JP5660677B2 - Displacement reduction method and displacement reduction structure at the time of earthquake on gravity quay or revetment - Google Patents

Displacement reduction method and displacement reduction structure at the time of earthquake on gravity quay or revetment Download PDF

Info

Publication number
JP5660677B2
JP5660677B2 JP2011062368A JP2011062368A JP5660677B2 JP 5660677 B2 JP5660677 B2 JP 5660677B2 JP 2011062368 A JP2011062368 A JP 2011062368A JP 2011062368 A JP2011062368 A JP 2011062368A JP 5660677 B2 JP5660677 B2 JP 5660677B2
Authority
JP
Japan
Prior art keywords
caisson
earthquake
quay
sand
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011062368A
Other languages
Japanese (ja)
Other versions
JP2012197600A (en
Inventor
勝哉 池野
勝哉 池野
正明 三藤
正明 三藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2011062368A priority Critical patent/JP5660677B2/en
Publication of JP2012197600A publication Critical patent/JP2012197600A/en
Application granted granted Critical
Publication of JP5660677B2 publication Critical patent/JP5660677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Description

本発明は、重力式岸壁または重力式護岸において地震時の変位を低減させる方法および構造に関する。   The present invention relates to a method and a structure for reducing displacement at the time of an earthquake on a gravity quay or a gravity revetment.

重力式の港湾施設における地震時の主な被災形態として、(1)護岸法線が海側へはらみだす、(2)背後地盤が陥没する、(3)荷役施設が損傷するなどが挙げられる。このような被災を受けると、岸壁であれば荷役船舶が接岸できなくなるほか、クレーンが使用不可になると荷役作業が行えないなど物流活動に大きな支障をきたす。   Major types of damage at the time of an earthquake in a gravitational harbor facility include (1) the revetment normal protrudes to the sea side, (2) the back ground sinks, and (3) the cargo handling facility is damaged. If suffered from such a disaster, the cargo handling vessel will not be able to berth on the quay, and if the crane becomes unusable, it will not be possible to carry out the cargo handling work, which will greatly hinder logistics activities.

港湾施設では重力式岸壁としてケーソンがよく用いられているが、地震時におけるケーソン岸壁の滑動問題では海側へ作用する主な外力として以下のような作用が考えられる(図1参照)。
(A)地震によるケーソンの慣性力
(B)ケーソン背面の残留水圧
(C)ケーソン前面の動水圧
(D)ケーソン背後地盤の土圧(地震時土圧)
In harbor facilities, caisson is often used as a gravitational quay, but in the case of the caisson quay sliding problem during an earthquake, the following actions can be considered as the main external forces acting on the sea side (see Fig. 1).
(A) Caisson inertia due to earthquake
(B) Residual water pressure behind caisson
(C) Hydrodynamic pressure in front of caisson
(D) Earth pressure behind the caisson (earth pressure during earthquake)

図1の(A)〜(D)の合力Fに対して、ケーソンKとマウンドMとの摩擦力Rが大きければ滑動しないが、その逆であれば滑動する、と静的な力のつり合いから推察することができる。   1 (A) to (D), the resultant force F does not slide if the frictional force R between the caisson K and the mound M is large. Can be guessed.

地震時におけるケーソンの滑動を防止するため、一般には上記(D)の土圧を軽減することを考える。すなわち、背後地盤は浚渫土等の緩い飽和した砂質土で構成される場合が多いため、地震時に液状化する可能性が高く、その場合にはケーソンに作用する土圧が急増する。そこで、背後地盤を締め固める、あるいはセメント等により固化処理することで地震時における液状化の発生を防ぎ、ケーソンに作用する地震時土圧を軽減している。   In order to prevent the caisson from sliding during an earthquake, generally consider reducing the earth pressure of (D) above. In other words, the back ground is often composed of loose, saturated sandy soil such as dredged soil, so it is highly likely that it will liquefy during an earthquake, in which case the earth pressure acting on the caisson increases rapidly. Therefore, the back ground is compacted or solidified with cement or the like to prevent liquefaction during an earthquake and to reduce the earth pressure during an earthquake that acts on the caisson.

背後地盤が液状化しない場合には、先述した静的な力のつり合いのみならず岸壁または護岸の振動(周波数)特性にも注意する必要がある。それは、共振と呼ばれる現象であり、ケーソンあるいは背後地盤の固有周波数と入力される地震波の周波数とが近くなると、大きな振動が生じて上記(A)の値が増大する。例えば、地震波が図2に示す観測波であれば、図3のフーリエスペクトルから分かるように多くの周波数成分を含んでいるが、共振し易い物体の固有周波数は図4に示す加速度応答スペクトルから推定でき、図4の場合には、3Hz付近の固有周波数を持つ物体が最も共振し易いと言える。ケーソンの固有周波数は、堤体高などによって様々であるが、0.6〜2Hz程度であると考えられ、図2の地震波がケーソンに作用する場合には図5(a)のようにケーソンKが共振する可能性も否定できない。   When the back ground is not liquefied, it is necessary to pay attention to the vibration (frequency) characteristics of the quay or revetment as well as the static force balance described above. It is a phenomenon called resonance. When the natural frequency of the caisson or the back ground and the frequency of the input seismic wave are close, a large vibration occurs and the value of (A) increases. For example, if the seismic wave is the observation wave shown in FIG. 2, it contains many frequency components as can be seen from the Fourier spectrum of FIG. 3, but the natural frequency of an object that tends to resonate is estimated from the acceleration response spectrum shown in FIG. In the case of FIG. 4, it can be said that an object having a natural frequency around 3 Hz is most likely to resonate. The natural frequency of the caisson varies depending on the height of the embankment, but is considered to be about 0.6-2 Hz. When the seismic wave of FIG. 2 acts on the caisson, the caisson K resonates as shown in FIG. The possibility cannot be denied.

すなわち、図5(c)のように工学的基盤からマウンドMに地震波が入力すると、図5(a)のようにケーソン式の岸壁または護岸ではケーソンKが地震波と共振し揺れが大きくなる可能性があり、その場合には堤体の水平変位が助長されると考えられる。ケーソンKの中詰材としては、図5(b)のように、一般に浚渫土または雑石等が用いられ、滑動抵抗力(上記摩擦力R)を得るための重量材としての役割がある。   That is, when an earthquake wave is input from the engineering foundation to the mound M as shown in FIG. 5 (c), the caisson K may resonate with the earthquake wave at the caisson type quay or revetment as shown in FIG. In that case, it is considered that the horizontal displacement of the bank is promoted. As the filling material of the caisson K, as shown in FIG. 5 (b), generally, clay or other stones are used, and serves as a weight material for obtaining a sliding resistance force (the friction force R).

本発明は、上述のような従来技術の問題に鑑み、重力式岸壁または重力式護岸において地震時の変位を低減させることのできる変位低減方法および変位低減構造を提供することを目的とする。   An object of the present invention is to provide a displacement reduction method and a displacement reduction structure capable of reducing the displacement at the time of an earthquake on a gravitational quay or a gravitational revetment in view of the above-described problems of the prior art.

上記目的を達成するための重力式岸壁または護岸における地震時の変位低減方法は、ケーソン式重力岸壁または護岸において、ケーソンの中詰材として、砂の水中単位体積重量(γ sub )を超えた水中単位体積重量(γ sub )を有する材料を前記ケーソン内部に底から詰めるとともに、残りに相対密度60%以下の飽和砂を前記ケーソン内部の全中詰可能容積の75%以上詰め、前記飽和砂を地震時に液状化させることにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする。
Water displacement method for reducing the time of an earthquake in the gravity type quay or revetment for achieving the above object, the caisson type gravity quay or seawall, that as filling material in the caisson, exceeded water specific weight of sand (gamma sub) A material having a unit volume weight (γ sub ) is packed into the caisson from the bottom, and the remaining saturated sand having a relative density of 60% or less is packed to 75% or more of the total filling capacity inside the caisson, By liquefying during an earthquake, the natural frequency of the caisson is shifted to the lower frequency side to avoid the phenomenon of selectively resonating with seismic waves containing many frequency components, thereby allowing inertia proportional to the response acceleration to the caisson. The horizontal displacement of the caisson is reduced by reducing the force.

この地震時の変位低減方法によれば、重力式岸壁また重力式護岸において地震時の変位を低減させることができる。   According to this method of reducing displacement during an earthquake, it is possible to reduce the displacement during an earthquake on a gravitational quay or a gravitational revetment.

上記重力式岸壁または護岸における地震時の変位低減方法において、前記ケーソンの中詰材を地震時に液状化させて低剛性にすることにより、前記ケーソンの固有周波数を低周波数側にシフトさせることができる。   In the displacement reduction method at the time of an earthquake at the gravitational quay or the revetment, the caisson filling material can be liquefied at the time of an earthquake to make it low rigidity, thereby shifting the natural frequency of the caisson to the low frequency side. .

また、前記ケーソンの中詰材として相対密度60%以下の飽和砂を用い、前記飽和砂を地震時に液状化させて低剛性にすることにより、前記ケーソンの固有周波数を低周波数側にシフトさせることができる。   In addition, the saturated frequency of the relative density of 60% or less is used as the filling material of the caisson, and the saturated sand is liquefied at the time of an earthquake to make the rigidity low, thereby shifting the natural frequency of the caisson to the low frequency side. Can do.

前記飽和砂を前記ケーソン内部の全中詰可能容積の75%以上詰め、ケーソンの重量を確保しながら地震時に液状化させることができる。   The saturated sand can be packed at 75% or more of the total filling capacity inside the caisson, and can be liquefied at the time of an earthquake while ensuring the weight of the caisson.

上記目的を達成するためのもう1つの重力式岸壁または護岸における地震時の変位低減方法は、ケーソン式重力岸壁または護岸において、ケーソンの中詰材として、砂の水中単位体積重量(γsub)を超えた水中単位体積重量(γsub)を有する材料を前記ケーソン内部に底から詰めることで前記ケーソンの重量を確保し、残りを水で上部に空間ができるように満たし、前記水を地震時にスロッシングさせることにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする
In order to achieve the above purpose, another method of reducing displacement at the time of earthquake at the gravitational quay or revetment is to use the unit volume weight (γ sub ) of sand as the caisson filling material at the caisson gravity quay or revetment. The caisson's weight is secured by filling the caisson from the bottom with a material having an underwater unit volume weight (γ sub ), and the rest is filled with water so that there is a space above the caisson. By shifting the caisson's natural frequency to a lower frequency side to avoid the phenomenon of selective resonance with seismic waves containing many frequency components, the inertial force proportional to the response acceleration to the caisson is reduced. The horizontal displacement of the caisson is reduced .

前記砂の水中単位体積重量(γsub)を超えた水中単位体積重量(γsub)を有する材料として製鋼スラグを用いることができる。 It can be used steelmaking slag as a material having a water specific weight (gamma sub) water unit weight exceeding the sand (gamma sub).

上記目的を達成するための重力式岸壁または護岸における地震時の変位低減構造は、ケーソン式重力岸壁または護岸において、砂の水中単位体積重量(γ sub )を超えた水中単位体積重量(γ sub )を有する材料をケーソン内部に底から詰めるとともに、残りに相対密度60%以下の飽和砂を前記ケーソン内部の全中詰可能容積の75%以上詰め、前記飽和砂が地震時に液状化することにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする。
In order to achieve the above objective, the displacement reduction structure at the time of earthquake on the gravitational quay or revetment is the unit volume weight (γ sub ) of the caisson type gravitational quay or revetment that exceeds the unit weight of sand in water sub ). Is filled from the bottom into the caisson from the bottom, and the remaining saturated sand having a relative density of 60% or less is filled more than 75% of the total filling capacity inside the caisson, and the saturated sand is liquefied during an earthquake, By shifting the natural frequency of the caisson to the low frequency side and avoiding the phenomenon of selectively resonating with an earthquake wave containing many frequency components, the inertial force proportional to the response acceleration to the caisson is reduced, and the caisson's natural frequency is reduced. The horizontal displacement is reduced.

この地震時の変位低減構造によれば、重力式岸壁また重力式護岸において中詰材を地震時に液状化させて低剛性にすることで地震時の変位を低減させることができる。   According to this displacement reduction structure at the time of an earthquake, the displacement at the time of an earthquake can be reduced by liquefying the filling material at the time of an earthquake in a gravitational quay or a gravel revetment to make it low rigidity.

上記目的を達成するためのもう1つの重力式岸壁または護岸における地震時の変位低減構造は、ケーソン式重力岸壁または護岸において、砂の水中単位体積重量(γsub)を超えた水中単位体積重量(γsub)を有する材料をケーソン内部に底から詰めることで前記ケーソンの重量を確保し、残りを水で上部に空間ができるように満たし、前記水が地震時にスロッシングすることにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする。
In order to achieve the above purpose, another structure for reducing displacement at the time of an earthquake at a gravitational quay or revetment is a unit volume weight underwater that exceeds the underwater unit volume weight (γ sub ) of sand at a caisson type gravitational quay or revetment. By filling the caisson from the bottom with a material having γ sub ), the weight of the caisson is secured, the rest is filled with water so that there is a space above the caisson, and the water is sloshing during an earthquake, By shifting the frequency to the low frequency side and avoiding the phenomenon of selective resonance with seismic waves containing many frequency components, the inertial force proportional to the response acceleration to the caisson is reduced and the horizontal displacement of the caisson is reduced. It is characterized by making it.

この地震時の変位低減構造によれば、重力式岸壁また重力式護岸においてケーソンの重量を確保するとともに、ケーソン内部の水を地震時にスロッシングさせることにより地震時の変位を低減させることができる。   According to this displacement reduction structure at the time of an earthquake, the weight of the caisson can be secured on the gravitational quay or the gravel revetment, and the displacement at the time of the earthquake can be reduced by sloshing the water inside the caisson during the earthquake.

本発明によれば、重力式岸壁または重力式護岸において地震時の変位を低減させることのできる変位低減方法および変位低減構造を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the displacement reduction method and the displacement reduction structure which can reduce the displacement at the time of an earthquake in a gravity type quay or a gravity type revetment can be provided.

重力式港湾施設に用いられるケーソンにおける地震時の滑動問題を説明するための図である。It is a figure for demonstrating the sliding problem at the time of the earthquake in the caisson used for a gravity type harbor facility. 地震波の例を示すグラフである。It is a graph which shows the example of a seismic wave. 図2の地震波のフーリエスペクトルを示すグラフである。It is a graph which shows the Fourier spectrum of the seismic wave of FIG. 図2の地震波の加速度応答スペクトルを示すグラフである。It is a graph which shows the acceleration response spectrum of the seismic wave of FIG. 従来のケーソン式岸壁に図2のような地震波が作用したときケーソンが地震波と共振し揺れが大きくなることを説明するための概略的な断面図(a)、ケーソンの内部構成を概略的に示す断面図(b)およびケーソンが設置される工学的基盤への地震波の入力を模式的に示す図(c)である。When a seismic wave as shown in FIG. 2 is applied to a conventional caisson-type quay, the caisson resonates with the seismic wave and the shaking increases, schematically showing the internal configuration of the caisson. It is sectional drawing (b) and the figure (c) which shows typically the input of the seismic wave to the engineering base | substrate in which a caisson is installed. 第1実施形態においてケーソンの中詰材を低剛性材料としたケーソン式岸壁を概略的に示す断面図(a)およびケーソンの内部構成を概略的に示す断面図(b)である。It is sectional drawing (a) which shows schematically the caisson-type quay which used the filling material of caisson as a low-rigidity material in 1st Embodiment, and sectional drawing (b) which shows the internal structure of a caisson roughly. 第2実施形態においてケーソンの中詰材を低剛性材料および高比重材料としたケーソン式岸壁を概略的に示す断面図(a)およびケーソンの内部構成を概略的に示す断面図(b)である。It is sectional drawing (a) which shows schematically the caisson-type quay which made the filling material of caisson the low-rigidity material and high specific gravity material in 2nd Embodiment, and is sectional drawing (b) which shows schematically the internal structure of a caisson. . 第3実施形態においてケーソンの中詰材を高比重材料および水としたケーソン式岸壁を概略的に示す断面図(a)およびケーソンの内部構成を概略的に示す断面図(b)である。It is sectional drawing (a) which shows schematically the caisson-type quay which used the high specific gravity material and water as the caisson filling material in 3rd Embodiment, and sectional drawing (b) which shows the internal structure of a caisson roughly. 本解析例で用いた解析モデルを示す図である。It is a figure which shows the analysis model used in this analysis example. 本解析例の検討ケース(a)〜(e)における分割要素の概要を示す図である。It is a figure which shows the outline | summary of the division | segmentation element in examination case (a)-(e) of this analysis example. 本解析例の結果を示す図で、ケーソン天端位置(図9)における水平変位時刻歴(図2の20秒まで)を示す。It is a figure which shows the result of this analysis example, and shows the horizontal displacement time history (up to 20 seconds of FIG. 2) in the caisson top position (FIG. 9). 本解析例の結果を示す図で、横軸がケーソン内部の全中詰可能容積に対する低剛性材料の割合で、縦軸が各検討ケース(b)〜(e)の水平変位を検討ケース(a)の従来技術の水平変位で基準化したグラフを示す。In the figure showing the results of this analysis example, the horizontal axis is the ratio of the low-rigid material to the total fillable volume inside the caisson, and the vertical axis is the horizontal displacement of each of the study cases (b) to (e) (a ) Shows a graph normalized by the horizontal displacement of the prior art.

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〈第1実施形態〉
図6は、第1実施形態においてケーソンの中詰材を低剛性材料としたケーソン式岸壁を概略的に示す断面図(a)およびケーソンの内部構成を概略的に示す断面図(b)である。
<First Embodiment>
FIG. 6 is a cross-sectional view (a) schematically showing a caisson-type quay wall in which the caisson filling material is a low-rigidity material in the first embodiment, and a cross-sectional view (b) schematically showing the internal configuration of the caisson. .

図6(a)のケーソン式岸壁は、捨石からなり基礎地盤とされるマウンドMの上にケーソンKが水面Sよりも高く設置され、ケーソンKの背面陸側に裏込石Bが構成されている。マウンドMは粘性土Jの上で地盤改良された改良地盤Iの上に構築され、裏込石Bの背面陸側には埋立土Uが埋め戻されている。   The caisson-type quay shown in FIG. 6 (a) has a caisson K higher than the water surface S on a mound M made of rubble and used as the foundation ground, and a backstone B is constructed on the back land side of the caisson K. Yes. The mound M is constructed on the improved ground I improved on the clay soil J, and the landfill U is backfilled on the back land side of the back stone B.

ケーソンKは、コンクリートの躯体と、内部空洞に充填された中詰材とから構成される。ケーソンKには、図6(b)のように、その内部空間に相対密度60%以下のゆるい飽和砂11が中詰材として詰められ、地震時に中詰材を積極的に液状化させるようにしている。相対密度60%以下のゆるい飽和砂であると、地震の揺れにより容易に液状化し、低剛性となる。   The caisson K is composed of a concrete frame and a filling material filled in an internal cavity. As shown in FIG. 6B, the caisson K is filled with loose saturated sand 11 having a relative density of 60% or less as a filling material in the inner space, and the filling material is actively liquefied during an earthquake. ing. If it is loose saturated sand with a relative density of 60% or less, it will be easily liquefied due to the shaking of the earthquake and will have low rigidity.

かかる中詰材は、重力式ケーソンKの所定の重量を満足することができるとともに、地震時に液状化することで低剛性となってケーソンの固有周波数を低周波数側にシフトさせることができる。   The filling material can satisfy the predetermined weight of the gravity caisson K, and can be liquefied at the time of an earthquake to have low rigidity and shift the natural frequency of the caisson to the low frequency side.

すなわち、図6(a)のように、図5(c)と同様に改良地盤Iを介してケーソンKの工学的地盤であるマウンドMに図2のような地震波Eが入力すると、マウンドM上のケーソンKは、水平方向に揺れるが、中詰材としての飽和砂11が揺れのために液状化することで剛性が低くなり、ケーソンKの固有周波数が低周波数側にシフトする。これにより、多くの周波数成分を含む地震波と選択的に共振する現象を回避し、ケーソンKに対する応答加速度(α)に比例する慣性力(m・α ただし、m:ケーソンの質量)を小さくすることで、ケーソンKの水平変位を低減することができる。このように、ケーソンKが図2のような地震波に共振せず、その揺れが小さくなり、ケーソンKの水平変位が低減する。   That is, when the seismic wave E as shown in FIG. 2 is input to the mound M, which is the engineering ground of the caisson K, via the improved ground I as in FIG. The caisson K sways in the horizontal direction. However, the saturated sand 11 as the filling material liquefies due to the swaying, so that the rigidity becomes low, and the natural frequency of the caisson K shifts to the low frequency side. This avoids the phenomenon of selective resonance with seismic waves containing many frequency components, and reduces the inertial force (m · α, where m is the caisson mass) proportional to the response acceleration (α) to caisson K. Thus, the horizontal displacement of the caisson K can be reduced. In this way, the caisson K does not resonate with the seismic wave as shown in FIG. 2, and the shaking is reduced, and the horizontal displacement of the caisson K is reduced.

以上のように、第1実施形態によれば、ケーソンKの中詰材を、飽和砂11とすることで、ケーソンKの重量を確保しつつ、地震時に容易に液状化させて低剛性とすることで、地震時の揺れを低減させ、ケーソン岸壁の水平変位を低減させることができる。   As described above, according to the first embodiment, the filling material of the caisson K is the saturated sand 11, so that the weight of the caisson K is secured and easily liquefied at the time of an earthquake to have low rigidity. Therefore, the shaking at the time of an earthquake can be reduced and the horizontal displacement of the caisson quay can be reduced.

〈第2実施形態〉
図7は、第2実施形態においてケーソンの中詰材を低剛性材料および高比重材料としたケーソン式岸壁を概略的に示す断面図(a)およびケーソンの内部構成を概略的に示す断面図(b)である。
Second Embodiment
FIG. 7: is sectional drawing (a) which shows roughly the caisson-type quay which made the filling material of caisson the low-rigidity material and high specific gravity material in 2nd Embodiment, and sectional drawing which shows the internal structure of a caisson schematically ( b).

図7(a)のケーソン式岸壁は、図6(a)と同様の構造であるが、ケーソンKの中詰材としてケーソンの重量確保のため比重が比較的大きい高比重材料を追加したものである。すなわち、ケーソンKには、中詰材として、図7(b)のように、高比重材料12が底から詰められ、残りが相対密度60%以下のゆるい飽和砂11が詰められることで、地震時に飽和砂11を積極的に液状化させるようにしている。かかる中詰材により、重力式ケーソンの所定の重量を満足することができるとともに、ケーソンの固有周波数を低周波数側にシフトさせることができる。   The caisson-type quay of FIG. 7 (a) has the same structure as FIG. 6 (a), but a high specific gravity material having a relatively large specific gravity is added as a filling material for caisson K to ensure the weight of the caisson. is there. That is, the caisson K is filled with the high specific gravity material 12 from the bottom as the filling material, as shown in FIG. 7B, and the remainder is filled with loose saturated sand 11 having a relative density of 60% or less. At times, the saturated sand 11 is actively liquefied. Such a filling material can satisfy the predetermined weight of the gravity caisson, and can shift the natural frequency of the caisson to the lower frequency side.

高比重材料12は、例えば、製鋼スラグや雑石等から構成できるが、他の材料であってもよく、この場合、高比重材料12として、その水中単位体積重量が通常の砂よりも大きい材料を選択する。例えば、高比重材料12を製鋼スラグとする場合、製鋼スラグは、その水中単位体積重量(γsub)が16kN/m3であり、水中単位体積重量(γsub)が10kN/m3である通常の砂に比べて1.6倍程度重い。 The high specific gravity material 12 can be made of, for example, steelmaking slag or other stones, but may be other materials. In this case, the high specific gravity material 12 is a material whose unit volume weight in water is larger than that of normal sand. Select. For example, if a steelmaking slag high density material 12, steelmaking slag, the water unit weight (gamma sub) is 16 kN / m 3, water unit weight (gamma sub) is 10 kN / m 3 Normal 1.6 times heavier than other sand.

また、図7(b)のように、飽和砂11と高比重材料12との体積比を、n:1−n(n≦1)とすると、本実施形態では、n≧0.75が好ましい。すなわち、飽和砂11はケーソン内部の全中詰可能容積の75%以上であることが好ましい。   As shown in FIG. 7B, when the volume ratio between the saturated sand 11 and the high specific gravity material 12 is n: 1-n (n ≦ 1), in this embodiment, n ≧ 0.75 is preferable. . That is, the saturated sand 11 is preferably 75% or more of the total filling capacity inside the caisson.

図7(a)のように、図5(c)と同様に改良地盤Iを介してケーソンKの工学的地盤であるマウンドMに図2のような地震波Eが入力すると、マウンドM上のケーソンKは、水平方向に揺れるが、中詰材としての飽和砂11が揺れのために液状化することで剛性が低くなり、ケーソンKの固有周波数が低周波数側にシフトする。これにより、多くの周波数成分を含む地震波と選択的に共振する現象を回避し、ケーソンKに対する応答加速度(α)に比例する慣性力(m・α ただし、m:ケーソンの質量)を小さくすることで、ケーソンKの水平変位を低減することができる。このように、ケーソンKが図2のような地震波に共振せず、その揺れが小さくなり、ケーソンKの水平変位が低減する。この剛性低下の効果は図6の場合よりも小さいものの、ケーソンKの重量を図6の場合よりも大きくできる。   As shown in FIG. 7A, when the seismic wave E as shown in FIG. 2 is input to the mound M, which is the engineering ground of the caisson K, through the improved ground I as in FIG. 5C, the caisson on the mound M is input. K swings in the horizontal direction, but the saturated sand 11 as the filling material is liquefied due to the swing, so that the rigidity is lowered, and the natural frequency of the caisson K is shifted to the low frequency side. This avoids the phenomenon of selective resonance with seismic waves containing many frequency components, and reduces the inertial force (m · α, where m is the caisson mass) proportional to the response acceleration (α) to caisson K. Thus, the horizontal displacement of the caisson K can be reduced. In this way, the caisson K does not resonate with the seismic wave as shown in FIG. 2, and the shaking is reduced, and the horizontal displacement of the caisson K is reduced. Although the effect of reducing the rigidity is smaller than that in the case of FIG. 6, the weight of the caisson K can be made larger than that in the case of FIG.

以上のように、第2実施形態によれば、ケーソンKの中詰材を、飽和砂11と高比重材料12とすることで、ケーソンKの重量を大きくできるとともに、地震時に容易に液状化させて低剛性とすることで、地震時の揺れを低減させ、ケーソン岸壁の水平変位を低減することができる。   As described above, according to the second embodiment, by using the saturated sand 11 and the high specific gravity material 12 as the filling material of the caisson K, the weight of the caisson K can be increased, and the caisson K can be easily liquefied during an earthquake. With low rigidity, the shaking at the time of earthquake can be reduced and the horizontal displacement of the caisson quay can be reduced.

〈第3実施形態〉
図8は、第3実施形態においてケーソンの中詰材を高比重材料および水としたケーソン式岸壁を概略的に示す断面図(a)およびケーソンの内部構成を概略的に示す断面図(b)である。
<Third Embodiment>
FIG. 8: is sectional drawing (a) which shows schematically the caisson-type quay which used the high specific gravity material and water as the caisson filling material in 3rd Embodiment, and sectional drawing (b) which shows the internal structure of a caisson roughly It is.

図8(a)のケーソン式岸壁は、図6(a)と同様の構造であるが、ケーソンKの中詰材として比重が比較的大きい高比重材料と水を用いたものである。すなわち、ケーソンKには中詰材として、図8(b)のように、その内部空間の底部に高比重材料12が詰められ、残りが水13で満たされ、地震時に水13がケーソンKの内部でスロッシングするようにしている。かかる中詰材により、重力式ケーソンの所定の重量を満足することができるとともに、固有周波数を低周波数側にシフトさせることができる。   The caisson-type quay of FIG. 8 (a) has the same structure as that of FIG. 6 (a), but uses a high specific gravity material and water having a relatively large specific gravity as the filling material of caisson K. That is, as shown in FIG. 8B, the caisson K is filled with the high specific gravity material 12 at the bottom of the inner space, and the remainder is filled with water 13, and the water 13 is filled with the caisson K at the time of the earthquake. It is sloshing inside. Such a filling material can satisfy the predetermined weight of the gravity caisson, and can shift the natural frequency to the low frequency side.

高比重材料12は、例えば、製鋼スラグ等から構成できるが、他の材料であってもよく、この場合、高比重材料12として、その水中単位体積重量(γsub)が通常の砂よりも大きい材料を選択する。 The high specific gravity material 12 can be made of, for example, steelmaking slag, but may be other materials. In this case, the high specific gravity material 12 has a unit volume weight (γ sub ) in water larger than that of normal sand. Select material.

例えば、高比重材料12を製鋼スラグとする場合、製鋼スラグの水中単位体積重量(γsub)と通常の砂の水中単位体積重量(γsub)とを比べると、上述のように製鋼スラグの方が1.6倍程度重い。このため、図6(b)と同程度のケーソン重量を確保するためには、ケーソンKの中詰材の体積の1/1.6=0.625程度を製鋼スラグにすればよい。このとき、ケーソンKの内部においてスロッシングのために必要な水のない上部の空間14の容積を考慮し、水13+空間14と高比重材料12との体積比を、n:1−n(n≦1)とすると、n≦0.37にすれば所定のケーソン重量を確保できる。なお、たとえば、空間14の容積が、ケーソンの全中詰可能容積の10%程度必要とすると、水13の体積は全中詰可能容積の27%程度となる。 For example, when the high specific gravity material 12 and steel slag, Comparing the underwater unit volume weight of the steelmaking slag (gamma sub) and water specific weight of conventional sand (gamma sub), towards the steelmaking slag as described above Is about 1.6 times heavier. For this reason, in order to secure the caisson weight of the same level as in FIG. 6 (b), about 1 / 1.6 = 0.625 of the volume of the caisson K filling material may be used as the steelmaking slag. At this time, considering the volume of the upper space 14 where there is no water necessary for sloshing in the caisson K, the volume ratio of the water 13 + space 14 and the high specific gravity material 12 is expressed as n: 1−n (n ≦ n). Assuming 1), a predetermined caisson weight can be secured if n ≦ 0.37. For example, if the volume of the space 14 requires about 10% of the total filling capacity of the caisson, the volume of the water 13 is about 27% of the total filling capacity.

また、製鋼スラグは、実際には塊状の固形物の集合体で、間隙を有し、水を入れると、この間隙にも水が浸透する。このため、水13と高比重材料12をケーソン内部に投入する場合は、重量比で投入することが好ましい。   In addition, steelmaking slag is actually an aggregate of massive solid bodies having a gap, and when water is introduced, water penetrates into this gap. For this reason, when the water 13 and the high specific gravity material 12 are put into the caisson, it is preferable to put them in a weight ratio.

図8(a)のように、図5(c)と同様に改良地盤Iを介してケーソンKの工学的地盤であるマウンドMに図2のような地震波Eが入力すると、マウンドM上のケーソンKは、水平方向に揺れるが、中詰材としての水13がケーソンKの内部で揺れることで液面揺動が引き起こされ、スロッシングすることにより、ケーソンKの固有周波数が低周波数側にシフトする。これにより、多くの周波数成分を含む地震波と選択的に共振する現象を回避し、ケーソンKに対する応答加速度(α)に比例する慣性力(m・α ただし、m:ケーソンの質量)を小さくすることで、ケーソンKの水平変位を低減することができる。このように、ケーソンKが図2のような地震波に共振せず、その揺れが小さくなり、ケーソンKの水平変位が低減する。   As shown in FIG. 8A, when the seismic wave E as shown in FIG. 2 is input to the mound M which is the engineering ground of the caisson K through the improved ground I as in FIG. 5C, the caisson on the mound M is input. K swings in the horizontal direction, but the water 13 as the filling material swings inside the caisson K, causing liquid level fluctuation, and sloshing causes the natural frequency of the caisson K to shift to the lower frequency side. . This avoids the phenomenon of selective resonance with seismic waves containing many frequency components, and reduces the inertial force (m · α, where m is the caisson mass) proportional to the response acceleration (α) to caisson K. Thus, the horizontal displacement of the caisson K can be reduced. In this way, the caisson K does not resonate with the seismic wave as shown in FIG. 2, and the shaking is reduced, and the horizontal displacement of the caisson K is reduced.

以上のように、第3実施形態によれば、ケーソンKの中詰材を、高比重材料12と水13とすることで、ケーソンKの重量を確保しつつ、地震時に水13をスロッシングさせることで、地震時の揺れを低減させ、ケーソン岸壁の水平変位を低減することができる。   As described above, according to the third embodiment, the filling material of the caisson K is the high specific gravity material 12 and the water 13 so that the water 13 can be sloshing during an earthquake while ensuring the weight of the caisson K. Therefore, the shaking at the time of earthquake can be reduced and the horizontal displacement of the caisson quay can be reduced.

なお、上記各実施形態においては、ケーソンに対する地震による慣性力(図1の(A))を小さくすることで地震時におけるケーソンの水平変位を低減させることを目的とし、ケーソンの背後地盤(図6(a)等の埋立土Uなど)やケーソン直下の地盤(図6(a)等の地盤Iなど)は地震により液状化しないことを前提とする。   In each of the above embodiments, the purpose of reducing the horizontal displacement of the caisson at the time of an earthquake by reducing the inertial force (A in FIG. 1) due to the earthquake with respect to the caisson is to reduce the horizontal ground of the caisson (FIG. 6). It is assumed that the land directly under the caisson (such as the ground I in FIG. 6A) is not liquefied by the earthquake.

解析例Analysis example

(財)沿岸技術研究センター「港湾構造物設計事例集上巻」(平成19年3月)に記載の一般的なケーソン式岸壁を参考にして、以下の条件で有限要素法による解析的検討を行った。なお、解析には港湾空港での適用性が確認されているFLIPを用いた。   Analytical study using the finite element method under the following conditions with reference to the general caisson quay described in Coastal Technology Research Center "Port Structure Design Cases Vol. 1" (March 2007) It was. The analysis used FLIP, which has been confirmed to be applicable at port airports.

〈解析条件〉   <Analysis conditions>

図9に本解析例の解析モデルを示す。この解析モデルは、ケーソン式−15m岸壁であり、直下地盤には高置換80%によるサンドコンパクションによる地盤改良が実施されている。なお、本実施形態は背後地盤が液状化しないケースを想定しているので、本解析例では背後の埋立土は液状化しない条件とした。各土層の物性値は港湾構造物設計事例集に記載の値を用いた。次の表1に解析パラメータを示す。中詰材のパラメータは低剛性材料の物性であり、砂の1/100程度の剛性である。拘束条件は、底面粘性境界および側方粘性境界+反力境界を用い、図2に示した地震波(2E波)を検討モデル底面から入力した。なお、以下の表1において、例えば、「2.2E+06」は「2.2×106」を意味する。 FIG. 9 shows an analysis model of this analysis example. This analysis model is a caisson type -15m quay, and the ground improvement by sand compaction with high replacement 80% is carried out on the direct foundation board. In addition, since this embodiment assumes the case where a back ground is not liquefied, in this analysis example, it was set as the conditions which do not liquefy back landfill. The physical property values of each soil layer were the values described in the port structure design casebook. Table 1 below shows the analysis parameters. The parameter of the filling material is the physical property of the low-rigidity material, which is about 1/100 of that of sand. As the constraint conditions, the bottom viscous boundary and the lateral viscous boundary + reaction boundary were used, and the seismic wave (2E wave) shown in FIG. In Table 1 below, for example, “2.2E + 06” means “2.2 × 10 6 ”.

〈検討ケースと解析結果〉   <Investigation cases and analysis results>

検討ケース(a)〜(e)の概要を図10(a)〜(e)に示す。各検討ケース(a)〜(e)の結果の一覧を表2に示す。   Outlines of the study cases (a) to (e) are shown in FIGS. Table 2 shows a list of the results of each study case (a) to (e).

図10(a)の検討ケース(a)は従来技術であり、ケーソン内部に低剛性材料はない。図10(b)の検討ケース(b)はケーソン内部1/4上部を低剛性材料とし、図10(c)の検討ケース(c)はケーソン内部1/2上部を低剛性材料とし、図10(d)の検討ケース(d)はケーソン内部3/4上部を低剛性材料とし、図10(e)の検討ケース(e)はケーソンの中詰全てを低剛性材料としたものである。   The study case (a) in FIG. 10 (a) is a conventional technique, and there is no low-rigidity material inside the caisson. The study case (b) in FIG. 10 (b) uses a low-rigidity material in the upper quarter of the caisson, and the study case (c) in FIG. 10 (c) uses a low-rigidity material in the upper half of the caisson. In the case (d) of (d), the upper part of the caisson inside 3/4 is made of a low-rigidity material, and in the case (e) of FIG.

検討結果として、図11に、ケーソン天端位置(図9)における水平変位時刻歴(図2の20秒まで)を示す。また、表2に、各検討ケース(a)〜(e)におけるケーソン天端位置(図9)における最終水平変位(以下、「水平変位」という。)を示す。図11,表2によれば、検討ケース(a)の従来技術の水平変位が−0.5mであるのに対し、他の検討ケース(b)〜(e)の水平変位は若干ではあるが低減されていることがわかる。   As a result of the examination, FIG. 11 shows a horizontal displacement time history (up to 20 seconds in FIG. 2) at the caisson top position (FIG. 9). Table 2 shows the final horizontal displacement (hereinafter referred to as “horizontal displacement”) at the caisson top position (FIG. 9) in each of the study cases (a) to (e). According to FIG. 11 and Table 2, the horizontal displacement of the conventional case in the study case (a) is −0.5 m, while the horizontal displacement in the other study cases (b) to (e) is slight. It can be seen that it has been reduced.

具体的に水平変位の低減効果を確認するため、図12に、横軸がケーソン内部の全中詰可能容積に対する低剛性材料の割合で、縦軸が検討ケース(a)の従来技術の水平変位で基準化したグラフを示す。図12によれば、少なくともケーソン重心よりも低い位置まで低剛性材料を適用した場合(本検討ケース(d)(e))、検討ケース(a)の従来技術よりもケーソン天端の水平変位が5〜10%程度低減できることがわかる。   Specifically, in order to confirm the effect of reducing the horizontal displacement, in FIG. 12, the horizontal axis is the ratio of the low-rigid material to the total filling capacity inside the caisson, and the vertical axis is the horizontal displacement of the prior art of the study case (a). The graph normalized with is shown. According to FIG. 12, when the low-rigidity material is applied at least to a position lower than the caisson center of gravity (this study case (d) (e)), the horizontal displacement of the caisson top is lower than that of the prior art of the study case (a). It turns out that it can reduce about 5 to 10%.

以上のように、低剛性材料を全中詰可能容積の75%〜100%とし、ケーソンの上部に適用することで地震時における水平変位を5〜10%程度低減することが示された。   As described above, it was shown that the horizontal displacement at the time of earthquake is reduced by about 5 to 10% by applying the low rigidity material to 75% to 100% of the total filling capacity and applying it to the upper part of the caisson.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図6(b)では、ケーソンKの中詰材を飽和砂として、地震時に液状化することで低剛性になるようにしたが、本発明は、これに限定されず、所定の重量を満足する範囲で剛性の低い材料を用いてもよく、例えば、ゴムチップに砂を混合させたような低剛性材料であってもよく、ケーソンKの固有周波数が低周波数側にシフトする。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, in FIG. 6 (b), the filling material of caisson K is saturated sand and liquefied at the time of an earthquake so as to have low rigidity. However, the present invention is not limited to this, and a predetermined weight is used. A material having low rigidity may be used within a satisfactory range. For example, the material may be a low rigidity material in which sand is mixed into a rubber chip, and the natural frequency of the caisson K is shifted to the low frequency side.

本発明の重力式岸壁または護岸における地震時の変位低減方法および変位低減構造によれば、重力式岸壁または重力式護岸において地震時の変位を簡単な方法・手段で低減させることができるので、施工コストがさほどかからずに重力式岸壁・護岸における耐震性を向上させることができる。   According to the displacement reduction method and the displacement reduction structure at the time of an earthquake at a gravitational quay or revetment of the present invention, the displacement at the time of an earthquake at a gravitational quay or a gravel revetment can be reduced by a simple method / means. It can improve the earthquake resistance of gravity type quay and revetment without much cost.

11 飽和砂 12 高比重材料 13 水 14 空間 K ケーソン M マウンド 11 Saturated sand 12 High specific gravity material 13 Water 14 Space K Caisson M Mound

Claims (6)

ケーソン式重力岸壁または護岸において、ケーソンの中詰材として、砂の水中単位体積重量(γ sub )を超えた水中単位体積重量(γ sub )を有する材料を前記ケーソン内部に底から詰めるとともに、残りに相対密度60%以下の飽和砂を前記ケーソン内部の全中詰可能容積の75%以上詰め、
前記飽和砂を地震時に液状化させることにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする重力式岸壁または護岸における地震時の変位低減方法。
In caisson-type gravity quay or seawall, as filling material in the caisson, together with pack material having a water specific weight of sand (gamma sub) water unit weight exceeding (gamma sub) from said caisson inside the bottom, the remaining Packed with saturated sand having a relative density of 60% or less to 75% or more of the total filling capacity inside the caisson,
By liquefying the saturated sand during an earthquake, the natural frequency of the caisson is shifted to the lower frequency side to avoid the phenomenon of selectively resonating with an earthquake wave containing many frequency components, thereby accelerating the response to the caisson. A method for reducing displacement during an earthquake on a gravitational quay or revetment, wherein the horizontal displacement of the caisson is reduced by reducing an inertial force proportional to
ケーソン式重力岸壁または護岸において、ケーソンの中詰材として、砂の水中単位体積重量(γsub)を超えた水中単位体積重量(γsub)を有する材料を前記ケーソン内部に底から詰めることで前記ケーソンの重量を確保し、残りを水で上部に空間ができるように満たし、
前記水を地震時にスロッシングさせることにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする重力式岸壁または護岸における地震時の変位低減方法。
In the caisson-type gravity quay or revetment, as a caisson filling material, a material having a unit water weight (γ sub ) exceeding the unit volume weight (γ sub ) of sand is filled from the bottom into the caisson. Secure the weight of the caisson and fill the rest with water so that there is space at the top ,
By sloshing the water during an earthquake, the natural frequency of the caisson is shifted to the low frequency side to avoid the phenomenon of selectively resonating with seismic waves including many frequency components, thereby being proportional to the response acceleration to the caisson. A method for reducing displacement at the time of an earthquake at a gravitational quay or revetment, wherein the horizontal displacement of the caisson is reduced by reducing inertial force to be generated .
前記砂の水中単位体積重量(γsub)を超えた水中単位体積重量(γsub)を有する材料として製鋼スラグを用いることを特徴とする請求項1または2に記載の重力式岸壁または護岸における地震時の変位低減方法。 The earthquake in gravity type quay or revetment according to claim 1 or 2 , wherein steelmaking slag is used as a material having an underwater unit volume weight ( γsub ) exceeding an underwater unit volume weight ( γsub ) of the sand. Displacement reduction method. ケーソン式重力岸壁または護岸において、砂の水中単位体積重量(γ sub )を超えた水中単位体積重量(γ sub )を有する材料をケーソン内部に底から詰めるとともに、残りに相対密度60%以下の飽和砂を前記ケーソン内部の全中詰可能容積の75%以上詰め、
前記飽和砂が地震時に液状化することにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする重力式岸壁または護岸における地震時の変位低減構造。
At the caisson-type gravity quay or revetment, a material having a unit volume weight in water sub ) exceeding the unit volume weight (γ sub ) of sand is packed from the bottom inside the caisson, and the remaining is saturated with a relative density of 60% or less. Pack the sand with 75% or more of the total filling capacity inside the caisson,
The saturated sand liquefies during an earthquake, thereby shifting the natural frequency of the caisson to a lower frequency side to avoid the phenomenon of selectively resonating with an earthquake wave containing many frequency components, thereby accelerating the response to the caisson. A structure for reducing displacement at the time of an earthquake on a gravitational quay or revetment characterized in that the horizontal displacement of the caisson is reduced by reducing the inertia force proportional to.
ケーソン式重力岸壁または護岸において、砂の水中単位体積重量(γsub)を超えた水中単位体積重量(γsub)を有する材料をケーソン内部に底から詰めることで前記ケーソンの重量を確保し、残りを水で上部に空間ができるように満たし、
前記水が地震時にスロッシングすることにより、前記ケーソンの固有周波数を低周波数側にシフトさせて多くの周波数成分を含む地震波と選択的に共振する現象を回避することで、前記ケーソンに対する応答加速度に比例する慣性力を小さくして前記ケーソンの水平変位を低減させることを特徴とする重力式岸壁または護岸における地震時の変位低減構造。
In caisson-type gravity quay or seawall, to ensure the weight of the caisson by packing a material having a water specific weight of sand (gamma sub) water unit weight exceeding (gamma sub) from the bottom inside the caisson, the remaining Fill with water so that there is space at the top ,
By the sloshing of the water during an earthquake, the natural frequency of the caisson is shifted to the lower frequency side to avoid the phenomenon of selectively resonating with seismic waves containing many frequency components, thereby being proportional to the response acceleration to the caisson A structure for reducing displacement at the time of an earthquake on a gravitational quay or revetment, wherein the horizontal displacement of the caisson is reduced by reducing inertial force to be generated.
前記砂の水中単位体積重量(γ sub )を超えた水中単位体積重量(γ sub )を有する材料として製鋼スラグを用いることを特徴とする請求項4または5に記載の重力式岸壁または護岸における地震時の変位低減構造 6. An earthquake in a gravity quay or revetment according to claim 4 or 5, wherein steelmaking slag is used as a material having an underwater unit volume weight (γ sub ) exceeding the underwater unit volume weight (γ sub ) of the sand. Time displacement reduction structure .
JP2011062368A 2011-03-22 2011-03-22 Displacement reduction method and displacement reduction structure at the time of earthquake on gravity quay or revetment Expired - Fee Related JP5660677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062368A JP5660677B2 (en) 2011-03-22 2011-03-22 Displacement reduction method and displacement reduction structure at the time of earthquake on gravity quay or revetment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062368A JP5660677B2 (en) 2011-03-22 2011-03-22 Displacement reduction method and displacement reduction structure at the time of earthquake on gravity quay or revetment

Publications (2)

Publication Number Publication Date
JP2012197600A JP2012197600A (en) 2012-10-18
JP5660677B2 true JP5660677B2 (en) 2015-01-28

Family

ID=47180091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062368A Expired - Fee Related JP5660677B2 (en) 2011-03-22 2011-03-22 Displacement reduction method and displacement reduction structure at the time of earthquake on gravity quay or revetment

Country Status (1)

Country Link
JP (1) JP5660677B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713088B2 (en) * 1993-04-13 1998-02-16 鹿島建設株式会社 Seismic isolation device
JP3423777B2 (en) * 1994-05-31 2003-07-07 五洋建設株式会社 Vibration control device
JPH10325124A (en) * 1997-05-27 1998-12-08 Wakachiku Kensetsu Kk Gravity-type earth-pressure resisting structure
JP3827475B2 (en) * 1999-06-07 2006-09-27 株式会社竹中工務店 Hybrid vibration damping method and vibration damping structure
JP2006070436A (en) * 2004-08-31 2006-03-16 Maeda Corp Aseismatic reinforcing method for gravity type quaywall
JP5320031B2 (en) * 2008-11-04 2013-10-23 株式会社大林組 Damping building

Also Published As

Publication number Publication date
JP2012197600A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
Hazarika et al. Underwater shake table tests on waterfront structures protected with tire chips cushion
Yu et al. Centrifuge modeling of offshore wind foundations under earthquake loading
Yan et al. Construction of an offshore dike using slurry filled geotextile mats
Ye Seismic response of poro-elastic seabed and composite breakwater under strong earthquake loading
Sumer et al. Cover stones on liquefiable soil bed under waves
James The use of waste rock inclusions to control the effects of liquefaction in tailings impoundments
Chaudhary et al. Geosynthetic-sheet pile reinforced foundation for mitigation of earthquake and tsunami induced damage of breakwater
Chaudhary et al. Centrifuge modelling for stability evaluation of a breakwater foundation subjected to an earthquake and a tsunami
Madabhushi et al. Modelling the behaviour of large gravity wharf structure under the effects of earthquake-induced liquefaction
JP5660677B2 (en) Displacement reduction method and displacement reduction structure at the time of earthquake on gravity quay or revetment
Yuksel et al. Evaluation of the seismic performance of a caisson and an L-type quay wall
Akarsh et al. Novel technique to mitigate the earthquake-induced damage of rubble mound breakwater
Hamidi et al. Ground improvement in deep waters using dynamic replacement
Rafiei et al. Coupled analysis of wave, structure, and sloping seabed interaction: response and instability of seabed
Massarsch et al. Underwater resonance compaction of sand fill
Cihan et al. Dynamic responses of two blocks under dynamic loading using experimental and numerical studies
JP4483396B2 (en) Basic structure of building and its construction method
JP2008150896A (en) Method and structure of aseismic reinforcing backfill ground
JP6341834B2 (en) Caisson type hybrid bank structure
JP2021188438A (en) Foundation foot protection structure, and foundation foot protection method
Tang et al. Groundwater engineering problem and Prevention
Akarsh et al. Seismic stability evaluation of rubble mound breakwater: Shake table tests and numerical analyses
Nguyen et al. Earthquake Resistance of Caisson-Type Quay Wall Renovated by Grouting and Deepening: Geo-Centrifuge Test
Tan et al. Shaking table tests on calcareous sand retaining walls reinforced by concrete canvas geocell
JP2002054130A (en) Reinforcing cage frame for soft ground and reinforcing method for soft ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5660677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees