, the horizontal plane part A2, and the vertical front part B2 from the upper part of FIG.
上記階段状の基板部1を成形した後、C5面部とC6面部をB1面部とのそれぞれ境界線となる曲げ線Xを中心に前方(図7では上方)に直角に折り曲げて図6の垂直正面部B2の両側端部にこれと連続した垂直側面部C5及び垂直側面部C6を成形する。次いで、C33面部とC34面部をA2面部とのそれぞれ境界線となる曲げ線Xを中心に前方(図7では下方)に直角に折り曲げて図6の水平平面部A2の両側端部にこれと連続した垂直側面部C33及び垂直側面部C34を成形する。 After the stepped substrate portion 1 is formed, the C5 surface portion and the C6 surface portion are bent at a right angle forward (upward in FIG. 7) around the bend line X that is a boundary line between the B1 surface portion and the vertical front of FIG. A vertical side surface portion C5 and a vertical side surface portion C6 which are continuous with the both end portions of the portion B2 are formed. Next, the C33 surface portion and the C34 surface portion are bent at a right angle forward (downward in FIG. 7) about the bend line X that is a boundary line between the A2 surface portion and continuous with both side end portions of the horizontal plane portion A2 in FIG. The vertical side surface portion C33 and the vertical side surface portion C34 thus formed are formed.
この成形により、C33面部とC34面部の重合フランジ部P3がそれぞれC5面部とC6面部の表面に重なって接合する。すなわち、図6の通り、垂直側面部C33及び垂直側面部C34の重合フランジ部P3が垂直側面部C5及び垂直側面部C6の一部(後部側)を覆って接合し、この部分は2重構造になる。 By this molding, the overlapping flange portion P3 of the C33 surface portion and the C34 surface portion overlaps and joins the surfaces of the C5 surface portion and the C6 surface portion, respectively. That is, as shown in FIG. 6, the overlapping flange portion P3 of the vertical side surface portion C33 and the vertical side surface portion C34 covers and joins part of the vertical side surface portion C5 and the vertical side surface portion C6 (rear side), and this portion has a double structure. become.
次に、C31面部、C32面部をB1面部とのそれぞれ境界線となる曲げ線Xを中心に前方(図7では上方)に直角に折り曲げて図6の垂直正面部B1の両側端部にこれと連続した垂直側面部C31、垂直側面部C32を成形する。 Next, the C31 surface portion and the C32 surface portion are bent at a right angle forward (upward in FIG. 7) around the bend line X that is a boundary line between the C1 surface portion and the B1 surface portion. A continuous vertical side surface portion C31 and vertical side surface portion C32 are formed.
引き続いて、C1面部とC2面部をA1面部とのそれぞれ境界線となる曲げ線Xを中心に下方に直角に折り曲げて図6の水平平面部A1の両側端部にこれと連続した垂直側面部C1及び垂直側面部C2を成形する。 Subsequently, the C1 surface portion and the C2 surface portion are bent downward at a right angle around the bend line X that becomes the boundary line between the A1 surface portion and the vertical side surface portion C1 continuous to both ends of the horizontal plane portion A1 in FIG. And the vertical side surface portion C2 is formed.
この成形により、C1面部とC2面部の重合フランジ部P1がそれぞれC31面部とC32面部の表面に接した状態で重ね合わされ、また同C1面部と同C2面部の重合フランジ部P2がそれぞれC33面部とC34面部の表面に接した状態で重ね合わされる。すなわち、図6の通り、垂直側面部C1及び垂直側面部C2の上部の重合フランジ部P1が垂直側面部C31及び垂直側面部32の一部(後部側)を覆って重ね合わされ、同垂直側面部C1及び同垂直側面部C2の下部の重合フランジ部P2が垂直側面部C33及び垂直側面部34の一部(後部側)を覆って重ね合わされ、これらの部分はいずれも2重構造になる。 By this molding, the overlapping flange portions P1 of the C1 surface portion and the C2 surface portion are overlapped in contact with the surfaces of the C31 surface portion and the C32 surface portion, respectively, and the overlapping flange portions P2 of the C1 surface portion and the C2 surface portion are respectively C33 surface portion and C34. Overlapping in contact with the surface of the surface portion. That is, as shown in FIG. 6, the overlapping flange portion P <b> 1 above the vertical side surface portion C <b> 1 and the vertical side surface portion C <b> 2 is overlapped so as to cover a part (rear side) of the vertical side surface portion C <b> 31 and vertical side surface portion 32. The overlapping flange portion P2 below C1 and the vertical side surface portion C2 is overlapped so as to cover a part (rear side) of the vertical side surface portion C33 and the vertical side surface portion 34, and both of these portions have a double structure.
以上のブランク11の折り曲げ加工によって図6の実施形態のLED照明用ヒートシンクHの製作が完了する。本実施形態のヒートシンクHの製作のためのブランク11の折り曲げ加工における各部の加工の順序においても図1の実施形態と同様上述した方法に特に限定されない。但し、本実施形態の場合は図1のものより複雑化しているため、折り曲げ時に各部が相互に干渉しないように、また重合フランジ部を有する垂直側面部の折り曲げは接合される側の垂直側面部の加工後に行なうなど一定の加工順序となるように留意する必要がある。 The bending of the blank 11 as described above completes the manufacture of the LED illumination heat sink H of the embodiment of FIG. The processing order of each part in the bending process of the blank 11 for manufacturing the heat sink H of the present embodiment is not particularly limited to the method described above as in the embodiment of FIG. However, in the case of the present embodiment, since it is more complicated than that of FIG. 1, the vertical side surface portion on the side to be joined is bent so that the respective portions do not interfere with each other at the time of bending. It is necessary to pay attention so that the processing order is fixed, for example, after the processing.
この実施形態によれば、図1に示した実施形態のものに比べて、水平平面部A1、垂直側面部C1及びC2、垂直側面部31及び32などが追加又はその面積増加により3次元の方向に対する投影面積さらに大きくなっているためヒートシンクの放射効率がより高く、一層優れた放熱性を有するものである。また、垂直側面部C1及びC2、C33及びC34に重合フランジ部P1〜P3をそれぞれ形成して他の垂直側面部C31及びC32、C33及びC34、C5及びC6に重ね合わせて接合、接続した構造であるためLED素子から発生した熱が離れた各垂直側面部(フィン)の末端まですみやかに熱伝導して放射されることになりこれによりさらに高い放熱性を発揮するものである。さらに、これら垂直側面部の重合によりその部分が二重の板構造になっているため、図1の一枚の構造に比べてヒートシンクの剛性が増加し、その強度、耐久性及び安定性の向上を図ることができる。 According to this embodiment, compared with the embodiment shown in FIG. 1, the horizontal plane portion A1, the vertical side portions C1 and C2, the vertical side portions 31 and 32, etc. are added or the three-dimensional direction is increased by increasing the area thereof. Therefore, the radiation efficiency of the heat sink is higher and the heat dissipation is further improved. Moreover, it is the structure which formed the superposition | polymerization flange part P1-P3 in the vertical side surface parts C1 and C2, C33, and C34, respectively, overlapped and joined and connected to other vertical side surface parts C31 and C32, C33 and C34, C5 and C6. Therefore, the heat generated from the LED element is radiated through heat conduction immediately to the end of each vertical side surface (fin) away from the LED element, thereby exhibiting higher heat dissipation. Furthermore, since the vertical side surfaces are overlapped to form a double plate structure, the rigidity of the heat sink is increased compared to the single structure in FIG. 1, and the strength, durability and stability are improved. Can be achieved.
なお、本実施形態では、垂直側面部同士が重合フランジ部を介して互いに重ね合わされている例であるが、これに限らず、垂直側面部と基板部の水平平面部又は/及び垂直正面部が重ね合わされている構造でも良いものである。 In this embodiment, the vertical side surfaces are overlapped with each other via the overlapping flange portion. However, the present invention is not limited to this, and the horizontal side surface portion and / or the vertical front surface portion of the vertical side surface portion and the substrate portion are not limited thereto. A superposed structure is also acceptable.
また、本実施形態における垂直側面部同士の二重構造部は、さらにねじ締結あるいはリベット締結、かしめ締結、溶接、ろう付けなどの接合方法により、二重の材料を一体に結合しても良く、そのことによりヒートシンクの剛性を大きく高めることができる。 In addition, the double structure portion between the vertical side surfaces in the present embodiment may be combined with a double material integrally by a joining method such as screw fastening or rivet fastening, caulking fastening, welding, brazing, As a result, the rigidity of the heat sink can be greatly increased.
1:基板部
2:側板部
10:アルミニウムコイル材
11:ブランク
A、A1、A2:水平平面部
B1、B2:垂直正面部
C1〜C6、C31〜C34:垂直側面部
K、K1〜K3:切欠部
P1〜P3:重合フランジ部
L:LED素子装着部
Q:熱
S:閉鎖空間(放熱空間)
1: Substrate part 2: Side plate part 10: Aluminum coil material 11: Blank A, A1, A2: Horizontal plane part B1, B2: Vertical front part C1-C6, C31-C34: Vertical side part K, K1-K3: Notch Portions P1 to P3: Overlapping flange portion L: LED element mounting portion Q: Heat S: Closed space (heat radiation space)
Claims (6)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011280062A JP5662926B2 (en) | 2011-12-21 | 2011-12-21 | LED lighting heat sink |
PCT/JP2012/057691 WO2012128383A1 (en) | 2011-03-24 | 2012-03-26 | Heat sink for led lighting |
CN201280014360.6A CN103443944B (en) | 2011-03-24 | 2012-03-26 | LED illumination radiator |
KR1020137024987A KR101586888B1 (en) | 2011-03-24 | 2012-03-26 | Heat sink for led lighting |
US14/034,696 US20140020882A1 (en) | 2011-03-24 | 2013-09-24 | Heat sink for led lighting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011280062A JP5662926B2 (en) | 2011-12-21 | 2011-12-21 | LED lighting heat sink |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013131388A JP2013131388A (en) | 2013-07-04 |
JP5662926B2 true JP5662926B2 (en) | 2015-02-04 |
Family
ID=48908784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011280062A Expired - Fee Related JP5662926B2 (en) | 2011-03-24 | 2011-12-21 | LED lighting heat sink |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5662926B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6711204B2 (en) | 2016-08-22 | 2020-06-17 | 市光工業株式会社 | Vehicle lighting |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4461899B2 (en) * | 2004-05-10 | 2010-05-12 | 市光工業株式会社 | Outside mirror device for vehicle |
JP4940883B2 (en) * | 2005-10-31 | 2012-05-30 | 豊田合成株式会社 | Light emitting device |
JP5150130B2 (en) * | 2007-04-23 | 2013-02-20 | スタンレー電気株式会社 | Vehicle lighting |
JP5530200B2 (en) * | 2010-01-26 | 2014-06-25 | スタンレー電気株式会社 | Vehicle lighting |
JP4934211B2 (en) * | 2010-03-16 | 2012-05-16 | シークス株式会社 | Electronic equipment enclosure |
JP2011216309A (en) * | 2010-03-31 | 2011-10-27 | Kobe Steel Ltd | Manufacturing method of heat radiation part of led bulb, and heat radiation part of led bulb |
JP5054148B2 (en) * | 2010-04-14 | 2012-10-24 | 株式会社日本自動車部品総合研究所 | Vehicle headlamp |
-
2011
- 2011-12-21 JP JP2011280062A patent/JP5662926B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013131388A (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140020882A1 (en) | Heat sink for led lighting | |
JP5054148B2 (en) | Vehicle headlamp | |
CN107208858B (en) | Cooling member for lighting and/or signalling systems | |
TWD122006S1 (en) | Car | |
CN103544886A (en) | Display device using sandwich honeycomb panel | |
JP6022183B2 (en) | LED lighting heat sink | |
JP2007281504A (en) | Heat sink and fin module | |
JP5662926B2 (en) | LED lighting heat sink | |
EP2952383A1 (en) | Vehicular lighting device | |
JP5608152B2 (en) | Heat sink for in-vehicle LED lighting | |
JP5597099B2 (en) | Heat sink for in-vehicle LED lamp | |
JP5902973B2 (en) | Heat sink for in-vehicle LED lamp | |
JP5155293B2 (en) | Manufacturing method of heat radiating part of LED bulb and heat radiating part of LED bulb | |
JP2008123836A (en) | Vehicle headlamp | |
CN215336126U (en) | LED car lamp | |
JP2012234909A (en) | Heat sink, manufacturing method of the heat sink, and lighting appliance | |
KR20150052500A (en) | Heat sink for led module | |
WO2018038048A1 (en) | Vehicle lamp | |
JP5608154B2 (en) | Heat sink for LED lamp | |
TW201331507A (en) | Ring-shaped heat dissipating device and a manufacturing method thereof,and a heat dissipating apparatus including said ring-shaped heat dissipating device | |
TWI452394B (en) | Backlight module | |
US20090255649A1 (en) | Radiating fin | |
KR20140096345A (en) | Led lighting heat sink and method for manufacturing same | |
KR20100094210A (en) | Heat sink and led package having the same | |
JP6037665B2 (en) | Heat sink and lighting fixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5662926 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |