JP5660136B2 - Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body - Google Patents

Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body Download PDF

Info

Publication number
JP5660136B2
JP5660136B2 JP2012529530A JP2012529530A JP5660136B2 JP 5660136 B2 JP5660136 B2 JP 5660136B2 JP 2012529530 A JP2012529530 A JP 2012529530A JP 2012529530 A JP2012529530 A JP 2012529530A JP 5660136 B2 JP5660136 B2 JP 5660136B2
Authority
JP
Japan
Prior art keywords
water
fine particles
drying shrinkage
reducing agent
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012529530A
Other languages
Japanese (ja)
Other versions
JPWO2012023376A1 (en
Inventor
後藤 彰宏
彰宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2012529530A priority Critical patent/JP5660136B2/en
Publication of JPWO2012023376A1 publication Critical patent/JPWO2012023376A1/en
Application granted granted Critical
Publication of JP5660136B2 publication Critical patent/JP5660136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells

Description

本発明は、特に水系のセラミック成形における乾燥工程での収縮を低減し、高精度の成型体を再現よく得るのに有効なセラミック成形用乾燥収縮低減剤及びこれを用いたセラミック成形体の乾燥方法に関する。   The present invention relates to a drying shrinkage reducing agent for ceramic molding which is effective for reducing shrinkage in a drying process particularly in water-based ceramic molding and obtaining a highly accurate molded body with good reproducibility, and a method for drying a ceramic molded body using the same. About.

セラミックの一般的な成形方法としては、押出成形、射出成型、および鋳込み成形等の各種方法が挙げられる。例えば押出成形に関して言えば、セラミック粉体とバインダー、及び水などを混練した混練組成物(以下、坏土ともいう)に圧力をかけて金型から押し出すことにより成形する方法であり、一定の断面形状を持つ、棒状、又はパイプ状等の製品を効率よく製造するのに適している。この押出成形法によってフィルターや触媒担体等も製造されているが、近年ではこれらの性能向上のために高精度な押出成形が強く求められるようになってきており、成形体の寸法安定性及び加工時の保形性等についての要求も高まってきている。
一般的なセラミックの製造方法としては、押出等により成形体を得る成形工程、該成形品に熱風やマイクロ波等を照射して脱水する乾燥工程、及びバインダー等の有機物を焼成する焼成工程を経てセラミック製品を得る方法が挙げられる。上記した成形精度を向上させる手段としては、バインダー相の含水率を高めることにより坏土の流動性を向上させる方法が挙げられるが、この場合には乾燥工程で多量の水分が蒸発するために成形体の収縮度合いが大きくなり、生産ラインに適合する成形体寸法から外れる等の問題が生じる。
As a general molding method of ceramic, there are various methods such as extrusion molding, injection molding, and casting molding. For example, with regard to extrusion molding, it is a method of molding by applying pressure to a kneaded composition (hereinafter also referred to as a kneaded material) kneaded with ceramic powder, a binder, water, etc., and having a constant cross section. It is suitable for efficiently producing a product having a shape such as a rod or pipe. Filters, catalyst carriers, etc. are also manufactured by this extrusion molding method, but in recent years, high-precision extrusion molding has been strongly demanded to improve these performances, and the dimensional stability and processing of the molded body The demand for shape retention at the time is also increasing.
As a general method for producing a ceramic, a molding process for obtaining a molded body by extrusion or the like, a drying process for irradiating the molded product with hot air or microwaves, and a firing process for firing organic substances such as a binder are performed. The method of obtaining a ceramic product is mentioned. As a means for improving the molding accuracy described above, there is a method of improving the fluidity of the clay by increasing the moisture content of the binder phase. In this case, the molding is performed because a large amount of water evaporates in the drying process. The degree of shrinkage of the body increases, causing problems such as deviating from the size of the molded body suitable for the production line.

セラミックの成形体乾燥時の収縮を効果的に低減する方法はあまり提案されていない。該収縮を低減するためには混練に使用する水の量をできる限り減らすことが有効であるが、この場合には坏土の粘度が高くなるために操作性に問題を生じる。これに対して特許文献1では特定の脂肪酸塩からなる分散剤を添加して坏土の粘度を低減する方法が開示されているが、成形性が不十分であり平滑な成形体が得られ難いという問題があった。また、特許文献2では成形体の潤滑性に優れたポリオキシアルキレンユニット含有分散剤が開示されているが、坏土の粘度を十分に下げるためには多量の分散剤が必要であり、これがバインダー分子間の相互作用を阻害するために、保形性や成形体強度が大きく低下する場合がある。   A method for effectively reducing the shrinkage at the time of drying the ceramic compact has not been proposed. In order to reduce the shrinkage, it is effective to reduce the amount of water used for kneading as much as possible. However, in this case, the viscosity of the kneaded material becomes high, causing a problem in operability. On the other hand, Patent Document 1 discloses a method of adding a dispersant composed of a specific fatty acid salt to reduce the viscosity of the clay, but the moldability is insufficient and it is difficult to obtain a smooth molded body. There was a problem. In addition, Patent Document 2 discloses a polyoxyalkylene unit-containing dispersant having excellent lubricity of a molded product, but a large amount of dispersant is necessary to sufficiently reduce the viscosity of the clay, and this is a binder. In order to inhibit the interaction between molecules, the shape retention and the strength of the molded body may be greatly reduced.

特開2002−293645号公報JP 2002-293645 A 特開2009−46385号公報JP 2009-46385 A

本発明の課題は、高精度の成形体を再現性良く得るために、押出成形などにより得られた成形体の乾燥による収縮を抑制するのに有効であり、かつ保形性も良好な乾燥収縮低減剤、及びこれを用いたセラミック成形体の乾燥収縮低減方法を提供することである。   An object of the present invention is to obtain a highly accurate molded product with good reproducibility, which is effective in suppressing shrinkage due to drying of a molded product obtained by extrusion molding and the like, and also has good shape retention. It is to provide a reducing agent and a method for reducing drying shrinkage of a ceramic molded body using the same.

本発明者らは、上記課題に鑑み鋭意検討した結果、イオン交換水で飽和膨潤した状態における平均粒子径が10μmを超えて100μm以下であり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gである重合体微粒子をセラミック成形時に用いることが有効であることを見出し、本発明を完成した。   As a result of intensive studies in view of the above problems, the present inventors have found that the average particle diameter in the state of saturated swelling with ion-exchanged water is more than 10 μm and not more than 100 μm, and the water absorption amount of ion-exchanged water at normal pressure is 0.1. It was found that it is effective to use polymer fine particles of ˜60 mL / g at the time of ceramic molding, and the present invention was completed.

本発明は以下の通りである。
1.重合開始剤として油溶性酸化剤と水溶性還元剤を用いる逆相懸濁重合法により製造される重合体微粒子であって、イオン交換水で飽和膨潤した状態における平均粒子径が10μmを超えて100μm以下であり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gである重合体微粒子を含むセラミック成形用の乾燥収縮低減剤。
2.上記逆相懸濁重合が、(メタ)アクリル酸、及び2−アクリルアミド−2−メチルプロパンスルホン酸の1種以上を用いて行われるものである上記1に記載の乾燥収縮低減剤。
3.上記1又は2に記載の乾燥収縮低減剤を用いたセラミック成形体の乾燥収縮低減方法。
The present invention is as follows.
1. Polymer fine particles produced by a reverse-phase suspension polymerization method using an oil-soluble oxidant and a water-soluble reducing agent as a polymerization initiator, and the average particle diameter in a state of saturated swelling with ion-exchanged water exceeds 10 μm and is 100 μm A drying shrinkage reducing agent for ceramic molding, comprising polymer fine particles having a water absorption of from 0.1 to 60 mL / g at normal pressure, which is below.
2. 2. The drying shrinkage reducing agent according to 1 above, wherein the reverse phase suspension polymerization is carried out using one or more of (meth) acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid.
3. 3. A method for reducing drying shrinkage of a ceramic molded body using the drying shrinkage reducing agent according to 1 or 2 above.

本発明の重合体微粒子を含むセラミック成形用乾燥収縮低減剤をセラミック成形時に用いることにより坏土の流動性が高まるため、少ない水の量でも押出成形等が可能となる。このため、成形後の乾燥工程における乾燥収縮が抑制され、かつ良好な保形性も得られることから高精度の成型体を再現性良く得ることが可能となる。   By using the drying shrinkage reducing agent for ceramic molding containing the polymer fine particles of the present invention at the time of ceramic molding, the fluidity of the kneaded material is increased, so that extrusion molding or the like is possible even with a small amount of water. For this reason, drying shrinkage in the drying step after molding is suppressed, and good shape retention is obtained, so that a highly accurate molded body can be obtained with good reproducibility.

重合体微粒子の吸水量の測定に用いる装置を示す図である。It is a figure which shows the apparatus used for the measurement of the water absorption amount of a polymer microparticle.

本発明は、セラミック成形用乾燥収縮低減剤に関するものであり、具体的にはイオン交換水で飽和膨潤した状態における平均粒子径が10μmを超えて100μm以下であり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gである重合体微粒子を含むセラミック成形体の乾燥収縮低減剤及びこれを用いたセラミック成形体の乾燥収縮低減方法に関する。
本発明の乾燥収縮低減剤は、セラミック粉体、バインダー及び水などと共に混練され、押出成形等のセラミック成形において用いられる。
以下、本発明のセラミック成形体の乾燥収縮低減剤、及び本発明の乾燥収縮低減剤を用いたセラミック成形体の乾燥収縮低減方法について詳しく説明する。尚、本願明細書においては、アクリル酸又はメタクリル酸を(メタ)アクリル酸と表す。
TECHNICAL FIELD The present invention relates to a drying shrinkage reducing agent for ceramic molding. Specifically, the average particle diameter in a state of saturated swelling with ion exchange water is more than 10 μm and not more than 100 μm, and water absorption of ion exchange water at normal pressure. The present invention relates to a drying shrinkage reducing agent for a ceramic molded body containing polymer fine particles having an amount of 0.1 to 60 mL / g, and a method for reducing the drying shrinkage of a ceramic molded body using the same.
The drying shrinkage reducing agent of the present invention is kneaded with ceramic powder, a binder, water and the like and used in ceramic molding such as extrusion molding.
Hereinafter, the drying shrinkage reducing agent for a ceramic molded body of the present invention and the method for reducing the drying shrinkage of a ceramic molded body using the dry shrinkage reducing agent of the present invention will be described in detail. In the present specification, acrylic acid or methacrylic acid is represented as (meth) acrylic acid.

本発明で使用される重合体微粒子は、イオン交換水で飽和膨潤した状態における重合体微粒子の平均粒子径が10μmを超えて100μm以下の範囲であることが必要であり、好ましくは15〜80μmの範囲である。平均粒子径が100μmを超えると平滑な表面のセラミック成形体が得られない。一方、10μm以下の場合は潤滑性が不十分となる。   The polymer fine particles used in the present invention are required to have an average particle size of more than 10 μm and not more than 100 μm, preferably 15 to 80 μm, in a state of saturated swelling with ion exchange water. It is a range. If the average particle diameter exceeds 100 μm, a ceramic molded body having a smooth surface cannot be obtained. On the other hand, in the case of 10 μm or less, the lubricity becomes insufficient.

さらに、常圧における上記重合体微粒子のイオン交換水の吸水量は0.1〜60mL/gの範囲であることが必要であり、好ましくは0.1〜20mL/gの範囲である。上記吸水量が0.1mL/g未満の場合はバインダー相の含水量を十分に低減することができないため、乾燥収縮低減効果が不十分となる。一方、吸水量が60mL/gを越える場合、重合体微粒子の吸水量が大きくなりすぎるためにセラミックの混練に使用する水量を増やさなければ混練できず、結果として乾燥収縮が低減されない場合や成形体の保形性が低下する場合がある。   Furthermore, the water absorption amount of the above polymer fine particles at normal pressure needs to be in the range of 0.1 to 60 mL / g, and preferably in the range of 0.1 to 20 mL / g. When the water absorption is less than 0.1 mL / g, the moisture content of the binder phase cannot be sufficiently reduced, and thus the drying shrinkage reduction effect is insufficient. On the other hand, when the amount of water absorption exceeds 60 mL / g, the amount of water absorption of the polymer fine particles becomes too large so that the water cannot be mixed without increasing the amount of water used for kneading the ceramic. In some cases, the shape-retaining property of the resin may deteriorate.

本発明による乾燥収縮低減剤を用いた場合、それ自身が微粒子形状を有するために杯土の流動性を高める働きを有する。このため少ない水の量でも押出成形等が可能となり、乾燥時の収縮が低減されると推定される。   When the drying shrinkage reducing agent according to the present invention is used, the dry shrinkage reducing agent itself has a function of increasing the fluidity of the clay because it has a fine particle shape. Therefore, it is presumed that extrusion molding or the like is possible even with a small amount of water, and shrinkage during drying is reduced.

本発明の重合体微粒子を製造する方法としては、水溶液重合、逆相懸濁重合、分散重合等の公知の重合方法を採用することが可能であるが、ミクロンサイズの高架橋球状微粒子が簡便に得られる点から逆相懸濁重合が好ましい。   As a method for producing the polymer fine particles of the present invention, known polymerization methods such as aqueous solution polymerization, reverse phase suspension polymerization, dispersion polymerization and the like can be adopted, but micron-sized highly crosslinked spherical fine particles can be easily obtained. Therefore, reverse phase suspension polymerization is preferable.

逆相懸濁重合は、一般的には、油相を分散媒とし水相を分散質とする逆相懸濁重合の意味であり、本発明では、分散安定剤を含む油相(疎水性有機溶媒よりなる分散媒)中に水相(ビニル系単量体混合物の水溶液)が水滴状に懸濁した、油中水型(W/O型)の逆相懸濁重合により重合体微粒子が製造されるのが好ましい。
また、逆相懸濁重合では、分散安定剤の種類、及び量、又は攪拌回転数等によって、得られる微粒子の粒子径を調整することができる。
Reverse phase suspension polymerization generally means reverse phase suspension polymerization in which an oil phase is a dispersion medium and an aqueous phase is a dispersoid. In the present invention, an oil phase (hydrophobic organic polymer) containing a dispersion stabilizer is used. Polymer fine particles are produced by water-in-oil type (W / O type) reversed-phase suspension polymerization in which the aqueous phase (aqueous solution of vinyl monomer mixture) is suspended in water droplets in a dispersion medium comprising a solvent. It is preferred that
Moreover, in reverse phase suspension polymerization, the particle diameter of the fine particles obtained can be adjusted by the type and amount of the dispersion stabilizer, the rotation speed of stirring, or the like.

本発明の逆相懸濁重合における油相(分散媒)をなす疎水性有機溶媒として、例えば、炭素数6以上の脂肪族炭化水素溶媒、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素溶媒、オクタメチルシクロテトラシロキサンなどのシリコーン系溶媒などを用いることができ、特にヘキサン、シクロヘキサン、およびn−ヘプタンが、ビニル系単量体および水の溶解度が小さく、かつ重合後に除去することが容易であることから好ましく用いられる。   Examples of the hydrophobic organic solvent that forms the oil phase (dispersion medium) in the reversed-phase suspension polymerization of the present invention include, for example, aliphatic hydrocarbon solvents having 6 or more carbon atoms, and aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene. In addition, silicone solvents such as octamethylcyclotetrasiloxane can be used. In particular, hexane, cyclohexane, and n-heptane have low solubility in vinyl monomers and water, and can be easily removed after polymerization. It is preferably used because of its existence.

逆相懸濁重合に用いる開始剤は、熱分解型開始剤、またはレドックス型開始剤等、公知の開始剤を使用することが可能であるが、レドックス型開始剤を使用することが好ましい。レドックス反応は低温での重合開始が可能であり、重合反応液中のビニル系単量体濃度を高くすること、また重合速度を大きくすることが可能となるため、生産性、および生成重合体の分子量を高くすることが可能となる。
また、油溶性酸化剤と水溶性還元剤を使用するレドックス系開始剤を使用した場合、凝集粒子を生じることなく、粒度分布の狭い重合体微粒子が得られるため、特に好ましい。
As the initiator used for the reverse phase suspension polymerization, a known initiator such as a thermal decomposition type initiator or a redox type initiator can be used, but a redox type initiator is preferably used. The redox reaction can start polymerization at a low temperature, and the vinyl monomer concentration in the polymerization reaction solution can be increased and the polymerization rate can be increased. It becomes possible to increase the molecular weight.
In addition, the use of a redox initiator that uses an oil-soluble oxidant and a water-soluble reducing agent is particularly preferable because polymer fine particles having a narrow particle size distribution can be obtained without producing aggregated particles.

上記のとおり、逆相懸濁重合では疎水性有機溶媒が連続相(油相)として用いられるので、油溶性酸化剤とは、これらの連続相に溶解する酸化剤を意味する。また、油相には分散安定剤を溶解または分散させておいても良い。   As described above, since the hydrophobic organic solvent is used as the continuous phase (oil phase) in the reverse phase suspension polymerization, the oil-soluble oxidant means an oxidant that dissolves in these continuous phases. Further, a dispersion stabilizer may be dissolved or dispersed in the oil phase.

本発明における油溶性酸化剤としては、日本工業規格Z7260−107やOECDTEST Guideline107に定められるオクタノール/水分配係数(logPow)が−1.4以上のものが好ましく、0.0以上のものがさらに好ましく、1.0以上のものが特に好ましい。   As the oil-soluble oxidant in the present invention, those having an octanol / water partition coefficient (logPow) of -1.4 or more as defined in Japanese Industrial Standard Z7260-107 and OECDTEST Guideline 107 are preferred, and those having 0.0 or more are more preferred. 1.0 or more is particularly preferable.

具体例としてt−ブチルヒドロパーオキサイド(logPow=1.3)、ジ−t−ブチルヒドロパーオキサイド、t−ヘキシルヒドロパーオキサイド、ジ−t−アミルパーオキサイド、クメンヒドロパーオキサイド(logPow=2.2)、ジクミルパーオキサイド(logPow=5.5)、t−ブチルクミルパーオキサイド、t−ブチルパーオキシピバレート、過酸化ベンゾイル(logPow=3.5)、過酸化ラウロイルなどの有機過酸化物が挙げられる。これらの中でもt−ブチルヒドロパーオキサイドおよびクメンヒドロパーオキサイドが好ましく、特に好ましくはクメンヒドロパーオキサイドである。   Specific examples include t-butyl hydroperoxide (log Pow = 1.3), di-t-butyl hydroperoxide, t-hexyl hydroperoxide, di-t-amyl peroxide, cumene hydroperoxide (log Pow = 2. 2) Organic peroxides such as dicumyl peroxide (logPow = 5.5), t-butylcumyl peroxide, t-butylperoxypivalate, benzoyl peroxide (logPow = 3.5), lauroyl peroxide Is mentioned. Among these, t-butyl hydroperoxide and cumene hydroperoxide are preferable, and cumene hydroperoxide is particularly preferable.

水溶性還元剤としては、レドックス重合開始剤に使用する還元剤として既知の還元剤が使用できるが、これらの中でも、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ハイドロサルファイトナトリウムが好ましく、特に好ましくはハイドロサルファイトナトリウムである。なお、これらの水溶性還元剤は空気と接触することによって徐々に失活するため、所望の重合開始タイミングの数分前に水に溶解し、添加することが好ましい。   As the water-soluble reducing agent, known reducing agents can be used as the reducing agent used in the redox polymerization initiator. Among these, sodium sulfite, sodium bisulfite, and sodium hydrosulfite are preferable, and hydrosulfite is particularly preferable. Sodium. In addition, since these water-soluble reducing agents are gradually deactivated by contact with air, it is preferable to dissolve and add to water several minutes before the desired polymerization start timing.

油溶性酸化剤と水溶性還元剤を用いる際は、先に水溶性還元剤を反応器に供給した後に、油溶性酸化剤を反応器に供給する方が生成粒子の粒度の均一性が高くなるために好ましい。水溶性還元剤を水溶化して反応器に供給した後、0.5〜15分以内に油溶性酸化剤を供給して重合させるのがより好ましく、1〜5分以内に油溶性酸化剤を供給することが更に好ましい。   When using an oil-soluble oxidant and a water-soluble reducing agent, the uniformity of the particle size of the produced particles becomes higher when the water-soluble reducing agent is supplied to the reactor first and then the oil-soluble oxidant is supplied to the reactor. Therefore, it is preferable. It is more preferable to polymerize by supplying an oil-soluble oxidant within 0.5 to 15 minutes after water-soluble reducing agent is made water-soluble and supply it to the reactor, and supply an oil-soluble oxidant within 1 to 5 minutes. More preferably.

また、油溶性酸化剤の全量を20秒〜120秒の時間をかけて反応器に供給することが好ましく、特に好ましくは20秒〜60秒である。
油溶性酸化剤の供給時間が20秒よりも短い場合、酸化剤の供給に対して拡散が追いつかず、ラジカルの発生が局部的に起こって凝集物が発生するなどの不具合が起こりやすくなる場合があり、好ましくない。また120秒よりも長い場合、還元剤が別の機構で分解消費されることによって、一部の酸化剤が未反応のまま系内に残ってしまう場合がある。酸化剤が未反応のまま残存すると、後の共沸脱水工程や乾燥工程などで凝集物を発生させるなど、不具合の原因となる場合があるため好ましくない。
水溶性還元剤の供給時間に関しては特に制限は無いが、一般に還元剤は空気などとの接触により分解しやすいため、15分間以内で供給するのが好ましい。
The total amount of the oil-soluble oxidant is preferably supplied to the reactor over a period of 20 seconds to 120 seconds, particularly preferably 20 seconds to 60 seconds.
When the supply time of the oil-soluble oxidant is shorter than 20 seconds, the diffusion does not catch up with the supply of the oxidant, and there is a case where a problem such as occurrence of agglomerates occurs due to local generation of radicals. Yes, not preferred. If it is longer than 120 seconds, the reducing agent is decomposed and consumed by another mechanism, so that a part of the oxidizing agent may remain unreacted in the system. If the oxidizing agent remains unreacted, it is not preferable because it may cause problems such as generation of aggregates in a subsequent azeotropic dehydration step or drying step.
The supply time of the water-soluble reducing agent is not particularly limited, but in general, since the reducing agent is easily decomposed by contact with air or the like, it is preferably supplied within 15 minutes.

また、油溶性酸化剤は反応液の液面より下部に位置する供給口から反応器に供給することが好ましい。一般に重合触媒の投入口は反応器の上部に取り付けられており、この投入口から反応液の液面に重合触媒を一括または連続的に供給するが、本発明においては、重合触媒を反応器側面に接続された配管を通して反応液中に供給する方法が、触媒の均一拡散の観点から好ましい。
供給口の位置は、常時反応液中に浸かる位置にあれば制限は無いが、攪拌翼上端または下端から垂直方向の高さにして±1m以内の位置にあるのが好ましく、±50cm以内の位置にあるのがより好ましい。
油溶性酸化剤を供給する方法としては、反応液の液面より下部に位置する供給口に通じる配管を通してポンプ、あるいは窒素のような不活性ガスのガス圧で供給する方法が挙げられる。
The oil-soluble oxidant is preferably supplied to the reactor from a supply port located below the liquid level of the reaction solution. In general, the polymerization catalyst inlet is attached to the upper part of the reactor, and the polymerization catalyst is supplied to the liquid level of the reaction liquid from this inlet in a batch or continuously. A method of supplying the reaction solution through a pipe connected to the catalyst is preferable from the viewpoint of uniform diffusion of the catalyst.
The position of the supply port is not limited as long as it is always immersed in the reaction solution, but it is preferably within ± 1 m from the top or bottom of the stirring blade in the vertical direction, and within ± 50 cm. More preferably.
Examples of the method for supplying the oil-soluble oxidant include a method for supplying the oil-soluble oxidant at a gas pressure of an inert gas such as a pump through a pipe leading to a supply port located below the surface of the reaction solution.

上記重合開始剤の使用量は、使用するビニル系単量体の種類、得られる重合体微粒子の粒径や分子量などに応じて調整することができるが、ビニル系単量体の合計量100モルに対して、油溶性酸化剤の使用量は0.001〜0.15モルであることが好ましく、特に好ましくは0.003〜0.07モルである。
また、油溶性酸化剤と水溶性還元剤の比率は特に限定されないが、モル比率で油溶性酸化剤:水溶性還元剤が1.0:0.25〜15.0であることが好ましく、特に好ましくは1.0:1.0〜10.0である。
上記範囲を外れると、単量体の反応率が低下したり、粒子を構成する重合体の鎖長が短くなったり、重合終了後も触媒が残存するなどによって、凝集物が発生するなどの不具合が生じる恐れがある。
The amount of the polymerization initiator used can be adjusted according to the type of vinyl monomer used, the particle size and molecular weight of the resulting polymer fine particles, etc., but the total amount of vinyl monomers is 100 mol. On the other hand, the amount of the oil-soluble oxidant is preferably 0.001 to 0.15 mol, particularly preferably 0.003 to 0.07 mol.
The ratio of the oil-soluble oxidizing agent and the water-soluble reducing agent is not particularly limited, but the oil-soluble oxidizing agent: water-soluble reducing agent is preferably 1.0: 0.25 to 15.0 in terms of molar ratio, Preferably it is 1.0: 1.0-10.0.
If it is out of the above range, the reaction rate of the monomer is reduced, the chain length of the polymer constituting the particle is shortened, or the catalyst remains even after the completion of the polymerization. May occur.

本発明の逆相懸濁重合においては、分散安定剤を使用することができる。
分散安定剤の具体例としては、マクロモノマー型分散安定剤、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤が挙げられる。
これらの中でも、マクロモノマー型分散安定剤を用いることが好ましい。マクロモノマー型分散安定剤は、ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するものである。
In the reverse phase suspension polymerization of the present invention, a dispersion stabilizer can be used.
Specific examples of the dispersion stabilizer include macromonomer type dispersion stabilizers, sorbitan fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitol fatty acid esters, polyoxyethylene alkyl ethers and other nonionic surfactants.
Among these, it is preferable to use a macromonomer type dispersion stabilizer. The macromonomer type dispersion stabilizer has a radically polymerizable unsaturated group at the end of a polymer derived from a vinyl monomer.

また、マクロモノマー型分散安定剤とソルビタンモノオレエートおよびソルビタンモノパルミテートなどの、HLBが3〜8である比較的疎水性が高いノニオン性界面活性剤を併用することが好ましく、これらは、1種を併用しても、2種以上を併用しても良い。   Further, it is preferable to use a macromonomer type dispersion stabilizer in combination with a relatively hydrophobic nonionic surfactant having an HLB of 3 to 8, such as sorbitan monooleate and sorbitan monopalmitate. Two or more species may be used in combination.

前記マクロモノマー型分散安定剤として好ましいマクロモノマーは、ビニル系単量体を150〜350℃でラジカル重合して得られる、ビニル系単量体由来の重合体の末端に式(1);H2C=C(X)−(式中、Xは1価の極性基)で表されるα置換型ビニル基を有するマクロモノマーおよび/またはビニル系単量体由来の重合体の末端に(メタ)アクリロイル基を有するマクロモノマーが、分散安定剤としての機能に優れていて好適であり、マクロモノマーの重量平均分子量は1000〜30000であることが好ましく、マクロモノマーは親水性ビニル系単量体由来の構造単位と疎水性ビニル系単量体由来の構造単位の両方を有していることが好ましく、その際の疎水性ビニル系単量体由来の構造単位としては、(メタ)アクリル酸の炭素数8以上のアルキルエステルに由来する構造単位が好ましく、親水性ビニル系単量体由来の構造単位としてはカルボキシル基を有するビニル系単量体に由来する構造単位が好ましい。A preferred macromonomer as the macromonomer-type dispersion stabilizer is a compound derived from the formula (1); H 2 at the end of a polymer derived from a vinyl monomer obtained by radical polymerization of a vinyl monomer at 150 to 350 ° C. At the end of a polymer derived from a macromonomer and / or vinyl monomer having an α-substituted vinyl group represented by C = C (X)-(where X is a monovalent polar group) A macromonomer having an acryloyl group is suitable because of its excellent function as a dispersion stabilizer, and the weight average molecular weight of the macromonomer is preferably 1000 to 30000. The macromonomer is derived from a hydrophilic vinyl monomer. It is preferable to have both a structural unit and a structural unit derived from a hydrophobic vinyl monomer, and the structural unit derived from the hydrophobic vinyl monomer at that time is (meth) acrylic acid. Preferably the structural units derived from prime 8 or more alkyl esters, structural unit derived from a vinyl monomer having a carboxyl group is preferred as the structural unit derived from a hydrophilic vinyl-based monomer.

特に、マクロモノマー型分散安定剤を使用して、親水性ビニル系単量体を逆相懸濁重合させて親水性の重合体微粒子を製造する際には、単官能化合物と共に多官能ビニル系単量体を用いることが好ましく、それによって強度や形状保持性の向上した親水性の架橋した重合体微粒子が得られる。   In particular, when a hydrophilic polymer fine particle is produced by reverse-phase suspension polymerization of a hydrophilic vinyl monomer using a macromonomer type dispersion stabilizer, a polyfunctional vinyl monomer is used together with a monofunctional compound. It is preferable to use a monomer, whereby hydrophilic cross-linked polymer fine particles having improved strength and shape retention are obtained.

分散安定剤は分散媒(油相)である疎水性有機溶媒中に溶解、もしくは均一分散させて重合系に加えることが好ましい。
分散安定剤の使用量は、良好な分散安定性を維持しながら、粒径の揃った親水性重合体微粒子を得るために、ビニル系単量体の合計100質量部に対して、0.1〜50質量部であることが好ましく、0.2〜20質量部であることがより好ましく、0.5〜10質量部であることが更に好ましい。分散安定剤の使用量が少なすぎると、重合系でのビニル系単量体および生成した重合体微粒子の分散安定性が不良になり、生成した重合体微粒子同士の凝集、沈降、粒径のばらつきが生じ易くなる。一方、分散安定剤の使用量が多すぎると、副生微粒子(1μm以下)の生成量が多くなる場合がある。
The dispersion stabilizer is preferably added to the polymerization system after being dissolved or uniformly dispersed in a hydrophobic organic solvent which is a dispersion medium (oil phase).
In order to obtain hydrophilic polymer fine particles having a uniform particle size while maintaining good dispersion stability, the amount of the dispersion stabilizer used is 0.1 with respect to a total of 100 parts by mass of the vinyl monomer. It is preferable that it is -50 mass parts, It is more preferable that it is 0.2-20 mass parts, It is still more preferable that it is 0.5-10 mass parts. If the amount of the dispersion stabilizer used is too small, the dispersion stability of the vinyl monomer in the polymerization system and the generated polymer particles will be poor, and the generated polymer particles will aggregate, settle, and the particle size will vary. Is likely to occur. On the other hand, if the amount of the dispersion stabilizer used is too large, the amount of by-product fine particles (1 μm or less) produced may increase.

本発明の逆相懸濁重合に用いるビニル系単量体としては、ラジカル重合性のビニル系単量体であればいずれでもよく、特に制限されない。例えば、カルボキシル基、アミノ基、リン酸基、スルホン酸基、アミド基、水酸基、アミノ基、4級アンモニウム基などの親水性基を有する親水性ビニル系単量体を使用することができる。   The vinyl monomer used for the reverse phase suspension polymerization of the present invention is not particularly limited as long as it is a radical polymerizable vinyl monomer. For example, a hydrophilic vinyl monomer having a hydrophilic group such as a carboxyl group, amino group, phosphoric acid group, sulfonic acid group, amide group, hydroxyl group, amino group or quaternary ammonium group can be used.

本発明の逆相懸濁重合に用いるビニル系単量体の具体例としては、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸モノブチル、マレイン酸モノブチル、シクロヘキサンジカルボン酸などのカルボキシル基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミドなどのアミノ基を有するビニル系単量体またはそれらの(部分)酸中和物、もしくは(部分)4級化物;N−ビニルピロリドン、アクリロイルモルホリン;アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、3−クロロ−2−アシッドホスホオキシプロピルメタクリレートなどのリン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−スルホエチル(メタ)アクリレート、2−(メタ)アクリロイルエタンスルホン酸、アリルスルホン酸、スチレンスルホン酸、ビニルスルホン酸、アリルホスホン酸、ビニルホスホン酸などのスルホン酸基またはホスホン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミド、N−メチロール(メタ)アクリルアミド、N−アルコキシメチル(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、メトキシポリエチレングリコールモノ(メタ)アクリレートなどのノニオン性親水性単量体を挙げることができ、これらの1種または2種以上を用いることができる。   Specific examples of the vinyl monomer used in the reverse phase suspension polymerization of the present invention include (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, monobutyl itaconate, monobutyl maleate, and cyclohexanedicarboxylic acid. Vinyl monomers having a carboxyl group such as those or neutralized products thereof (partially); N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethyl Vinyl monomers having an amino group such as aminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide or the like (partially) acid neutralized product or (partially) quaternized product; N- Vinylpyrrolidone, acryloylmorpholine; acid phosphooxyethyl methacrylate, reed Vinyl monomers having a phosphoric acid group such as dophosphooxypropyl methacrylate and 3-chloro-2-acid phosphooxypropyl methacrylate, or their (partially) alkali neutralized products; 2- (meth) acrylamide-2-methyl Sulfonic acid groups or phosphonic acid groups such as propanesulfonic acid, 2-sulfoethyl (meth) acrylate, 2- (meth) acryloylethanesulfonic acid, allylsulfonic acid, styrenesulfonic acid, vinylsulfonic acid, allylphosphonic acid, vinylphosphonic acid Or (part) alkali neutralized product thereof; (meth) acrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide, N-methylol (meth) acrylamide, N-alkoxymethyl (meth) Acrylamide, Nonionic hydrophilic monomers such as (meth) acrylonitrile, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, methoxypolyethyleneglycol mono (meth) acrylate, and the like, one or two of these The above can be used.

これらの中でも(メタ)アクリル酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、N,N−ジメチルアミノエチル(メタ)アクリレート、(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、及びメトキシポリエチレングリコールモノ(メタ)アクリレートが親水性が高く、逆相懸濁重合に好適な点から好ましい。
さらに、これらの中でも(メタ)アクリル酸、及び2−アクリルアミド−2−メチルプロパンスルホン酸の1種以上を用いて逆相懸濁重合を行うことが、重合性に優れる点、および得られた重合体微粒子が、吸水性能や保水性能などに優れた重合体微粒子となる点から特に好ましい。
Among these, (meth) acrylic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, N, N-dimethylaminoethyl (meth) acrylate, (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, and Methoxypolyethylene glycol mono (meth) acrylate is preferred because it has high hydrophilicity and is suitable for reverse phase suspension polymerization.
Furthermore, among these, it is excellent in polymerizability that the reverse phase suspension polymerization is performed using one or more of (meth) acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, and the obtained heavy weight. The coalesced fine particles are particularly preferable from the viewpoint that the polymer fine particles are excellent in water absorption performance and water retention performance.

また、本発明ではビニル系単量体として、上記した単官能の親水性ビニル系単量体のうちの1種または2種以上と共に、ラジカル重合性の不飽和基を2個以上有する多官能ビニル系単量体を使用することができる。
したがって、本発明でいう「ビニル系単量体」は、単官能ビニル系単量体および多官能ビニル系単量体の総称である。
Moreover, in this invention, the polyfunctional vinyl which has 2 or more of radical polymerizable unsaturated groups with 1 type or 2 types or more of the above-mentioned monofunctional hydrophilic vinyl monomer as a vinyl monomer. System monomers can be used.
Therefore, the “vinyl monomer” referred to in the present invention is a general term for monofunctional vinyl monomers and polyfunctional vinyl monomers.

多官能ビニル系単量体としては、上記親水性ビニル系単量体とラジカル重合可能な基を2個以上有するビニル系単量体であればいずれでもよく、具体例として、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性物のトリ(メタ)アクリレートなどのポリオール類のジまたはトリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミドなどのビスアミド類、ジビニルベンゼン、アリル(メタ)アクリレートなどを挙げることができ、これらの1種または2種以上を用いることができる。   The polyfunctional vinyl monomer may be any vinyl monomer having at least two radically polymerizable groups with the hydrophilic vinyl monomer. Specific examples thereof include polyethylene glycol di (meta ) Acrylate, polypropylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate and other di- or tri- (meta) ) Bisamides such as acrylate and methylene bis (meth) acrylamide, divinylbenzene, allyl (meth) acrylate, and the like, and one or more of these may be used.

これらの中でも、多官能ビニル系単量体としてはポリエチレングリコールジ(メタ)アクリレートおよびメチレンビス(メタ)アクリルアミドが、ベースをなす親水性ビニル系単量体および水の混合液に対する溶解度に優れ、高架橋密度を得るために使用量を多くする際に有利であり好ましく用いられ、特に好ましくはポリエチレングリコールジ(メタ)アクリレートである。   Among these, as the polyfunctional vinyl monomer, polyethylene glycol di (meth) acrylate and methylenebis (meth) acrylamide are excellent in solubility in a mixed solution of the hydrophilic hydrophilic vinyl monomer and water, and have a high crosslinking density. It is advantageous and preferably used when increasing the amount used to obtain polyethylene glycol, and particularly preferred is polyethylene glycol di (meth) acrylate.

上記多官能ビニル系単量体の使用割合は、使用するビニル系単量体の種類、得られる重合体微粒子の用途などに応じて異なり得るが、重合体微粒子に架橋特性が必要な場合には、全単量体中0.01〜30mol%含まれることが好ましく、0.05〜10mol%であることがより好ましい。0.01mol%以上であれば微粒子の強度が確保され、30mol%以下の場合は十分な吸水性能を得ることができる。   The ratio of the polyfunctional vinyl monomer used may vary depending on the type of vinyl monomer used, the intended use of the resulting polymer fine particles, etc. The total monomer content is preferably 0.01 to 30 mol%, more preferably 0.05 to 10 mol%. If it is 0.01 mol% or more, the strength of the fine particles is secured, and if it is 30 mol% or less, sufficient water absorption performance can be obtained.

本発明で使用される重合体微粒子は、アルカリで中和された酸性官能基を1.5〜9.0mmol/g含むことが好ましく、更に好ましくは3.0〜9.0mmol/gの範囲である。アルカリで中和された酸性官能基が1.5mmol/g未満の場合、十分な吸水量が得られないために乾燥時の収縮低減効果が不十分となる場合がある。一方、9.0mmol/gを越えると溶出成分量が増加し、粗大粒子発生により平滑な表面の成形体が得られない場合がある。
ここで酸性官能基はカルボン酸(塩)、又はスルホン酸(塩)等の酸性基を有するビニル系単量体を使用することにより導入される。また、これとは別にアルキルエステル(メタ)アクリレート等を用いて重合体を得た後、アルカリによりケン化することによって得ることもできる。
The polymer fine particles used in the present invention preferably contain 1.5 to 9.0 mmol / g of acidic functional groups neutralized with alkali, more preferably in the range of 3.0 to 9.0 mmol / g. is there. When the acidic functional group neutralized with an alkali is less than 1.5 mmol / g, a sufficient amount of water absorption cannot be obtained, and the shrinkage reduction effect during drying may be insufficient. On the other hand, if it exceeds 9.0 mmol / g, the amount of the eluted component increases, and a molded article having a smooth surface may not be obtained due to generation of coarse particles.
Here, the acidic functional group is introduced by using a vinyl monomer having an acidic group such as carboxylic acid (salt) or sulfonic acid (salt). Alternatively, a polymer can be obtained using an alkyl ester (meth) acrylate or the like and then saponified with an alkali.

上記した通り、本発明では、カルボキシル基やスルホン酸基等の酸性基を有するビニル系単量体を適当なアルカリで中和することができる。中和により該酸性基を有するビニル系単量体を、アンモニウム塩、揮発性有機アミン塩、又はアルカリ金属塩とすることにより、ビニル系単量体混合物を良好に溶解した水溶液を調整することができる。   As described above, in the present invention, a vinyl monomer having an acidic group such as a carboxyl group or a sulfonic acid group can be neutralized with a suitable alkali. By making the vinyl monomer having the acidic group by neutralization into an ammonium salt, a volatile organic amine salt, or an alkali metal salt, an aqueous solution in which the vinyl monomer mixture is well dissolved can be prepared. it can.

ここで、上記揮発性有機アミン塩を得る具体的なアルカリとしては、トリエチルアミン、トリエタノールアミン、及びN,N−ジメチルプロピルアミン等が挙げられる。
また、上記アルカリ金属塩を得る具体的なアルカリとしては、水酸化ナトリウム、及び水酸化カリウム等が挙げられる。
Here, specific alkalis for obtaining the volatile organic amine salt include triethylamine, triethanolamine, N, N-dimethylpropylamine and the like.
Specific examples of the alkali for obtaining the alkali metal salt include sodium hydroxide and potassium hydroxide.

本発明の乾燥収縮低減剤はセラミック粉体、バインダー及び水等とともに坏土中に混練される。好ましい使用量は坏土中に占める重合体微粒子の割合として0.1〜10質量%であり、更に好ましくは0.1〜5質量%である。0.1質量%以上であれば乾燥収縮低減効果を示すことができ、10質量%以下であれば乾燥時の乾燥ムラ等に起因するクラック発生等を抑制できる。   The drying shrinkage reducing agent of the present invention is kneaded in a clay together with ceramic powder, a binder, water and the like. A preferred use amount is 0.1 to 10% by mass, more preferably 0.1 to 5% by mass as a proportion of polymer fine particles in the clay. If it is 0.1 mass% or more, a drying shrinkage reduction effect can be shown, and if it is 10 mass% or less, generation | occurrence | production of the crack resulting from the drying nonuniformity at the time of drying, etc. can be suppressed.

一般にセラミック成形においては各種成形方法によって成形体が得られ、その後乾燥工程において熱風やマイクロ波を照射して脱水処理が行われる。本発明の乾燥低減収縮剤を用いた場合には、該乾燥工程において水分が蒸発することに起因する成形体の収縮が低減される。   In general, in ceramic molding, a molded body is obtained by various molding methods, and then dehydration is performed by irradiating with hot air or microwaves in a drying process. When the drying reducing shrinkage agent of the present invention is used, shrinkage of the molded product due to the evaporation of moisture in the drying step is reduced.

本発明におけるセラミックとしては、水系で成形可能なものであれば特に制限はない。具体例としては、アルミナ、コージェライト、ムライト、シリカ、ジルコニア、及びチタニア等の酸化物系セラミック、並びに、炭化珪素、窒化珪素、窒化アルミニウム、窒化ホウ素、窒化チタン、及び炭化チタン等の非酸化物系セラミックを挙げることができる。   The ceramic in the present invention is not particularly limited as long as it can be molded in an aqueous system. Specific examples include oxide ceramics such as alumina, cordierite, mullite, silica, zirconia, and titania, and non-oxides such as silicon carbide, silicon nitride, aluminum nitride, boron nitride, titanium nitride, and titanium carbide. Mention may be made of ceramics.

また、セラミック混練組成物中に含まれるバインダーとしては、水系で適用可能なものであれば特に制限はない。例としてメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース等のセルロース誘導体;ポリアクリル酸、ポリアクリルアミド、ポリビニルアルコール等の合成高分子化合物等が使用される。上記のうち、押出成形にはセルロース誘導体が広く使用されている。   In addition, the binder contained in the ceramic kneaded composition is not particularly limited as long as it is applicable in an aqueous system. Examples include cellulose derivatives such as methylcellulose, hydroxypropylmethylcellulose, and hydroxypropylethylcellulose; synthetic polymer compounds such as polyacrylic acid, polyacrylamide, and polyvinyl alcohol. Among the above, cellulose derivatives are widely used for extrusion molding.

なお、本明細書における重合体微粒子のイオン交換水による飽和膨潤状態での平均粒径、および吸水量は、以下の実施例の項に記載する方法で測定または求めた値をいう。   In addition, the average particle diameter in the saturation swelling state by the ion-exchange water of the polymer fine particle in this specification, and the amount of water absorption say the value measured or calculated | required by the method as described in the term of an Example below.

以下、実施例に基づいて本発明を具体的に説明する。以下の記載において「部」は質量部を意味し、「%」は質量%を意味する。 Hereinafter, the present invention will be specifically described based on examples. In the following description, “part” means part by mass, and “%” means mass%.

製造例0:マクロモノマー組成物UM−1の製造
オイルジャケットを備えた容量1000mlの加圧式攪拌槽型反応器のオイルジャケットの温度を240℃に保った。
単量体としてラウリルメタクリレート(以下、「LMA」という)75.0部、アクリル酸(以下、「AA」という)25.0部、重合溶媒としてメチルエチルケトン(以下、「MEK」という)10.0部、重合開始剤としてジターシャリーブチルパーオキサイド0.45部の比率で調整された単量体混合液を原料タンクに仕込んだ。
原料タンクの単量体混合液を反応器に供給を開始し、反応器内の重量が580g、平均滞留時間が12分となるように、単量体混合液の供給と反応混合液の抜き出しを行った。反応器内温度は235℃、反応器内圧は1.1MPaとなるように調整を行った。反応器より抜き出した反応混合液は、20kPaに減圧され、250℃に保たれた薄膜蒸発機に連続的に供給し、単量体や溶剤等が留去されたマクロモノマー組成物として排出される。留去した単量体や溶剤等はコンデンサーで冷却し、留出液として回収した。単量体混合液の供給開始後、反応器内温が235℃に安定してから60分後を回収開始点とし、これから48分間反応を継続してマクロモノマー組成物UM−1を回収した。この間、単量体混合液は反応器に2.34kg供給され、薄膜蒸発機より1.92kgのマクロモノマー組成物が回収された。また留出タンクには0.39kgの留出液が回収された。
留出液をガスクロマトグラフにて分析したところ、留出液100部に対して、LMA31.1部、AA16.4部、その他溶剤等が52.5部であった。
単量体混合液の供給量および組成、マクロモノマー組成物の回収量、留出液の回収量および組成より、単量体の反応率は90.2%、マクロモノマー組成物UM−1の構成単量体組成比は、LMA:AA=76.0/24.0(質量比)と計算された。
Production Example 0: Production of Macromonomer Composition UM-1 The temperature of the oil jacket of a 1000 ml capacity pressurized stirred tank reactor equipped with an oil jacket was kept at 240 ° C.
75.0 parts of lauryl methacrylate (hereinafter referred to as “LMA”) as a monomer, 25.0 parts of acrylic acid (hereinafter referred to as “AA”), 10.0 parts of methyl ethyl ketone (hereinafter referred to as “MEK”) as a polymerization solvent As a polymerization initiator, a monomer mixed liquid adjusted at a ratio of 0.45 part of ditertiary butyl peroxide was charged into a raw material tank.
Start supplying the monomer mixture from the raw material tank to the reactor, and supply the monomer mixture and remove the reaction mixture so that the weight in the reactor is 580 g and the average residence time is 12 minutes. went. The reactor internal temperature was adjusted to 235 ° C., and the reactor internal pressure was adjusted to 1.1 MPa. The reaction mixture extracted from the reactor is decompressed to 20 kPa, continuously supplied to a thin film evaporator maintained at 250 ° C., and discharged as a macromonomer composition from which monomers and solvents are distilled off. . Distilled out monomers and solvents were cooled with a condenser and recovered as a distillate. After the start of the monomer mixture supply, 60 minutes after the reactor internal temperature was stabilized at 235 ° C., the recovery start point was set, and the reaction was continued for 48 minutes to recover the macromonomer composition UM-1. During this time, 2.34 kg of the monomer mixture was supplied to the reactor, and 1.92 kg of the macromonomer composition was recovered from the thin film evaporator. In addition, 0.39 kg of distillate was recovered in the distillate tank.
When the distillate was analyzed by gas chromatography, LMA 31.1 parts, AA 16.4 parts, other solvents, etc. were 52.5 parts with respect to 100 parts of distillate.
From the amount and composition of the monomer mixture, the recovered amount of the macromonomer composition, the recovered amount and composition of the distillate, the monomer reaction rate is 90.2%, and the composition of the macromonomer composition UM-1 The monomer composition ratio was calculated as LMA: AA = 76.0 / 24.0 (mass ratio).

また、溶離液にテトラヒドロフランを用いたゲルパーミエーションクロマトグラフ(以下、「GPC」という)により、マクロモノマー組成物UM−1の分子量を測定したところ、ポリスチレン換算での重量平均分子量(以下、「Mw」という)および数平均分子量(以下、「Mn」という)は、それぞれ、3800、および1800であった。またマクロモノマー組成物の1H−NMR測定より、マクロモノマー組成物中の末端エチレン性不飽和結合の濃度を測定した。1H−NMR測定による末端エチレン性不飽和結合の濃度、GPCによるMn、および構成単量体組成比より、マクロモノマー組成物UM−1の末端エチレン性不飽和結合導入率を計算した結果、97%であった。尚、150℃、60分加熱後の加熱残分による固形分は、98.3%であった。
なお、単量体、重合溶剤、および重合開始剤等の各原料については、市販の工業用製品を精製等の処理を行うことなく、そのまま使用した。
Further, when the molecular weight of the macromonomer composition UM-1 was measured by gel permeation chromatograph (hereinafter referred to as “GPC”) using tetrahydrofuran as an eluent, the weight average molecular weight (hereinafter referred to as “Mw”) in terms of polystyrene was measured. And number average molecular weight (hereinafter referred to as “Mn”) were 3800 and 1800, respectively. Moreover, the density | concentration of the terminal ethylenically unsaturated bond in a macromonomer composition was measured from 1H-NMR measurement of a macromonomer composition. As a result of calculating the terminal ethylenically unsaturated bond introduction rate of the macromonomer composition UM-1 from the concentration of terminal ethylenically unsaturated bonds by 1H-NMR measurement, Mn by GPC, and the constituent monomer composition ratio, 97% Met. The solid content of the heating residue after heating at 150 ° C. for 60 minutes was 98.3%.
In addition, about each raw material, such as a monomer, a polymerization solvent, and a polymerization initiator, the commercially available industrial product was used as it was, without performing processes, such as refinement | purification.

(製造例1:重合体微粒子A−1の製造)
重合には、ピッチドパドル型攪拌翼および2本垂直バッフルからなる撹拌機構を有し、さらに温度計、留出液分離器付き還流冷却器、窒素導入管を備えた、容量2Lの反応器を用いた。なお窒素導入管は反応器の外でふたつに分岐しており、一方からは窒素を、もう一方からはポンプを用いて重合触媒を供給できるようになっている。また、窒素導入管は攪拌翼上端とほぼ同じ高さの反応器壁面に接続されている。
反応器内に分散安定剤としてUM−1を1.5部、及びソルビタンモノオレエート(花王社製、商品名「レオドールAO−10」)10.0部、更に重合溶媒としてn−ヘプタン400.3部を仕込み、溶液の温度を40℃に維持しながら攪拌混合して油相調整した。油相は、40℃で30分間攪拌した後20℃まで冷却した。
一方、別の容器にてAA30.0部、濃度40%のアクリルアミド水溶液(以下、「40%AMD」という)175.0部、ポリエチレングリコールジアクリレート(東亞合成社製、商品名「アロニックスM−243」、平均分子量425)8.7部、およびイオン交換水30.0部を仕込み、攪拌、均一溶解させた。さらに混合液の温度を40℃以下に保つように冷却しながら、25%アンモニア水21.3部をゆっくり加えて中和し単量体混合液を得た。
(Production Example 1: Production of polymer fine particles A-1)
For the polymerization, a reactor having a capacity of 2 L, having a stirring mechanism comprising a pitched paddle type stirring blade and two vertical baffles, and further equipped with a thermometer, a reflux condenser with a distillate separator, and a nitrogen introduction tube was used. . The nitrogen introduction pipe is branched into two outside the reactor, and nitrogen can be supplied from one side and a polymerization catalyst can be supplied from the other side using a pump. Further, the nitrogen introduction tube is connected to the reactor wall surface which is almost the same height as the upper end of the stirring blade.
In the reactor, 1.5 parts of UM-1 as a dispersion stabilizer, 10.0 parts of sorbitan monooleate (trade name “Leodol AO-10” manufactured by Kao Corporation), and n-heptane 400. 3 parts were charged and the oil phase was adjusted by stirring and mixing while maintaining the temperature of the solution at 40 ° C. The oil phase was stirred at 40 ° C. for 30 minutes and then cooled to 20 ° C.
On the other hand, 30.0 parts of AA in a separate container, 175.0 parts of an aqueous acrylamide solution (hereinafter referred to as “40% AMD”) 175.0 parts, polyethylene glycol diacrylate (manufactured by Toagosei Co., Ltd., trade name “Aronix M-243”) 8.7 parts of an average molecular weight of 425) and 30.0 parts of ion-exchanged water were charged, stirred and uniformly dissolved. Further, 21.3 parts of 25% aqueous ammonia was slowly added and neutralized while cooling so that the temperature of the mixed solution was kept at 40 ° C. or lower to obtain a monomer mixed solution.

攪拌機の回転数を870rpmに設定した後、調製した単量体混合液を反応器内に仕込み、単量体混合液が油相に分散した分散液を調整した。この時、反応器内温は20℃に保持した。また分散液に窒素を吹き込むことで反応器内の酸素を除去した。単量体混合物の仕込みから1時間30分経過した時点で、ハイドロサルファイトNa0.18部とイオン交換水2.9部の水溶液を反応器上部に設けられた投入口から添加した。その3分後、クメンハイドロパーオキサイドの80%溶液(日油社製、商品名「パークミルH80」)0.039部をn−ヘプタン3.1部で希釈した溶液を、窒素導入管を通じてポンプで供給した。なお供給は30秒間で行った。供給開始時点から直ちに反応器内温が上昇し、重合が開始したことが確認された。内温の上昇は約30秒でピークに達し、その温度は66.0℃であった。   After setting the rotation speed of the stirrer to 870 rpm, the prepared monomer mixture was charged into the reactor to prepare a dispersion in which the monomer mixture was dispersed in the oil phase. At this time, the internal temperature of the reactor was kept at 20 ° C. Further, oxygen in the reactor was removed by blowing nitrogen into the dispersion. When 1 hour and 30 minutes passed from the preparation of the monomer mixture, an aqueous solution of 0.18 part of hydrosulfite Na and 2.9 parts of ion-exchanged water was added from the inlet provided in the upper part of the reactor. Three minutes later, a solution obtained by diluting 0.039 parts of an 80% solution of cumene hydroperoxide (trade name “Park Mill H80” manufactured by NOF Corporation) with 3.1 parts of n-heptane was pumped through a nitrogen introduction tube. Supplied. The supply was performed for 30 seconds. It was confirmed that the temperature inside the reactor immediately rose from the start of the supply, and the polymerization started. The rise in internal temperature reached a peak in about 30 seconds, and the temperature was 66.0 ° C.

反応液を冷却し温度を20℃とした後、攪拌しながらハイドロサルファイトNa0.05部とイオン交換水1.8部の水溶液を反応器上部に設けられた投入口から添加した。その3分後、t−ブチルハイドロパーオキサイドの69%水溶液(日油社製、商品名「パーブチルH」)0.016部をイオン交換水1.6部で希釈した溶液を、同投入口から添加した。内温が23.6℃まで上昇し、残存モノマーが重合したことが確認された。
次いでオイルバスを130℃に昇温して反応液を加熱し、粒子内に含まれる水とn−へプタンとを共沸させることによって脱水率98%まで脱水した。得られた脱水スラリーを吸引濾過し、濾別された微粒子をn−ヘプタンで繰り返し洗浄して分散安定剤を除去した後、乾燥機で溶剤を完全に揮発させて重合体微粒子A−1の乾燥粉末を得た。
After cooling the reaction liquid to a temperature of 20 ° C., an aqueous solution of 0.05 part of hydrosulfite Na and 1.8 parts of ion-exchanged water was added from the inlet provided at the top of the reactor while stirring. Three minutes later, a solution obtained by diluting 0.016 part of a 69% aqueous solution of t-butyl hydroperoxide (trade name “Perbutyl H”, manufactured by NOF Corporation) with 1.6 parts of ion-exchanged water was added from the same inlet. Added. It was confirmed that the internal temperature rose to 23.6 ° C. and the remaining monomer was polymerized.
Next, the temperature of the oil bath was raised to 130 ° C. to heat the reaction liquid, and water contained in the particles and n-heptane were azeotroped to dehydrate to a dehydration rate of 98%. The obtained dewatered slurry was suction filtered, and the fine particles separated by filtration were washed repeatedly with n-heptane to remove the dispersion stabilizer, and then the solvent was completely volatilized with a dryer to dry the polymer fine particles A-1. A powder was obtained.

(製造例2:重合体微粒子A−2の製造)
モノマー水溶液組成として、AA 50部、40%AMD 125部、アロニックスM−243 4.8部、25%アンモニア水35.4部に変更し、攪拌回転数を640rpmとした点以外は製造例1と同様に製造し、重合体微粒子A−2の乾燥粉末を得た。
(Production Example 2: Production of polymer fine particles A-2)
The monomer aqueous solution composition was changed to 50 parts of AA, 125 parts of 40% AMD, 4.8 parts of Aronix M-243, 35.4 parts of 25% ammonia water, and the production speed was the same as in Production Example 1 except that the stirring speed was 640 rpm. Produced in the same manner, a dry powder of polymer fine particles A-2 was obtained.

(製造例3:重合体微粒子A−3の製造)
攪拌回転数を420rpmに変更下げた点以外は製造例2と同様に製造し、重合体微粒子A−3の乾燥粉末を得た。
(Production Example 3: Production of polymer fine particles A-3)
Manufactured in the same manner as in Production Example 2 except that the stirring speed was changed to 420 rpm, and a dry powder of polymer fine particles A-3 was obtained.

(製造例4:重合体微粒子A−4の製造)
単量体としてAA50.0部、40%AMD125.0部、アロニックスM−243 4.8部、およびイオン交換水30.0部を仕込み、攪拌、均一溶解させた。さらに混合液の温度を40℃以下に保つように冷却しながら、25%アンモニア水35.4部をゆっくり加えて中和し単量体混合物を得た。重合開始剤として2,2−ジメトキシ−2−フェニルアセトフェノン0.01部と過硫酸アンモニウム0.10部を加え、これを内径146mmの円筒形ガラス容器に仕込み、水溶液の温度を20℃に保ちながら30分間窒素バブリングを行った。その後、反応器の上方から100Wブラックライトを用いて5.0mW/cm2の照射強度で3分間紫外線を照射し、シート状含水架橋重合体ゲルを作成した。このゲルを乾燥、破砕し、ロールミル及び電動石臼で更に細かく粉砕することにより重合体微粒子A−4の乾燥粉末を得た。
(Production Example 4: Production of polymer fine particles A-4)
As monomers, 50.0 parts of AA, 125.0 parts of 40% AMD, 4.8 parts of Aronix M-243, and 30.0 parts of ion-exchanged water were charged, stirred, and uniformly dissolved. Further, while cooling so that the temperature of the mixed solution was kept at 40 ° C. or lower, 35.4 parts of 25% ammonia water was slowly added to neutralize to obtain a monomer mixture. As a polymerization initiator, 0.01 part of 2,2-dimethoxy-2-phenylacetophenone and 0.10 part of ammonium persulfate were added and charged into a cylindrical glass container having an inner diameter of 146 mm, while maintaining the temperature of the aqueous solution at 20 ° C. Nitrogen bubbling was performed for a minute. Thereafter, ultraviolet rays were irradiated from above the reactor using a 100 W black light at an irradiation intensity of 5.0 mW / cm 2 for 3 minutes to prepare a sheet-like water-containing crosslinked polymer gel. This gel was dried, crushed, and further finely pulverized with a roll mill and an electric stone mill to obtain a dry powder of polymer fine particles A-4.

(製造例5:重合体微粒子B−1の製造)
連続相の組成をUM−1 1.5部、及びレオドールAO−10V 5.0部、n−ヘプタン160.0部とし、モノマー水溶液組成としてアロニックスM−243を11.0部に変更し、攪拌回転数を1600rpmに上げた点以外は製造例2と同様に製造し、重合体微粒子B−1の乾燥粉末を得た。
(Production Example 5: Production of polymer fine particles B-1)
The composition of the continuous phase was 1.5 parts of UM-1, 5.0 parts of rhodol AO-10V, and 160.0 parts of n-heptane, and Aronix M-243 was changed to 11.0 parts as the monomer aqueous solution composition and stirred. Manufactured in the same manner as in Production Example 2 except that the number of revolutions was increased to 1600 rpm, to obtain a dry powder of polymer fine particles B-1.

(製造例6:重合体微粒子B−2の製造)
攪拌回転数を300rpmに下げた点以外は製造例2と同様に製造し、重合体微粒子B−2の乾燥粉末を得た。
(Production Example 6: Production of polymer fine particles B-2)
Manufactured in the same manner as in Production Example 2 except that the stirring speed was lowered to 300 rpm, to obtain a dry powder of polymer fine particles B-2.

(製造例7:重合体微粒子B−3の製造)
モノマー水溶液組成として、アロニックスM−243を0.95部に変更し、攪拌回転数を830rpmとした点以外は製造例2と同様に製造し、重合体微粒子B−3の乾燥粉末を得た。
(Production Example 7: Production of polymer fine particles B-3)
The monomer aqueous solution composition was manufactured in the same manner as in Production Example 2 except that Aronix M-243 was changed to 0.95 parts and the stirring rotation speed was 830 rpm, to obtain a dry powder of polymer fine particles B-3.

(製造例8:重合体微粒子B−4の製造)
重合には、ピッチドパドル型攪拌翼および2本垂直バッフルからなる撹拌機構を有し、さらに温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。反応器は温度調節機付きヒーターを備えた浴槽に設置した。
反応器内に分散安定剤としてポリビニルアルコール(クラレ社製、商品名「PVA−420」)26.7部及びイオン交換水1200.0部を仕込み、均一に溶解するまで攪拌した。一方、別の容器にてスチレン(以下、「St」という)100.0部、純度55%のジビニルベンゼン(以下「55%DVB」という)33.3部及び純度75%の過酸化ベンゾイル3.0部からなる単量体混合液を調整し、全量を反応器に投入した。
窒素気流下、800rpmで攪拌しながら内温を80℃に昇温し、8時間加熱攪拌を続けた。分散液の全量を200メッシュのポリネットで濾過し、遠心分離によって沈降部を回収後、90℃に設定した通風乾燥機で1.5時間乾燥させて重合体微粒子B−4を得た。樹脂微粒子B−4の乾燥状態での平均粒径は32.5μmであった。
(Production Example 8: Production of polymer fine particles B-4)
For the polymerization, a reactor having a stirring mechanism composed of a pitched paddle type stirring blade and two vertical baffles, and further equipped with a thermometer, a reflux condenser, and a nitrogen introduction tube was used. The reactor was installed in a bathtub equipped with a heater with a temperature controller.
In the reactor, 26.7 parts of polyvinyl alcohol (trade name “PVA-420” manufactured by Kuraray Co., Ltd.) and 1200.0 parts of ion-exchanged water as dispersion stabilizers were charged and stirred until they were uniformly dissolved. On the other hand, in a separate container, 100.0 parts of styrene (hereinafter referred to as “St”), 33.3 parts of divinylbenzene having a purity of 55% (hereinafter referred to as “55% DVB”) and benzoyl peroxide having a purity of 75% 3. A monomer mixture consisting of 0 parts was prepared, and the whole amount was charged into the reactor.
While stirring at 800 rpm in a nitrogen stream, the internal temperature was raised to 80 ° C., and stirring was continued for 8 hours. The total amount of the dispersion was filtered through a 200-mesh polynet, and the sedimented portion was collected by centrifugation and then dried for 1.5 hours with a ventilator set at 90 ° C. to obtain polymer fine particles B-4. The average particle diameter of the resin fine particles B-4 in a dry state was 32.5 μm.

(実施例1)
表1に示す標準配合処方により、セラミック押出成形体の乾燥収縮試験を実施した。
セラミック原料粉末として表1に示す量のタルク、カオリン、アルミナ、水酸化アルミニウム、およびシリカを秤量した。ここへバインダーとしてメチルセルロース4.6部を加えてドライブレンドした。更に重合体微粒子A−1 0.4部を加えて更にドライブレンドした。
上記の粉末混合物をニーダーで混練しながらイオン交換水を少量ずつ添加し、混練を続けた。混練するにつれてメチルセルロースが溶解してニーダーの電流値が上昇し、やがて一定となった時点で混練が完了したと判断して混練物を取り出した。この混練物をピストンに押し込んで円柱状に押出成形し、概略寸法がφ15mm×50mm、コージェライト系のセラミックの押出成形体を得た。
Example 1
A dry shrinkage test of the ceramic extrusion was carried out according to the standard formulation shown in Table 1.
The amounts of talc, kaolin, alumina, aluminum hydroxide, and silica shown in Table 1 were weighed as ceramic raw material powders. To this, 4.6 parts of methylcellulose as a binder was added and dry blended. Furthermore, 0.4 parts of polymer fine particles A-1 were added and further dry blended.
While the above powder mixture was kneaded with a kneader, ion-exchanged water was added little by little and the kneading was continued. As the kneading, methylcellulose was dissolved and the current value of the kneader increased, and when it became constant, the kneading was judged to be completed and the kneaded product was taken out. The kneaded product was pushed into a piston and extruded into a columnar shape to obtain a cordierite-type ceramic extruded product having a general dimension of φ15 mm × 50 mm.

Figure 0005660136
Figure 0005660136

《乾燥収縮度合いの評価》
得られたセラミック押出成形体の長さと直径をノギスで測定し、110℃の通風乾燥機内で120分間加熱乾燥した。乾燥後の成形体寸法を同様に測定し、乾燥前後の成形体の体積を算出した。これらの値から、式(1)に従って寸法比を算出した(寸法比が1に近いほど成形体の乾燥収縮度合いは小さい)。試験結果を表2に示す。
<< Evaluation of degree of drying shrinkage >>
The length and diameter of the obtained ceramic extrudate were measured with a vernier caliper and dried by heating in a draft dryer at 110 ° C. for 120 minutes. The size of the molded body after drying was measured in the same manner, and the volume of the molded body before and after drying was calculated. From these values, the dimensional ratio was calculated according to the equation (1) (the closer the dimensional ratio is to 1, the smaller the degree of drying shrinkage of the molded body). The test results are shown in Table 2.

Figure 0005660136
Figure 0005660136

《保形性の評価》
上記押出成形により得られた成形体の外観を乾燥前後について目視で確認し、以下基準に従って評価した。結果を表2に示す。
○:円柱形状を良好に維持
△:円柱形状がわずかに変形
×:円柱形状が大きく変形
<< Evaluation of shape retention >>
The appearance of the molded body obtained by the extrusion molding was visually confirmed before and after drying, and evaluated according to the following criteria. The results are shown in Table 2.
○: Maintaining good cylindrical shape △: Slightly deformed cylindrical shape ×: Largely deformed cylindrical shape

《成形体表面状態の評価》
また、得られた成形体乾燥物を1000℃まで昇温した後、昇温速度50℃/時間で1400℃まで昇温した。更に、1420℃に達したところで温度を維持し、4時間焼成した。焼成体の表面状態を目視により観察し、以下に示す基準に従って平滑性を評価した。結果を表2に示す。
◎:表面が平滑。
○:表面の一部に微細な凹凸が見られる。
△:表面の一部に微細な凹凸、およびクラックが見られる。
×:表面の全体に微細な凹凸、およびクラックが見られる。
××:表面の平滑性が著しく不良であり、全体にクラックが見られる。
<< Evaluation of surface condition of molded body >>
Moreover, after heating up the obtained molded object dried material to 1000 degreeC, it heated up to 1400 degreeC with the temperature increase rate of 50 degreeC / hour. Further, when the temperature reached 1420 ° C., the temperature was maintained, and firing was performed for 4 hours. The surface state of the fired body was visually observed, and smoothness was evaluated according to the following criteria. The results are shown in Table 2.
A: The surface is smooth.
○: Fine irregularities are observed on a part of the surface.
Δ: Fine irregularities and cracks are observed on a part of the surface.
X: Fine irregularities and cracks are observed on the entire surface.
XX: The smoothness of the surface is extremely poor, and cracks are seen throughout.

(実施例2〜3及び比較例6
重合体微粒子にA−2〜A−4を用いた点以外は実施例1と同様の操作により乾燥収縮度合い、および焼成体の表面状態を評価した。試験結果を表2に示す。
(Examples 2 to 3 and Comparative Example 6 )
Except that A-2 to A-4 were used for the polymer fine particles, the degree of drying shrinkage and the surface state of the fired body were evaluated by the same operation as in Example 1. The test results are shown in Table 2.

(比較例1〜4)
重合体微粒子にB−1〜B−4を用いた点以外は実施例1と同様の操作により乾燥収縮度合い、および焼成体の表面状態を評価した。なお、B−1については33.4部全量の水を添加してもまだ混練物の一部にパサツキが見られたため、更に5.2部の水を追加して混練した。同様にB−3については14.0部の水を追加して混練した。試験結果を表3に示す。
(Comparative Examples 1-4)
Except for using B-1 to B-4 as polymer fine particles, the degree of drying shrinkage and the surface state of the fired product were evaluated by the same operations as in Example 1. In addition, about B-1, even if 33.4 parts of the total amount of water was added, a portion of the kneaded material was still crumpled, so 5.2 parts of water was further added and kneaded. Similarly, for B-3, 14.0 parts of water was added and kneaded. The test results are shown in Table 3.

(比較例5)
重合体微粒子を用いなかった点以外は実施例1と同様の操作により乾燥収縮度合い、および焼成体の表面状態を評価した。ただし、混練の際に水8.0部の追加が必要であった。試験結果を表3に示す。
(Comparative Example 5)
Except that the polymer fine particles were not used, the degree of drying shrinkage and the surface state of the fired product were evaluated by the same operations as in Example 1. However, it was necessary to add 8.0 parts of water during kneading. The test results are shown in Table 3.

Figure 0005660136
Figure 0005660136

Figure 0005660136
Figure 0005660136

上記実施例における、重合体微粒子の分析条件(1)〜(3)は以下に記載のとおりである。
(1)固形分
測定サンプル約1gを秤量(a)し、次いで、無風乾燥機150℃、60分間乾燥後の残分を測定(b)し、以下の式より算出した。測定には秤量ビンを使用した。その他の操作については、JIS K 0067−1992(化学製品の減量及び残分試験方法)に準拠した。
固形分(%)=(b/a)×100
The analysis conditions (1) to (3) of the polymer fine particles in the above examples are as described below.
(1) About 1 g of a solid content measurement sample was weighed (a), then the residue after drying for 60 minutes at 150 ° C. in an airless dryer was measured (b), and calculated from the following formula. A weighing bottle was used for the measurement. Other operations were in accordance with JIS K 0067-1992 (chemical product weight loss and residue test method).
Solid content (%) = (b / a) × 100

(2)水膨潤粒子径
測定サンプル0.02gにイオン交換水20mlを加え、十分に振り混ぜて、サンプルを均一分散させた。また粒子を水飽和膨潤状態とするために、30分以上分散させた分散液について、レーザー回折散乱式粒度分布計(日機装製、MT−3000)を用いて、超音波1分照射後に粒度分布測定を行った。測定時の循環分散媒にはイオン交換水を使用し、分散体の屈折率は1.53とした。測定により得られた体積基準での粒度分布よりメジアン径(μm)を計算し、水膨潤粒子径とした。
(2) Water-swelling particle diameter 20 ml of ion-exchanged water was added to 0.02 g of the measurement sample, and the sample was uniformly dispersed by shaking well. In order to make the particles into a water-saturated swelling state, the particle size distribution is measured after 1 minute of ultrasonic irradiation using a laser diffraction / scattering particle size distribution meter (manufactured by Nikkiso, MT-3000) for a dispersion dispersed for 30 minutes or more. Went. Ion exchange water was used as the circulating dispersion medium at the time of measurement, and the refractive index of the dispersion was 1.53. The median diameter (μm) was calculated from the particle size distribution on the basis of the volume obtained by the measurement, and was defined as the water-swelled particle diameter.

(3)吸水量
吸水量は以下の方法によって測定した。測定装置を図3に示す。
測定装置は図1における<1>〜<3>から構成される。
<1> 空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3およびポリテトラフルオロエチレンチューブ4から成る。
<2> ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3> 重合体微粒子の試料6は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2 内径55mmである。
<1>と<2>とはシリコンチューブ3によって繋がれる。
また、ロート5および支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図1中の点線)。
(3) Water absorption The water absorption was measured by the following method. A measuring apparatus is shown in FIG.
The measuring device is composed of <1> to <3> in FIG.
<1> Consists of a burette 1 with a branch pipe for venting air, a pinch cock 2, a silicon tube 3, and a polytetrafluoroethylene tube 4.
<2> A support cylinder 8 having a large number of holes in the bottom surface on the funnel 5, and a filter paper 10 for the apparatus is installed on the support cylinder 8.
<3> The sample 6 of polymer fine particles is sandwiched between two sample fixing filter papers 7, and the sample fixing filter papers are fixed by an adhesive tape 9. All filter papers used are ADVANTEC No. 2 The inner diameter is 55 mm.
<1> and <2> are connected by the silicon tube 3.
Further, the funnel 5 and the column cylinder 8 are fixed to the burette 1 at a fixed height, and the lower end of the polytetrafluoroethylene tube 4 installed inside the buret branch pipe and the bottom surface of the column cylinder 8 have the same height. (Dotted line in FIG. 1).

測定方法について以下に説明する。
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
測定試料の乾燥粉末0.1〜0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a−b)で求められる。同様の操作により、重合体微粒子試料を含まない、2枚の濾紙7のみの吸水量を測定する(d)。
上記操作を行い、吸水量を以下の式より計算した。なお、計算に使用する固形分は、(1)の方法により測定した値を使用した。
吸水量(mL/g)=(c−d)/{測定サンプル重量(g)×(固形分%÷100)}
The measurement method will be described below.
The pinch cock 2 in <1> is removed, and ion exchange water is introduced from the upper part of the burette 1 through the silicon tube 3 so that the burette 1 to the apparatus filter paper 10 are filled with the ion exchange water 12. Next, the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the buret branch pipe with a rubber stopper. In this way, the ion exchange water 12 is continuously supplied from the burette 1 to the filter paper 10 for the apparatus.
Next, after removing the excess ion-exchanged water 12 that oozes from the filter paper for apparatus 10, the reading (a) of the scale of the burette 1 is recorded.
Weigh 0.1 to 0.2 g of the dry powder of the measurement sample and place it uniformly on the center of the sample fixing filter paper 7 as shown in <3>. The sample is sandwiched with another filter paper, and the two filter papers are fastened with the adhesive tape 9 to fix the sample. The filter paper on which the sample is fixed is placed on the apparatus filter paper 10 shown in <2>.
Next, the reading (b) of the scale of the bullet 1 after 30 minutes from the time when the lid 11 is placed on the filter paper 10 for apparatus is recorded.
The sum (c) of the amount of water absorption of the measurement sample and the amount of water absorption of the two sample fixing filter papers 7 is obtained by (ab). By the same operation, the water absorption of only two filter papers 7 not including the polymer fine particle sample is measured (d).
The above operation was performed, and the water absorption was calculated from the following formula. In addition, the value measured by the method of (1) was used for solid content used for calculation.
Water absorption (mL / g) = (cd) / {measurement sample weight (g) × (solid content% ÷ 100)}

本発明の重合体微粒子を使用していない比較例5に対して実施例1〜はいずれも少ない水の量で成形が可能であり、乾燥前後の寸法比も小さく、乾燥による収縮度合いが低減されていることが確認できる。この中でも、また、重合体微粒子が塊状重合で製造された比較例6に対し、重合体微粒子が逆相懸濁重合で製造された実施例1〜3は成形体の表面状態も良好であった。
一方、イオン交換水で飽和膨潤した状態の平均粒子径が本発明の範囲外となる比較例1および2では良好な表面状態の成形体が得られず、また吸水量が本発明の範囲外となる比較例3および4では乾燥収縮低減効果が認められなかった。この中でも吸水量の高い比較例3は、混練に多量の水を必要とするために成形体の保形性が不十分であった。


In comparison with Comparative Example 5 in which the polymer fine particles of the present invention are not used, each of Examples 1 to 3 can be molded with a small amount of water, the dimensional ratio before and after drying is small, and the degree of shrinkage due to drying is reduced. Can be confirmed. Among these, in addition to Comparative Example 6 in which the polymer fine particles were produced by bulk polymerization, Examples 1 to 3 in which the polymer fine particles were produced by reversed-phase suspension polymerization had a good surface state of the molded body. .
On the other hand, in Comparative Examples 1 and 2 in which the average particle diameter in the state of saturated swelling with ion-exchanged water is outside the range of the present invention, a molded article having a good surface state cannot be obtained, and the water absorption is outside the range of the present invention. In Comparative Examples 3 and 4, the drying shrinkage reduction effect was not recognized. Among these, Comparative Example 3 having a high water absorption amount required a large amount of water for kneading, and thus the shape retention of the molded product was insufficient.


本発明の重合体微粒子をセラミック成形に用いた場合には成形後の乾燥工程における成形体の収縮が低減され、かつ該成形体も良好な保形性を示す。このため、高精度のセラミック成形体を再現性良く得ることが可能となる。   When the polymer fine particles of the present invention are used for ceramic molding, shrinkage of the molded body in the drying step after molding is reduced, and the molded body also exhibits good shape retention. For this reason, it becomes possible to obtain a highly accurate ceramic compact with good reproducibility.

1 ビュレット
2 ピンチコック
3 シリコーンチューブ
4 ポリテトラフルオロエチレンチューブ
5 ロート
6 試料(重合体微粒子)
7 試料(重合体微粒子)固定用濾紙
8 支柱円筒
9 粘着テープ
10 装置用濾紙
11 蓋
12 イオン交換水
1 Burette 2 Pinch cock 3 Silicone tube 4 Polytetrafluoroethylene tube 5 Funnel 6 Sample (polymer fine particles)
7 Sample (polymer fine particle) filter paper 8 Fixing column 9 Adhesive tape 10 Device filter paper 11 Lid 12 Ion exchange water

Claims (3)

重合開始剤として油溶性酸化剤と水溶性還元剤を用いる逆相懸濁重合法により製造される重合体微粒子であって、イオン交換水で飽和膨潤した状態における平均粒子径が10μmを超えて100μm以下であり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gである重合体微粒子を含むセラミック成形用の乾燥収縮低減剤。 Polymer fine particles produced by a reverse-phase suspension polymerization method using an oil-soluble oxidant and a water-soluble reducing agent as a polymerization initiator, and the average particle diameter in a state of saturated swelling with ion-exchanged water exceeds 10 μm and is 100 μm A drying shrinkage reducing agent for ceramic molding, comprising polymer fine particles having a water absorption of from 0.1 to 60 mL / g at normal pressure, which is below. 上記逆相懸濁重合が、(メタ)アクリル酸、及び2−アクリルアミド−2−メチルプロパンスルホン酸の1種以上を用いて行われるものである請求項1に記載の乾燥収縮低減剤。The drying shrinkage reducing agent according to claim 1, wherein the reverse phase suspension polymerization is carried out using one or more of (meth) acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. 請求項1又は2に記載の乾燥収縮低減剤を用いたセラミック成形体の乾燥収縮低減方法。 Drying shrinkage-reducing method of a ceramic molded body using the drying shrinkage-reducing agent according to claim 1 or 2.
JP2012529530A 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body Active JP5660136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529530A JP5660136B2 (en) 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010184375 2010-08-19
JP2010184375 2010-08-19
JP2012529530A JP5660136B2 (en) 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body
PCT/JP2011/066530 WO2012023376A1 (en) 2010-08-19 2011-07-21 Agent for reducing drying shrinkage for ceramic formation, and method for reducing drying shrinkage of ceramic molded bodies

Publications (2)

Publication Number Publication Date
JPWO2012023376A1 JPWO2012023376A1 (en) 2013-10-28
JP5660136B2 true JP5660136B2 (en) 2015-01-28

Family

ID=45605037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012529530A Active JP5660136B2 (en) 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body

Country Status (2)

Country Link
JP (1) JP5660136B2 (en)
WO (1) WO2012023376A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052034B2 (en) 2016-05-27 2021-07-06 Nikko Chemicals Co., Ltd. Cosmetic for correcting bumps and dips

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001836A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Method of manufacturing honeycomb structure
WO2008084844A1 (en) * 2007-01-12 2008-07-17 Ngk Insulators, Ltd. Process for producing honeycomb structure
JP2009179767A (en) * 2008-02-01 2009-08-13 Toagosei Co Ltd Method for producing polymer fine particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001836A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Method of manufacturing honeycomb structure
WO2008084844A1 (en) * 2007-01-12 2008-07-17 Ngk Insulators, Ltd. Process for producing honeycomb structure
JP2009179767A (en) * 2008-02-01 2009-08-13 Toagosei Co Ltd Method for producing polymer fine particle

Also Published As

Publication number Publication date
JPWO2012023376A1 (en) 2013-10-28
WO2012023376A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5273311B2 (en) Additive for ceramic molding
JP5499711B2 (en) Method for producing polymer fine particles
JP2008505986A (en) Method for producing cement dispersant and polycarboxylic acid polymer for cement dispersant
KR20090045307A (en) Process for producing fine polymer particle
JP5499712B2 (en) Method for producing polymer fine particles
JP5251886B2 (en) Method for producing polymer fine particles
JP5509525B2 (en) Method for producing polymer fine particles
CN107115796A (en) A kind of preparation method of hydrophiling polyacrylonitrile-based membrane
JP5660136B2 (en) Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body
JP2006097007A (en) Method for producing powdery polycarboxylic acid-based cement dispersant
JP5660135B2 (en) Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body
JP5025923B2 (en) Ceramic composition and method for producing porous ceramic filter
JP2021195521A (en) Molded body and method for manufacturing the same
JP7435710B2 (en) Method for producing water-soluble polymers
JP5298547B2 (en) Method for producing polymer fine particle powder
JPH01111769A (en) Production of ceramic green sheet
KR101943473B1 (en) Preparing method of polymer particle
KR20150018560A (en) Mixed salt suspension polymerization process and resins and catalysts produced thereof
WO2021039139A1 (en) Crosslinkable methacrylate resin particle and pore-forming agent
JP2015067468A (en) Method for producing cement dispersant
JP2003105003A (en) Method of manufacturing copolymer
JPH01167306A (en) Salt-resistant water-absorptive agent and production thereof
JP2559894C (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5660136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250