JP5660135B2 - Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body - Google Patents

Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body Download PDF

Info

Publication number
JP5660135B2
JP5660135B2 JP2012529529A JP2012529529A JP5660135B2 JP 5660135 B2 JP5660135 B2 JP 5660135B2 JP 2012529529 A JP2012529529 A JP 2012529529A JP 2012529529 A JP2012529529 A JP 2012529529A JP 5660135 B2 JP5660135 B2 JP 5660135B2
Authority
JP
Japan
Prior art keywords
drying shrinkage
fine particles
water
ceramic
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012529529A
Other languages
Japanese (ja)
Other versions
JPWO2012023375A1 (en
Inventor
後藤 彰宏
彰宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2012529529A priority Critical patent/JP5660135B2/en
Publication of JPWO2012023375A1 publication Critical patent/JPWO2012023375A1/en
Application granted granted Critical
Publication of JP5660135B2 publication Critical patent/JP5660135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、特に水系のセラミック成形における乾燥工程での収縮を低減し、高精度の成型体を再現よく得るのに有効なセラミック成形用乾燥収縮低減剤及びこれを用いたセラミック成形体の乾燥方法に関する。   The present invention relates to a drying shrinkage reducing agent for ceramic molding which is effective for reducing shrinkage in a drying process particularly in water-based ceramic molding and obtaining a highly accurate molded body with good reproducibility, and a method for drying a ceramic molded body using the same. About.

セラミックの一般的な成形方法としては、押出成形、射出成型、および鋳込み成形等の各種方法が挙げられる。例えば押出成形に関して言えば、セラミック粉体とバインダー、及び水などを混練した混練組成物(以下、坏土ともいう)に圧力をかけて金型から押し出すことにより成形する方法であり、一定の断面形状を持つ、棒状、又はパイプ状等の製品を効率よく製造するのに適している。この押出成形法によってフィルターや触媒担体等も製造されているが、近年ではこれらの性能向上のために高精度な押出成形が強く求められるようになってきており、成形体の寸法安定性及び気孔率等の成形体特性についても高い再現性が要求されている。
一般的なセラミックの製造方法としては、押出等により成形体を得る成形工程、該成形品に熱風やマイクロ波等を照射して脱水する乾燥工程、及びバインダー等の有機物を焼成する焼成工程を経てセラミック製品を得る方法が挙げられる。上記した成形精度を向上させる手段としては、バインダー相の含水率を高めることにより坏土の流動性を向上させる方法が挙げられるが、この場合には乾燥工程で多量の水分が蒸発するために成形体の収縮度合いが大きくなり、生産ラインに適合する成形体寸法から外れる等の問題が生じる。
As a general molding method of ceramic, there are various methods such as extrusion molding, injection molding, and casting molding. For example, with regard to extrusion molding, it is a method of molding by applying pressure to a kneaded composition (hereinafter also referred to as a kneaded material) kneaded with ceramic powder, a binder, water, etc., and having a constant cross section. It is suitable for efficiently producing a product having a shape such as a rod or pipe. Filters, catalyst carriers, etc. are also manufactured by this extrusion molding method, but in recent years, highly accurate extrusion molding has been strongly demanded to improve these performances, and the dimensional stability and pores of the molded body have been strongly demanded. High reproducibility is also required for the compact properties such as rate.
As a general method for producing a ceramic, a molding process for obtaining a molded body by extrusion or the like, a drying process for irradiating the molded product with hot air or microwaves, and a firing process for firing organic substances such as a binder are performed. The method of obtaining a ceramic product is mentioned. As a means for improving the molding accuracy described above, there is a method of improving the fluidity of the clay by increasing the moisture content of the binder phase. In this case, the molding is performed because a large amount of water evaporates in the drying process. The degree of shrinkage of the body increases, causing problems such as deviating from the size of the molded body suitable for the production line.

セラミックの成形体乾燥時の収縮を効果的に低減する方法はあまり提案されていない。該収縮を低減するためには混練に使用する水の量をできる限り減らすことが有効であるが、この場合には坏土の粘度が高くなるために操作性に問題を生じる。これに対して特許文献1では特定の脂肪酸塩からなる分散剤を添加して坏土の粘度を低減する方法が開示されているが、成形性が不十分であり平滑な成形体が得られ難いという問題があった。また、特許文献2では成形体の潤滑性に優れたポリオキシアルキレンユニット含有分散剤が開示されているが、坏土の粘度を十分に下げるためには多量の分散剤が必要であり、これがバインダー分子間の相互作用を阻害するために、保形性や成形体強度が大きく低下する場合がある。   A method for effectively reducing the shrinkage at the time of drying the ceramic compact has not been proposed. In order to reduce the shrinkage, it is effective to reduce the amount of water used for kneading as much as possible. However, in this case, the viscosity of the kneaded material becomes high, causing a problem in operability. On the other hand, Patent Document 1 discloses a method of adding a dispersant composed of a specific fatty acid salt to reduce the viscosity of the clay, but the moldability is insufficient and it is difficult to obtain a smooth molded body. There was a problem. In addition, Patent Document 2 discloses a polyoxyalkylene unit-containing dispersant having excellent lubricity of a molded product, but a large amount of dispersant is necessary to sufficiently reduce the viscosity of the clay, and this is a binder. In order to inhibit the interaction between molecules, the shape retention and the strength of the molded body may be greatly reduced.

特開2002−293645号公報JP 2002-293645 A 特開2009−46385号公報JP 2009-46385 A

本発明の課題は、高精度の成形体を再現性良く得るために、押出成形などにより得られた成形体の乾燥による収縮を抑制するのに有効であり、かつ気孔率等の特性にも影響を及ぼさないような乾燥収縮低減剤、及びこれを用いたセラミック成形体の乾燥収縮低減方法を提供することである。   The object of the present invention is effective in suppressing shrinkage due to drying of a molded product obtained by extrusion molding, etc., in order to obtain a highly accurate molded product with good reproducibility, and also affects characteristics such as porosity. It is to provide a drying shrinkage reducing agent that does not affect the temperature, and a method for reducing dry shrinkage of a ceramic molded body using the same.

本発明者らは、上記課題に鑑み鋭意検討した結果、イオン交換水で飽和膨潤した状態における平均粒子径が0.01〜10μmであり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gである重合体微粒子をセラミック成形時に用いることが有効であることを見出し、本発明を完成した。   As a result of intensive studies in view of the above-mentioned problems, the present inventors have an average particle diameter of 0.01 to 10 μm in a saturated and swollen state with ion-exchanged water, and a water absorption of ion-exchanged water at normal pressure is 0.1 to The inventors have found that it is effective to use polymer fine particles of 60 mL / g at the time of ceramic molding, and completed the present invention.

本発明は以下の通りである。
1.イオン交換水で飽和膨潤した状態における平均粒子径が0.01〜10μmであり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gであって、アルカリで中和された酸性官能基が2.0mmol/g以下である重合体微粒子を含むセラミック成形用の乾燥収縮低減剤。
2.上記重合体微粒子がニオン性不飽和単量体のみからなる単量体混合物を重合することにより得られたものであることを特徴とする上記1記載の乾燥収縮低減剤。
3.上記ノニオン性不飽和単量体混合物が水酸基、アミド基、及びオキシエチレン基から選ばれる1種以上の官能基を有する単量体を含むことを特徴とする上記に記載の乾燥収縮低減剤。
4.上記1〜に記載の乾燥収縮低減剤を用いたセラミック成形体の乾燥収縮低減方法。
5.さらにセラミック気孔形成剤を併用することを特徴とする上記に記載のセラミック成形体の乾燥収縮低減方法。
The present invention is as follows.
1. The average particle diameter in the saturated swollen state with deionized water is 0.01 to 10 [mu] m, water absorption of ion-exchanged water at normal pressure is I 0.1~60mL / g der, neutralized with an alkali acidic A drying shrinkage reducing agent for forming a ceramic, comprising polymer fine particles having a functional group of 2.0 mmol / g or less .
2. Drying shrinkage-reducing agent according to the above 1, characterized in that one obtained by polymerizing the polymer microparticles consists only Roh anion unsaturated monomer monomer mixture.
3. 3. The drying shrinkage reducing agent according to 2 above, wherein the nonionic unsaturated monomer mixture contains a monomer having one or more functional groups selected from a hydroxyl group, an amide group, and an oxyethylene group.
4). A method for reducing drying shrinkage of a ceramic molded body using the drying shrinkage reducing agent according to any one of 1 to 3 above.
5. 5. The method for reducing drying shrinkage of a ceramic molded article according to 4 above, further comprising using a ceramic pore forming agent.

本発明の重合体微粒子を含むセラミック成形用乾燥収縮低減剤をセラミック成形時に用いることにより坏土の流動性が高まるため、少ない水の量でも押出成形等が可能となる。また、得られる成形体の気孔率等にも影響を及ぼさない。このため、成形後の乾燥工程における乾燥収縮が抑制され、高精度の成型体を再現性良く得ることが可能となる。   By using the drying shrinkage reducing agent for ceramic molding containing the polymer fine particles of the present invention at the time of ceramic molding, the fluidity of the kneaded material is increased, so that extrusion molding or the like is possible even with a small amount of water. Further, it does not affect the porosity and the like of the obtained molded body. For this reason, drying shrinkage in the drying step after molding is suppressed, and a highly accurate molded body can be obtained with good reproducibility.

重合体微粒子の吸水量の測定に用いる装置を示す図である。It is a figure which shows the apparatus used for the measurement of the water absorption amount of a polymer microparticle.

本発明は、セラミック成形用乾燥収縮低減剤に関するものであり、具体的にはイオン交換水で飽和膨潤した状態における平均粒子径が0.01〜10μmであり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gであって、アルカリで中和された酸性官能基が2.0mmol/g以下である重合体微粒子を含むセラミック成形体の乾燥収縮低減剤及びこれを用いたセラミック成形体の乾燥収縮低減方法に関する。
本発明の乾燥収縮低減剤は、セラミック粉体、バインダー及び水などと共に混練され、押出成形等のセラミック成形において用いられる。
以下、本発明のセラミック成形体の乾燥収縮低減剤、及び本発明の乾燥収縮低減剤を用いたセラミック成形体の乾燥収縮低減方法について詳しく説明する。尚、本願明細書においては、アクリル酸又はメタクリル酸を(メタ)アクリル酸と表す。
The present invention relates to a drying shrinkage reducing agent for ceramic molding, and specifically has an average particle diameter of 0.01 to 10 μm in a state of saturated swelling with ion-exchanged water, and the water absorption amount of ion-exchanged water at normal pressure ceramic There where I 0.1~60mL / g der, acidic functional groups neutralized with alkali using drying shrinkage-reducing agent and this ceramic formed body containing polymer microparticles or less 2.0 mmol / g The present invention relates to a method for reducing drying shrinkage of a molded body.
The drying shrinkage reducing agent of the present invention is kneaded with ceramic powder, a binder, water and the like and used in ceramic molding such as extrusion molding.
Hereinafter, the drying shrinkage reducing agent for a ceramic molded body of the present invention and the method for reducing the drying shrinkage of a ceramic molded body using the dry shrinkage reducing agent of the present invention will be described in detail. In the present specification, acrylic acid or methacrylic acid is represented as (meth) acrylic acid.

本発明で使用される重合体微粒子は、イオン交換水で飽和膨潤した状態における重合体微粒子の平均粒子径が0.01〜10μmの範囲であることが必要であり、好ましくは0.1〜10μmの範囲である。平均粒子径が10μmを超えると得られたセラミック成形体の気孔特性に影響を及ぼす場合がある。一方、重合体微粒子の平均粒子径は一般的に0.01μmを下回ることはない。   The polymer fine particles used in the present invention are required to have an average particle size in the range of 0.01 to 10 μm, preferably 0.1 to 10 μm, in a state of saturated swelling with ion exchange water. Range. When the average particle size exceeds 10 μm, the pore characteristics of the obtained ceramic molded body may be affected. On the other hand, the average particle size of the polymer fine particles is generally not less than 0.01 μm.

さらに、常圧における上記重合体微粒子のイオン交換水の吸水量は0.1〜60mL/gの範囲である必要があり、好ましくは0.1〜20mL/gの範囲である。上記吸水量が0.1mL/g未満の場合はバインダー相の含水量を十分に低減することができないため、乾燥収縮低減効果が不十分となる。一方、吸水量が60mL/gを越える場合、重合体微粒子の吸水量が大きくなりすぎるためにセラミックの混練に使用する水量を増やさなければ混練できず、結果として乾燥収縮が低減されない場合がある。   Further, the water absorption amount of the polymer fine particles at normal pressure needs to be in the range of 0.1 to 60 mL / g, preferably in the range of 0.1 to 20 mL / g. When the water absorption is less than 0.1 mL / g, the moisture content of the binder phase cannot be sufficiently reduced, and thus the drying shrinkage reduction effect is insufficient. On the other hand, when the amount of water absorption exceeds 60 mL / g, the amount of water absorption of the polymer fine particles becomes too large, so that the water cannot be mixed without increasing the amount of water used for kneading the ceramic, and as a result, drying shrinkage may not be reduced.

本発明による乾燥収縮低減剤を用いた場合の効果は、以下のような機構によるものと推定している。
まず、それ自身が微粒子形状を有するために坏土の流動性を高める働きを有する。このため少ない水の量でも押出成形等が可能となり、乾燥時の収縮が低減される。
さらに、本発明の重合体微粒子は吸水性を有するため、バインダー相中に配された重合体微粒子が近傍のバインダー相から水を吸水し、結果として該バインダー相において水分の偏在化が生じる。乾燥工程では、マトリックスとしてのバインダーは比較的水分が少ないためにその収縮が抑えられる。一方で、吸水した重合体微粒子は乾燥によりそれ自身の体積は減少するものの、バインダー相の中では重合体微粒子の体積減少分に応じたボイドが形成されるため、バインダー相全体としての収縮が低減される。
The effect when the drying shrinkage reducing agent according to the present invention is used is presumed to be due to the following mechanism.
First, since it has a fine particle shape, it has a function of improving the fluidity of the clay. For this reason, extrusion or the like is possible even with a small amount of water, and shrinkage during drying is reduced.
Furthermore, since the polymer fine particles of the present invention have a water absorption property, the polymer fine particles arranged in the binder phase absorb water from the nearby binder phase, and as a result, water is unevenly distributed in the binder phase. In the drying process, since the binder as the matrix has relatively little moisture, the shrinkage thereof is suppressed. On the other hand, although the polymer particles that have absorbed water are reduced in volume by drying, voids corresponding to the volume reduction of the polymer particles are formed in the binder phase, so the shrinkage of the entire binder phase is reduced. Is done.

本発明で使用される重合体微粒子は、アルカリで中和された酸性官能基が3.0mmol/g以下であることが好ましく、2.0mmol/g以下であることがより好ましい。ここで酸性官能基はカルボン酸(塩)、又はスルホン酸(塩)等の酸性基を有するビニル系単量体を使用することにより導入される。また、これとは別にアルキルエステル(メタ)アクリレート等を用いて重合体を得た後、アルカリによりケン化することによっても得られる。3.0mmol/gを超える場合、重合体微粒子の吸水力が強くなりすぎるためにセラミックの混練に使用する水量を増やさなければ混練できず、結果として乾燥収縮が低減されない場合がある。   The polymer fine particles used in the present invention preferably have an acidic functional group neutralized with an alkali of 3.0 mmol / g or less, and more preferably 2.0 mmol / g or less. Here, the acidic functional group is introduced by using a vinyl monomer having an acidic group such as carboxylic acid (salt) or sulfonic acid (salt). Alternatively, the polymer can be obtained by using an alkyl ester (meth) acrylate or the like and then saponified with an alkali. If it exceeds 3.0 mmol / g, the water absorption capacity of the polymer fine particles becomes too strong, so that the kneading cannot be performed unless the amount of water used for kneading the ceramic is increased, and as a result, the drying shrinkage may not be reduced.

上記酸性基を有するビニル系単量体の具体例としては、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸モノブチル、マレイン酸モノブチル、シクロヘキサンジカルボン酸などのカルボキシル基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、3−クロロ−2−アシッドホスホオキシプロピルメタクリレートなどのリン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−スルホエチル(メタ)アクリレート、2−(メタ)アクリロイルエタンスルホン酸、アリルスルホン酸、スチレンスルホン酸、ビニルスルホン酸、アリルホスホン酸、ビニルホスホン酸などのスルホン酸基またはホスホン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物を挙げることができ、これらの1種または2種以上を用いることができる。   Specific examples of the vinyl monomer having an acidic group include carboxyl groups such as (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, monobutyl itaconic acid, monobutyl maleate, and cyclohexanedicarboxylic acid. A vinyl monomer having a phosphate group such as acid phosphooxyethyl methacrylate, acid phosphooxypropyl methacrylate, and 3-chloro-2-acid phosphooxypropyl methacrylate; 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2-sulfoethyl (meth) acrylate, 2- (meth) acryloylethanesulfonic acid, allylsulfonic acid, styrene Sulfonic acid, vinyl Examples thereof include vinyl monomers having a sulfonic acid group or a phosphonic acid group such as sulfonic acid, allylphosphonic acid and vinylphosphonic acid, or (partial) alkali neutralized products thereof, and one or more of these. Can be used.

本発明で使用される重合体微粒子は、実質的にノニオン性不飽和単量体のみからなる単量体混合物を重合することにより得られたものであることが好ましい。重合体微粒子がノニオン性不飽和単量体のみから構成された場合は乾燥工程での乾燥ムラが生じ難く、最終製品の外観不良(反り、ひび割れ等)を抑制できる。また、「実質的に」とは酸性基、又はカチオン性基等のイオン性基を有する単量体を意図的に使用しないことを意味する。   The polymer fine particles used in the present invention are preferably obtained by polymerizing a monomer mixture consisting essentially of only a nonionic unsaturated monomer. When the polymer fine particles are composed of only the nonionic unsaturated monomer, unevenness in drying in the drying process is unlikely to occur, and appearance defects (warping, cracks, etc.) of the final product can be suppressed. Further, “substantially” means that a monomer having an ionic group such as an acidic group or a cationic group is not intentionally used.

上記ノニオン性不飽和単量体の具体例としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の水酸基含有単量体;(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N−イソプロピルアクリルアミド、N−メチロール(メタ)アクリルアミド、N−アルコキシメチル(メタ)アクリルアミド等のアミド基含有単量体;ポリエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート等のオキシエチレン基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の炭素数1〜3の(メタ)アクリル酸エステル;メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート等を挙げることができ、これらの1種または2種以上を用いることができる。
これらの中で水酸基含有単量体、アミド基含有単量体及びオキシエチレン基含有単量体は、重合性及び水に対する溶解性に優れ、親水性に富む重合体微粒子が効率良く得られる点で好ましい。
Specific examples of the nonionic unsaturated monomer include hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl ( Amide group-containing monomers such as (meth) acrylamide, N-isopropylacrylamide, N-methylol (meth) acrylamide, N-alkoxymethyl (meth) acrylamide; polyethylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono (meth) acrylate Oxyethylene group-containing monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and other (meth) acrylic acid esters having 1 to 3 carbon atoms; methoxyethyl (meth) acrylate, glycidyl (Meta Acrylate, N, N-dimethylaminoethyl (meth) acrylate can be exemplified, and can be used alone or in combination of two or more thereof.
Among these, a hydroxyl group-containing monomer, an amide group-containing monomer and an oxyethylene group-containing monomer are excellent in polymerizability and solubility in water, and are capable of efficiently obtaining polymer fine particles rich in hydrophilicity. preferable.

また、本発明では上記した不飽和単量体の他に架橋剤を用いることが好ましい。   In the present invention, it is preferable to use a crosslinking agent in addition to the unsaturated monomer described above.

架橋剤としては、上記ノニオン性不飽和単量体とラジカル重合可能な基を2個以上有するビニル系単量体であればいずれでもよく、具体例として、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性物のトリ(メタ)アクリレートなどのポリオール類のジまたはトリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミドなどのビスアミド類、ジビニルベンゼン、アリル(メタ)アクリレートなどを挙げることができ、これらの1種または2種以上を用いることができる。
また、グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル、N−メチロールアクリルアミド等、重合後にカルボキシル基や水酸基等の官能基と反応させて架橋するタイプの架橋剤でも良い。
The crosslinking agent may be any vinyl monomer having at least two radically polymerizable groups with the nonionic unsaturated monomer. Specific examples include polyethylene glycol di (meth) acrylate, polypropylene glycol. Di- or tri- (meth) acrylates of polyols such as di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, tri (meth) acrylate modified trimethylolpropane ethylene oxide, methylene bis ( Bisamides such as (meth) acrylamide, divinylbenzene, and allyl (meth) acrylate can be used, and one or more of these can be used.
In addition, glycidyl (meth) acrylate, ethylene glycol diglycidyl ether, N-methylol acrylamide, and the like may be a crosslinking agent of a type that is reacted with a functional group such as a carboxyl group or a hydroxyl group after polymerization.

これらの中でも、多官能ビニル系単量体としてはポリエチレングリコールジ(メタ)アクリレートおよびメチレンビス(メタ)アクリルアミドが、ベースをなす親水性ビニル系単量体および水の混合液に対する溶解度に優れ、高架橋密度を得るために使用量を多くする際に有利であり好ましく用いられ、特に好ましくはポリエチレングリコールジ(メタ)アクリレートである。   Among these, as the polyfunctional vinyl monomer, polyethylene glycol di (meth) acrylate and methylenebis (meth) acrylamide are excellent in solubility in a mixed solution of the hydrophilic hydrophilic vinyl monomer and water, and have a high crosslinking density. It is advantageous and preferably used when increasing the amount used to obtain polyethylene glycol, and particularly preferred is polyethylene glycol di (meth) acrylate.

上記架橋剤の使用割合は、使用するビニル系単量体の種類に応じて異なり得るが、重合体微粒子に架橋特性が必要な場合には、全単量体中0.01〜90mol%含まれることが好ましく、0.05〜50mol%であることがより好ましい。0.01mol%以上であれば微粒子の強度が確保され、90mol%以下の場合は十分な吸水性能を得ることができる。   The proportion of the crosslinking agent used may vary depending on the type of vinyl monomer used, but if the polymer fine particles require crosslinking properties, they are contained in an amount of 0.01 to 90 mol% in all monomers. It is preferable that it is 0.05 to 50 mol%. If it is 0.01 mol% or more, the strength of the fine particles is secured, and if it is 90 mol% or less, sufficient water absorption performance can be obtained.

本発明の重合体微粒子を製造する方法としては、逆相乳化重合、分散重合、逆相懸濁重合、沈殿重合、塊状重合等の公知の重合方法を用いることができる。
沈殿重合、塊状重合等のように重合物が凝集物、或いは塊状物として得られる場合は電動石臼、ピンミル、又はジェットミル等で解砕して微粒子としても良い。
粒度分布が狭く、粉末状の重合体微粒子が得られる点では、分散重合、及び逆相懸濁重合が好ましい。単分散微粒子とすることにより気孔形成をより厳密に抑制できる点では分散重合が特に好ましい。
As a method for producing the polymer fine particles of the present invention, a known polymerization method such as reverse phase emulsion polymerization, dispersion polymerization, reverse phase suspension polymerization, precipitation polymerization or bulk polymerization can be used.
When the polymer is obtained as an agglomerate or a lump such as a precipitation polymerization or a lump polymerization, it may be pulverized with an electric mill, pin mill, jet mill or the like to form fine particles.
Dispersion polymerization and reverse phase suspension polymerization are preferred in that the particle size distribution is narrow and powdery polymer fine particles can be obtained. Dispersion polymerization is particularly preferable in that pore formation can be more strictly suppressed by using monodispersed fine particles.

ここで、本明細書における「分散重合法」とは、『ビニル単量体を、分散安定剤の存在下で、ビニル単量体および分散安定剤を溶解するが、重合により生成する重合体を実質的に溶解しない溶媒中で重合する方法』をいう。
本発明では、「ビニル単量体および分散安定剤を溶解するが、生成する重合体を溶解しない溶媒」として、親水性溶媒を用いる。分散重合により生成した重合体は、微粒子状で親水性溶媒中に分散している。
Here, the “dispersion polymerization method” in this specification means “a vinyl monomer is dissolved in the presence of a dispersion stabilizer, the vinyl monomer and the dispersion stabilizer are dissolved, but a polymer produced by polymerization is "Method of polymerizing in a solvent that does not substantially dissolve".
In the present invention, a hydrophilic solvent is used as “a solvent that dissolves the vinyl monomer and the dispersion stabilizer but does not dissolve the polymer to be produced”. The polymer produced by dispersion polymerization is in the form of fine particles and dispersed in a hydrophilic solvent.

本発明では、親水性溶媒として、親水性の有機溶媒(水を含有しない親水性有機溶媒)を使用してもよいし、または親水性の有機溶媒と水との混合溶媒を使用してもよい。その際に、親水性の有機溶媒としては、20℃での水への溶解度が5g/100ml以上であるものが好ましく用いられる。
前記した親水性の有機溶媒の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、sec−ブチルアルコール、テトラヒドロフルフリルアルコールなどのモノアルコール類;エチレングリコール、グリセリン、ジエチレングリコールなどの多価アルコール類;メチルセロソルブ、セロソルブ、イソプロピロピルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテルアルコール類;アセトン、メチルエチルケトンなどのケトン類;酢酸メチル、酢酸エチルなどのエステル類;テトラヒドロフランなどのエーテル類;ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。親水性の有機溶媒は1種類のみを用いてよいし、2種以上を併用してもよい。
重合に使用するビニル単量体の種類、生成する重合体の種類などに応じて、前記した親水性の有機溶媒のうちから、適切な親水性有機溶媒を選択して使用する。
In the present invention, a hydrophilic organic solvent (a hydrophilic organic solvent not containing water) may be used as the hydrophilic solvent, or a mixed solvent of a hydrophilic organic solvent and water may be used. . At that time, as the hydrophilic organic solvent, those having a solubility in water at 20 ° C. of 5 g / 100 ml or more are preferably used.
Specific examples of the hydrophilic organic solvent described above include monoalcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, sec-butyl alcohol, and tetrahydrofurfuryl alcohol; Polyhydric alcohols such as ethylene glycol, glycerin, diethylene glycol; ether alcohols such as methyl cellosolve, cellosolve, isopropylpyro cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; Ketones such as acetone and methyl ethyl ketone; S such as methyl acetate and ethyl acetate Ethers such as tetrahydrofuran; le such dimethylformamide, dimethyl sulfoxide and the like. Only one type of hydrophilic organic solvent may be used, or two or more types may be used in combination.
An appropriate hydrophilic organic solvent is selected from the hydrophilic organic solvents described above according to the type of vinyl monomer used for polymerization, the type of polymer to be produced, and the like.

本発明では、親水性溶媒として、水とアルコールとの混合溶媒、そのうちでも水とメタノール、エタノール、イソプロピルアルコールなどの低級アルコールの1種または2種以上との混合溶媒がより好ましく用いられる。親水性溶媒として水と前記したアルコールとの混合溶媒を用いると、ビニル単量体の種類、組成などに応じて、水とアルコールとの混合比率を調整することで、生成する重合体微粒子の粒子径、粒度分布、分子量などを容易にコントロールすることができ、しかも引火、爆発などの危険性を低減することができ、環境への負荷も小さい。
特に、親水性溶媒として、水とメタノールとの混合溶媒、そのうちでも、水:メタノールの質量比が10:90〜50:50、更には20:80〜40:60である混合溶媒を用いると、粒子径がより小さくて且つ粒度分布の狭い重合体微粒子を円滑に製造することができるので、一層好ましい。
In the present invention, as the hydrophilic solvent, a mixed solvent of water and alcohol, and among them, a mixed solvent of water and one or more of lower alcohols such as methanol, ethanol, and isopropyl alcohol is more preferably used. When a mixed solvent of water and the alcohol is used as the hydrophilic solvent, particles of polymer fine particles to be generated are prepared by adjusting the mixing ratio of water and alcohol according to the type and composition of the vinyl monomer. The diameter, particle size distribution, molecular weight, etc. can be easily controlled, and the risk of ignition, explosion, etc. can be reduced, and the burden on the environment is small.
In particular, as a hydrophilic solvent, when using a mixed solvent of water and methanol, among them, a mixed solvent having a water: methanol mass ratio of 10:90 to 50:50, more preferably 20:80 to 40:60, This is more preferable because polymer fine particles having a smaller particle size and a narrow particle size distribution can be produced smoothly.

ビニル単量体の分散重合時における親水性溶媒の使用量は、ビニル単量体の全量に対して、1〜50質量倍であることが好ましく、2〜10質量倍であることがより好ましい。親水性溶媒の使用量が少なすぎると、分散重合時の重合安定性が不良となる場合があり、また粒度分布が広くなり易く、一方親水性溶媒の使用量が多すぎると重合体微粒子の収率が低下し生産性が悪くなり易い。   The amount of the hydrophilic solvent used in the dispersion polymerization of the vinyl monomer is preferably 1 to 50 times by mass and more preferably 2 to 10 times by mass with respect to the total amount of the vinyl monomer. If the amount of the hydrophilic solvent used is too small, the polymerization stability at the time of dispersion polymerization may be poor, and the particle size distribution tends to be widened. On the other hand, if the amount of the hydrophilic solvent used is too large, the polymer fine particles may not be collected. The rate tends to decrease and productivity tends to deteriorate.

ビニル単量体を分散重合する際の重合開始剤としては、ラジカル重合において通常用いられている重合開始剤を使用することができ、特に制限されない。そのうちでも親水性溶媒に溶解するラジカル重合開始剤が好ましく用いられる。本発明で用い得るラジカル重合開始剤としては、例えば、t−ブチルパーオキシピバレート、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイドなどの有機過酸化物;アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビス(2−アミジノプロパン)ジヒドロクロリド(V−50)、4,4'−アゾビス(4−シアノバレリックアシッド)(V−501)などのアゾ系化合物;過硫酸カリウムなどの過硫化物系化合物などを挙げることができ、これらの1種または2種以上を用いることができる。
そのうちでも、重合開始剤としては、t−ブチルパーオキシピバレート、アゾビス(2,4−ジメチルバレロニトリル)が、粒度分布狭い重合体微粒子を生産性よく製造できる点から好ましく用いられる。
As the polymerization initiator for the dispersion polymerization of the vinyl monomer, a polymerization initiator usually used in radical polymerization can be used and is not particularly limited. Among them, a radical polymerization initiator that is soluble in a hydrophilic solvent is preferably used. Examples of the radical polymerization initiator that can be used in the present invention include t-butyl peroxypivalate, t-butyl peroxy-2-ethylhexanoate, di-t-butyl peroxide, benzoyl peroxide, and lauroyl peroxide. , Organic peroxides such as orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide; azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4- Azo compounds such as dimethylvaleronitrile), 2,2′-azobis (2-amidinopropane) dihydrochloride (V-50), 4,4′-azobis (4-cyanovaleric acid) (V-501); Persulfide compounds such as potassium persulfate, and one of these It can be used two or more kinds.
Among these, as the polymerization initiator, t-butyl peroxypivalate and azobis (2,4-dimethylvaleronitrile) are preferably used from the viewpoint that polymer fine particles having a narrow particle size distribution can be produced with high productivity.

重合開始剤の使用量は特に限定されず、製造する重合体微粒子の分子量、使用する重合開始剤の分解温度などを考慮して適宜決めることができる。一般的には、ビニル単量体の合計100質量部に対して、重合開始剤を0.1〜40質量部の量で使用することが好ましく、1〜10質量部の量で使用することがより好ましい。重合開始剤の使用量が少なすぎると重合体微粒子の収率が低くなり易く、一方重合開始剤の使用量が多すぎると重合速度が大きくなりすぎて、分散重合を安定に行ないにくくなる。   The amount of the polymerization initiator used is not particularly limited and can be appropriately determined in consideration of the molecular weight of the polymer fine particles to be produced, the decomposition temperature of the polymerization initiator to be used, and the like. In general, the polymerization initiator is preferably used in an amount of 0.1 to 40 parts by weight, and preferably in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of vinyl monomers. More preferred. If the amount of the polymerization initiator used is too small, the yield of the polymer fine particles tends to be low. On the other hand, if the amount of the polymerization initiator used is too large, the polymerization rate becomes too high, making it difficult to perform dispersion polymerization stably.

分散重合時の重合温度としては、40〜80℃が好ましく、45〜70℃がより好ましい。重合温度が低すぎると、ビニル単量体の重合速度が低くなって重合体微粒子を生産性よく製造できにくくなり、一方重合温度が高すぎると、生成した重合体微粒子間の凝集などが生じ易く、また重合体微粒子の粒度分布が広くなる。   The polymerization temperature during the dispersion polymerization is preferably 40 to 80 ° C, and more preferably 45 to 70 ° C. If the polymerization temperature is too low, the polymerization rate of the vinyl monomer will be low and it will be difficult to produce polymer fine particles with good productivity. On the other hand, if the polymerization temperature is too high, aggregation between the produced polymer fine particles will easily occur. In addition, the particle size distribution of the polymer fine particles becomes wide.

ビニル単量体を分散重合して重合体微粒子を製造する際の分散安定剤の使用量は、分散重合に用いるビニル単量体の全量に対して、0.2〜10質量%であることが好ましく、0.5〜5.0質量%であることがより好ましい。分散安定剤の使用量が少なすぎると、重合時の安定性が低下して生成した重合体の凝集などが生じ易くなり、一方当該分散安定剤の使用量が多すぎると、生成する重合体微粒子の粒度分布が広くなって、サイズが不揃いになり易い。   The amount of the dispersion stabilizer used in producing the polymer fine particles by dispersion polymerization of the vinyl monomer is 0.2 to 10% by mass with respect to the total amount of the vinyl monomer used for the dispersion polymerization. Preferably, it is 0.5-5.0 mass%. If the amount of the dispersion stabilizer used is too small, the stability at the time of polymerization is lowered and the produced polymer tends to aggregate. On the other hand, if the amount of the dispersion stabilizer used is too large, the polymer fine particles to be produced are produced. The particle size distribution becomes wider and the size tends to be uneven.

分散安定剤の具体例としては、マクロモノマー型分散安定剤、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸などが挙げられる。
これらの中でも、マクロモノマー型分散安定剤を用いることが好ましい。マクロモノマー型分散安定剤は、ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するものである。
Specific examples of the dispersion stabilizer include a macromonomer type dispersion stabilizer, polyvinyl pyrrolidone, polyvinyl alcohol, and polyacrylic acid.
Among these, it is preferable to use a macromonomer type dispersion stabilizer. The macromonomer type dispersion stabilizer has a radically polymerizable unsaturated group at the end of a polymer derived from a vinyl monomer.

前記マクロモノマー型分散安定剤として好ましいマクロモノマーは、ビニル系単量体を150〜350℃でラジカル重合して得られる、ビニル系単量体由来の重合体の末端に式(1);H2C=C(X)−(式中、Xは1価の極性基)で表されるα置換型ビニル基を有するマクロモノマーおよび/またはビニル系単量体由来の重合体の末端に(メタ)アクリロイル基を有するマクロモノマーが、分散安定剤としての機能に優れていて好適であり、マクロモノマーの重量平均分子量は1000〜30000であることが好ましく、マクロモノマーは親水性ビニル系単量体由来の構造単位と疎水性ビニル系単量体由来の構造単位の両方を有していることが好ましく、その際の疎水性ビニル系単量体由来の構造単位としては、(メタ)アクリル酸の炭素数8以上のアルキルエステルに由来する構造単位が好ましく、親水性ビニル系単量体由来の構造単位としてはカルボキシル基を有するビニル系単量体に由来する構造単位が好ましい。A preferred macromonomer as the macromonomer-type dispersion stabilizer is a compound derived from the formula (1); H 2 at the end of a polymer derived from a vinyl monomer obtained by radical polymerization of a vinyl monomer at 150 to 350 ° C. At the end of a polymer derived from a macromonomer and / or vinyl monomer having an α-substituted vinyl group represented by C = C (X)-(where X is a monovalent polar group) A macromonomer having an acryloyl group is suitable because of its excellent function as a dispersion stabilizer, and the weight average molecular weight of the macromonomer is preferably 1000 to 30000. The macromonomer is derived from a hydrophilic vinyl monomer. It is preferable to have both a structural unit and a structural unit derived from a hydrophobic vinyl monomer, and the structural unit derived from the hydrophobic vinyl monomer at that time is (meth) acrylic acid. Preferably the structural units derived from prime 8 or more alkyl esters, structural unit derived from a vinyl monomer having a carboxyl group is preferred as the structural unit derived from a hydrophilic vinyl-based monomer.

分散重合により生成した重合体微粒子は、親水性溶媒中に分散させたままで重合体微粒子の分散液の状態で使用してもよいし、親水性溶媒から分離回収して使用してもよい。
重合体微粒子を親水性溶媒から分離回収する方法としては、例えば、沈降分離法、遠心分離法、デカンテーション法などを採用することができ、更に必要に応じて洗浄、乾燥を行う。
The polymer fine particles produced by the dispersion polymerization may be used in the form of a dispersion of polymer fine particles while being dispersed in a hydrophilic solvent, or may be used after being separated and recovered from the hydrophilic solvent.
As a method for separating and recovering the polymer fine particles from the hydrophilic solvent, for example, a sedimentation separation method, a centrifugal separation method, a decantation method or the like can be adopted, and further, washing and drying are performed as necessary.

また、本発明の重合体微粒子を逆相懸濁重合により得る場合、油相(分散媒)をなす疎水性有機溶媒としては、例えば、炭素数6以上の脂肪族炭化水素溶媒、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素溶媒、オクタメチルシクロテトラシロキサンなどのシリコーン系溶媒などを用いることができ、特にヘキサン、シクロヘキサン、およびn−ヘプタンが、ビニル系単量体および水の溶解度が小さく、かつ重合後に除去することが容易であることから好ましく用いられる。   In addition, when the polymer fine particles of the present invention are obtained by reverse phase suspension polymerization, examples of the hydrophobic organic solvent forming the oil phase (dispersion medium) include aliphatic hydrocarbon solvents having 6 or more carbon atoms, benzene, toluene, Aromatic hydrocarbon solvents such as xylene and ethylbenzene, and silicone solvents such as octamethylcyclotetrasiloxane can be used. In particular, hexane, cyclohexane, and n-heptane have low solubility of vinyl monomers and water. And is preferably used because it can be easily removed after polymerization.

逆相懸濁重合に用いる開始剤は、熱分解型開始剤、またはレドックス型開始剤等、公知の開始剤を使用することが可能であるが、レドックス型開始剤を使用することが好ましい。レドックス反応は低温での重合開始が可能であり、重合反応液中のビニル系単量体濃度を高くすること、また重合速度を大きくすることが可能となるため、生産性、および生成重合体の分子量を高くすることが可能となる。
また、油溶性酸化剤と水溶性還元剤を使用するレドックス系開始剤を使用した場合、凝集粒子を生じることなく、粒度分布の狭い重合体微粒子が得られるため、特に好ましい。
As the initiator used for the reverse phase suspension polymerization, a known initiator such as a thermal decomposition type initiator or a redox type initiator can be used, but a redox type initiator is preferably used. The redox reaction can start polymerization at a low temperature, and the vinyl monomer concentration in the polymerization reaction solution can be increased and the polymerization rate can be increased. It becomes possible to increase the molecular weight.
In addition, the use of a redox initiator that uses an oil-soluble oxidant and a water-soluble reducing agent is particularly preferable because polymer fine particles having a narrow particle size distribution can be obtained without producing aggregated particles.

上記のとおり、逆相懸濁重合では疎水性有機溶媒が連続相(油相)として用いられるので、油溶性酸化剤とは、これらの連続相に溶解する酸化剤を意味する。また、油相には分散安定剤を溶解または分散させておいても良い。   As described above, since the hydrophobic organic solvent is used as the continuous phase (oil phase) in the reverse phase suspension polymerization, the oil-soluble oxidant means an oxidant that dissolves in these continuous phases. Further, a dispersion stabilizer may be dissolved or dispersed in the oil phase.

本発明における油溶性酸化剤としては、日本工業規格Z7260−107やOECDTEST Guideline107に定められるオクタノール/水分配係数(logPow)が−1.4以上のものが好ましく、0.0以上のものがさらに好ましく、1.0以上のものが特に好ましい。   As the oil-soluble oxidant in the present invention, those having an octanol / water partition coefficient (logPow) of -1.4 or more as defined in Japanese Industrial Standard Z7260-107 and OECDTEST Guideline 107 are preferred, and those having 0.0 or more are more preferred. 1.0 or more is particularly preferable.

具体例としてt−ブチルヒドロパーオキサイド(logPow=1.3)、ジ−t−ブチルヒドロパーオキサイド、t−ヘキシルヒドロパーオキサイド、ジ−t−アミルパーオキサイド、クメンヒドロパーオキサイド(logPow=2.2)、ジクミルパーオキサイド(logPow=5.5)、t−ブチルクミルパーオキサイド、t−ブチルパーオキシピバレート、過酸化ベンゾイル(logPow=3.5)、過酸化ラウロイルなどの有機過酸化物が挙げられる。これらの中でもt−ブチルヒドロパーオキサイドおよびクメンヒドロパーオキサイドが好ましく、特に好ましくはクメンヒドロパーオキサイドである。   Specific examples include t-butyl hydroperoxide (log Pow = 1.3), di-t-butyl hydroperoxide, t-hexyl hydroperoxide, di-t-amyl peroxide, cumene hydroperoxide (log Pow = 2. 2) Organic peroxides such as dicumyl peroxide (logPow = 5.5), t-butylcumyl peroxide, t-butylperoxypivalate, benzoyl peroxide (logPow = 3.5), lauroyl peroxide Is mentioned. Among these, t-butyl hydroperoxide and cumene hydroperoxide are preferable, and cumene hydroperoxide is particularly preferable.

水溶性還元剤としては、レドックス重合開始剤に使用する還元剤として既知の還元剤が使用できるが、これらの中でも、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ハイドロサルファイトナトリウムが好ましく、特に好ましくはハイドロサルファイトナトリウムである。なお、これらの水溶性還元剤は空気と接触することによって徐々に失活するため、所望の重合開始タイミングの数分前に水に溶解し、添加することが好ましい。   As the water-soluble reducing agent, known reducing agents can be used as the reducing agent used in the redox polymerization initiator. Among these, sodium sulfite, sodium bisulfite, and sodium hydrosulfite are preferable, and hydrosulfite is particularly preferable. Sodium. In addition, since these water-soluble reducing agents are gradually deactivated by contact with air, it is preferable to dissolve and add to water several minutes before the desired polymerization start timing.

油溶性酸化剤と水溶性還元剤を用いる際は、先に水溶性還元剤を反応器に供給した後に、油溶性酸化剤を反応器に供給する方が生成粒子の粒度の均一性が高くなるために好ましい。水溶性還元剤を水溶化して反応器に供給した後、0.5〜15分以内に油溶性酸化剤を供給して重合させるのがより好ましく、1〜5分以内に油溶性酸化剤を供給することが更に好ましい。   When using an oil-soluble oxidant and a water-soluble reducing agent, the uniformity of the particle size of the produced particles becomes higher when the water-soluble reducing agent is supplied to the reactor first and then the oil-soluble oxidant is supplied to the reactor. Therefore, it is preferable. It is more preferable to polymerize by supplying an oil-soluble oxidant within 0.5 to 15 minutes after water-soluble reducing agent is made water-soluble and supply it to the reactor, and supply an oil-soluble oxidant within 1 to 5 minutes. More preferably.

また、油溶性酸化剤の全量を20秒〜120秒の時間をかけて反応器に供給することが好ましく、特に好ましくは20秒〜60秒である。
油溶性酸化剤の供給時間が20秒よりも短い場合、酸化剤の供給に対して拡散が追いつかず、ラジカルの発生が局部的に起こって凝集物が発生するなどの不具合が起こりやすくなる場合があり、好ましくない。また120秒よりも長い場合、還元剤が別の機構で分解消費されることによって、一部の酸化剤が未反応のまま系内に残ってしまう場合がある。酸化剤が未反応のまま残存すると、後の共沸脱水工程や乾燥工程などで凝集物を発生させるなど、不具合の原因となる場合があるため好ましくない。
水溶性還元剤の供給時間に関しては特に制限は無いが、一般に還元剤は空気などとの接触により分解しやすいため、15分間以内で供給するのが好ましい。
The total amount of the oil-soluble oxidant is preferably supplied to the reactor over a period of 20 seconds to 120 seconds, particularly preferably 20 seconds to 60 seconds.
When the supply time of the oil-soluble oxidant is shorter than 20 seconds, the diffusion does not catch up with the supply of the oxidant, and there is a case where a problem such as occurrence of agglomerates occurs due to local generation of radicals. Yes, not preferred. If it is longer than 120 seconds, the reducing agent is decomposed and consumed by another mechanism, so that a part of the oxidizing agent may remain unreacted in the system. If the oxidizing agent remains unreacted, it is not preferable because it may cause problems such as generation of aggregates in a subsequent azeotropic dehydration step or drying step.
The supply time of the water-soluble reducing agent is not particularly limited, but in general, since the reducing agent is easily decomposed by contact with air or the like, it is preferably supplied within 15 minutes.

また、油溶性酸化剤は反応液の液面より下部に位置する供給口から反応器に供給することが好ましい。一般に重合触媒の投入口は反応器の上部に取り付けられており、この投入口から反応液の液面に重合触媒を一括または連続的に供給するが、本発明においては、重合触媒を反応器側面に接続された配管を通して反応液中に供給する方法が、触媒の均一拡散の観点から好ましい。
供給口の位置は、常時反応液中に浸かる位置にあれば制限は無いが、攪拌翼上端または下端から垂直方向の高さにして±1m以内の位置にあるのが好ましく、±50cm以内の位置にあるのがより好ましい。
油溶性酸化剤を供給する方法としては、反応液の液面より下部に位置する供給口に通じる配管を通してポンプ、あるいは窒素のような不活性ガスのガス圧で供給する方法が挙げられる。
The oil-soluble oxidant is preferably supplied to the reactor from a supply port located below the liquid level of the reaction solution. In general, the polymerization catalyst inlet is attached to the upper part of the reactor, and the polymerization catalyst is supplied to the liquid level of the reaction liquid from this inlet in a batch or continuously. A method of supplying the reaction solution through a pipe connected to the catalyst is preferable from the viewpoint of uniform diffusion of the catalyst.
The position of the supply port is not limited as long as it is always immersed in the reaction solution, but it is preferably within ± 1 m from the top or bottom of the stirring blade in the vertical direction, and within ± 50 cm. More preferably.
Examples of the method for supplying the oil-soluble oxidant include a method for supplying the oil-soluble oxidant at a gas pressure of an inert gas such as a pump through a pipe leading to a supply port located below the surface of the reaction solution.

上記重合開始剤の使用量は、使用するビニル系単量体の種類、得られる重合体微粒子の粒径や分子量などに応じて調整することができるが、ビニル系単量体の合計量100モルに対して、油溶性酸化剤の使用量は0.001〜0.15モルであることが好ましく、特に好ましくは0.003〜0.07モルである。
また、油溶性酸化剤と水溶性還元剤の比率は特に限定されないが、モル比率で油溶性酸化剤:水溶性還元剤が1.0:0.25〜15.0であることが好ましく、特に好ましくは1.0:1.0〜10.0である。
上記範囲を外れると、単量体の反応率が低下したり、粒子を構成する重合体の鎖長が短くなったり、重合終了後も触媒が残存するなどによって、凝集物が発生するなどの不具合が生じる恐れがある。
The amount of the polymerization initiator used can be adjusted according to the type of vinyl monomer used, the particle size and molecular weight of the resulting polymer fine particles, etc., but the total amount of vinyl monomers is 100 mol. On the other hand, the amount of the oil-soluble oxidant is preferably 0.001 to 0.15 mol, particularly preferably 0.003 to 0.07 mol.
The ratio of the oil-soluble oxidizing agent and the water-soluble reducing agent is not particularly limited, but the oil-soluble oxidizing agent: water-soluble reducing agent is preferably 1.0: 0.25 to 15.0 in terms of molar ratio, Preferably it is 1.0: 1.0-10.0.
If it is out of the above range, the reaction rate of the monomer is reduced, the chain length of the polymer constituting the particle is shortened, or the catalyst remains even after the completion of the polymerization. May occur.

本発明の逆相懸濁重合においては、分散安定剤を使用することができる。
分散安定剤の具体例としては、マクロモノマー型分散安定剤、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤が挙げられる。
これらの中でも、マクロモノマー型分散安定剤を用いることが好ましい。マクロモノマー型分散安定剤は、ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するものである。
In the reverse phase suspension polymerization of the present invention, a dispersion stabilizer can be used.
Specific examples of the dispersion stabilizer include macromonomer type dispersion stabilizers, sorbitan fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitol fatty acid esters, polyoxyethylene alkyl ethers and other nonionic surfactants.
Among these, it is preferable to use a macromonomer type dispersion stabilizer. The macromonomer type dispersion stabilizer has a radically polymerizable unsaturated group at the end of a polymer derived from a vinyl monomer.

また、マクロモノマー型分散安定剤とソルビタンモノオレエートおよびソルビタンモノパルミテートなどの、HLBが3〜8である比較的疎水性が高いノニオン性界面活性剤を併用することが好ましく、これらは、1種を併用しても、2種以上を併用しても良い。   Further, it is preferable to use a macromonomer type dispersion stabilizer in combination with a relatively hydrophobic nonionic surfactant having an HLB of 3 to 8, such as sorbitan monooleate and sorbitan monopalmitate. Two or more species may be used in combination.

前記マクロモノマー型分散安定剤としては、上記分散重合において好ましく用いられるマクロモノマーが同様に好ましく使用される。   As the macromonomer type dispersion stabilizer, a macromonomer preferably used in the dispersion polymerization is similarly preferably used.

特に、マクロモノマー型分散安定剤を使用して、親水性ビニル系単量体を逆相懸濁重合させて親水性の重合体微粒子を製造する際には、単官能化合物と共に多官能ビニル系単量体を用いることが好ましく、それによって強度や形状保持性の向上した親水性の架橋した重合体微粒子が得られる。   In particular, when a hydrophilic polymer fine particle is produced by reverse-phase suspension polymerization of a hydrophilic vinyl monomer using a macromonomer type dispersion stabilizer, a polyfunctional vinyl monomer is used together with a monofunctional compound. It is preferable to use a monomer, whereby hydrophilic cross-linked polymer fine particles having improved strength and shape retention are obtained.

分散安定剤は分散媒(油相)である疎水性有機溶媒中に溶解、もしくは均一分散させて重合系に加えることが好ましい。
分散安定剤の使用量は、良好な分散安定性を維持しながら、粒径の揃った親水性重合体微粒子を得るために、ビニル系単量体の合計100質量部に対して、0.1〜50質量部であることが好ましく、0.2〜20質量部であることがより好ましく、0.5〜10質量部であることが更に好ましい。分散安定剤の使用量が少なすぎると、重合系でのビニル系単量体および生成した重合体微粒子の分散安定性が不良になり、生成した重合体微粒子同士の凝集、沈降、粒径のばらつきが生じ易くなる。一方、分散安定剤の使用量が多すぎると、副生微粒子(1μm以下)の生成量が多くなる場合がある。
The dispersion stabilizer is preferably added to the polymerization system after being dissolved or uniformly dispersed in a hydrophobic organic solvent which is a dispersion medium (oil phase).
In order to obtain hydrophilic polymer fine particles having a uniform particle size while maintaining good dispersion stability, the amount of the dispersion stabilizer used is 0.1 with respect to a total of 100 parts by mass of the vinyl monomer. It is preferable that it is -50 mass parts, It is more preferable that it is 0.2-20 mass parts, It is still more preferable that it is 0.5-10 mass parts. If the amount of the dispersion stabilizer used is too small, the dispersion stability of the vinyl monomer in the polymerization system and the generated polymer particles will be poor, and the generated polymer particles will aggregate, settle, and the particle size will vary. Is likely to occur. On the other hand, if the amount of the dispersion stabilizer used is too large, the amount of by-product fine particles (1 μm or less) produced may increase.

本発明の乾燥収縮低減剤はセラミック粉体、バインダー及び水等とともに杯土中に混練される。好ましい使用量は坏土中に占める重合体微粒子の割合として0.1〜10質量%であり、更に好ましくは0.1〜5質量%である。0.1質量%以上であれば乾燥収縮低減効果を示すことができ、10質量%以下であればバインダー分子間の相互作用を阻害して保形性や成形体強度を大きく低下させることもない。   The drying shrinkage reducing agent of the present invention is kneaded in a clay together with ceramic powder, a binder, water and the like. A preferred use amount is 0.1 to 10% by mass, more preferably 0.1 to 5% by mass as a proportion of polymer fine particles in the clay. If it is 0.1% by mass or more, the effect of reducing drying shrinkage can be shown, and if it is 10% by mass or less, the interaction between binder molecules is hindered and the shape-retaining property and the strength of the molded product are not greatly reduced. .

一般にセラミック成形においては各種成形方法によって成形体が得られ、その後乾燥工程において熱風やマイクロ波を照射して脱水処理が行われる。本発明の乾燥低減収縮剤を用いた場合には、該乾燥工程において水分が蒸発することに起因する成形体の収縮が低減される。   In general, in ceramic molding, a molded body is obtained by various molding methods, and then dehydration is performed by irradiating with hot air or microwaves in a drying process. When the drying reducing shrinkage agent of the present invention is used, shrinkage of the molded product due to the evaporation of moisture in the drying step is reduced.

本発明の乾燥収縮低減剤はセラミック成形において気孔形成剤と併用することができる。
該気孔形成剤としては脱灰及び焼成工程において燃焼、又は熱分解して消失する性質を有するものが使用される。具体例としてはコークス、小麦粉、澱粉、発泡樹脂、ポリメタクリル酸メチル、アクリル系共重合体(塩)、ポリエチレン等の微粒子が挙げられる。
気孔形成剤を併用することにより多孔質セラミックを得ることが可能であり、該多孔質セラミックは各種濾過材料、触媒担体、蓄熱体、電池用焼結基板、断熱材料、及び排水処理に使用される微生物単体等に使用される。
The drying shrinkage reducing agent of the present invention can be used in combination with a pore forming agent in ceramic molding.
As the pore forming agent, those having the property of disappearing by combustion or thermal decomposition in the decalcification and firing processes are used. Specific examples include fine particles such as coke, wheat flour, starch, foamed resin, polymethyl methacrylate, acrylic copolymer (salt), and polyethylene.
It is possible to obtain a porous ceramic by using a pore-forming agent in combination, and the porous ceramic is used for various filtering materials, catalyst carriers, heat storage bodies, battery sintered substrates, heat insulating materials, and wastewater treatment. Used for microorganisms alone.

本発明におけるセラミックとしては、水系で成形可能なものであれば特に制限はない。具体例としては、アルミナ、コージェライト、ムライト、シリカ、ジルコニア、及びチタニア等の酸化物系セラミック、並びに、炭化珪素、窒化珪素、窒化アルミニウム、窒化ホウ素、窒化チタン、及び炭化チタン等の非酸化物系セラミックを挙げることができる。   The ceramic in the present invention is not particularly limited as long as it can be molded in an aqueous system. Specific examples include oxide ceramics such as alumina, cordierite, mullite, silica, zirconia, and titania, and non-oxides such as silicon carbide, silicon nitride, aluminum nitride, boron nitride, titanium nitride, and titanium carbide. Mention may be made of ceramics.

また、セラミック混練組成物中に含まれるバインダーとしては、水系で適用可能なものであれば特に制限はない。例としてメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース等のセルロース誘導体;ポリアクリル酸、ポリアクリルアミド、ポリビニルアルコール等の合成高分子化合物等が使用される。上記のうち、押出成形にはセルロース誘導体が広く使用されている。   In addition, the binder contained in the ceramic kneaded composition is not particularly limited as long as it is applicable in an aqueous system. Examples include cellulose derivatives such as methylcellulose, hydroxypropylmethylcellulose, and hydroxypropylethylcellulose; synthetic polymer compounds such as polyacrylic acid, polyacrylamide, and polyvinyl alcohol. Among the above, cellulose derivatives are widely used for extrusion molding.

なお、本明細書における重合体微粒子のイオン交換水による飽和膨潤状態での平均粒径、および吸水量は、以下の実施例の項に記載する方法で測定または求めた値をいう。   In addition, the average particle diameter in the saturation swelling state by the ion-exchange water of the polymer fine particle in this specification, and the amount of water absorption say the value measured or calculated | required by the method as described in the term of an Example below.

以下、実施例に基づいて本発明を具体的に説明する。以下の記載において「部」は質量部を意味し、「%」は質量%を意味する。 Hereinafter, the present invention will be specifically described based on examples. In the following description, “part” means part by mass, and “%” means mass%.

製造例0:マクロモノマー組成物UM−1の製造
オイルジャケットを備えた容量1000mlの加圧式攪拌槽型反応器のオイルジャケットの温度を240℃に保った。
単量体としてラウリルメタクリレート(以下、「LMA」という)75.0部、アクリル酸(以下、「AA」という)25.0部、重合溶媒としてメチルエチルケトン(以下、「MEK」という)10.0部、重合開始剤としてジターシャリーブチルパーオキサイド0.45部の比率で調整された単量体混合液を原料タンクに仕込んだ。
原料タンクの単量体混合液を反応器に供給を開始し、反応器内の重量が580g、平均滞留時間が12分となるように、単量体混合液の供給と反応混合液の抜き出しを行った。反応器内温度は235℃、反応器内圧は1.1MPaとなるように調整を行った。反応器より抜き出した反応混合液は、20kPaに減圧され、250℃に保たれた薄膜蒸発機に連続的に供給し、単量体や溶剤等が留去されたマクロモノマー組成物として排出される。留去した単量体や溶剤等はコンデンサーで冷却し、留出液として回収した。単量体混合液の供給開始後、反応器内温が235℃に安定してから60分後を回収開始点とし、これから48分間反応を継続してマクロモノマー組成物UM−1を回収した。この間、単量体混合液は反応器に2.34kg供給され、薄膜蒸発機より1.92kgのマクロモノマー組成物が回収された。また留出タンクには0.39kgの留出液が回収された。
留出液をガスクロマトグラフにて分析したところ、留出液100部に対して、LMA31.1部、AA16.4部、その他溶剤等が52.5部であった。
単量体混合液の供給量および組成、マクロモノマー組成物の回収量、留出液の回収量および組成より、単量体の反応率は90.2%、マクロモノマー組成物UM−1の構成単量体組成比は、LMA:AA=76.0/24.0(質量比)と計算された。
Production Example 0: Production of Macromonomer Composition UM-1 The temperature of the oil jacket of a 1000 ml capacity pressurized stirred tank reactor equipped with an oil jacket was kept at 240 ° C.
75.0 parts of lauryl methacrylate (hereinafter referred to as “LMA”) as a monomer, 25.0 parts of acrylic acid (hereinafter referred to as “AA”), 10.0 parts of methyl ethyl ketone (hereinafter referred to as “MEK”) as a polymerization solvent As a polymerization initiator, a monomer mixed liquid adjusted at a ratio of 0.45 part of ditertiary butyl peroxide was charged into a raw material tank.
Start supplying the monomer mixture from the raw material tank to the reactor, and supply the monomer mixture and remove the reaction mixture so that the weight in the reactor is 580 g and the average residence time is 12 minutes. went. The reactor internal temperature was adjusted to 235 ° C., and the reactor internal pressure was adjusted to 1.1 MPa. The reaction mixture extracted from the reactor is decompressed to 20 kPa, continuously supplied to a thin film evaporator maintained at 250 ° C., and discharged as a macromonomer composition from which monomers and solvents are distilled off. . Distilled out monomers and solvents were cooled with a condenser and recovered as a distillate. After the start of the monomer mixture supply, 60 minutes after the reactor internal temperature was stabilized at 235 ° C., the recovery start point was set, and the reaction was continued for 48 minutes to recover the macromonomer composition UM-1. During this time, 2.34 kg of the monomer mixture was supplied to the reactor, and 1.92 kg of the macromonomer composition was recovered from the thin film evaporator. In addition, 0.39 kg of distillate was recovered in the distillate tank.
When the distillate was analyzed by gas chromatography, LMA 31.1 parts, AA 16.4 parts, other solvents, etc. were 52.5 parts with respect to 100 parts of distillate.
From the amount and composition of the monomer mixture, the recovered amount of the macromonomer composition, the recovered amount and composition of the distillate, the monomer reaction rate is 90.2%, and the composition of the macromonomer composition UM-1 The monomer composition ratio was calculated as LMA: AA = 76.0 / 24.0 (mass ratio).

また、溶離液にテトラヒドロフランを用いたゲルパーミエーションクロマトグラフ(以下、「GPC」という)により、マクロモノマー組成物UM−1の分子量を測定したところ、ポリスチレン換算での重量平均分子量(以下、「Mw」という)および数平均分子量(以下、「Mn」という)は、それぞれ、3800、および1800であった。またマクロモノマー組成物の1H−NMR測定より、マクロモノマー組成物中の末端エチレン性不飽和結合の濃度を測定した。1H−NMR測定による末端エチレン性不飽和結合の濃度、GPCによるMn、および構成単量体組成比より、マクロモノマー組成物UM−1の末端エチレン性不飽和結合導入率を計算した結果、97%であった。尚、150℃、60分加熱後の加熱残分による固形分は、98.3%であった。
なお、単量体、重合溶剤、および重合開始剤等の各原料については、市販の工業用製品を精製等の処理を行うことなく、そのまま使用した。
Further, when the molecular weight of the macromonomer composition UM-1 was measured by gel permeation chromatograph (hereinafter referred to as “GPC”) using tetrahydrofuran as an eluent, the weight average molecular weight (hereinafter referred to as “Mw”) in terms of polystyrene was measured. And number average molecular weight (hereinafter referred to as “Mn”) were 3800 and 1800, respectively. Moreover, the density | concentration of the terminal ethylenically unsaturated bond in a macromonomer composition was measured from 1H-NMR measurement of a macromonomer composition. As a result of calculating the terminal ethylenically unsaturated bond introduction rate of the macromonomer composition UM-1 from the concentration of terminal ethylenically unsaturated bonds by 1H-NMR measurement, Mn by GPC, and the constituent monomer composition ratio, 97% Met. The solid content of the heating residue after heating at 150 ° C. for 60 minutes was 98.3%.
In addition, about each raw material, such as a monomer, a polymerization solvent, and a polymerization initiator, the commercially available industrial product was used as it was, without performing processes, such as refinement | purification.

(製造例1:重合体微粒子A−1の製造)
重合には、タービン型攪拌翼および2本垂直バッフルからなる撹拌機構を有し、さらに温度計、留出液分離器付き還流冷却器、窒素導入管を備えた、容量2Lの反応器を用いた。なお窒素導入管は反応器の外でふたつに分岐しており、一方からは窒素を、もう一方からはポンプを用いて重合触媒を供給できるようになっている。また、窒素導入管は攪拌翼上端とほぼ同じ高さの反応器壁面に接続されている。
反応器内に分散安定剤としてUM−1を1.4部、及びソルビタンモノオレエート(花王社製、商品名「レオドールAO−10」)10.0部、更に重合溶媒としてn−ヘプタン400.3部を仕込み、溶液の温度を40℃に維持しながら攪拌混合して油相調整した。油相は、40℃で30分間攪拌した後20℃まで冷却した。
一方、別の容器にてAA50.0部、濃度40%のアクリルアミド水溶液(以下、「40%AMD」という)125.0部、ポリエチレングリコールジアクリレート(東亞合成社製、商品名「アロニックスM−243」、平均分子量425)4.3部、およびイオン交換水30.0部を仕込み、攪拌、均一溶解させた。さらに混合液の温度を40℃以下に保つように冷却しながら、25%アンモニア水35.4部をゆっくり加えて中和し単量体混合液を得た。
(Production Example 1: Production of polymer fine particles A-1)
For the polymerization, a reactor having a capacity of 2 L, having a stirring mechanism comprising a turbine type stirring blade and two vertical baffles, and further equipped with a thermometer, a reflux condenser with a distillate separator, and a nitrogen introduction tube was used. . The nitrogen introduction pipe is branched into two outside the reactor, and nitrogen can be supplied from one side and a polymerization catalyst can be supplied from the other side using a pump. Further, the nitrogen introduction tube is connected to the reactor wall surface which is almost the same height as the upper end of the stirring blade.
1.4 parts of UM-1 as a dispersion stabilizer in the reactor, 10.0 parts of sorbitan monooleate (trade name “Leodol AO-10” manufactured by Kao Corporation), and n-heptane 400. 3 parts were charged and the oil phase was adjusted by stirring and mixing while maintaining the temperature of the solution at 40 ° C. The oil phase was stirred at 40 ° C. for 30 minutes and then cooled to 20 ° C.
On the other hand, in a separate container, AA 50.0 parts, 40% acrylamide aqueous solution (hereinafter referred to as “40% AMD”) 125.0 parts, polyethylene glycol diacrylate (manufactured by Toagosei Co., Ltd., trade name “Aronix M-243”) ”, 4.3 parts of average molecular weight 425) and 30.0 parts of ion-exchanged water were charged, stirred and uniformly dissolved. Further, while cooling so that the temperature of the mixed solution was kept at 40 ° C. or lower, 35.4 parts of 25% aqueous ammonia was slowly added to neutralize to obtain a monomer mixed solution.

攪拌機の回転数を1600rpmに設定した後、調製した単量体混合液を反応器内に仕込み、単量体混合液が油相に分散した分散液を調整した。この時、反応器内温は20℃に保持した。また分散液に窒素を吹き込むことで反応器内の酸素を除去した。単量体混合物の仕込みから1時間30分経過した時点で、ハイドロサルファイトNa0.18部とイオン交換水2.9部の水溶液を反応器上部に設けられた投入口から添加した。その3分後、クメンハイドロパーオキサイドの80%溶液(日油社製、商品名「パークミルH80」)0.039部をn−ヘプタン3.1部で希釈した溶液を、窒素導入管を通じてポンプで供給した。なお供給は30秒間で行った。供給開始時点から直ちに反応器内温が上昇し、重合が開始したことが確認された。内温の上昇は約30秒でピークに達し、その温度は66.0℃であった。   After setting the rotation speed of the stirrer to 1600 rpm, the prepared monomer mixture was charged into the reactor, and a dispersion in which the monomer mixture was dispersed in the oil phase was prepared. At this time, the internal temperature of the reactor was kept at 20 ° C. Further, oxygen in the reactor was removed by blowing nitrogen into the dispersion. When 1 hour and 30 minutes passed from the preparation of the monomer mixture, an aqueous solution of 0.18 part of hydrosulfite Na and 2.9 parts of ion-exchanged water was added from the inlet provided in the upper part of the reactor. Three minutes later, a solution obtained by diluting 0.039 parts of an 80% solution of cumene hydroperoxide (trade name “Park Mill H80” manufactured by NOF Corporation) with 3.1 parts of n-heptane was pumped through a nitrogen introduction tube. Supplied. The supply was performed for 30 seconds. It was confirmed that the temperature inside the reactor immediately rose from the start of the supply, and the polymerization started. The rise in internal temperature reached a peak in about 30 seconds, and the temperature was 66.0 ° C.

反応液を冷却し温度を20℃とした後、攪拌しながらハイドロサルファイトNa0.05部とイオン交換水1.8部の水溶液を反応器上部に設けられた投入口から添加した。その3分後、t−ブチルハイドロパーオキサイドの69%水溶液(日油社製、商品名「パーブチルH」)0.016部をイオン交換水1.6部で希釈した溶液を、同投入口から添加した。内温が23.6℃まで上昇し、残存モノマーが重合したことが確認された。
次いでオイルバスを130℃に昇温して反応液を加熱し、粒子内に含まれる水とn−へプタンとを共沸させることによって脱水率98%まで脱水した。得られた脱水スラリーを吸引濾過し、濾別された微粒子をn−ヘプタンで繰り返し洗浄して分散安定剤を除去した後、乾燥機で溶剤を完全に揮発させて重合体微粒子A−1の乾燥粉末を得た。
After cooling the reaction liquid to a temperature of 20 ° C., an aqueous solution of 0.05 part of hydrosulfite Na and 1.8 parts of ion-exchanged water was added from the inlet provided at the top of the reactor while stirring. Three minutes later, a solution obtained by diluting 0.016 part of a 69% aqueous solution of t-butyl hydroperoxide (trade name “Perbutyl H”, manufactured by NOF Corporation) with 1.6 parts of ion-exchanged water was added from the same inlet. Added. It was confirmed that the internal temperature rose to 23.6 ° C. and the remaining monomer was polymerized.
Next, the temperature of the oil bath was raised to 130 ° C. to heat the reaction liquid, and water contained in the particles and n-heptane were azeotroped to dehydrate to a dehydration rate of 98%. The obtained dewatered slurry was suction filtered, and the fine particles separated by filtration were washed repeatedly with n-heptane to remove the dispersion stabilizer, and then the solvent was completely volatilized with a dryer to dry the polymer fine particles A-1. A powder was obtained.

(製造例2:重合体微粒子A−2の製造)
モノマー水溶液組成をAA30部、40%AMD175.0部、アロニックスM−243 8.7部、および25%アンモニア水21.3部とした点以外は実施例1と同様に製造し、重合体微粒子A−2の乾燥粉末を得た。
(Production Example 2: Production of polymer fine particles A-2)
Polymer fine particles A were prepared in the same manner as in Example 1 except that the monomer aqueous solution composition was 30 parts AA, 175.0 parts 40% AMD, 8.7 parts Aronics M-243, and 21.3 parts 25% aqueous ammonia. -2 dry powder was obtained.

(製造例3:重合体微粒子A−3の製造)
重合には三枚後退翼および垂直バッフルからなる攪拌機構を有し、さらに温度計、留出液分離器付き還流冷却器、および窒素導入管を備えた反応器を用いた。反応器の加温にはヒーターと循環器を備えたウォーターバスを用いた。
反応器内に分散安定剤としてUM−1を10部、溶剤としてMEK820部、重合開始剤としてアゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製、商品名「V−65」)0.50部を加え、均一に溶解した。更に単量体としてAA50部、40%AMD125部、架橋剤としてグリシジルメタクリレート(以下、「GMA」という)2.0部を加え、窒素を100mL/hで吹き込みながら、攪拌回転数120rpmにて30分間攪拌した。そのまま反応溶液を65℃まで昇温したところ反応液が白濁し始め、重合反応の進行が確認された。2時間加熱攪拌を続けた後、V−65 0.20部を加えて更に3時間加熱攪拌を続け、ウォーターバスを95℃に設定して反応液を沸騰させ、水/MEK溶液450部を留去した。
反応液を冷却して取り出し、遠心分離機で微粒子を回収するとともに分散安定剤を除去した。得られた微粒子を90℃に設定した通風乾燥機にて1時間加熱し、重合体微粒子A−3の乾燥粉末を得た。
(Production Example 3: Production of polymer fine particles A-3)
For the polymerization, a reactor having a stirring mechanism comprising three receding blades and a vertical baffle, and further equipped with a thermometer, a reflux condenser with a distillate separator, and a nitrogen introduction tube was used. A water bath equipped with a heater and a circulator was used for heating the reactor.
In the reactor, 10 parts of UM-1 as a dispersion stabilizer, 820 parts of MEK as a solvent, azobis (2,4-dimethylvaleronitrile) as a polymerization initiator (trade name “V-65” manufactured by Wako Pure Chemical Industries, Ltd.) 0.50 part was added and dissolved uniformly. Further, 50 parts of AA as a monomer, 125 parts of 40% AMD and 2.0 parts of glycidyl methacrylate (hereinafter referred to as “GMA”) as a cross-linking agent were added, and nitrogen was blown at 100 mL / h for 30 minutes at a stirring rotational speed of 120 rpm. Stir. When the temperature of the reaction solution was raised to 65 ° C. as it was, the reaction solution started to become cloudy and the progress of the polymerization reaction was confirmed. After 2 hours of heating and stirring, 0.20 parts of V-65 was added and heating and stirring was further continued for 3 hours. The water bath was set at 95 ° C to boil the reaction solution, and 450 parts of water / MEK solution was distilled. Left.
The reaction solution was cooled and taken out, and fine particles were collected with a centrifuge and the dispersion stabilizer was removed. The obtained fine particles were heated for 1 hour in an air dryer set at 90 ° C. to obtain a dry powder of polymer fine particles A-3.

(製造例4:重合体微粒子A−4の製造)
製造例3と同様の設備を備えた反応器内に分散安定剤としてポリビニルピロリドン(和光純薬工業社製、商品名「K−30」、Mw30000)5.0部、溶剤としてイオン交換水50部およびエタノール150部、重合開始剤として2,2’−アゾビスイソブチロニトリル(大塚化学社製、商品名「AIBN」)0.50部を加え、均一に溶解した。更に単量体としてアクリルアミド粉末100部、架橋剤としてメチレンビスアクリルアミド(以下、「MBAAm」という)0.2部を加え、窒素を100mL/hで吹き込みながら攪拌回転数120rpmにて30分間攪拌した。そのまま反応溶液を70℃まで昇温したところ反応液が白濁し始め、重合反応の進行が確認された。2時間加熱攪拌を続けた後、AIBN 0.20部を加えて更に3時間加熱攪拌した時点で重合工程を終了とし、室温まで冷却した。
遠心分離により反応液から微粒子を分離し、メタノール、次いでシクロヘキサンで繰り返し微粒子を洗浄した後、90℃に設定した通風乾燥機にて1時間加熱して溶剤を揮発させ、重合体微粒子A−4の乾燥粉末を得た。
(Production Example 4: Production of polymer fine particles A-4)
In a reactor equipped with the same equipment as in Production Example 3, 5.0 parts of polyvinylpyrrolidone (manufactured by Wako Pure Chemical Industries, trade name “K-30”, Mw30000) as a dispersion stabilizer, and 50 parts of ion-exchanged water as a solvent Further, 150 parts of ethanol and 0.50 part of 2,2′-azobisisobutyronitrile (trade name “AIBN” manufactured by Otsuka Chemical Co., Ltd.) as a polymerization initiator were added and dissolved uniformly. Furthermore, 100 parts of acrylamide powder as a monomer and 0.2 part of methylenebisacrylamide (hereinafter referred to as “MBAAm”) as a crosslinking agent were added, and the mixture was stirred for 30 minutes at 120 rpm with stirring at 100 mL / h. When the temperature of the reaction solution was raised to 70 ° C. as it was, the reaction solution began to become cloudy and the progress of the polymerization reaction was confirmed. After continuing heating and stirring for 2 hours, 0.20 part of AIBN was added, and when the mixture was further heated and stirred for 3 hours, the polymerization process was terminated and the mixture was cooled to room temperature.
Fine particles are separated from the reaction solution by centrifugal separation, washed repeatedly with methanol and then with cyclohexane, heated for 1 hour in a ventilator set at 90 ° C. to volatilize the solvent, and polymer fine particles A-4 A dry powder was obtained.

(製造例5:重合体微粒子A−5の製造)
単量体として40%AMD250.0部、架橋剤としてMBAAm5.0部、重合開始剤として2,2−ジメトキシ−2−フェニルアセトフェノン0.01部と過硫酸アンモニウム0.10部を加え、これを内径146mmの円筒型ガラス容器に仕込み、水溶液の温度を20℃に保ちながら30分間窒素バブリングを行った。その後、反応器の上方から100Wブラックライトを用いて5.0mW/cm2の照射強度で3分間紫外線を照射し、シート状含水架橋重合体ゲルを作成した。このゲルを乾燥、破砕し、ロールミル及び電動石臼で更に細かく粉砕した。粉砕した樹脂をシクロヘキサンに投入して攪拌・静置し、白濁した上層のみを回収した。沈殿部はシクロヘキサンを除去してさらにピンミルで粉砕し、同様の操作を繰り返すことで重合体微粒子A−5を得た。
(Production Example 5: Production of polymer fine particles A-5)
Add 250.0 parts of 40% AMD as a monomer, 5.0 parts of MBAAm as a crosslinking agent, 0.01 part of 2,2-dimethoxy-2-phenylacetophenone and 0.10 parts of ammonium persulfate as a polymerization initiator, A 146 mm cylindrical glass container was charged, and nitrogen bubbling was performed for 30 minutes while maintaining the temperature of the aqueous solution at 20 ° C. Thereafter, ultraviolet rays were irradiated from above the reactor using a 100 W black light at an irradiation intensity of 5.0 mW / cm 2 for 3 minutes to prepare a sheet-like water-containing crosslinked polymer gel. This gel was dried, crushed, and further finely pulverized with a roll mill and an electric stone mill. The pulverized resin was put into cyclohexane, stirred and allowed to stand, and only the upper layer which became cloudy was collected. The precipitation part removed cyclohexane, was further pulverized with a pin mill, and polymer fine particles A-5 were obtained by repeating the same operation.

(製造例6:重合体微粒子A−6の製造)
モノマー水溶液組成を2−ヒドロキシエチルアクリレート(以下、「HEA」という)70.0部、メトキシポリエチレングリコールモノアクリレート(日油社製、商品名「ブレンマーAME−400」)30.0部、アロニックスM−243 6.5部、及び純水95.0部とし、攪拌回転数を830rpmに下げた以外は製造例1と同様に製造し、重合体微粒子A−6を得た。
(Production Example 6: Production of polymer fine particles A-6)
The monomer aqueous solution composition was 70.0 parts of 2-hydroxyethyl acrylate (hereinafter referred to as “HEA”), 30.0 parts of methoxypolyethylene glycol monoacrylate (manufactured by NOF Corporation, trade name “Blemmer AME-400”), Aronix M- Production was conducted in the same manner as in Production Example 1 except that 243 6.5 parts and pure water 95.0 parts were used, and the stirring speed was lowered to 830 rpm, to obtain polymer fine particles A-6.

(製造例7:重合体微粒子B−1の製造)
攪拌回転数を870rpmに下げた以外は製造例2と同様に製造し、重合体微粒子B−1を得た。
(Production Example 7: Production of polymer fine particles B-1)
Manufactured in the same manner as in Production Example 2 except that the stirring rotation speed was lowered to 870 rpm, to obtain polymer fine particles B-1.

(製造例8:重合体微粒子B−2の製造)
アロニックスM−243を2.2部とし、攪拌回転数を1660rpmとした以外は製造例1と同様に製造し、重合体微粒子B−2を得た。
(Production Example 8: Production of polymer fine particles B-2)
Manufactured in the same manner as in Production Example 1 except that 2.2 parts of Aronix M-243 was used and the stirring rotation speed was 1660 rpm, polymer fine particles B-2 were obtained.

(製造例9:重合体微粒子B−3の製造)
攪拌機、還流冷却器、温度計、および窒素導入管を備えた2Lガラス製反応容器内にメタノール700.0部、水300.0部、メタクリル酸メチル(以下、「MMA」という)100.0部、およびK−30 12.0部を仕込んだ。翼径11cmの半月板状攪拌翼を用い、攪拌速度120rpmで攪拌した。窒素ガスをバブリングしながら反応器内温度を65℃に調整した。K−30が完全に溶解し、反応器内の混合溶液が完全に透明であること、および反応器内が65℃で安定であることを確認した後、窒素ガス配管を反応液から引き上げ、その先端が液面よりも上になるように固定した。次いでAIBN2.0部を仕込んで重合を開始した。AIBN投入から数分で反応液に濁りが発生し、重合の進行が確認された。AIBN投入から6時間後、反応液を室温まで急冷して重合体微粒子の分散液を得た。
分散液の全量を300メッシュのポリネットで濾過して上澄みが透明になるまで静置し、沈降部を回収後室温乾燥させて、重合体微粒子B−3を得た。
(Production Example 9: Production of polymer fine particles B-3)
In a 2 L glass reaction vessel equipped with a stirrer, reflux condenser, thermometer, and nitrogen introduction tube, 700.0 parts of methanol, 300.0 parts of water, 100.0 parts of methyl methacrylate (hereinafter referred to as “MMA”) , And 12.0 parts of K-30. Using a meniscus stirring blade having a blade diameter of 11 cm, stirring was performed at a stirring speed of 120 rpm. The temperature inside the reactor was adjusted to 65 ° C. while bubbling nitrogen gas. After confirming that K-30 was completely dissolved and the mixed solution in the reactor was completely transparent and that the inside of the reactor was stable at 65 ° C., the nitrogen gas pipe was pulled up from the reaction solution, The tip was fixed so that it was above the liquid level. Next, 2.0 parts of AIBN was charged to initiate polymerization. Turbidity was generated in the reaction solution within a few minutes after the introduction of AIBN, and the progress of polymerization was confirmed. Six hours after the introduction of AIBN, the reaction solution was rapidly cooled to room temperature to obtain a dispersion of polymer fine particles.
The total amount of the dispersion was filtered through a 300-mesh polynet and allowed to stand until the supernatant became transparent, and the sedimented portion was collected and dried at room temperature to obtain polymer fine particles B-3.

比較例1)
表1に示す標準配合処方により、セラミック押出成形体の乾燥収縮試験を実施した。
セラミック原料粉末として表1に示す量のタルク、カオリン、アルミナ、水酸化アルミニウム、およびシリカを秤量した。ここへバインダーとしてメチルセルロース4.6部を加えてドライブレンドした。更に重合体微粒子A−1 0.4部を加えて更にドライブレンドした。
上記の粉末混合物をニーダーで混練しながらイオン交換水を少量ずつ添加したが、所定の33.4部全量の水を添加してもまだ混練物の一部にパサツキが見られたため、更に5.2部の水を追加して混練を続けた。混練するにつれてメチルセルロースが溶解してニーダーの電流値が上昇し、やがて一定となった時点で混練が完了したと判断して混練物を取り出した。この混練物をピストンに押し込んで円柱状に押出成形し、概略寸法がφ15mm×50mm、コージェライト系のセラミックの押出成形体を得た。
( Comparative Example 1)
A dry shrinkage test of the ceramic extrusion was carried out according to the standard formulation shown in Table 1.
The amounts of talc, kaolin, alumina, aluminum hydroxide, and silica shown in Table 1 were weighed as ceramic raw material powders. To this, 4.6 parts of methylcellulose as a binder was added and dry blended. Furthermore, 0.4 parts of polymer fine particles A-1 were added and further dry blended.
While the above powder mixture was kneaded with a kneader, ion-exchanged water was added little by little. However, even when 33.4 parts of the total amount of water was added, a portion of the kneaded product was still crushed. The kneading was continued by adding 2 parts of water. As the kneading, methylcellulose was dissolved and the current value of the kneader increased, and when it became constant, the kneading was judged to be completed and the kneaded product was taken out. The kneaded product was pushed into a piston and extruded into a columnar shape to obtain a cordierite-type ceramic extruded product having a general dimension of φ15 mm × 50 mm.

Figure 0005660135
Figure 0005660135

《乾燥収縮度合いの評価》
得られたセラミック押出成形体の長さと直径をノギスで測定し、110℃の通風乾燥機内で120分間加熱乾燥した。乾燥後の成形体寸法を同様に測定し、乾燥前後の成形体の体積を算出した。これらの値から、式(1)に従って寸法比を算出した(寸法比が1に近いほど成形体の乾燥収縮度合いは小さい)。試験結果を表2に示す。
<< Evaluation of degree of drying shrinkage >>
The length and diameter of the obtained ceramic extrudate were measured with a vernier caliper and dried by heating in a draft dryer at 110 ° C. for 120 minutes. The size of the molded body after drying was measured in the same manner, and the volume of the molded body before and after drying was calculated. From these values, the dimensional ratio was calculated according to the equation (1) (the closer the dimensional ratio is to 1, the smaller the degree of drying shrinkage of the molded body). The test results are shown in Table 2.

Figure 0005660135
Figure 0005660135

《気孔率への影響評価》
また、得られた成形体乾燥物を1000℃まで昇温した後、昇温速度50℃/時間で1400℃まで昇温した。更に、1420℃に達したところで温度を維持し、4時間焼成した。焼成体の気孔率を水銀ポロシメーターにより測定した。結果を表2に示す。
<Evaluation of effect on porosity>
Moreover, after heating up the obtained molded object dried material to 1000 degreeC, it heated up to 1400 degreeC with the temperature increase rate of 50 degreeC / hour. Further, when the temperature reached 1420 ° C., the temperature was maintained, and firing was performed for 4 hours. The porosity of the fired body was measured with a mercury porosimeter. The results are shown in Table 2.

《乾燥性の評価》
さらに、上記乾燥前のセラミック押出成形体をマイクロ波および熱風とを組合わせて乾燥した際の乾燥性について評価した。
2.45GHz、0.5kWの電磁波を5分間照射することにより脱水率50〜60%とし、その後110℃の熱風乾燥機内で2時間加熱乾燥して脱水率をほぼ100%とした。乾燥後の成形体外観を目視で確認し、以下基準に従って評価した。結果を表2に示す。
○:外観上の目立った不具合なし
△:反りが観察される
×:反り、および表面にひび割れが見られる
<< Evaluation of dryness >>
Furthermore, the drying property when the ceramic extrudate before drying was dried by combining microwaves and hot air was evaluated.
The dehydration rate was adjusted to 50 to 60% by irradiating an electromagnetic wave of 2.45 GHz and 0.5 kW for 5 minutes, and then heated and dried in a hot air dryer at 110 ° C. for 2 hours to set the dehydration rate to almost 100%. The appearance of the molded body after drying was visually confirmed and evaluated according to the following criteria. The results are shown in Table 2.
○: No noticeable defects on appearance △: Warping is observed ×: Warping and cracks are observed on the surface

比較例2及び実施例
重合体微粒子にA−2〜A−6を用いた点以外は比較例1と同様の操作により乾燥収縮度合い、気孔率、および乾燥性を評価した。A−2〜A−6は比較例1とは異なり、33.4部の水で良好に混練物を得ることができた。試験結果を表2に示す。
( Comparative Example 2 and Examples 1 to 4 )
Except for using A-2 to A-6 for the polymer fine particles, the degree of drying shrinkage, the porosity, and the drying property were evaluated in the same manner as in Comparative Example 1. A-2 to A-6 differed from Comparative Example 1 in that a kneaded product could be obtained satisfactorily with 33.4 parts of water. The test results are shown in Table 2.

(比較例
重合体微粒子にB−1〜B−3を用いた点以外は比較例1と同様の操作により乾燥収縮
度合い、気孔率、および乾燥性を評価した。B−1およびB−3は33.4部の水で良好
に混練物を得ることができたが、B−2は更に水14.0部の追加が必要であった。試験
結果を表3に示す。
(Comparative Examples 3 to 5 )
Except for using B-1 to B-3 for the polymer fine particles, the degree of drying shrinkage, the porosity, and the drying property were evaluated in the same manner as in Comparative Example 1. B-1 and B-3 were able to obtain a kneaded product well with 33.4 parts of water, but B-2 required an additional 14.0 parts of water. The test results are shown in Table 3.

(比較例
重合体微粒子を用いなかった点以外は比較例1と同様の操作により乾燥収縮度合い、気
孔率、および乾燥性を評価した。ただし、混練の際に水8.0部の追加が必要であった。
試験結果を表3に示す。
(Comparative Example 6 )
Except that the polymer fine particles were not used, the degree of drying shrinkage, the porosity, and the drying property were evaluated in the same manner as in Comparative Example 1. However, it was necessary to add 8.0 parts of water during kneading.
The test results are shown in Table 3.

Figure 0005660135
Figure 0005660135

Figure 0005660135
Figure 0005660135

上記実施例における、重合体微粒子の分析条件(1)〜(3)は以下に記載のとおりである。
(1)固形分
測定サンプル約1gを秤量(a)し、次いで、無風乾燥機150℃、60分間乾燥後の残分を測定(b)し、以下の式より算出した。測定には秤量ビンを使用した。その他の操作については、JIS K 0067−1992(化学製品の減量及び残分試験方法)に準拠した。
固形分(%)=(b/a)×100
The analysis conditions (1) to (3) of the polymer fine particles in the above examples are as described below.
(1) About 1 g of a solid content measurement sample was weighed (a), then the residue after drying for 60 minutes at 150 ° C. in an airless dryer was measured (b), and calculated from the following formula. A weighing bottle was used for the measurement. Other operations were in accordance with JIS K 0067-1992 (chemical product weight loss and residue test method).
Solid content (%) = (b / a) × 100

(2)水膨潤粒子径
測定サンプル0.02gにイオン交換水20mlを加え、十分に振り混ぜて、サンプルを均一分散させた。また粒子を水飽和膨潤状態とするために、30分以上分散させた分散液について、レーザー回折散乱式粒度分布計(日機装製、MT−3000)を用いて、超音波1分照射後に粒度分布測定を行った。測定時の循環分散媒にはイオン交換水を使用し、分散体の屈折率は1.53とした。測定により得られた体積基準での粒度分布よりメジアン径(μm)を計算し、水膨潤粒子径とした。
(2) Water-swelling particle diameter 20 ml of ion-exchanged water was added to 0.02 g of the measurement sample, and the sample was uniformly dispersed by shaking well. In order to make the particles into a water-saturated swelling state, the particle size distribution is measured after 1 minute of ultrasonic irradiation using a laser diffraction / scattering particle size distribution meter (manufactured by Nikkiso, MT-3000) for a dispersion dispersed for 30 minutes or more. Went. Ion exchange water was used as the circulating dispersion medium at the time of measurement, and the refractive index of the dispersion was 1.53. The median diameter (μm) was calculated from the particle size distribution on the basis of the volume obtained by the measurement, and was defined as the water-swelled particle diameter.

(3)吸水量
吸水量は以下の方法によって測定した。測定装置を図1に示す。
測定装置は図1における<1>〜<3>から構成される。
<1> 空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3およびポリテトラフルオロエチレンチューブ4から成る。
<2> ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3> 重合体微粒子の試料6は2枚の試料固定用濾紙7、及びメンブレンフィルター13に挟まれ、試料固定用濾紙及びメンブレンフィルターは粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2 内径55mmであり、メンブレンフィルターはMF−ミリポアメンブレンフィルタHAWP04700(孔径0.45μm)である。
<1>と<2>とはシリコンチューブ3によって繋がれる。
また、ロート5および支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図1中の点線)。
(3) Water absorption The water absorption was measured by the following method. The measuring device is shown in FIG.
The measuring device is composed of <1> to <3> in FIG.
<1> Consists of a burette 1 with a branch pipe for venting air, a pinch cock 2, a silicon tube 3, and a polytetrafluoroethylene tube 4.
<2> A support cylinder 8 having a large number of holes in the bottom surface on the funnel 5, and a filter paper 10 for the apparatus is installed on the support cylinder 8.
<3> A sample 6 of polymer fine particles is sandwiched between two sample fixing filter papers 7 and a membrane filter 13, and the sample fixing filter paper and the membrane filter are fixed by an adhesive tape 9. All filter papers used are ADVANTEC No. 2 The inner diameter is 55 mm, and the membrane filter is MF-Millipore membrane filter HAWP04700 (pore diameter 0.45 μm).
<1> and <2> are connected by the silicon tube 3.
Further, the funnel 5 and the column cylinder 8 are fixed to the burette 1 at a fixed height, and the lower end of the polytetrafluoroethylene tube 4 installed inside the buret branch pipe and the bottom surface of the column cylinder 8 have the same height. (Dotted line in FIG. 1).

測定方法について以下に説明する。
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
測定試料の乾燥粉末0.1〜0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a−b)で求められる。同様の操作により、重合体微粒子試料を含まない、2枚の濾紙7のみの吸水量を測定する(d)。
上記操作を行い、吸水量を以下の式より計算した。なお、計算に使用する固形分は、(1)の方法により測定した値を使用した。
吸水量(mL/g)=(c−d)/{測定サンプル重量(g)×(固形分%÷100)}
The measurement method will be described below.
The pinch cock 2 in <1> is removed, and ion exchange water is introduced from the upper part of the burette 1 through the silicon tube 3 so that the burette 1 to the apparatus filter paper 10 are filled with the ion exchange water 12. Next, the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the buret branch pipe with a rubber stopper. In this way, the ion exchange water 12 is continuously supplied from the burette 1 to the filter paper 10 for the apparatus.
Next, after removing the excess ion-exchanged water 12 that oozes from the filter paper for apparatus 10, the reading (a) of the scale of the burette 1 is recorded.
Weigh 0.1 to 0.2 g of the dry powder of the measurement sample and place it uniformly on the center of the sample fixing filter paper 7 as shown in <3>. The sample is sandwiched with another filter paper, and the two filter papers are fastened with the adhesive tape 9 to fix the sample. The filter paper on which the sample is fixed is placed on the apparatus filter paper 10 shown in <2>.
Next, the reading (b) of the scale of the bullet 1 after 30 minutes from the time when the lid 11 is placed on the filter paper 10 for apparatus is recorded.
The sum (c) of the amount of water absorption of the measurement sample and the amount of water absorption of the two sample fixing filter papers 7 is obtained by (ab). By the same operation, the water absorption of only two filter papers 7 not including the polymer fine particle sample is measured (d).
The above operation was performed, and the water absorption was calculated from the following formula. In addition, the value measured by the method of (1) was used for solid content used for calculation.
Water absorption (mL / g) = (cd) / {measurement sample weight (g) × (solid content% ÷ 100)}

本発明の重合体微粒子を使用していない比較例に対して実施例1〜はいずれも少ない水の量で成形が可能であり、乾燥前後の寸法比も小さく、乾燥による収縮度合いが低減されていることが確認できる。この中でも、重合体微粒子がノニオン性不飽和単量体のみから構成されている実施例では、マイクロ波および熱風とを組合わせて乾燥した際にも良好な外観の乾燥成形体が得られた。
一般にイオン性基はノニオン性基に比較してマイクロ波を吸収し易い性質を持つため、イオン性基を多く含む重合体微粒子を収縮低減剤として使用した場合はマイクロ波が成形体内部まで十分到達しない場合がある。このため成形体に乾燥ムラが生じ、その後の熱乾燥の際の収縮度合いの差によって、成形体に反りやひび割れ等の不具合が発生するものと想定される。
In comparison with Comparative Example 6 in which the polymer fine particles of the present invention are not used, each of Examples 1 to 4 can be molded with a small amount of water, the dimensional ratio before and after drying is small, and the degree of shrinkage due to drying is reduced. Can be confirmed. Among these, in Examples 2 to 4 in which the polymer fine particles are composed only of the nonionic unsaturated monomer, a dry molded article having a good appearance can be obtained even when dried by combining microwaves and hot air. It was.
In general, ionic groups have the property of absorbing microwaves more easily than nonionic groups, so when polymer particles containing a large amount of ionic groups are used as shrinkage reducing agents, microwaves can reach the inside of the molded body sufficiently. May not. For this reason, unevenness in drying occurs in the molded body, and it is assumed that problems such as warping and cracking occur in the molded body due to the difference in the degree of shrinkage during subsequent thermal drying.

また、イオン交換水で飽和膨潤した状態における平均粒子径が大きな比較例では、乾燥収縮の低減度合いは良好なものの、収縮低減剤を用いてない比較例に対して気孔率が大きく変化しており、セラミック製品の気孔率に影響を及ぼす結果が明らかとなった。また、常圧におけるイオン交換水の吸水量が本発明の範囲から外れた比較例およびでは、十分な収縮低減効果が認められなかった。


Further, in Comparative Example 3 having a large average particle size in the state of saturated swelling with ion-exchanged water, the degree of reduction in drying shrinkage is good, but the porosity is greatly changed compared to Comparative Example 6 in which no shrinkage reducing agent is used. The results that affect the porosity of ceramic products were revealed. In Comparative Examples 4 and 5 in which the amount of ion-exchanged water absorbed at normal pressure deviated from the scope of the present invention, a sufficient shrinkage reduction effect was not recognized.


本発明の重合体微粒子をセラミック成形に用いた場合には成形後の乾燥工程における成形体の収縮が低減され、かつ気孔率等の特性にも影響を及ぼさない。このため、高精度のセラミック成形体を再現性良く得ることが可能となる。   When the polymer fine particles of the present invention are used for ceramic molding, shrinkage of the molded body in the drying step after molding is reduced, and properties such as porosity are not affected. For this reason, it becomes possible to obtain a highly accurate ceramic compact with good reproducibility.

1 ビュレット
2 ピンチコック
3 シリコーンチューブ
4 ポリテトラフルオロエチレンチューブ
5 ロート
6 試料(重合体微粒子)
7 試料(重合体微粒子)固定用濾紙
8 支柱円筒
9 粘着テープ
10 装置用濾紙
11 蓋
12 イオン交換水
13 メンブレンフィルター
1 Burette 2 Pinch cock 3 Silicone tube 4 Polytetrafluoroethylene tube 5 Funnel 6 Sample (polymer fine particles)
7 Sample (polymer fine particle) fixing filter paper 8 Strut cylinder 9 Adhesive tape 10 Device filter paper 11 Lid 12 Ion exchange water 13 Membrane filter

Claims (5)

イオン交換水で飽和膨潤した状態における平均粒子径が0.01〜10μmであり、常圧におけるイオン交換水の吸水量が0.1〜60mL/gであって、アルカリで中和された酸性官能基が2.0mmol/g以下である重合体微粒子を含むセラミック成形用の乾燥収縮低減剤。 The average particle diameter in the saturated swollen state with deionized water is 0.01 to 10 [mu] m, water absorption of ion-exchanged water at normal pressure is I 0.1~60mL / g der, neutralized with an alkali acidic A drying shrinkage reducing agent for forming a ceramic, comprising polymer fine particles having a functional group of 2.0 mmol / g or less . 上記重合体微粒子がニオン性不飽和単量体のみからなる単量体混合物を重合することにより得られたものであることを特徴とする請求項1記載の乾燥収縮低減剤。 Drying shrinkage-reducing agent according to claim 1, characterized in that is obtained by polymerizing the polymer microparticles consists only Roh anion unsaturated monomer monomer mixture. 上記ノニオン性不飽和単量体混合物が水酸基、アミド基、及びオキシエチレン基から選ばれる1種以上の官能基を有する単量体を含むことを特徴とする請求項に記載の乾燥収縮低減剤。 3. The drying shrinkage reducing agent according to claim 2 , wherein the nonionic unsaturated monomer mixture contains a monomer having one or more functional groups selected from a hydroxyl group, an amide group, and an oxyethylene group. . 請求項1〜に記載の乾燥収縮低減剤を用いたセラミック成形体の乾燥収縮低減方法。 Drying shrinkage-reducing method of a ceramic molded body using the drying shrinkage-reducing agent according to claim 1-3. さらにセラミック気孔形成剤を併用することを特徴とする請求項に記載のセラミック成形体の乾燥収縮低減方法。 Furthermore, a ceramic pore formation agent is used together, The drying shrinkage reduction method of the ceramic molded body of Claim 4 characterized by the above-mentioned.
JP2012529529A 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body Active JP5660135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529529A JP5660135B2 (en) 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010184376 2010-08-19
JP2010184376 2010-08-19
JP2012529529A JP5660135B2 (en) 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body
PCT/JP2011/066517 WO2012023375A1 (en) 2010-08-19 2011-07-21 Agent for reducing drying shrinkage for ceramic formation, and method for reducing drying shrinkage of ceramic molded bodies

Publications (2)

Publication Number Publication Date
JPWO2012023375A1 JPWO2012023375A1 (en) 2013-10-28
JP5660135B2 true JP5660135B2 (en) 2015-01-28

Family

ID=45605036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012529529A Active JP5660135B2 (en) 2010-08-19 2011-07-21 Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body

Country Status (2)

Country Link
JP (1) JP5660135B2 (en)
WO (1) WO2012023375A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130113A (en) * 1990-09-20 1992-05-01 Mitsubishi Petrochem Co Ltd Production of macrobead-like water-absorptive resin
JP2001089527A (en) * 1999-07-22 2001-04-03 Nippon Shokubai Co Ltd Water absorbing resin, its method of production and its use
JP2007001836A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Method of manufacturing honeycomb structure
WO2008084844A1 (en) * 2007-01-12 2008-07-17 Ngk Insulators, Ltd. Process for producing honeycomb structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130113A (en) * 1990-09-20 1992-05-01 Mitsubishi Petrochem Co Ltd Production of macrobead-like water-absorptive resin
JP2001089527A (en) * 1999-07-22 2001-04-03 Nippon Shokubai Co Ltd Water absorbing resin, its method of production and its use
JP2007001836A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Method of manufacturing honeycomb structure
WO2008084844A1 (en) * 2007-01-12 2008-07-17 Ngk Insulators, Ltd. Process for producing honeycomb structure

Also Published As

Publication number Publication date
WO2012023375A1 (en) 2012-02-23
JPWO2012023375A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5273311B2 (en) Additive for ceramic molding
WO2009096300A1 (en) Process for the production of polymer microparticles
JP5499712B2 (en) Method for producing polymer fine particles
KR20090045307A (en) Process for producing fine polymer particle
JP5251886B2 (en) Method for producing polymer fine particles
JP5509525B2 (en) Method for producing polymer fine particles
JP2023052330A (en) Polyvinyl alcohol-based resin, dispersing agent, and dispersing agent for suspension polymerization
JP4668654B2 (en) Heat extinguishing hollow resin particles and method for producing heat extinguishing hollow resin particles
JP5660135B2 (en) Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body
JP5660136B2 (en) Drying shrinkage reducing agent for ceramic molding and method for reducing drying shrinkage of ceramic molded body
JP7435710B2 (en) Method for producing water-soluble polymers
JP6119568B2 (en) High strength gel
KR101943473B1 (en) Preparing method of polymer particle
JP2007022879A (en) Ceramic composition and method for manufacturing porous ceramic filter
JP5298547B2 (en) Method for producing polymer fine particle powder
WO2024181265A1 (en) Resin particles for creating pores in polyimide porous membrane, and method for producing same
WO2021039139A1 (en) Crosslinkable methacrylate resin particle and pore-forming agent
JP6003827B2 (en) Solid oxide fuel cell and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5660135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250