JP5660606B2 - Power conversion device and power generation device - Google Patents

Power conversion device and power generation device Download PDF

Info

Publication number
JP5660606B2
JP5660606B2 JP2010235648A JP2010235648A JP5660606B2 JP 5660606 B2 JP5660606 B2 JP 5660606B2 JP 2010235648 A JP2010235648 A JP 2010235648A JP 2010235648 A JP2010235648 A JP 2010235648A JP 5660606 B2 JP5660606 B2 JP 5660606B2
Authority
JP
Japan
Prior art keywords
rotating
rotating member
power
motion
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010235648A
Other languages
Japanese (ja)
Other versions
JP2012087891A (en
Inventor
勝芳 中里
勝芳 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2010235648A priority Critical patent/JP5660606B2/en
Publication of JP2012087891A publication Critical patent/JP2012087891A/en
Application granted granted Critical
Publication of JP5660606B2 publication Critical patent/JP5660606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Description

本発明は、往復直線運動を一定方向の回転運動に変換するための動力変換装置及びこの動力変換装置を備える発電装置に関する。   The present invention relates to a power conversion device for converting a reciprocating linear motion into a rotational motion in a fixed direction, and a power generation device including the power conversion device.

従来より、往復直線運動を一定方向の回転運動に変換する機構(クランク機構やカム機構)が提案され、実用化されている。また、現在においては、楕円形の環状部材の内周面に歯を設け、環状部材の内部に配置した歯車の歯を環状部材の歯と噛み合せることにより、環状部材の往復運動を歯車の一定方向の回転運動に変換する機構が提案されている(特許文献1参照)。   Conventionally, a mechanism (a crank mechanism or a cam mechanism) for converting a reciprocating linear motion into a rotational motion in a certain direction has been proposed and put into practical use. In addition, at present, teeth are provided on the inner peripheral surface of an elliptical annular member, and the teeth of the gear arranged inside the annular member are engaged with the teeth of the annular member, so that the reciprocating motion of the annular member is constant. A mechanism for converting into a rotational motion in a direction has been proposed (see Patent Document 1).

特開2009−270706号公報JP 2009-270706 A

しかし、クランク機構による動力変換においては、クランク軸の回転位置角により伝達される力が異なり、コネクティングロッドとクランクアームとが一直線状になる付近の角度では往復直線運動の力を効率良く回転運動の力(トルク)に変換することができないという問題がある。また、カム機構による動力変換は、発生する回転運動の力(トルク)がきわめて小さいため、高いトルクを必要とする発電には適していない。また、特許文献1に記載されたような機構においては、歯車の一定方向の回転運動を実現させるために、環状部材を直線的に往復運動させるだけでなく横方向にも往復運動させる必要があり、その軌道を制御するために特殊な補助機構が必要となることから、適用範囲が限られるという問題がある。   However, in the power conversion by the crank mechanism, the transmitted force differs depending on the rotational position angle of the crankshaft, and the reciprocating linear motion force is efficiently converted into the rotational motion at an angle near the connecting rod and the crank arm. There is a problem that it cannot be converted into force (torque). Further, power conversion by the cam mechanism is not suitable for power generation that requires high torque because the force (torque) of the generated rotary motion is extremely small. Further, in the mechanism described in Patent Document 1, in order to realize the rotational movement of the gear in a certain direction, it is necessary not only to reciprocate the annular member linearly but also to reciprocate in the lateral direction. Since a special auxiliary mechanism is required to control the trajectory, there is a problem that the application range is limited.

また、これら従来の機構における往復直線運動のストローク長は一定であり、ストローク長が時々刻々と変化するような往復直線運動(例えば波の上下運動)には対応できない。また、このような従来の機構においては、ストローク長が数m以上の大規模な往復直線運動に適応できない可能性がある。   Further, the stroke length of the reciprocating linear motion in these conventional mechanisms is constant, and cannot cope with the reciprocating linear motion (for example, up and down motion of the wave) in which the stroke length changes every moment. Moreover, in such a conventional mechanism, there is a possibility that it cannot be adapted to a large-scale reciprocating linear motion having a stroke length of several meters or more.

本発明は、かかる事情に鑑みてなされたものであり、ストローク長が時々刻々と変化するような大規模な往復直線運動を効率良く一定方向の回転運動に変換することができる動力変換装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a power conversion device capable of efficiently converting a large-scale reciprocating linear motion whose stroke length changes from moment to moment into a rotational motion in a constant direction. The purpose is to do.

前記目的を達成するため、本発明に係る動力変換装置は、往復動部材の往復直線運動を、相互に反対方向に回転する二つの回転部材の連続的な回転運動に変換する動力変換機構を備えるものである。本動力変換装置は、第一の軸に設けられた(例えば歯車状の)第一の回動部材及び(例えばフライホイール状の)第一の回転部材と、第一の軸から所定距離離隔して配置された第二の軸に設けられた(例えば歯車状の)第二の回動部材及び(例えばフライホイール状の)第二の回転部材と、を備えており、第一及び第二の回転部材は係合して相互に反対方向への回転運動を行うものである。動力変換機構は、往復動部材の第一の直線運動の動力を第一の回動部材の第一の回動運動に変換する一方、往復動部材の第二の直線運動の動力を第二の回動部材の第二の回動運動に変換する(例えばチェーン等の)動力変換手段を備えている。さらに、動力変換機構は、第一の回動部材の第一の回動運動の動力を第一の回転部材に伝達して第一の回転部材の回転運動を実現させる一方、第一の回動部材の第二の回動運動の動力を第一の回転部材に伝達しない(例えばワンウェイクラッチ等の)第一の動力伝達手段と、第二の回動部材の第二の回動運動の動力を第二の回転部材に伝達して第二の回転部材の回転運動を実現させる一方、第二の回動部材の第一の回動運動の動力を第二の回転部材に伝達しない(例えばワンウェイクラッチ等の)第二の動力伝達手段と、を備えている。   To achieve the above object, a power conversion device according to the present invention includes a power conversion mechanism that converts a reciprocating linear motion of a reciprocating member into a continuous rotational motion of two rotating members that rotate in opposite directions. Is. The power conversion device includes a first rotating member (for example, in the form of a gear) provided on the first shaft and a first rotating member (for example, in the form of a flywheel) that are separated from the first shaft by a predetermined distance. A second rotating member (for example, in the form of a gear) and a second rotating member (for example in the form of a flywheel) provided on a second shaft arranged in a The rotating members are engaged to perform rotational movements in opposite directions. The power conversion mechanism converts the power of the first linear motion of the reciprocating member into the first rotational motion of the first rotating member, while the power of the second linear motion of the reciprocating member is converted to the second power. Power conversion means (for example, a chain or the like) that converts the second rotation motion of the rotation member is provided. Further, the power conversion mechanism transmits the power of the first rotation motion of the first rotation member to the first rotation member to realize the rotation motion of the first rotation member, while the first rotation The first power transmission means (such as a one-way clutch) that does not transmit the power of the second rotating motion of the member to the first rotating member and the power of the second rotating motion of the second rotating member. While transmitting to the second rotating member to realize the rotating motion of the second rotating member, the power of the first rotating motion of the second rotating member is not transmitted to the second rotating member (for example, a one-way clutch) Etc.) second power transmission means.

かかる構成を採用すると、往復動部材の第一の直線運動の動力を第一の回動部材の第一の回動運動に変換し、この第一の回動部材の第一の回動運動の動力を第一の回転部材に伝達して、第一の回転部材の回転運動を実現させ、さらに、第一の回転部材の回転運動の動力を第二の回転部材に伝達して第二の回転部材の第一の回転部材と反対方向(第二の回動運動と同方向)の回転運動を実現させることができる。この際、往復動部材の第一の直線運動の際に第二の回動部材が第一の回動運動を行った場合においても、この第二の回動部材の第一の回動運動の動力は第二の回転部材に伝達されないので、第二の回転部材の回転運動が妨げられることはなく、第一及び第二の回転部材の回転運動が維持される。   When this configuration is adopted, the power of the first linear motion of the reciprocating member is converted into the first rotational motion of the first rotational member, and the first rotational motion of the first rotational member is converted. The power is transmitted to the first rotating member to realize the rotational motion of the first rotating member, and further the power of the rotational motion of the first rotating member is transmitted to the second rotating member to perform the second rotation. A rotational motion in the direction opposite to the first rotational member of the member (same direction as the second rotational motion) can be realized. At this time, even when the second rotating member performs the first rotating motion during the first linear motion of the reciprocating member, the first rotating motion of the second rotating member is also reduced. Since power is not transmitted to the second rotating member, the rotating motion of the second rotating member is not hindered, and the rotating motion of the first and second rotating members is maintained.

一方、往復動部材の第二の直線運動の動力を第二の回動部材の第二の回動運動に変換し、この第二の回動部材の第二の回動運動の動力を第二の回転部材に伝達して、第二の回転部材の回転運動を実現させ、さらに、第二の回転部材の回転運動の動力を第一の回転部材に伝達して第一の回転部材の第二の回転部材と反対方向(第一の回動運動と同方向)の回転運動を実現させることができる。この際、往復動部材の第二の直線運動の際に第一の回動部材が第二の回動運動を行った場合においても、この第一の回動部材の第二の回動運動の動力は第一の回転部材に伝達されないので、第一の回転部材の回転運動が妨げられることはなく、第一及び第二の回転部材の回転運動が維持される。   On the other hand, the power of the second linear motion of the reciprocating member is converted into the second rotational motion of the second rotational member, and the power of the second rotational motion of the second rotational member is converted to the second rotational motion. To the rotating member of the second rotating member to realize the rotating motion of the second rotating member, and further to transmit the power of the rotating motion of the second rotating member to the first rotating member. Rotational motion in the opposite direction to the rotating member (same direction as the first rotational motion) can be realized. At this time, even when the first rotating member performs the second rotating motion during the second linear motion of the reciprocating member, the second rotating motion of the first rotating member is also reduced. Since power is not transmitted to the first rotating member, the rotating motion of the first rotating member is not hindered, and the rotating motion of the first and second rotating members is maintained.

この結果、往復運部材の第一の直線運動及び第二の直線運動の双方の動力が、第一及び第二の回転部材の連続的な回転運動に効率良く変換されることとなる。本動力変換装置においては、特殊な軌道を描くように往復動部材の動きを規制する必要がないため、その適用範囲はきわめて広いものとなり、例えばストローク長が大きく変化するような大規模の往復直線運動の動力変換にも適用することが可能となる。   As a result, the powers of both the first linear motion and the second linear motion of the reciprocating member are efficiently converted into the continuous rotational motion of the first and second rotating members. In this power conversion device, since it is not necessary to regulate the movement of the reciprocating member so as to draw a special trajectory, the application range is extremely wide. For example, a large-scale reciprocating straight line whose stroke length changes greatly. It can be applied to power conversion of motion.

前記動力変換装置において、第一及び第二の回転部材として外周に歯部が形成された歯車状のフライホイールを採用してもよい。   In the power converter, gear-like flywheels having teeth formed on the outer periphery may be adopted as the first and second rotating members.

このように第一及び第二の回転部材として歯車状のフライホイールを採用すると、二つの回転部材を確実に係合させることができる。   Thus, if a gear-like flywheel is employ | adopted as a 1st and 2nd rotation member, two rotation members can be engaged reliably.

また、前記動力変換装置において、第一及び第二の回動部材の外周に歯部を形成し、第一及び第二の回動部材の外周に歯部と噛み合うようにチェーンを巻き付け、往復動部材とチェーンとを連結部材で連結することにより、動力変換手段を構成することができる。   Further, in the power conversion device, a tooth portion is formed on the outer periphery of the first and second rotating members, and a chain is wound around the outer periphery of the first and second rotating members so as to be engaged with the tooth portion, thereby reciprocating. A power conversion means can be comprised by connecting a member and a chain with a connection member.

かかる構成を採用すると、往復動部材の往復直線運動の動力を、連結部材及びチェーンを介して、回動部材の回動運動に変換することができる。   When such a configuration is adopted, the power of the reciprocating linear motion of the reciprocating member can be converted into the rotational motion of the rotating member via the connecting member and the chain.

また、前記動力変換装置において、往復動部材の一方の面に歯部を形成するとともに第一及び第二の回動部材の外周に歯部を形成し、往復動部材の歯部に噛み合うとともに第一及び第二の回動部材の歯部に噛み合う歯部を有する動力変換用回動部材を第一及び第二の回動部材の間に配置して動力変換手段を構成することもできる。   In the power conversion device, the tooth portion is formed on one surface of the reciprocating member, the tooth portion is formed on the outer periphery of the first and second rotating members, and meshed with the tooth portion of the reciprocating member. The power conversion means may be configured by arranging a power conversion rotating member having a tooth portion meshing with a tooth portion of the first and second rotating members between the first and second rotating members.

かかる構成を採用すると、往復動部材の往復直線運動の動力を、チェーンを採用することなく、動力変換用回動部材を介して、第一及び第二の回動部材の回動運動に変換することができる。   When such a configuration is adopted, the power of the reciprocating linear motion of the reciprocating member is converted into the rotational motion of the first and second rotating members via the power converting rotating member without using a chain. be able to.

また、前記動力変換装置において、第一の軸から第二の軸と反対方向に所定距離離隔して第三の軸を配置し、この第三の軸を中心として相互に反対方向の回動運動を行うように第三の軸に剛結合された第三及び第四の回動部材を設けることができる。かかる場合には、第二及び第三の回動部材を、回転部材を含む平面を挟んで第一及び第四の回動部材と反対側に配置し、各回動部材の外周に歯部を形成し、第二及び第三の回動部材の外周に歯部と噛み合うように第一のチェーンを巻き付け、往復動部材と第一のチェーンとを連結部材で連結し、第一及び第四の回動部材の外周に歯部と噛み合うように第二のチェーンを巻き付けることにより、動力変換手段を構成することができる。   Further, in the power conversion device, a third shaft is disposed at a predetermined distance from the first shaft in the opposite direction to the second shaft, and the rotational movements in the opposite directions about the third shaft are arranged. Third and fourth rotating members rigidly coupled to the third shaft can be provided. In such a case, the second and third rotating members are arranged on the opposite side of the first and fourth rotating members across the plane including the rotating members, and tooth portions are formed on the outer periphery of each rotating member. Then, the first chain is wound around the outer periphery of the second and third rotating members so as to mesh with the tooth portion, the reciprocating member and the first chain are connected by the connecting member, and the first and fourth rotations are performed. The power conversion means can be configured by winding the second chain around the outer periphery of the moving member so as to mesh with the teeth.

かかる構成を採用すると、往復動部材の往復直線運動の動力を、連結部材、第一のチェーン、第三の回動部材、第三の軸、第四の回動部材及び第二のチェーンを介して、回動部材の回動運動に変換することができる。また、第三の軸は、第一の軸を挟んで第二の軸と反対側に配置されるため、第二の軸と第三の軸との間の距離は、第一の軸と第二の軸との間の距離(回転部材の直径)よりも長くなる。このため、第三の回動部材は第二の回動部材から遠く離れた位置に配置されることとなり、第二及び第三の回動部材に巻き付けられる第一のチェーンを長くすることができる。そして、この長い第一のチェーンに往復動部材を連結部材で連結しているため、回転部材の直径を超えるような長ストロークでの往復動部材の往復直線運動を許容することができる。従って、長ストロークの往復直線運動を効率良く回転運動に変換することが可能となる。   When such a configuration is adopted, the power of the reciprocating linear motion of the reciprocating member is transmitted via the connecting member, the first chain, the third rotating member, the third shaft, the fourth rotating member, and the second chain. Thus, it can be converted into a turning motion of the turning member. In addition, since the third axis is disposed on the opposite side of the second axis across the first axis, the distance between the second axis and the third axis is the first axis and the first axis. It becomes longer than the distance (diameter of the rotating member) between the two axes. For this reason, a 3rd rotation member will be arrange | positioned in the position far away from the 2nd rotation member, and the 1st chain wound around the 2nd and 3rd rotation member can be lengthened. . Since the reciprocating member is connected to the long first chain by the connecting member, the reciprocating linear motion of the reciprocating member with a long stroke exceeding the diameter of the rotating member can be allowed. Therefore, it is possible to efficiently convert a long stroke reciprocating linear motion into a rotational motion.

また、本発明に係る発電装置は、前記動力変換装置と、前記動力変換装置の回転部材の回転運動により電力を発生させる発電機と、を備えるものである。かかる発電装置においては、前記動力変換装置の往復動部材に取り付けられるとともに海面上に浮かべられて波力により上下往復運動を行う浮き部材を備えることができる。また、用水路又は河川の流水エネルギを前記動力変換装置の往復動部材の往復直線運動に変換する翼部材を備えてもよい。   Moreover, the electric power generating apparatus which concerns on this invention is provided with the said power converter device and the generator which generate | occur | produces electric power by the rotational motion of the rotating member of the said power converter device. Such a power generation device may include a floating member that is attached to the reciprocating member of the power conversion device and floats on the sea surface and reciprocates up and down by wave force. Moreover, you may provide the wing | blade member which converts the flowing water energy of an irrigation channel or a river into the reciprocating linear motion of the reciprocating member of the said power converter device.

かかる構成を採用すると、波力による浮き部材の上下往復運動や、翼部材によって往復動部材の往復直線運動に変換された用水路又は河川の流水エネルギを、動力変換装置の回転部材の連続的な回転運動に効率良く変換し、この回転運動により電力を発生させることができる。特に、本発電装置は、前記した動力変換装置を採用しているため、ストローク長が変化する不規則な波の上下運動のエネルギを利用して効率良く電力を発生させることができる。   When such a configuration is adopted, the revolving motion of the floating member due to the wave force and the flow energy of the water channel or river converted into the reciprocating linear motion of the reciprocating member by the wing member are continuously rotated by the rotating member of the power converter. It is possible to efficiently convert to motion and generate electric power by this rotational motion. In particular, since the power generation device employs the power conversion device described above, it is possible to efficiently generate electric power by using the energy of up and down movement of an irregular wave whose stroke length changes.

本発明によれば、ストローク長が時々刻々と変化するような大規模な往復直線運動を効率良く一定方向の回転運動に変換することができる動力変換装置を提供することが可能となる。   According to the present invention, it is possible to provide a power conversion device that can efficiently convert a large-scale reciprocating linear motion whose stroke length changes from moment to moment into a rotational motion in a constant direction.

本発明の第一実施形態に係る波力発電装置の側面図である。It is a side view of the wave power generator concerning a first embodiment of the present invention. 図1に示す波力発電装置の正面図(図1のII方向から見た図)である。It is a front view (figure seen from the II direction of FIG. 1) of the wave power generator shown in FIG. 図1に示す波力発電装置の平面図(上方から見た図)である。It is a top view (figure seen from the upper part) of the wave power generator shown in FIG. 図1に示す波力発電装置の動作を説明するための側面図である。It is a side view for demonstrating operation | movement of the wave power generator shown in FIG. 同上。Same as above. 本発明の第二実施形態に係る波力発電装置の側面図である。It is a side view of the wave power generator concerning a second embodiment of the present invention. 図6に示す波力発電装置の正面図(図6のVII方向から見た図)である。It is a front view (figure seen from the VII direction of FIG. 6) of the wave power generator shown in FIG. 図6に示す波力発電装置の平面図(上方から見た図)である。It is a top view (figure seen from the upper part) of the wave power generator shown in FIG. 図6に示す波力発電装置の動作を説明するための側面図である。It is a side view for demonstrating operation | movement of the wave power generator shown in FIG. 同上。Same as above. 本発明の第三実施形態に係る波力発電装置の側面図である。It is a side view of the wave power generator concerning a third embodiment of the present invention. 動力変換手段の変形例を示す説明図である。It is explanatory drawing which shows the modification of a power conversion means.

以下、図面を参照して、本発明の実施形態について説明する。以下の各実施形態においては、本発明に係る動力変換装置を、波の上下運動のエネルギを回転運動に変換して発電を行う波力発電装置に適用した例について説明することとする。   Embodiments of the present invention will be described below with reference to the drawings. In each of the following embodiments, an example in which the power conversion device according to the present invention is applied to a wave power generation device that generates electric power by converting energy of wave vertical motion into rotational motion will be described.

<第一実施形態>
最初に、図1〜図5を用いて、本発明の第一実施形態に係る波力発電装置1について説明する。
<First embodiment>
Initially, the wave power generator 1 which concerns on 1st embodiment of this invention is demonstrated using FIGS.

まず、図1〜図3を用いて、本実施形態に係る波力発電装置1の構成について説明する。波力発電装置1は、海面上に浮かべられて波力により上下往復運動を行う浮き部材2と、浮き部材2の上下往復運動のエネルギを回転部材31・32の回転エネルギに変換する動力変換装置3と、動力変換装置3の回転部材31・32の回転エネルギにより電力を発生させる発電機4と、を備えている。   First, the structure of the wave power generator 1 which concerns on this embodiment is demonstrated using FIGS. 1-3. The wave power generator 1 includes a floating member 2 that floats on the sea surface and reciprocates up and down by wave force, and a power conversion device that converts the energy of the reciprocating motion of the floating member 2 into rotational energy of the rotating members 31 and 32. 3 and a generator 4 that generates electric power by the rotational energy of the rotating members 31 and 32 of the power conversion device 3.

浮き部材2は、図1〜図3に示すように、海水の浮力により海面上に浮き上がるような適度な比重を有する材料で構成された部材である。波はストローク長が変化する不規則な上下運動を行うため、これに合わせて浮き部材2も不規則な上下往復運動を行うようになっている。   As shown in FIGS. 1 to 3, the floating member 2 is a member made of a material having an appropriate specific gravity so that it floats on the sea surface due to the buoyancy of seawater. Since the waves perform irregular up-and-down movements with varying stroke lengths, the floating member 2 also performs irregular up-and-down reciprocating movements accordingly.

動力変換装置3は、浮き部材2に取り付けられて波力により浮き部材2と一体的に上下往復運動を行う往復動部材10、水平に配置された第一の軸11を中心として回動運動を行う第一の回動部材21、第一の軸11から所定距離離隔して下方に配置された第二の軸12を中心として回動運動を行う第二の回動部材22、第一の軸11を中心として所定方向への回転運動を行う第一の回転部材31、第二の軸12を中心として回転運動を行う第二の回転部材32等を備えている。   The power conversion device 3 is attached to the floating member 2 and revolves around the first shaft 11 that is horizontally disposed, and a reciprocating member 10 that reciprocates up and down integrally with the floating member 2 by wave force. The first rotating member 21 to be performed, the second rotating member 22 to perform the rotating motion around the second shaft 12 arranged at a predetermined distance from the first shaft 11 and the lower shaft, the first shaft 11 includes a first rotating member 31 that rotates in a predetermined direction around 11, a second rotating member 32 that rotates around the second shaft 12, and the like.

往復動部材10は、図1及び図2に示すように、鉛直方向に延在するように配置された柱状部材であり、その下端には浮き部材2が取り付けられている。往復動部材10は、浮き部材2と一体的に上方(図1のL1方向)への直線運動(第一の直線運動)及び下方(図1のL2方向)への直線運動(第二の直線運動)を行う。なお、往復動部材10の上下往復運動を安定させる目的で、環状又は筒状のガイド部材を設置し、このガイド部材の内部に往復動部材10をスライド自在に挿通させて支持することが好ましい。このようなガイド部材は、動力変換装置1が設置される構築物(例えば海底に固定された土台5)に設置されて往復動部材10を支持することができる。 As shown in FIGS. 1 and 2, the reciprocating member 10 is a columnar member arranged so as to extend in the vertical direction, and the floating member 2 is attached to the lower end thereof. Reciprocating member 10, linear movement (the second to the floating member 2 integrally with the upper linear movement (first linear movement) to (L 1 direction in FIG. 1) and lower (L 2 direction in FIG. 1) Linear motion). For the purpose of stabilizing the reciprocating motion of the reciprocating member 10, it is preferable to install an annular or cylindrical guide member, and to support the slidable member 10 slidably inserted into the guide member. Such a guide member can be installed on a structure where the power conversion device 1 is installed (for example, the base 5 fixed to the seabed) to support the reciprocating member 10.

第一の回動部材21は、第一の軸11を中心として相互に反対方向(図1に示すR1及びR2方向)の第一及び第二の回動運動を行うように構成されており、第二の回動部材22は、第二の軸12を中心として相互に反対方向(図1に示すR1及びR2方向)の第一及び第二の回動運動を行うように構成されている。第一及び第二の回動部材21・22は、その外周に図示されていない歯部が形成された歯車状の構成を有している。第一及び第二の回動部材21・22は、金属材料等で構成することができる。本実施形態においては、図1及び図2に示すように、第一及び第二の回動部材21・22の双方が回転部材31・32の片面側に配置されている。 The first rotating member 21 is configured to perform first and second rotating motions in opposite directions (R 1 and R 2 directions shown in FIG. 1) around the first shaft 11. The second rotating member 22 is configured to perform first and second rotating motions in opposite directions (R 1 and R 2 directions shown in FIG. 1) around the second shaft 12. Has been. The first and second rotating members 21 and 22 have a gear-like configuration in which tooth portions (not shown) are formed on the outer periphery thereof. The first and second rotating members 21 and 22 can be made of a metal material or the like. In this embodiment, as shown in FIG.1 and FIG.2, both the 1st and 2nd rotation members 21 * 22 are arrange | positioned at the single side | surface side of the rotation members 31 * 32.

第一の回転部材31は、第一の軸11を中心として図1に示すR1方向の回転運動を行うように構成されている。第二の回転部材32は、その外周部が第一の回転部材31の外周部と係合して第一の回転部材31の回転運動のエネルギが伝達されるように配置されており、第二の軸12を中心として第一の回転部材31と反対方向(図1に示すR2方向)の回転運動を行うように構成されている。第一及び第二の回転部材31・32は、これらの外周部が係合するような構成であればよく、例えばゴムタイヤや、外周に歯部が形成された歯車状のフライホイール等を採用することができる。なお、第一の軸11は、第一の回転部材31の回転中心に剛結合されており、第一の回転部材31とともに回転する。一方、第二の軸12は、第二の回転部材32の回転中心に剛結合されており、第二の回転部材32とともに回転する。 The first rotating member 31 is configured to perform a rotational motion in the R 1 direction shown in FIG. 1 about the first shaft 11. The second rotating member 32 is disposed such that the outer peripheral portion thereof is engaged with the outer peripheral portion of the first rotating member 31 and energy of rotational motion of the first rotating member 31 is transmitted. It is configured about the axis 12 of the first rotary member 31 in the opposite direction to the rotation movement of the (R 2 direction shown in FIG. 1). The first and second rotating members 31 and 32 may be configured so that the outer peripheral portions thereof engage with each other, and for example, a rubber tire or a gear-like flywheel having tooth portions formed on the outer periphery is employed. be able to. The first shaft 11 is rigidly coupled to the rotation center of the first rotation member 31 and rotates together with the first rotation member 31. On the other hand, the second shaft 12 is rigidly coupled to the rotation center of the second rotating member 32 and rotates together with the second rotating member 32.

第一及び第二の回動部材21・22の外周には、歯部と噛み合うようにチェーン23が巻き付けられており、チェーン23は連結部材20を介して往復動部材10に連結されている。このため、往復動部材10の上下往復運動のエネルギは、連結部材20及びチェーン23を介して、第一及び第二の回動部材21・22の回動運動に変換される。具体的には、往復動部材10の上方(図1のL1方向)への直線運動(第一の直線運動)は第一及び第二の回動部材21・22のR1方向の回動運動に変換される一方、往復動部材10の下方(図1のL2方向)への直線運動(第二の直線運動)は第一及び第二の回動部材21・22のR2方向の回動運動に変換される。連結部材20及びチェーン23は、本発明における動力変換手段を構成する。 A chain 23 is wound around the outer periphery of the first and second rotating members 21 and 22 so as to mesh with the tooth portion, and the chain 23 is connected to the reciprocating member 10 via the connecting member 20. For this reason, the energy of the reciprocating motion of the reciprocating member 10 is converted into the rotational motion of the first and second rotating members 21 and 22 via the connecting member 20 and the chain 23. Specifically, reciprocating linear motion (first linear movement) upward (L 1 direction in FIG. 1) of the member 10 is rotated in the R 1 direction of the first and second rotating members 21 and 22 On the other hand, the linear motion (second linear motion) in the downward direction (L 2 direction in FIG. 1) of the reciprocating member 10 is converted in the R 2 direction of the first and second rotating members 21 and 22. It is converted into a rotational movement. The connecting member 20 and the chain 23 constitute power conversion means in the present invention.

第一の回動部材21と第一の軸11との間には、図示されていないワンウェイクラッチが設けられている。これにより、第一の回動部材21の第一の回動運動(図1に示すR1方向)の動力が第一の軸11を介して第一の回転部材31に伝達されて第一の回転部材31の所定方向(図1に示すR1方向)の回転運動が実現される一方、第一の回動部材21の第二の回動運動(図1に示すR2方向)の動力が第一の回転部材31に伝達されないようになっている。また、第二の回動部材22と第二の軸12との間にもワンウェイクラッチが設けられている。これにより、第二の回動部材22の第二の回動運動(図1に示すR2方向)の動力が第二の軸12を介して第二の回転部材32に伝達されて第二の回転部材32の図1に示すR2方向の回転運動が実現される一方、第二の回動部材22の第一の回動運動(図1に示すR1方向)の動力が第二の回転部材32に伝達されないようになっている。これらワンウェイクラッチは、本発明における第一及び第二の動力伝達手段に相当するものである。 A one-way clutch (not shown) is provided between the first rotating member 21 and the first shaft 11. As a result, the power of the first rotational movement (R 1 direction shown in FIG. 1) of the first rotational member 21 is transmitted to the first rotational member 31 via the first shaft 11, and while rotational movement in a predetermined direction of the rotary member 31 (R 1 direction shown in FIG. 1) is achieved, the power of the second rotational movement of the first pivot member 21 (R 2 direction shown in FIG. 1) It is not transmitted to the first rotating member 31. A one-way clutch is also provided between the second rotating member 22 and the second shaft 12. As a result, the power of the second rotating motion (R 2 direction shown in FIG. 1) of the second rotating member 22 is transmitted to the second rotating member 32 via the second shaft 12, and the second rotating member 22 is transmitted. While the rotational movement of the rotating member 32 in the R 2 direction shown in FIG. 1 is realized, the power of the first rotating movement (R 1 direction shown in FIG. 1) of the second rotating member 22 is the second rotation. It is not transmitted to the member 32. These one-way clutches correspond to the first and second power transmission means in the present invention.

発電機4は、動力変換装置3の第一の回転部材31に噛み合うように配置された発電用歯車33の回転軸34の回転エネルギにより電力を発生させるものである。本実施形態においては、図2及び図3に示すように、発電用歯車33の回転軸34の一方の端部側に発電機4を配置している。発電機4は、回転軸34に連結され、回転軸34の回転を増速機で増大させて発電するものである。本実施形態においては、図1〜図3に示すように、動力変換装置3の第一及び第二の軸11・12の端部を、海底に固定された一組の土台5によって海面よりも上方位置で回転可能に支持させている。これにより、動力変換装置3の回動部材21・22及び回転部材31・32と、発電機4と、を浮き部材2の上下往復運動に関わらず常時海面よりも上方に配置することとしている。なお、図1においては、動力変換装置3の構成説明の便宜上、発電機4や発電用歯車33の図示を省略し土台5を破線で示している。   The generator 4 generates electric power by the rotational energy of the rotating shaft 34 of the power generation gear 33 disposed so as to mesh with the first rotating member 31 of the power conversion device 3. In the present embodiment, as shown in FIGS. 2 and 3, the generator 4 is disposed on one end side of the rotating shaft 34 of the power generation gear 33. The generator 4 is connected to a rotating shaft 34 and generates electric power by increasing the rotation of the rotating shaft 34 with a speed increaser. In this embodiment, as shown in FIGS. 1-3, the edge part of the 1st and 2nd axis | shafts 11 * 12 of the power converter device 3 is set rather than the sea surface by the set of foundation 5 fixed to the seabed. It is supported rotatably at the upper position. Accordingly, the rotating members 21 and 22 and the rotating members 31 and 32 of the power conversion device 3 and the generator 4 are always arranged above the sea level regardless of the vertical reciprocating motion of the floating member 2. In FIG. 1, for convenience of explanation of the configuration of the power conversion device 3, the generator 4 and the power generation gear 33 are not shown, and the base 5 is indicated by a broken line.

次に、図1、図4及び図5を用いて、本実施形態に係る波力発電装置1の動作について説明する。なお、図4及び図5においては、動力変換装置3の動作説明の便宜上、発電機4や土台5の図示を省略している。   Next, operation | movement of the wave power generator 1 which concerns on this embodiment is demonstrated using FIG.1, FIG4 and FIG.5. In FIGS. 4 and 5, the generator 4 and the base 5 are not shown for convenience of explanation of the operation of the power conversion device 3.

以下の説明においては、図1に示した状態を初期状態として波力発電装置1を稼動させるものとする。初期状態においては、往復動部材10とチェーン23とを連結する連結部材20が上下方向中央部(第一及び第二の回転部材31・32の係合部付近)に位置しており、往復動部材10の上方(図1のL1方向)及び下方(図1のL2方向)への直線運動が可能となっている。 In the following description, it is assumed that the wave power generation device 1 is operated with the state shown in FIG. 1 as an initial state. In the initial state, the connecting member 20 that connects the reciprocating member 10 and the chain 23 is located at the center in the vertical direction (near the engaging portion of the first and second rotating members 31 and 32). upper member 10 has a possible linear movement to and lower (L 1 direction in FIG. 1) (L 2 direction in FIG. 1).

このような初期状態から、波力により図4に示すように浮き部材2が上方に押し上げられると、これに伴って動力変換装置3の往復動部材10が上方(L1方向)に直線運動を行い、この直線運動の動力が連結部材20及びチェーン23を介して第一の回動部材21に伝達され、第一の回動部材21はR1方向の回動運動を行う。この際、往復動部材10の直線運動の動力は第二の回動部材22にも伝達され、第二の回動部材22も同様にR1方向の回動運動を行う。 From this initial state, when the float member 2 is pushed upward as shown in FIG. 4 by the wave power, in association with this reciprocating member 10 of the power converter 3 a linear movement upwards (L 1 direction) performed, power of the linear motion is transmitted to the first rotating member 21 via the connecting member 20 and the chain 23, the first rotating member 21 performs rotational movement of R 1 direction. At this time, linear motion of the power of the reciprocating member 10 is also transmitted to the second rotating member 22, as well the second rotating member 22 performs rotational movement of R 1 direction.

第一の回動部材21のR1方向の回動運動の動力は、ワンウェイクラッチ及び第一の軸11を介して第一の回転部材31に伝達され、第一の回転部材31はR1方向の回転運動を行う。そして、第一の回転部材31の回転運動の動力は、第一の回転部材31と係合している第二の回転部材32に伝達され、第二の回転部材32はR2方向の回転運動を行う。この際、第二の回動部材22のR1方向の回動運動の動力は、ワンウェイクラッチの機能により第二の回転部材32に伝達されないため、第二の回転部材32は第二の回動部材22の影響を受けることなくR2方向の回転運動を行うことができる。 R 1 direction rotational movement of the power of the first rotating member 21 is transmitted to the first rotary member 31 via the one-way clutch and the first shaft 11, the first rotary member 31 is R 1 direction Rotating movement. The rotary motion of the power of the first rotary member 31 is transmitted to the second rotary member 32 which is engaged with the first rotary member 31, a second rotary member 32 is rotational motion of R 2 direction I do. In this case, R 1 direction of the rotational movement of the power of the second rotating member 22, since the function of the one-way clutch not transmitted to the second rotating member 32, the second rotary member 32 a second pivot R 2 direction rotational movement can be performed without being affected by the member 22.

このようにして、浮き部材2の上方への直線運動のエネルギは、動力変換装置3の第一の回転部材31のR1方向の回転運動及び第二の回転部材32のR2方向の回転運動に変換される。 In this manner, the energy of the linear motion of the upper float member 2, the rotational motion of the R 1 direction of the first rotary member 31 of the power converter 3 and the rotational motion of the R 2 direction of the second rotating member 32 Is converted to

次に、図4に示した状態から、波力により図5に示すように浮き部材2が下方に押し下げられると、これに伴って動力変換装置3の往復動部材10が下方(L2方向)に直線運動を行い、この直線運動の動力が連結部材20及びチェーン23を介して第二の回動部材22に伝達され、第二の回動部材22はR2方向の回動運動を行う。この際、往復動部材10の直線運動の動力は第一の回動部材21にも伝達され、第一の回動部材21も同様にR2方向の回動運動を行う。 Next, from the state shown in FIG. 4, when the float member 2, as shown in FIG. 5 by the wave power is pushed downward, the reciprocating member 10 of the power converting apparatus 3 downward along with this (L 2 direction) to perform linear movement, the power of the linear motion is transmitted to the second rotating member 22 through the connecting member 20 and the chain 23, the second rotating member 22 performs rotational movement of the R 2 direction. At this time, linear motion of the power of the reciprocating member 10 is also transmitted to the first rotating member 21, as well the first rotating member 21 performs rotational movement of the R 2 direction.

第二の回動部材22のR2方向の回動運動の動力は、ワンウェイクラッチ及び第二の軸12を介して第二の回転部材32に伝達され、第二の回転部材32はR2方向の回転運動を行う。そして、第二の回転部材32の回転運動の動力は、第二の回転部材32と係合している第一の回転部材31に伝達され、第一の回転部材31はR1方向の回転運動を行う。この際、第一の回動部材21のR2方向の回動運動の動力は、ワンウェイクラッチの機能により第一の回転部材31に伝達されないため、第一の回転部材31は第一の回動部材21の影響を受けることなくR1方向の回転運動を行うことができる。 R 2 direction of rotational movement of the power of the second rotating member 22 is transmitted to the second rotary member 32 through the one-way clutch and a second shaft 12, a second rotary member 32 is R 2 direction Rotating movement. Then, the power of the rotational movement of the second rotary member 32 is transmitted to the first rotary member 31 is engaged with the second rotary member 32, the first rotary member 31 is rotational motion of R 1 direction I do. At this time, the power of the R 2 direction of rotational movement of the first rotating member 21, since the function of the one-way clutch not transmitted to the first rotary member 31, the first rotating member 31 is first rotated The rotational movement in the R 1 direction can be performed without being affected by the member 21.

このようにして、浮き部材2の下方への直線運動のエネルギは、動力変換装置3の第一の回転部材31のR1方向の回転運動及び第二の回転部材32のR2方向の回転運動に変換される。 Thus, the energy of the linear motion downward of the floating member 2 is the rotational motion of the first rotating member 31 of the power converter 3 in the R 1 direction and the rotational motion of the second rotating member 32 in the R 2 direction. Is converted to

すなわち、浮き部材2の上下往復運動(及びこれに伴った動力変換装置3の往復動部材10の上下往復運動)のエネルギは、動力変換装置3の第一及び第二の回転部材31・32の連続的な回転運動に変換されることとなる。このように得られた第一及び第二の回転部材31・32の回転運動のエネルギは、発電用歯車33の回転軸34を介して発電機4に伝達され、電力に変換されることとなる。   That is, the energy of the up-and-down reciprocating motion of the floating member 2 (and the up-and-down reciprocating motion of the reciprocating member 10 of the power conversion device 3) is the energy of the first and second rotating members 31 and 32 of the power conversion device 3. It will be converted into a continuous rotational motion. The energy of the rotational motion of the first and second rotating members 31 and 32 obtained in this way is transmitted to the generator 4 through the rotating shaft 34 of the power generating gear 33 and converted into electric power. .

以上説明した実施形態に係る動力変換装置3においては、往復動部材10の上方への直線運動の動力を第一の回動部材21のR1方向の回動運動に変換し、この第一の回動部材21の回動運動の動力を第一の回転部材31に伝達して、第一の回転部材31のR1方向の回転運動を実現させ、かつ、第一の回転部材31の回転運動の動力を第二の回転部材32に伝達して第二の回転部材32のR2方向の回転運動を実現させることができる。往復動部材10の上方への直線運動の際には第二の回動部材22がR1方向の回動運動を行うものの、この回動運動の動力は第二の回転部材32に伝達されないので、第二の回転部材32の回転運動が妨げられることはなく、第一及び第二の回転部材31・32の回転運動が維持される。 In the power conversion device 3 according to the embodiment described above, the power of the linear motion upward of the reciprocating member 10 is converted into the rotational motion of the first rotational member 21 in the R 1 direction. The power of the rotating motion of the rotating member 21 is transmitted to the first rotating member 31 to realize the rotating motion in the R 1 direction of the first rotating member 31 and the rotating motion of the first rotating member 31. Can be transmitted to the second rotating member 32 to realize the rotational motion of the second rotating member 32 in the R 2 direction. During the linear motion upward of the reciprocating member 10, the second rotating member 22 performs the rotating motion in the R 1 direction, but the power of this rotating motion is not transmitted to the second rotating member 32. The rotational motion of the second rotating member 32 is not hindered, and the rotational motion of the first and second rotating members 31 and 32 is maintained.

一方、往復動部材10の下方への直線運動の動力を第二の回動部材22のR2方向の回動運動に変換し、この第二の回動部材22の回動運動の動力を第二の回転部材32に伝達して、第二の回転部材32のR2方向の回転運動を実現させ、かつ、第二の回転部材32の回転運動の動力を第一の回転部材31に伝達して第一の回転部材31のR1方向の回転運動を実現させることができる。往復動部材10の下方への直線運動の際には第一の回動部材21がR2方向の回動運動を行うものの、この回動運動の動力は第一の回転部材31に伝達されないので、第一の回転部材31の回転運動が妨げられることはなく、第一及び第二の回転部材31・32の回転運動が維持される。 On the other hand, the power of the downward linear motion of the reciprocating member 10 is converted into the rotational motion of the second rotational member 22 in the R 2 direction, and the rotational power of the second rotational member 22 is converted into the first rotational motion. The second rotating member 32 is transmitted to realize the rotational motion of the second rotating member 32 in the R 2 direction, and the power of the rotational motion of the second rotating member 32 is transmitted to the first rotating member 31. the rotational motion of the R 1 direction of the first rotary member 31 can be realized Te. When the reciprocating member 10 is linearly moved downward, the first rotating member 21 performs a rotating motion in the R 2 direction, but the power of this rotating motion is not transmitted to the first rotating member 31. The rotational motion of the first rotating member 31 is not hindered, and the rotational motion of the first and second rotating members 31 and 32 is maintained.

この結果、往復運部材10の上方への直線運動及び下方への直線運動の双方の動力が、第一及び第二の回転部材31・32の連続的な回転運動に効率良く変換されることとなる。   As a result, the power of both the linear motion upward and the linear motion downward of the reciprocating member 10 is efficiently converted into the continuous rotational motion of the first and second rotating members 31 and 32. Become.

また、以上説明した実施形態に係る波力発電装置1においては、波力による浮き部材2の上下往復運動を、動力変換装置3の回転部材31・32の連続的な回転運動に効率良く変換し、この回転運動により電力を発生させることができる。本実施形態に係る波力発電装置1は、動力変換装置3を採用しているため、ストローク長が大きく変化する不規則な波の上下運動のエネルギを利用して効率良く電力を発生させることができる。   Further, in the wave power generation device 1 according to the embodiment described above, the vertical reciprocating motion of the floating member 2 due to the wave force is efficiently converted into the continuous rotational motion of the rotating members 31 and 32 of the power conversion device 3. Electric power can be generated by this rotational movement. Since the wave power generation device 1 according to the present embodiment employs the power conversion device 3, it is possible to efficiently generate electric power by using the energy of the up and down movement of an irregular wave whose stroke length greatly changes. it can.

<第二実施形態>
続いて、図6〜図10を用いて、本発明の第二実施形態に係る波力発電装置1Aについて説明する。
<Second embodiment>
Subsequently, a wave power generator 1A according to a second embodiment of the present invention will be described with reference to FIGS.

まず、図6〜図8を用いて、本実施形態に係る波力発電装置1Aの構成について説明する。なお、本実施形態に係る波力発電装置1Aは、第一実施形態に係る波力発電装置1の動力変換装置3の構成を部分的に変更したものであり、その他の構成については第一実施形態と実質的に同一である。このため、異なる構成を中心に説明することとし、重複する構成については第一実施形態と同様の符号を付して詳細な説明を省略することとする。   First, the configuration of the wave power generation device 1A according to the present embodiment will be described with reference to FIGS. The wave power generator 1A according to the present embodiment is obtained by partially changing the configuration of the power conversion device 3 of the wave power generator 1 according to the first embodiment. It is substantially the same as the form. For this reason, different configurations will be mainly described, and overlapping configurations will be denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.

波力発電装置1Aは、浮き部材2と、浮き部材2の上下往復運動のエネルギを回転部材31・32の回転エネルギに変換する動力変換装置3Aと、動力変換装置3Aの回転部材31・32の回転エネルギにより電力を発生させる発電機4と、を備えている。なお、図6においては、動力変換装置3Aの構成説明の便宜上、発電機4や発電用歯車33の図示を省略し土台5を破線で示している。   The wave power generation device 1A includes a floating member 2, a power conversion device 3A that converts the energy of the reciprocating motion of the floating member 2 into rotation energy of the rotation members 31 and 32, and the rotation members 31 and 32 of the power conversion device 3A. And a generator 4 that generates electric power by rotational energy. In FIG. 6, for convenience of explanation of the configuration of the power conversion device 3 </ b> A, the generator 4 and the power generation gear 33 are not shown, and the base 5 is indicated by a broken line.

動力変換装置3Aは、往復動部材10、第一の軸11を中心として回動運動を行う第一の回動部材21、第二の軸12を中心として回動運動を行う第二の回動部材22、第一の軸11を中心として所定方向への回転運動を行う第一の回転部材31、第二の軸12を中心として回転運動を行う第二の回転部材32等を備えている。   The power conversion device 3 </ b> A includes a reciprocating member 10, a first rotating member 21 that performs a rotating motion about the first shaft 11, and a second rotating that performs a rotating motion about the second shaft 12. The member 22 includes a first rotating member 31 that performs a rotating motion in a predetermined direction around the first shaft 11, a second rotating member 32 that performs a rotating motion around the second shaft 12, and the like.

第一の回動部材21は、第一の軸11を中心として相互に反対方向(図6に示すR3及びR4方向)の第一及び第二の回動運動を行うように構成されており、第二の回動部材22は、第二の軸12を中心として相互に反対方向(図6に示すR3及びR4方向)の第一及び第二の回動運動を行うように構成されている。本実施形態においては、図7及び図8に示すように、第二の回動部材22が回転部材31・32を含む平面を挟んで第一の回動部材21と反対側に配置されている。 The first rotating member 21 is configured to perform first and second rotating movements in directions opposite to each other (R 3 and R 4 directions shown in FIG. 6) around the first shaft 11. The second rotating member 22 is configured to perform first and second rotating motions in opposite directions (R 3 and R 4 directions shown in FIG. 6) around the second shaft 12. Has been. In the present embodiment, as shown in FIGS. 7 and 8, the second rotating member 22 is disposed on the opposite side of the first rotating member 21 across the plane including the rotating members 31 and 32. .

第一の回転部材31は、第一の軸11を中心として図6に示すR3方向の回転運動を行うように構成されている。第二の回転部材32は、その外周部が第一の回転部材31の外周部と係合して第一の回転部材31の回転運動のエネルギが伝達されるように配置されており、第二の軸12を中心として第一の回転部材31と反対方向(図6に示すR4方向)の回転運動を行うように構成されている。なお、第一の軸11は、第一の回転部材31の回転中心に剛結合されており、第一の回転部材31とともに回転する。一方、第二の軸12は、第二の回転部材32の回転中心に剛結合されており、第二の回転部材32とともに回転する。 The first rotating member 31 is configured to perform a rotational motion in the R 3 direction shown in FIG. 6 about the first shaft 11. The second rotating member 32 is disposed such that the outer peripheral portion thereof is engaged with the outer peripheral portion of the first rotating member 31 and energy of rotational motion of the first rotating member 31 is transmitted. around the axis 12 of the first rotary member 31 and the opposite direction is configured to perform the rotational movement of the (R 4 direction shown in FIG. 6). The first shaft 11 is rigidly coupled to the rotation center of the first rotation member 31 and rotates together with the first rotation member 31. On the other hand, the second shaft 12 is rigidly coupled to the rotation center of the second rotating member 32 and rotates together with the second rotating member 32.

本実施形態においては、図6及び図7に示すように、第一の軸11の上方に第三の軸13を水平に配置しており、この第三の軸13を中心として図6に示すR3及びR4方向の回動運動を行う第三の回動部材41及び第四の回動部材42を設けている。第四の回動部材42は、回転部材31・32を含む平面を挟んで第三の回動部材41と反対側に配置されている。第三の軸13の端部は、第一及び第二の軸11・12の端部と同様に土台5によって回転可能に支持されている。第三及び第四の回動部材41・42の外周には図示されていない歯部が形成されている。第三及び第四の回動部材41・42は、金属材料等で構成することができる。なお、第三の軸13は、第三及び第四の回動部材41・42の回転中心に剛結合されており、第三及び第四の回動部材41・42とともに図6に示すR3及びR4方向に回動するようになっている。 In the present embodiment, as shown in FIGS. 6 and 7, the third shaft 13 is horizontally disposed above the first shaft 11, and the third shaft 13 is shown in FIG. 6 as the center. A third rotating member 41 and a fourth rotating member 42 that perform a rotating motion in the R 3 and R 4 directions are provided. The fourth rotation member 42 is disposed on the opposite side of the third rotation member 41 across the plane including the rotation members 31 and 32. The end portion of the third shaft 13 is rotatably supported by the base 5 similarly to the end portions of the first and second shafts 11 and 12. A tooth portion (not shown) is formed on the outer periphery of the third and fourth rotating members 41 and 42. The third and fourth rotating members 41 and 42 can be made of a metal material or the like. The third shaft 13 is rigidly connected to the rotation centers of the third and fourth rotating members 41 and 42, and together with the third and fourth rotating members 41 and 42, R 3 shown in FIG. And R 4 direction.

また、本実施形態においては、第二の回動部材22及び第三の回動部材41の外周に、歯部と噛み合うように第一のチェーン43が巻き付けられており、第一のチェーン43は連結部材20を介して往復動部材10に連結されている。また、第一の回動部材21及び第四の回動部材42の外周には、歯部と噛み合うように第二のチェーン43が巻き付けられている。このため、往復動部材10の上下往復運動のエネルギは、連結部材20、第一のチェーン43、第三の回動部材41、第三の軸13、第四の回動部材42及び第二のチェーン44を介して、第一の回動部材21の回動運動に変換される。また、往復動部材10の上下往復運動のエネルギは、連結部材20及び第一のチェーン43を介して、第二の回動部材22の回動運動に変換される。   Moreover, in this embodiment, the 1st chain 43 is wound around the outer periphery of the 2nd rotation member 22 and the 3rd rotation member 41 so that it may mesh with a tooth | gear part, The reciprocating member 10 is connected via a connecting member 20. A second chain 43 is wound around the outer periphery of the first rotating member 21 and the fourth rotating member 42 so as to mesh with the tooth portion. For this reason, the energy of the reciprocating motion of the reciprocating member 10 includes the connecting member 20, the first chain 43, the third rotating member 41, the third shaft 13, the fourth rotating member 42, and the second rotating member. It is converted into a rotational motion of the first rotational member 21 via the chain 44. Further, the energy of the reciprocating motion of the reciprocating member 10 is converted into the rotational motion of the second rotating member 22 via the connecting member 20 and the first chain 43.

具体的には、往復動部材10の上方(図6のL1方向)への直線運動(第一の直線運動)は、第三及び第四の回動部材41・42のR3方向の回動運動と、第一及び第二の回動部材21・22のR3方向の回動運動と、に変換される。一方、往復動部材10の下方(図1のL2方向)への直線運動(第二の直線運動)は、第三及び第四の回動部材41・42のR4方向の回動運動と、第一及び第二の回動部材21・22のR4方向の回動運動と、に変換される。連結部材20、第一及び第二のチェーン43・44、第三及び第四の回動部材41・42及び第三の軸13は、本発明における動力変換手段を構成する。 Specifically, the linear motion (first linear motion) upward (the L 1 direction in FIG. 6) of the reciprocating member 10 is the rotation of the third and fourth rotating members 41 and 42 in the R 3 direction. and the dynamic motion is converted and rotational movement of R 3 direction of the first and second rotating members 21 and 22, the. On the other hand, linear motion downward reciprocating member 10 (L 2 direction in FIG. 1) (second linear motion) is and R 4 direction of rotational movement of the third and fourth rotating members 41 and 42 It is converted and rotational movement of R 4 directions of the first and second rotating members 21 and 22, the. The connecting member 20, the first and second chains 43 and 44, the third and fourth rotating members 41 and 42, and the third shaft 13 constitute power conversion means in the present invention.

第一の回動部材21と第一の軸11との間には、図示されていないワンウェイクラッチが設けられている。これにより、第一の回動部材21の第一の回動運動(図6に示すR3方向)の動力が第一の軸11を介して第一の回転部材31に伝達されて第一の回転部材31の所定方向(図6に示すR3方向)の回転運動が実現される一方、第一の回動部材21の第二の回動運動(図6に示すR4方向)の動力が第一の回転部材31に伝達されないようになっている。また、第二の回動部材22と第二の軸12との間にもワンウェイクラッチが設けられている。これにより、第二の回動部材22の第二の回動運動(図6に示すR4方向)の動力が第二の軸12を介して第二の回転部材32に伝達されて第二の回転部材32の図6に示すR4方向の回転運動が実現される一方、第二の回動部材22の第一の回動運動(図6に示すR3方向)の動力が第二の回転部材32に伝達されないようになっている。これらワンウェイクラッチは、本発明における第一及び第二の動力伝達手段に相当するものである。 A one-way clutch (not shown) is provided between the first rotating member 21 and the first shaft 11. Thus, the power of the first pivoting movement of the first pivot member 21 (R 3 direction shown in FIG. 6) of the first is transmitted to the first rotary member 31 through the first shaft 11 while rotational movement in a predetermined direction of the rotary member 31 (R 3 direction shown in FIG. 6) is achieved, the power of the second rotational movement of the first pivot member 21 (R 4 direction shown in FIG. 6) It is not transmitted to the first rotating member 31. A one-way clutch is also provided between the second rotating member 22 and the second shaft 12. Thus, the power of the second rotational movement of the second pivot member 22 (R 4 direction shown in FIG. 6) is the second in the transmission to the second rotary member 32 through the second shaft 12 while the rotational movement of the R 4 direction shown in FIG. 6 of the rotary member 32 is achieved, the rotational power is the second of the first pivoting movement of the second pivot member 22 (R 3 direction shown in FIG. 6) It is not transmitted to the member 32. These one-way clutches correspond to the first and second power transmission means in the present invention.

なお、本実施形態においては、第二の回動部材22及び第三の回動部材41を、回転部材31・32を含む平面を挟んで第一の回動部材21及び第四の回動部材42と反対側に配置した例を示したが、各回動部材の位置はこれに限られるものではない。例えば、第一の回動部材21、第二の回動部材22、第三の回動部材41、第四の回動部材42を全て回転部材31・32の片面側に配置することもできる。かかる場合には、第一の回動部材21及び第四の回動部材42に巻き付けられる第二のチェーン44と、第二の回動部材22及び第三の回動部材41に巻き付けられる第一のチェーン43と、が干渉しないように各回動部材を配置する。また、第四の回動部材42を省き、第三の回動部材41と、第一の回動部材21及び第二の回動部材22と、を同一平面上に配置し、各回動部材に1本のチェーンを巻きつけ、この1本のチェーンを介して動力の伝達を行うこともできる。   In the present embodiment, the second rotating member 22 and the third rotating member 41 are connected to the first rotating member 21 and the fourth rotating member with the plane including the rotating members 31 and 32 interposed therebetween. Although the example arrange | positioned on the opposite side to 42 was shown, the position of each rotation member is not restricted to this. For example, the first rotating member 21, the second rotating member 22, the third rotating member 41, and the fourth rotating member 42 can all be arranged on one side of the rotating members 31 and 32. In such a case, the second chain 44 wound around the first rotating member 21 and the fourth rotating member 42, and the first chain wound around the second rotating member 22 and the third rotating member 41. The rotating members are arranged so as not to interfere with the chain 43. Further, the fourth rotating member 42 is omitted, the third rotating member 41, the first rotating member 21 and the second rotating member 22 are arranged on the same plane, and each rotating member is provided with each rotating member. It is also possible to wind a single chain and transmit power through this single chain.

次に、図6、図9及び図10を用いて、本実施形態に係る波力発電装置1Aの動作について説明する。なお、図9及び図10においては、動力変換装置3Aの動作説明の便宜上、発電機4や土台5の図示を省略している。   Next, operation | movement of 1 A of wave power generators which concern on this embodiment is demonstrated using FIG.6, FIG.9 and FIG.10. In FIG. 9 and FIG. 10, illustration of the generator 4 and the base 5 is omitted for convenience of explanation of the operation of the power conversion device 3A.

以下の説明においては、図6に示した状態を初期状態として波力発電装置1Aを稼動させるものとする。初期状態においては、往復動部材10と第一のチェーン43とを連結する連結部材20が第一の軸11よりも若干下方に位置しており、往復動部材10の上方(図6のL1方向)及び下方(図6のL2方向)への直線運動が可能となっている。 In the following description, it is assumed that the wave power generation device 1A is operated with the state shown in FIG. 6 as an initial state. In the initial state, the connecting member 20 that connects the reciprocating member 10 and the first chain 43 is located slightly below the first shaft 11 and is located above the reciprocating member 10 (L 1 in FIG. 6). and it enables linear movement of the direction) and lower (L 2 direction in FIG. 6).

このような初期状態から、波力により図9に示すように浮き部材2が上方に押し上げられると、これに伴って動力変換装置3Aの往復動部材10が上方(L1方向)に直線運動を行い、この直線運動の動力が連結部材20、第一のチェーン43、第三の回動部材41、第三の軸13、第四の回動部材42及び第二のチェーン44を介して第一の回動部材21に伝達され、第一の回動部材21はR3方向の回動運動を行う。この際、往復動部材10の直線運動の動力は第二の回動部材22にも伝達され、第二の回動部材22も同様にR3方向の回動運動を行う。 From this initial state, when the float member 2 is pushed upward as shown in FIG. 9 by the wave power, in association with this reciprocating member 10 of the power converting apparatus 3A the linear movement upwards (L 1 direction) The power of this linear motion is first via the connecting member 20, the first chain 43, the third rotating member 41, the third shaft 13, the fourth rotating member 42 and the second chain 44. is transmitted in the rotating member 21, the first rotating member 21 performs rotational movement of R 3 direction. At this time, linear motion of the power of the reciprocating member 10 is also transmitted to the second rotating member 22, as well the second rotating member 22 performs rotational movement of R 3 direction.

第一の回動部材21のR3方向の回動運動の動力は、ワンウェイクラッチ及び第一の軸11を介して第一の回転部材31に伝達され、第一の回転部材31はR3方向の回転運動を行う。そして、第一の回転部材31の回転運動の動力は、第一の回転部材31と係合している第二の回転部材32に伝達され、第二の回転部材32はR4方向の回転運動を行う。この際、第二の回動部材22のR3方向の回動運動の動力は、ワンウェイクラッチの機能により第二の回転部材32に伝達されないため、第二の回転部材32は第二の回動部材22の影響を受けることなくR4方向の回転運動を行うことができる。 R 3 direction of rotational movement of the power of the first rotating member 21 is transmitted to the first rotary member 31 via the one-way clutch and the first shaft 11, the first rotary member 31 is R 3 direction Rotating movement. The rotary motion of the power of the first rotary member 31 is transmitted to the second rotary member 32 which is engaged with the first rotary member 31, a second rotary member 32 is rotational motion of R 4 Direction I do. In this case, R 3 direction of rotational movement of the power of the second rotating member 22, since the function of the one-way clutch not transmitted to the second rotating member 32, the second rotary member 32 a second pivot The rotational movement in the R 4 direction can be performed without being affected by the member 22.

このようにして、浮き部材2の上方への直線運動のエネルギは、動力変換装置3Aの第一の回転部材31のR3方向の回転運動及び第二の回転部材32のR4方向の回転運動に変換される。 In this manner, the energy of the linear motion of the upper float member 2, the rotational motion of the R 4 direction of the first rotation and a second R 3 direction of the rotating member 31 of the rotary member 32 of the power conversion device 3A Is converted to

次に、図9に示した状態から、波力により図10に示すように浮き部材2が下方に押し下げられると、これに伴って動力変換装置3Aの往復動部材10が下方(L2方向)に直線運動を行い、この直線運動の動力が連結部材20及び第一のチェーン43を介して第二の回動部材22に伝達され、第二の回動部材22はR4方向の回動運動を行う。この際、往復動部材10の直線運動の動力は第一の回動部材21にも伝達され、第一の回動部材21も同様にR4方向の回動運動を行う。 Next, when the floating member 2 is pushed downward by the wave force from the state shown in FIG. 9, the reciprocating member 10 of the power conversion device 3 </ b> A is lowered (L 2 direction). to perform linear movement, the linear movement of the power is transmitted to the second rotating member 22 through the connecting member 20 and the first chain 43, the second rotating member 22 is R 4 direction of rotational movement I do. At this time, linear motion of the power of the reciprocating member 10 is also transmitted to the first rotating member 21, as well the first rotating member 21 performs rotational movement R 4 directions.

第二の回動部材22のR4方向の回動運動の動力は、ワンウェイクラッチ及び第二の軸12を介して第二の回転部材32に伝達され、第二の回転部材32はR4方向の回転運動を行う。そして、第二の回転部材32の回転運動の動力は、第二の回転部材32と係合している第一の回転部材31に伝達され、第一の回転部材31はR3方向の回転運動を行う。この際、第一の回動部材21のR4方向の回動運動の動力は、ワンウェイクラッチの機能により第一の回転部材31に伝達されないため、第一の回転部材31は第一の回動部材21の影響を受けることなくR3方向の回転運動を行うことができる。 R 4 direction of rotational movement of the power of the second rotating member 22 is transmitted to the second rotary member 32 through the one-way clutch and a second shaft 12, a second rotary member 32 is R 4 Direction Rotating movement. The rotary motion of the power of the second rotary member 32 is transmitted to the first rotary member 31 is engaged with the second rotary member 32, the first rotary member 31 is R 3 direction of the rotary movement I do. At this time, the power of the R 4 direction rotation movement of the first rotating member 21, since the function of the one-way clutch not transmitted to the first rotary member 31, the first rotating member 31 is first rotated R 3 direction rotational movement can be performed without being affected by the member 21.

このようにして、浮き部材2の下方への直線運動のエネルギは、動力変換装置3Aの第一の回転部材31のR3方向の回転運動及び第二の回転部材32のR4方向の回転運動に変換される。 In this manner, the energy of the linear motion to the lower buoy member 2, rotational movement of the R 4 direction of the first rotation and a second R 3 direction of the rotating member 31 of the rotary member 32 of the power conversion device 3A Is converted to

すなわち、浮き部材2の上下往復運動(及びこれに伴った動力変換装置3Aの往復動部材10の上下往復運動)のエネルギは、動力変換装置3Aの第一及び第二の回転部材31・32の連続的な回転運動に変換されることとなる。このように得られた第一及び第二の回転部材31・32の回転運動のエネルギは、発電用歯車33の回転軸34を介して発電機4に伝達され、電力に変換されることとなる。   That is, the energy of the up-and-down reciprocating motion of the floating member 2 (and the up-and-down reciprocating motion of the reciprocating member 10 of the power conversion device 3A) is the energy of the first and second rotating members 31 and 32 of the power conversion device 3A. It will be converted into a continuous rotational motion. The energy of the rotational motion of the first and second rotating members 31 and 32 obtained in this way is transmitted to the generator 4 through the rotating shaft 34 of the power generating gear 33 and converted into electric power. .

以上説明した実施形態に係る動力変換装置3Aにおいては、往復動部材10の上方への直線運動の動力を第一の回動部材21のR3方向の回動運動に変換し、この第一の回動部材21の回動運動の動力を第一の回転部材31に伝達して、第一の回転部材31のR3方向の回転運動を実現させ、かつ、第一の回転部材31の回転運動の動力を第二の回転部材32に伝達して第二の回転部材32のR4方向の回転運動を実現させることができる。往復動部材10の上方への直線運動の際には第二の回動部材22がR3方向の回動運動を行うものの、この回動運動の動力は第二の回転部材32に伝達されないので、第二の回転部材32の回転運動が妨げられることはなく、第一及び第二の回転部材31・32の回転運動が維持される。 Or in the power conversion apparatus 3A according to the embodiment described, the linear movement upward of the reciprocating member 10 power was converted to the R 3 direction of rotational movement of the first rotating member 21, the first The power of the rotational motion of the rotational member 21 is transmitted to the first rotational member 31 to realize the rotational motion of the first rotational member 31 in the R 3 direction, and the rotational motion of the first rotational member 31. power can be a realizing a rotational motion of the R 4 direction of the second rotary member 32 is transmitted to the second rotary member 32. When the reciprocating member 10 is linearly moved upward, the second rotating member 22 rotates in the R 3 direction, but the power of this rotating motion is not transmitted to the second rotating member 32. The rotational motion of the second rotating member 32 is not hindered, and the rotational motion of the first and second rotating members 31 and 32 is maintained.

一方、往復動部材10の下方への直線運動の動力を第二の回動部材22のR4方向の回動運動に変換し、この第二の回動部材22の回動運動の動力を第二の回転部材32に伝達して、第二の回転部材32のR4方向の回転運動を実現させ、かつ、第二の回転部材32の回転運動の動力を第一の回転部材31に伝達して第一の回転部材31のR3方向の回転運動を実現させることができる。往復動部材10の下方への直線運動の際には第一の回動部材21がR4方向の回動運動を行うものの、この回動運動の動力は第一の回転部材31に伝達されないので、第一の回転部材31の回転運動が妨げられることはなく、第一及び第二の回転部材31・32の回転運動が維持される。 On the other hand, to convert the linear motion of the power downward reciprocating member 10 to the pivoting movement of the R 4 direction of the second rotating member 22, the power of the rotational movement of the second pivoting member 22 first The second rotating member 32 is transmitted to realize the rotational motion of the second rotating member 32 in the R 4 direction, and the power of the rotational motion of the second rotating member 32 is transmitted to the first rotating member 31. the rotational motion of the R 3 direction of the first rotary member 31 can be realized Te. When the reciprocating member 10 is linearly moved downward, the first rotating member 21 performs a rotating motion in the R 4 direction, but the power of this rotating motion is not transmitted to the first rotating member 31. The rotational motion of the first rotating member 31 is not hindered, and the rotational motion of the first and second rotating members 31 and 32 is maintained.

この結果、往復運部材10の上方への直線運動及び下方への直線運動の双方の動力が、第一及び第二の回転部材31・32の連続的な回転運動に効率良く変換されることとなる。   As a result, the power of both the linear motion upward and the linear motion downward of the reciprocating member 10 is efficiently converted into the continuous rotational motion of the first and second rotating members 31 and 32. Become.

また、以上説明した実施形態に係る波力発電装置1Aにおいては、波力による浮き部材2の上下往復運動を、動力変換装置3Aの回転部材31・32の連続的な回転運動に効率良く変換し、この回転運動により電力を発生させることができる。本実施形態に係る波力発電装置1Aは、動力変換装置3Aを採用しているため、ストローク長が変化する不規則な波の上下運動のエネルギを利用して効率良く電力を発生させることができる。   Moreover, in the wave power generation device 1A according to the embodiment described above, the vertical reciprocating motion of the floating member 2 due to the wave force is efficiently converted into the continuous rotational motion of the rotating members 31 and 32 of the power conversion device 3A. Electric power can be generated by this rotational movement. Since the wave power generation device 1A according to the present embodiment employs the power conversion device 3A, it is possible to efficiently generate electric power by using the energy of up and down movement of an irregular wave whose stroke length changes. .

なお、以上説明した各実施形態においては、波力に起因する浮き部材2の上下往復運動のエネルギを回転エネルギに変換する際に、本発明に係る動力変換装置を適用した例を示したが、本発明に係る動力変換装置の適用例はこれに限られるものではない。例えば、用水路や河川の流水エネルギを翼部材の往復直線運動のエネルギに変換する流体式動力装置に本発明に係る動力変換装置を接続し、翼部材の往復直線運動のエネルギを回転エネルギに変換し、さらにこの回転エネルギを利用して電力を発生させることもできる。   In each of the embodiments described above, an example in which the power conversion device according to the present invention is applied when converting the energy of the reciprocating motion of the floating member 2 due to the wave force into rotational energy has been shown. The application example of the power converter according to the present invention is not limited to this. For example, the power converter according to the present invention is connected to a hydrodynamic power device that converts the flow energy of a water channel or river into the energy of reciprocating linear motion of a wing member, and the energy of reciprocating linear motion of the wing member is converted into rotational energy. Furthermore, electric power can be generated using this rotational energy.

また、以上説明した各実施形態においては、第一の回転部材31の回転運動のエネルギを、第一の回転部材31と噛み合う発電用歯車33の回転軸34を介して発電機4に伝達した例を示したが、第一の回転部材31の回転運動のエネルギを発電機4に伝達するための構成はこれに限られるものではない。例えば、図11に示すように、第一の回転部材31とともに第一の軸11を中心に回転する歯車35と、発電機4の回転軸4aに取り付けられた歯車36と、にチェーン37を巻き付け、第一の回転部材31の回転運動のエネルギを、歯車35、チェーン37及び歯車36を介して発電機4の回転軸4aに伝達することもできる(第三実施形態)。また、これら歯車35・36及びチェーン37に代えて、プーリー及びVベルトを採用してもよい。   In each of the embodiments described above, the energy of the rotational motion of the first rotating member 31 is transmitted to the generator 4 via the rotating shaft 34 of the power generating gear 33 that meshes with the first rotating member 31. However, the configuration for transmitting the energy of the rotational motion of the first rotating member 31 to the generator 4 is not limited to this. For example, as shown in FIG. 11, a chain 37 is wound around a gear 35 that rotates around the first shaft 11 together with the first rotating member 31 and a gear 36 that is attached to the rotating shaft 4 a of the generator 4. The energy of the rotational motion of the first rotating member 31 can also be transmitted to the rotating shaft 4a of the generator 4 via the gear 35, the chain 37, and the gear 36 (third embodiment). Further, instead of the gears 35 and 36 and the chain 37, a pulley and a V belt may be employed.

また、以上説明した各実施形態においては、回動部材の外周に歯部を形成し、回動部材の外周に歯部と噛み合うようにチェーン23を巻き付け、往復動部材10とチェーン23とを連結部材20で連結することにより動力変換手段を構成した例を示したが、動力変換手段の構成はこれに限られるものではない。   In each of the embodiments described above, a tooth portion is formed on the outer periphery of the rotating member, the chain 23 is wound around the outer periphery of the rotating member so as to mesh with the tooth portion, and the reciprocating member 10 and the chain 23 are connected. Although the example which comprised the power conversion means by connecting with the member 20 was shown, the structure of a power conversion means is not restricted to this.

例えば、回動部材としてプーリーを採用し、プーリーの外周にVベルトを巻きつけ、往復動部材10とVベルトとを連結部材20で連結することにより動力変換手段を構成することもできる。また、図12(A)に示すように、往復動部材10の一方の面に歯部10Aを形成することにより、歯部21A・22Aを形成した回動部材21・22の外周に往復動部材10の歯部10Aを直接噛み合せることもできる。かかる場合には、往復動部材10の歯部10Aが動力変換手段を構成することとなり、チェーンや連結部材を別途設ける必要がなくなる。また、図12(B)に示すように、往復動部材10の一方の面に形成した歯部10Aに噛み合うとともに第一及び第二の回動部材21・22の歯部21A・22Aに噛み合う歯部20Aを有する動力変換用回動部材20Bを第一及び第二の回動部材21・22の間に配置することもできる。このような構成を採用した場合においても、往復動部材10の往復直線運動の動力を、チェーンを採用することなく、動力変換用回動部材20Bを介して、第一及び第二の回動部材21・22の回動運動に変換することができる。   For example, a power conversion means can be configured by adopting a pulley as the rotating member, winding a V-belt around the outer periphery of the pulley, and connecting the reciprocating member 10 and the V-belt by the connecting member 20. Further, as shown in FIG. 12A, by forming a tooth portion 10A on one surface of the reciprocating member 10, a reciprocating member is formed on the outer periphery of the rotating members 21 and 22 having the tooth portions 21A and 22A. It is also possible to directly mesh the 10 tooth portions 10A. In such a case, the tooth portion 10A of the reciprocating member 10 constitutes a power conversion means, and there is no need to separately provide a chain or a connecting member. Further, as shown in FIG. 12B, the teeth meshing with the tooth portions 10A formed on one surface of the reciprocating member 10 and meshing with the tooth portions 21A and 22A of the first and second rotating members 21 and 22 The power conversion rotating member 20B having the portion 20A may be disposed between the first and second rotating members 21 and 22. Even in the case of adopting such a configuration, the power of the reciprocating linear motion of the reciprocating member 10 is supplied to the first and second rotating members via the power converting rotating member 20B without using a chain. It can be converted into a rotational motion of 21 and 22.

また、以上説明した各実施形態においては、第一の回転部材31の回転運動のエネルギを歯車等を介して発電機4に伝達した例を示したが、同様の構成を介して第二の回転部材32の回転運動のエネルギを発電機4に伝達することもできる。   Moreover, in each embodiment demonstrated above, although the example which transmitted the energy of the rotational motion of the 1st rotation member 31 to the generator 4 via the gear etc. was shown, it is 2nd rotation via the same structure. The energy of the rotational motion of the member 32 can also be transmitted to the generator 4.

また、本発明に係る動力変換装置を用いて人間の足の上下往復運動のエネルギを回転エネルギに変換し、この回転エネルギを利用して電力を発生させる発電システムを構築することもできる。かかる発電システムを採用すると、人間の体重を有効利用して効率良く発電を行うことができる。   It is also possible to construct a power generation system that uses the power conversion device according to the present invention to convert the energy of the reciprocating motion of a human foot into rotational energy and generates electric power using this rotational energy. When such a power generation system is employed, it is possible to efficiently generate power by effectively using the human weight.

1・1A…波力発電装置
2…浮き部材
3・3A…動力変換装置
4…発電機
10…往復動部材
10A…歯部
11…第一の軸
12…第二の軸
13…第三の軸(動力変換手段)
20…連結部材(動力変換手段)
20A…歯部
20B…動力変換用回動部材(動力変換手段)
21…第一の回動部材
21A…歯部
22…第二の回動部材
22A…歯部
23…チェーン(動力変換手段)
31…第一の回転部材
32…第二の回転部材
41…第三の回動部材(動力変換手段)
42…第四の回動部材(動力変換手段)
43…第一のチェーン(動力変換手段)
44…第二のチェーン(動力変換手段)
DESCRIPTION OF SYMBOLS 1.1A ... Wave power generator 2 ... Floating member 3.3A ... Power converter 4 ... Generator 10 ... Reciprocating member 10A ... Tooth part 11 ... First axis 12 ... Second axis 13 ... Third axis (Power conversion means)
20: Connecting member (power conversion means)
20A ... Teeth 20B ... Power conversion turning member (power conversion means)
DESCRIPTION OF SYMBOLS 21 ... 1st rotation member 21A ... Tooth part 22 ... 2nd rotation member 22A ... Tooth part 23 ... Chain (power conversion means)
DESCRIPTION OF SYMBOLS 31 ... 1st rotation member 32 ... 2nd rotation member 41 ... 3rd rotation member (power conversion means)
42 ... Fourth rotating member (power conversion means)
43 ... First chain (power conversion means)
44 ... Second chain (power conversion means)

Claims (7)

相互に反対方向の第一及び第二の直線運動を行うように構成された往復動部材と、相互に反対方向の回転運動を行うように構成された第一及び第二の回転部材と、前記往復動部材の前記第一及び第二の直線運動を前記第一及び第二の回転部材の連続的な回転運動に変換する動力変換機構と、を備える動力変換装置であって、
前記第一の回転部材は、第一の軸を中心として所定方向への回転運動を行うように構成され、前記第二の回転部材は、前記第一の回転部材と係合し前記第一の軸から所定距離離隔して配置された第二の軸を中心として前記第一の回転部材と反対方向への回転運動を行うように構成され、
前記動力変換機構は、第一の軸を中心として相互に反対方向の第一及び第二の回動運動を行うように構成された第一の回動部材と、前記第二の軸を中心として相互に反対方向の第一及び第二の回動運動を行うように構成された第二の回動部材と、前記往復動部材の前記第一の直線運動の動力を前記第一の回動部材の前記第一の回動運動に変換する一方前記往復動部材の前記第二の直線運動の動力を前記第二の回動部材の前記第二の回動運動に変換する動力変換手段と、前記第一の回動部材の前記第一の回動運動の動力を前記第一の回転部材に伝達して前記第一の回転部材の回転運動を実現させる一方前記第一の回動部材の前記第二の回動運動の動力を前記第一の回転部材に伝達しない第一の動力伝達手段と、前記第二の回動部材の前記第二の回動運動の動力を前記第二の回転部材に伝達して前記第二の回転部材の回転運動を実現させる一方前記第二の回動部材の前記第一の回動運動の動力を前記第二の回転部材に伝達しない第二の動力伝達手段と、を有し、前記第一の回動部材及び前記第二の回動部材の前記第一の回動運動は同方向とされ、 前記第一の回動部材及び前記第二の回動部材の前記第二の回動運動は同方向とされ、
前記第一及び第二の回動部材は、その外周に歯部が形成されて歯車状に構成され、
前記動力変換手段は、前記第一及び第二の回動部材の外周に前記歯部と噛み合うように巻き付けられたチェーンと、前記往復動部材と前記チェーンとを連結する連結部材と、を有し、前記往復動部材の往復直線運動の動力を、前記連結部材及び前記チェーンを介して、前記回動部材の回動運動に変換する、動力変換装置。
A reciprocating member configured to perform first and second linear motions in opposite directions, a first and second rotating member configured to perform rotational motions in opposite directions, and A power conversion mechanism that converts the first and second linear motions of the reciprocating member into continuous rotational motions of the first and second rotating members,
The first rotating member is configured to rotate in a predetermined direction about a first axis, and the second rotating member engages with the first rotating member and the first rotating member It is configured to perform a rotational movement in a direction opposite to the first rotating member around a second axis arranged at a predetermined distance from the axis,
The power conversion mechanism includes a first rotating member configured to perform first and second rotating motions in opposite directions around the first axis, and the second axis as a center. A second rotating member configured to perform first and second rotating motions in opposite directions to each other, and the power of the first linear motion of the reciprocating member to the first rotating member. Power conversion means for converting the power of the second linear motion of the reciprocating member into the second rotational motion of the second rotational member, while converting the first rotational motion of the second rotational member; The power of the first rotating member of the first rotating member is transmitted to the first rotating member to realize the rotating motion of the first rotating member, while the first rotating member has the first rotating member. A first power transmission means that does not transmit the power of the second rotational movement to the first rotating member; and the second power of the second rotating member. The power of the dynamic motion is transmitted to the second rotating member to realize the rotational motion of the second rotating member, while the power of the first rotating motion of the second rotating member is transmitted to the second rotating member. A second power transmission means that does not transmit to the rotating member, and the first rotating motion of the first rotating member and the second rotating member is in the same direction, The second rotating movement of the rotating member and the second rotating member is in the same direction,
The first and second rotating members are formed in a gear shape with teeth formed on the outer periphery thereof,
The power conversion means includes a chain wound around the outer periphery of the first and second rotating members so as to mesh with the tooth portion, and a connecting member that connects the reciprocating member and the chain. , the power of the reciprocating linear motion of said reciprocating member, via the coupling member and the chain is converted into rotational movement of the rotary member, the dynamic force transducer.
相互に反対方向の第一及び第二の直線運動を行うように構成された往復動部材と、相互に反対方向の回転運動を行うように構成された第一及び第二の回転部材と、前記往復動部材の前記第一及び第二の直線運動を前記第一及び第二の回転部材の連続的な回転運動に変換する動力変換機構と、を備える動力変換装置であって、
前記第一の回転部材は、第一の軸を中心として所定方向への回転運動を行うように構成され、前記第二の回転部材は、前記第一の回転部材と係合し前記第一の軸から所定距離離隔して配置された第二の軸を中心として前記第一の回転部材と反対方向への回転運動を行うように構成され、
前記動力変換機構は、第一の軸を中心として相互に反対方向の第一及び第二の回動運動を行うように構成された第一の回動部材と、前記第二の軸を中心として相互に反対方向の第一及び第二の回動運動を行うように構成された第二の回動部材と、前記往復動部材の前記第一の直線運動の動力を前記第一の回動部材の前記第一の回動運動に変換する一方前記往復動部材の前記第二の直線運動の動力を前記第二の回動部材の前記第二の回動運動に変換する動力変換手段と、前記第一の回動部材の前記第一の回動運動の動力を前記第一の回転部材に伝達して前記第一の回転部材の回転運動を実現させる一方前記第一の回動部材の前記第二の回動運動の動力を前記第一の回転部材に伝達しない第一の動力伝達手段と、前記第二の回動部材の前記第二の回動運動の動力を前記第二の回転部材に伝達して前記第二の回転部材の回転運動を実現させる一方前記第二の回動部材の前記第一の回動運動の動力を前記第二の回転部材に伝達しない第二の動力伝達手段と、を有し、前記第一の回動部材及び前記第二の回動部材の前記第一の回動運動は同方向とされ、 前記第一の回動部材及び前記第二の回動部材の前記第二の回動運動は同方向とされ、
前記第一の軸から前記第二の軸と反対方向に所定距離離隔して配置された第三の軸と、前記第三の軸を中心として相互に反対方向の回動運動を行うように前記第三の軸に剛結合された第三及び第四の回動部材と、をさらに備え、
前記第二及び第三の回動部材は、前記回転部材を含む平面を挟んで前記第一及び第四の回動部材と反対側に配置され、
前記各回動部材は、その外周に歯部が形成されて歯車状に構成され、
前記動力変換手段は、前記第二及び第三の回動部材の外周に前記歯部と噛み合うように巻き付けられた第一のチェーンと、前記往復動部材と前記第一のチェーンとを連結する連結部材と、前記第一及び第四の回動部材の外周に前記歯部と噛み合うように巻き付けられた第二のチェーンと、を有し、前記往復動部材の往復直線運動の動力を、前記連結部材、前記第一のチェーン、前記第三の回動部材、前記第三の軸、前記第四の回動部材及び前記第二のチェーンを介して、前記回動部材の回動運動に変換する、動力変換装置。
A reciprocating member configured to perform first and second linear motions in opposite directions, a first and second rotating member configured to perform rotational motions in opposite directions, and A power conversion mechanism that converts the first and second linear motions of the reciprocating member into continuous rotational motions of the first and second rotating members,
The first rotating member is configured to rotate in a predetermined direction about a first axis, and the second rotating member engages with the first rotating member and the first rotating member It is configured to perform a rotational movement in a direction opposite to the first rotating member around a second axis arranged at a predetermined distance from the axis,
The power conversion mechanism includes a first rotating member configured to perform first and second rotating motions in opposite directions around the first axis, and the second axis as a center. A second rotating member configured to perform first and second rotating motions in opposite directions to each other, and the power of the first linear motion of the reciprocating member to the first rotating member. Power conversion means for converting the power of the second linear motion of the reciprocating member into the second rotational motion of the second rotational member, while converting the first rotational motion of the second rotational member; The power of the first rotating member of the first rotating member is transmitted to the first rotating member to realize the rotating motion of the first rotating member, while the first rotating member has the first rotating member. A first power transmission means that does not transmit the power of the second rotational movement to the first rotating member; and the second power of the second rotating member. The power of the dynamic motion is transmitted to the second rotating member to realize the rotational motion of the second rotating member, while the power of the first rotating motion of the second rotating member is transmitted to the second rotating member. A second power transmission means that does not transmit to the rotating member, and the first rotating motion of the first rotating member and the second rotating member is in the same direction, The second rotating movement of the rotating member and the second rotating member is in the same direction,
A third axis disposed at a predetermined distance from the first axis in a direction opposite to the second axis, and a rotational movement in directions opposite to each other about the third axis. A third and a fourth rotating member rigidly coupled to the third shaft,
The second and third rotating members are arranged on the opposite side of the first and fourth rotating members across a plane including the rotating member,
Each rotating member is formed in a gear shape with teeth formed on the outer periphery thereof,
The power conversion means includes a first chain wound around the outer periphery of the second and third rotating members so as to mesh with the tooth portion, and a connection for connecting the reciprocating member and the first chain. A second chain wound around the outer periphery of the first and fourth rotating members so as to mesh with the tooth portion, and the power of the reciprocating linear motion of the reciprocating member is connected to the second chain. It is converted into a rotating motion of the rotating member via the member, the first chain, the third rotating member, the third shaft, the fourth rotating member, and the second chain. , dynamic power conversion equipment.
前記第一及び第二の動力伝達手段は、ワンウェイクラッチである、請求項1又は2に記載の動力変換装置。 The power conversion device according to claim 1 or 2 , wherein the first and second power transmission means are one-way clutches. 前記第一及び第二の回転部材は、外周に歯部が形成された歯車状のフライホイールである、請求項1からの何れか一項に記載の動力変換装置。 It said first and second rotary members are flywheel shaped gear teeth are formed on the outer periphery, the power conversion device according to any one of claims 1 to 3. 請求項1からの何れか一項に記載の動力変換装置と、
前記動力変換装置の前記回転部材の回転運動により電力を発生させる発電機と、を備える、
発電装置。
The power conversion device according to any one of claims 1 to 4 ,
A generator for generating electric power by the rotational movement of the rotating member of the power converter,
Power generation device.
前記動力変換装置の前記往復動部材に取り付けられるとともに海面上に浮かべられて波力により上下往復運動を行う浮き部材を備える、請求項に記載の発電装置。 The power generation device according to claim 5 , further comprising a floating member that is attached to the reciprocating member of the power conversion device and floats on the sea surface and reciprocates up and down by wave force. 用水路又は河川の流水エネルギを前記動力変換装置の前記往復動部材の往復直線運動に変換する翼部材を備える、請求項に記載の発電装置。 The power generation device according to claim 5 , further comprising a wing member that converts flowing water energy of an irrigation channel or a river into a reciprocating linear motion of the reciprocating member of the power conversion device.
JP2010235648A 2010-10-20 2010-10-20 Power conversion device and power generation device Expired - Fee Related JP5660606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235648A JP5660606B2 (en) 2010-10-20 2010-10-20 Power conversion device and power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235648A JP5660606B2 (en) 2010-10-20 2010-10-20 Power conversion device and power generation device

Publications (2)

Publication Number Publication Date
JP2012087891A JP2012087891A (en) 2012-05-10
JP5660606B2 true JP5660606B2 (en) 2015-01-28

Family

ID=46259713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235648A Expired - Fee Related JP5660606B2 (en) 2010-10-20 2010-10-20 Power conversion device and power generation device

Country Status (1)

Country Link
JP (1) JP5660606B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967396B2 (en) * 2013-06-21 2016-08-10 株式会社レック制御 Power generation device and shock absorber for generating power
KR102017738B1 (en) * 2017-11-13 2019-09-03 김수덕 Apparatus for generating electricity
KR102044189B1 (en) * 2018-01-10 2019-12-02 허성범 Power transmission device, dynamo-electric generator and wave energy generator having the same
CN110077190B (en) * 2019-04-10 2020-08-18 西安交通大学 Unidirectional rotation power generation device for recovering vibration energy of vehicle suspension
CN111022595B (en) * 2019-12-16 2021-05-04 江苏科技大学 Mechanism for realizing unidirectional rotation motion by linear reciprocating motion
JP7240693B1 (en) 2022-08-01 2023-03-16 株式会社アントレックス power transmission device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138251A (en) * 1975-05-16 1976-11-29 Jiii Tooneibiin Maikeru Connection device between transmission and wave action
JPH04107354A (en) * 1990-08-23 1992-04-08 Eastman Kodak Japan Kk Rotation speed switching device
JPH06171577A (en) * 1992-12-08 1994-06-21 Kuroishi Tekko Kk Wave vibration type generating light emitting float
JPH07229470A (en) * 1993-12-24 1995-08-29 Suke Ishii Wave power driven machinery
GB0520571D0 (en) * 2005-10-10 2005-11-16 Kelly H P G Float for sea wave energy conversion plant

Also Published As

Publication number Publication date
JP2012087891A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5660606B2 (en) Power conversion device and power generation device
US9243606B2 (en) Device for converting the power of sea wave motion
KR101493259B1 (en) Multiple oscillating tidal stream generators
KR101082076B1 (en) Wave-power generating module, wave-power generating unit comprising the wave-power generating module, and wave-power generating apparatus comprising the wave-power generating unit
RU2703585C2 (en) Method and device for generating wave energy, comprising impact piston
ZA200602967B (en) Method and apparatus for utilising wave energy
JP5926428B2 (en) Power generation system and reciprocating mechanism for power generation system
KR101352417B1 (en) Power generator
JP2011196368A (en) Power generating device
KR20150142644A (en) apparatus for changing pendulum motion into rotating motion in one way
CN111194380B (en) Drive assembly
KR101492901B1 (en) Power generating equipment using wave forces
KR102183633B1 (en) Wave Power Generator Having Pendulum Movement Part
AU2019212596B2 (en) Rocking lever assembly for harnessing energy from surface waves
KR20120118385A (en) Wave energy converter using 4 bar linkage system
WO2016072859A1 (en) Wave-powered generator device and method
RU2592094C1 (en) Wave power plant
KR101339319B1 (en) Oscillating tidal stream generator using the active pitch and camber control
KR101488870B1 (en) Reciprocating device of oscillating tidal stream generators
WO2016024520A1 (en) Power generation system and reciprocating motion mechanism for power generation system
WO2018015616A1 (en) Arrangement for recovering wave energy
RU2447317C2 (en) Device for electric power generation due to water surface sloshing
KR101609981B1 (en) gear assembly for electricity generator
KR20130067479A (en) Power generating equipment using wave and wind forces
CN109723600A (en) A kind of wave-power device of linked transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5660606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees