JP5659464B2 - element - Google Patents

element Download PDF

Info

Publication number
JP5659464B2
JP5659464B2 JP2009160739A JP2009160739A JP5659464B2 JP 5659464 B2 JP5659464 B2 JP 5659464B2 JP 2009160739 A JP2009160739 A JP 2009160739A JP 2009160739 A JP2009160739 A JP 2009160739A JP 5659464 B2 JP5659464 B2 JP 5659464B2
Authority
JP
Japan
Prior art keywords
electrode
layer
gas
film
sulfidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009160739A
Other languages
Japanese (ja)
Other versions
JP2011018464A (en
Inventor
剛志 牧
剛志 牧
深野 達雄
達雄 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009160739A priority Critical patent/JP5659464B2/en
Publication of JP2011018464A publication Critical patent/JP2011018464A/en
Application granted granted Critical
Publication of JP5659464B2 publication Critical patent/JP5659464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、素子に関し、さらに詳しくは、耐硫化性又は耐セレン化性が高い電極材料、あるいは、製造工程のいずれかの段階において硫化雰囲気又はセレン化雰囲気に曝される素子の電極として用いられる電極材料、を電極に用いた素子に関する。 The present invention relates to a device, more particularly, sulfidation resistance or selenide resistance high electrode material or, used as the electrode of the element exposed to sulfide atmosphere or selenide atmosphere at any stage of the manufacturing process electrode materials for relates to devices used for the electrode.

特許文献1には、絶縁基板上に、第一電極、第一絶縁膜、発光層、第二絶縁膜及び第二電極を有した薄膜電場発光素子において、第一電極がモリブデンシリサイドMoSi2であることを特徴とする薄膜電場発光素子が開示されている。
同文献には、第一電極にモリブデンシリサイドを用いると、硫黄ガス若しくは硫黄化合物ガス、又は、硫黄ガス若しくは硫黄化合物ガスを不活性ガスと混合したガスからなる雰囲気ガス中で、温度500ないし650℃の範囲で硫化物を熱処理して発光層を形成すると、硫化物結晶の硫黄欠損がなくなり、発光層の発光輝度が高まる等の効果が得られる点が記載されている。
In Patent Document 1, in a thin film electroluminescent device having a first electrode, a first insulating film, a light emitting layer, a second insulating film, and a second electrode on an insulating substrate, the first electrode is molybdenum silicide MoSi 2 . A thin-film electroluminescent device is disclosed.
In this document, when molybdenum silicide is used for the first electrode, the temperature is 500 to 650 ° C. in an atmosphere gas composed of sulfur gas or sulfur compound gas, or a gas obtained by mixing sulfur gas or sulfur compound gas with an inert gas. It is described that when a light emitting layer is formed by heat-treating sulfide within the above range, the sulfur deficiency of the sulfide crystal is eliminated, and the light emitting luminance of the light emitting layer is increased.

また、特許文献2には、ガラス基板上に、第1金属層(例えば、Mo、W、Cr、SiO2、Al、TiSi2、MoSi2、WSi2など)、セレン化リチウム、III-VI族元素化合物層(例えば、InxSe1-x、GaxSe1-xなど)、及び、I族元素を有する第2金属層(例えば、Cu、Inなど)をこの順で形成し、セレン化処理することにより得られるI-III-VI属化合物半導体が開示されている。
同文献には、このような方法により、第1金属層の上に、LiドープI-III-VI族化合物半導体(例えば、LiドープCuInSe2(CIS)など)を形成することができる点が記載されている。
Patent Document 2 discloses a first metal layer (for example, Mo, W, Cr, SiO 2 , Al, TiSi 2 , MoSi 2 , WSi 2, etc.), lithium selenide, and III-VI group on a glass substrate. An element compound layer (for example, In x Se 1-x , Ga x Se 1-x, etc.) and a second metal layer (for example, Cu, In, etc.) having a group I element are formed in this order, and selenization is performed. A Group I-III-VI compound semiconductor obtained by processing is disclosed.
This document describes that a Li-doped I-III-VI group compound semiconductor (for example, Li-doped CuInSe 2 (CIS)) can be formed on the first metal layer by such a method. Has been.

さらに、特許文献3には、スパッタ成膜法にて作製したMoSi2膜の体積抵抗率が約4.9×10-5Ωcmとなることが示されている。 Furthermore, Patent Document 3 shows that the volume resistivity of the MoSi 2 film produced by the sputter deposition method is about 4.9 × 10 −5 Ωcm.

特開平8−195281号公報JP-A-8-195281 特開平11−274534号公報Japanese Patent Laid-Open No. 11-274534 特開2006−164595号公報JP 2006-164595 A

MoSi2は、硫黄ガス、硫黄化合物ガス、又は、硫黄ガス若しくは硫黄化合物ガスと不活性ガスとの混合ガスを含む雰囲気中で安定である。また、MoSi2は、このような雰囲気中で500〜650℃に加熱しても腐食や溶融を起こさない。そのため、MoSi2は、製造過程で硫化処理を伴う素子の電極として用いることができる。
同様に、MoSi2は、セレンガス、セレン化合物ガス、又は、セレンガス若しくはセレン化合物ガスと不活性ガスとの混合ガスを含む雰囲気中で安定である。また、MoSi2は、このような雰囲気中で500〜650℃に加熱しても腐食や溶融を起こさない。そのため、MoSi2は、製造過程でセレン化処理を伴う素子の電極として用いることができる。
MoSi 2 is stable in an atmosphere containing sulfur gas, sulfur compound gas, or a mixed gas of sulfur gas or sulfur compound gas and an inert gas. MoSi 2 does not cause corrosion or melting even when heated to 500 to 650 ° C. in such an atmosphere. Therefore, MoSi 2 may be used as an electrode of the device with sulfide treatment during the manufacturing process.
Similarly, MoSi 2 is stable in an atmosphere containing selenium gas, selenium compound gas, or selenium gas or a mixed gas of selenium compound gas and inert gas. MoSi 2 does not cause corrosion or melting even when heated to 500 to 650 ° C. in such an atmosphere. Therefore, MoSi 2 can be used as an electrode of an element accompanied by a selenization process in the manufacturing process.

しかしながら、MoSi2は、Moよりも耐硫化性及び耐セレン化性に優れているが、特に、膜状の場合には、電気抵抗がMoより大きくなる(特許文献3参照)。 However, MoSi 2 is superior in sulfur resistance and selenization resistance to Mo, but in particular, in the case of a film, the electric resistance is larger than Mo (see Patent Document 3).

本発明が解決しようとする課題は、導電性、耐熱性、耐硫化性又は耐セレン化性に優れた電極材料、あるいは、製造工程のいずれかの段階において硫化雰囲気又はセレン化雰囲気に曝される素子の電極として用いることが可能な電極材料、を電極に用いた素子を提供することにある。 The problem to be solved by the present invention is an electrode material excellent in conductivity, heat resistance, sulfidation resistance or selenization resistance, or is exposed to a sulfidation atmosphere or a selenization atmosphere at any stage of the manufacturing process. It is to provide a device which had use of the electrode materials, which can be used as an electrode of the device to the electrode.

上記課題を解決するために本発明に係る素子は、以下の構成を備えていることを要旨とする。
(1)前記素子は、少なくともSiを含有し、Moを70at%以上含むことを特徴とする電極材料からなる電極を備えている。
(2)前記素子は、薄膜太陽電池、光導電セル、フォトダイオード、フォトトランジスター、色素増感型太陽電池、薄膜電場発光素子、又は、エレクトロルミネッセンスディスプレイからなる。
(3)前記素子は、発光層又は光吸収層として、Sを含む層又はSeを含む層を含む。
(4)前記電極のSi含有量は、0at%超10at%以下である。
In order to solve the above-described problems, the gist of the element according to the present invention is as follows.
(1) The element includes an electrode made of an electrode material containing at least Si and containing 70 at% or more of Mo.
(2) The element comprises a thin film solar cell, a photoconductive cell, a photodiode, a phototransistor, a dye-sensitized solar cell, a thin film electroluminescent element, or an electroluminescence display.
(3) The said element contains the layer containing S or the layer containing Se as a light emitting layer or a light absorption layer.
(4) Si content before Symbol electrodes is below 0 atomic% more than 1 0 atomic%.

Mo−Si系電極材料は、耐熱性が高く、基板(特に、ガラス基板)との密着性が高い。また、Si含有量が多くなるほど、電極材料の比抵抗は増大するが、Mo−S層又はMo−Se層が形成されることによる比抵抗の増分に比べて、Si添加による比抵抗の増分は遙かに小さい。さらに、このような電極材料を、製造工程のいずれかの段階において硫化雰囲気又はセレン化雰囲気にされされる素子の電極として用いると、Moの硫化又はセレン化に起因する電極機能の劣化を抑制することができる。これは、硫化処理時又はセレン化処理時に電極表面において材料中のSiが選択的に硫化又はセレン化し、Moの硫化又はセレン化が抑制されるためと考えられる。   The Mo—Si based electrode material has high heat resistance and high adhesion to a substrate (particularly a glass substrate). In addition, as the Si content increases, the specific resistance of the electrode material increases. However, the increase in specific resistance due to the addition of Si is larger than the increase in specific resistance due to the formation of the Mo-S layer or the Mo-Se layer. Much smaller. Furthermore, when such an electrode material is used as an electrode of an element that is brought into a sulfurized atmosphere or a selenized atmosphere at any stage of the manufacturing process, the deterioration of the electrode function due to the sulfurization or selenization of Mo is suppressed. be able to. This is presumably because Si in the material is selectively sulfided or selenized on the electrode surface during the sulfidation treatment or selenization treatment, and Mo sulfidation or selenization is suppressed.

Mo−Si電極(Mo電極膜)のSi含有量と硫化処理前の体積抵抗率との関係を示す図である。It is a figure which shows the relationship between Si content of a Mo-Si electrode (Mo electrode film), and the volume resistivity before a sulfidation process. Mo−Si電極(Mo電極膜)のSi含有量と硫化処理後の硫化層厚との関係を示す図である。It is a figure which shows the relationship between Si content of a Mo-Si electrode (Mo electrode film), and the sulfide layer thickness after a sulfidation process. Mo−Si電極(Mo電極膜)のSi含有量と硫化処理後のシート抵抗の変化率との関係を示す図である。It is a figure which shows the relationship between Si content of a Mo-Si electrode (Mo electrode film), and the change rate of the sheet resistance after a sulfidation process.

以下に、本発明の一実施の形態について詳細に説明する。
[1. 電極材料]
本発明に係る電極材料は、少なくともSiを含有し、Moを主成分とすることを特徴とする。
「Moを主成分とする」とは、材料に占めるMoの割合が70at%以上であることをいう。一般に、Moの割合が70at%以上では、Mo含有量が高いほど、耐熱性や基板との密着性に優れた電極材料となる。Mo含有量は、さらに好ましくは90at%以上、さらに好ましくは95at%以上である。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Electrode material]
The electrode material according to the present invention is characterized by containing at least Si and containing Mo as a main component.
“Mainly comprising Mo” means that the proportion of Mo in the material is 70 at% or more. Generally, when the Mo content is 70 at% or more, the higher the Mo content, the better the electrode material is in heat resistance and adhesion to the substrate. The Mo content is more preferably 90 at% or more, and still more preferably 95 at% or more.

Siは、電極材料の比抵抗を著しく増大させることなく、電極材料の耐硫化性又は耐セレン化性を増大させる作用がある。このような効果を得るためには、Si含有量は、0at%超が好ましい。Si含有量は、さらに好ましくは1at%以上、さらに好ましくは2at%以上、さらに好ましくは3at%以上である。
Si含有量が多くなるほど、電極材料の耐硫化性又は耐セレン化性は向上する。しかしながら、Si含有量が過剰になると、電極材料の比抵抗が増大する。従って、Si含有量は、10at%以下が好ましい。Si含有量は、さらに好ましくは5at%以下である。
Si acts to increase the resistance to sulfidation or selenization of the electrode material without significantly increasing the specific resistance of the electrode material. In order to obtain such an effect, the Si content is preferably more than 0 at%. The Si content is more preferably 1 at% or more, more preferably 2 at% or more, and further preferably 3 at% or more.
The greater the Si content, the better the sulfidation resistance or selenization resistance of the electrode material. However, when the Si content is excessive, the specific resistance of the electrode material increases. Accordingly, the Si content is preferably 10 at% or less. The Si content is more preferably 5 at% or less.

電極材料は、MoとSiのみを含むものでも良く、あるいは、MoとSi以外の第3成分が含まれていても良い。電極材料の電極機能を劣化させる第3成分は、少ないほど良い。一方、電極材料の電極機能を向上させる第3成分は、目的に応じて最適な量を添加することができる。   The electrode material may contain only Mo and Si, or may contain a third component other than Mo and Si. The smaller the third component that degrades the electrode function of the electrode material, the better. On the other hand, the third component that improves the electrode function of the electrode material can be added in an optimum amount depending on the purpose.

[2. 電極]
本発明に係る電極材料は、導電性、耐熱性、基板との密着性、及び、耐硫化性又は耐セレン化性に優れる電極に用いることができる。
当該電極は、
(1)硫黄ガス、硫黄化合物ガス、又は、硫黄ガス若しくは硫黄化合物ガスと不活性ガスとの混合ガス、又は、
(2)セレンガス、セレン化合物ガス、又は、セレンガス若しくはセレン化合物ガスと不活性ガスとの混合ガス、
に曝されても、電極表面の硫化又はセレン化が誘発されず、長年使用においても接点の接触不良が起きない。
また、このようなガス中に曝され、かつ、500℃以上の高温状態に曝されても、電極表面の硫化又はセレン化は僅かであるため、接点の接触不良は抑制される。
[2. electrode]
The electrode material according to the present invention can be used for an electrode having excellent conductivity, heat resistance, adhesion to a substrate, and resistance to sulfidation or selenization.
The electrode
(1) Sulfur gas, sulfur compound gas, sulfur gas or mixed gas of sulfur compound gas and inert gas, or
(2) Selenium gas, selenium compound gas, or mixed gas of selenium gas or selenium compound gas and inert gas,
Even when exposed to the above, sulfidation or selenization of the electrode surface is not induced, and contact failure does not occur even after many years of use.
Further, even when exposed to such a gas and exposed to a high temperature state of 500 ° C. or higher, the contact or contact failure of the contacts is suppressed because the surface of the electrode is slightly sulfided or selenized.

[3. 素子]
本発明に係る電極材料は、導電性、耐熱性、基板との密着性、及び、耐硫化性又は耐セレン化性に優れているので、薄膜太陽電池、光導電セル、フォトダイオード、フォトトランジスター、色素増感型太陽電池、薄膜電場発光素子、エレクトロルミネッセンスディスプレイなどの各種素子の電極として広く用いることができる。本発明に係る電極材料は、製造工程のいずれかの段階において硫化雰囲気又はセレン化雰囲気に曝される素子の電極として特に好適である。
製造工程のいずれかの段階において硫化雰囲気又はセレン化雰囲気に曝される素子としては、
(1)発光層として、マンガンをドープした硫化亜鉛ZnS:Mnを用いた素子、
(2)発光層として、セリウムをドープした硫化ストロンチウムSrS:Ceを用いた素子、
(3)光吸収層として、CuInS2を用いた素子、
(4)光吸収層として、Cu(In、Ga)Se2を用いた素子、
(5)光吸収層として、Cu(In、Ga)(Se、S)2を用いた素子、
(6)光吸収層として、Cu2ZnSnS4を用いた素子、
(7)光吸収層として、Cu2ZnSn(Se、S)4を用いた素子、
などがある。
[3. element]
Since the electrode material according to the present invention is excellent in conductivity, heat resistance, adhesion to a substrate, and resistance to sulfidation or selenization, a thin film solar cell, a photoconductive cell, a photodiode, a phototransistor, It can be widely used as an electrode for various elements such as a dye-sensitized solar cell, a thin film electroluminescent element, and an electroluminescence display. The electrode material according to the present invention is particularly suitable as an electrode of an element exposed to a sulfurizing atmosphere or a selenizing atmosphere at any stage of the manufacturing process.
As an element exposed to a sulfurizing atmosphere or a selenizing atmosphere at any stage of the manufacturing process,
(1) A device using zinc sulfide ZnS: Mn doped with manganese as the light emitting layer,
(2) An element using strontium sulfide SrS: Ce doped with cerium as the light emitting layer,
(3) An element using CuInS 2 as the light absorption layer,
(4) An element using Cu (In, Ga) Se 2 as the light absorption layer,
(5) An element using Cu (In, Ga) (Se, S) 2 as the light absorption layer,
(6) An element using Cu 2 ZnSnS 4 as the light absorption layer,
(7) An element using Cu 2 ZnSn (Se, S) 4 as the light absorption layer,
and so on.

[4. 電極材料の製造方法]
本発明に係る電極材料は、種々の方法により製造することができる。
電極材料の製造方法としては、具体的には、少なくともMo及びSiを所定の比率で含む材料を溶解・鋳造する方法などがある。
[4. Method for manufacturing electrode material]
The electrode material according to the present invention can be manufactured by various methods.
As a method for producing the electrode material, specifically, there is a method of melting and casting a material containing at least Mo and Si in a predetermined ratio.

[5. 電極の製造方法]
本発明に係る電極は、種々の方法により製造することができる。
電極の製造方法としては、具体的には、
(1)少なくともMo及びSiを所定の比率で含む材料を、真空蒸着法、スパッタ法などにて、所定の場所に形成する方法、
(2)少なくともMo及びSiを所定の比率で含む材料を、真空蒸着法、スパッタ法などにて、汎用電極上に形成する方法、
(3)Mo及びSiを同時に、真空蒸着法、スパッタ法などにて、所定の場所又は汎用電極上に形成する方法、
(4)Mo及びSiを同時に又は非同時に、真空蒸着法、スパッタ法などにて、所定の場所又は汎用電極上に堆積させた後、熱処理して形成する方法、
などがある。
[5. Electrode manufacturing method]
The electrode according to the present invention can be manufactured by various methods.
As an electrode manufacturing method, specifically,
(1) A method of forming a material containing at least Mo and Si in a predetermined ratio at a predetermined location by a vacuum deposition method, a sputtering method,
(2) A method of forming a material containing at least Mo and Si in a predetermined ratio on a general-purpose electrode by vacuum deposition, sputtering, or the like,
(3) A method of simultaneously forming Mo and Si on a predetermined place or a general-purpose electrode by a vacuum deposition method, a sputtering method, or the like,
(4) A method of forming Mo and Si simultaneously or non-simultaneously, by depositing them on a predetermined place or general-purpose electrode by a vacuum vapor deposition method, a sputtering method, etc., and then performing a heat treatment,
and so on.

[6. 電極材料、電極及び素子の作用]
Mo−Si系電極材料は、耐熱性が高く、基板(特に、ガラス基板)との密着性が高い。また、Si含有量が多くなるほど、電極材料の比抵抗は増大するが、Mo−S層又はMo−Se層が形成されることによる比抵抗の増分に比べて、Si添加による比抵抗の増分は遙かに小さい。そのため、Mo−Si系電極材料は、各種電極や各種素子の電極材料として広く用いることができる。
[6. Action of electrode material, electrode and element]
The Mo—Si based electrode material has high heat resistance and high adhesion to a substrate (particularly a glass substrate). In addition, as the Si content increases, the specific resistance of the electrode material increases. However, the increase in specific resistance due to the addition of Si is larger than the increase in specific resistance due to the formation of the Mo-S layer or the Mo-Se layer. Much smaller. Therefore, the Mo—Si-based electrode material can be widely used as an electrode material for various electrodes and various elements.

また、CuInS2のようなSを含む層、又は、Cu(In、Ga)Se2のようなSeを含む層は、一般に、基板上に形成された下部電極の上に構成元素を含む前駆体膜を形成し、前駆体膜を硫化処理又はセレン化処理することにより製造されている。この時、下部電極としてMoを用いると、硫化処理時又はセレン化処理時にMo膜表面に、MoS2、MoSなどの硫化層又はMoSe2、MoSeなどのセレン化層が形成される場合がある。特にMoS2層は、高抵抗であるため、MoS2層が厚く形成されると、電気抵抗の増大や形状変化などの電極機能の劣化が著しい。そのため、Moの硫化層又はセレン化層、特にMoS2層の形成を極力抑制する必要があった。 A layer containing S such as CuInS 2 or a layer containing Se such as Cu (In, Ga) Se 2 is generally a precursor containing a constituent element on a lower electrode formed on a substrate. It is manufactured by forming a film and subjecting the precursor film to sulfuration or selenization. At this time, if Mo is used as the lower electrode, a sulfide layer such as MoS 2 or MoS or a selenide layer such as MoSe 2 or MoSe may be formed on the surface of the Mo film during the sulfidation treatment or selenization treatment. In particular, since the MoS 2 layer has a high resistance, when the MoS 2 layer is formed thick, the electrode function such as an increase in electrical resistance or a change in shape is remarkable. Therefore, it is necessary to suppress the formation of the Mo sulfide layer or selenide layer, particularly the MoS 2 layer, as much as possible.

これに対し、本発明に係る電極材料を、製造工程のいずれかの段階において硫化雰囲気又はセレン化雰囲気に曝される素子の電極として用いると、Moの硫化又はセレン化に起因する電極機能の劣化を抑制することができる。これは、硫化処理時又はセレン化処理時に電極表面において材料中のSiが選択的に硫化又はセレン化し、Moの硫化又はセレン化が抑制されるためと考えられる。さらに、硫化又はセレン化に起因する電気抵抗の増大を抑制することができるので、下部電極の厚さを薄くすることも可能となる。   On the other hand, when the electrode material according to the present invention is used as an electrode of an element exposed to a sulfurizing atmosphere or a selenizing atmosphere at any stage of the manufacturing process, the electrode function deteriorates due to the sulfurization or selenization of Mo. Can be suppressed. This is presumably because Si in the material is selectively sulfided or selenized on the electrode surface during the sulfidation treatment or selenization treatment, and Mo sulfidation or selenization is suppressed. Furthermore, since an increase in electrical resistance due to sulfurization or selenization can be suppressed, the thickness of the lower electrode can be reduced.

[1. 試料の作製]
[1.1. Mo電極膜(Mo−Si電極)の形成]
RFマグネトロンスパッタ法にてガラス基板上に、Siを添加したMo電極膜を形成した。成膜条件は、以下の通りである。
ターゲット種には、ターゲットサイズ3インチ(7.62cm)φのMoターゲットを用いた。ターゲットのエロージョンリング上には、高純度のSiウエハを配置した。Si添加量の調整は、エロージョンリング上に配置するSiウエハの枚数を増減させることにより行った。
溶剤を用いて基板を超音波洗浄し、次いで、スパッタ成膜装置内に基板を配置し、基板を逆スパッタ洗浄した。
[1. Preparation of sample]
[1.1. Formation of Mo electrode film (Mo-Si electrode)]
A Mo electrode film to which Si was added was formed on a glass substrate by RF magnetron sputtering. The film forming conditions are as follows.
As the target species, a Mo target having a target size of 3 inches (7.62 cm) φ was used. A high-purity Si wafer was placed on the target erosion ring. Adjustment of Si addition amount was performed by increasing / decreasing the number of Si wafers arrange | positioned on an erosion ring.
The substrate was ultrasonically cleaned using a solvent, then the substrate was placed in a sputter deposition apparatus, and the substrate was reverse sputter cleaned.

Mo電極膜の形成は、2段階成膜により行った。スパッタガス種には、Arを用いた。1段階目の成膜条件は、スパッタガス圧:1Pa、投入パワー:100W、膜厚:100nmとした。また、2段階目の成膜条件は、スパッタガス圧:0.5Pa、投入パワー:300W、膜厚:400nmとした。層膜厚は、500nmとした。1段階目成膜と2段階目成膜は、真空を破らずに連続的に成膜を行った。   The Mo electrode film was formed by two-stage film formation. Ar was used as the sputtering gas species. The first-stage film formation conditions were a sputtering gas pressure: 1 Pa, an input power: 100 W, and a film thickness: 100 nm. The film formation conditions in the second stage were set to sputtering gas pressure: 0.5 Pa, input power: 300 W, and film thickness: 400 nm. The layer thickness was 500 nm. In the first-stage film formation and the second-stage film formation, film formation was continuously performed without breaking the vacuum.

[1.2. 硫化処理]
Si添加Mo電極膜を20%H2S+N2雰囲気中で580℃×120minの熱処理を行った。
[1.2. Sulfurization]
The Si-added Mo electrode film was heat-treated at 580 ° C. for 120 minutes in a 20% H 2 S + N 2 atmosphere.

[2. 試験方法]
[2.1. Si含有量と体積抵抗率]
Si含有量の異なるMo電極膜中のSi添加量をEPMAにて測定した。
硫化処理前のMo電極膜の体積抵抗率を四探針法にて測定した。
[2.2. 硫化層(硫化変質層)厚]
硫化処理後の電極膜の硫化層の厚さをAESにて測定した。
[2.3. シート抵抗の変化率]
硫化処理前後の電極膜の体積抵抗率を四探針法にて測定し、膜厚を走査型電子顕微鏡にて測定した。得られた数値を下に、次式に従い、シート抵抗の変化率を算出した。
変化率=
(硫化後の体積抵抗率×硫化後の膜厚)/(硫化前の体積抵抗率×硫化前の膜厚)×100
[2. Test method]
[2.1. Si content and volume resistivity]
The amount of Si added in the Mo electrode films having different Si contents was measured by EPMA.
The volume resistivity of the Mo electrode film before the sulfiding treatment was measured by a four-point probe method.
[2.2. Sulfide layer (sulfur alteration layer) thickness]
The thickness of the sulfide layer of the electrode film after the sulfidation treatment was measured by AES.
[2.3. Change rate of sheet resistance]
The volume resistivity of the electrode film before and after the sulfidation treatment was measured by a four-probe method, and the film thickness was measured by a scanning electron microscope. The rate of change in sheet resistance was calculated according to the following equation with the obtained numerical value below.
Rate of change =
(Volume resistivity after sulfiding × film thickness after sulfiding) / (Volume resistivity before sulfiding × film thickness before sulfiding) × 100

[3. 結果]
図1に、Mo電極膜のSi含有量と硫化処理前の体積抵抗率との関係を示す。図2に、Mo電極膜のSi含有量と硫化処理後の硫化層厚さとの関係を示す。図3に、Mo電極膜のSi含有量と硫化処理後のシート抵抗の変化率との関係を示す。
図1〜図3より、
(1)Siの添加量が多くなるほど、硫化処理前の体積抵抗率が増大する(図1)、
(2)Siの微少添加でもMo電極の硫化を抑制することができる(図2、3)、
(3)耐硫化性に優れた電極材料を得るためには、Si含有量は0at%<Si≦10at%の範囲が好ましい、
ことがわかる。
なお、以上の硫化処理における効果は、セレン化処理においても同様に期待できる。
[3. result]
FIG. 1 shows the relationship between the Si content of the Mo electrode film and the volume resistivity before sulfidation. FIG. 2 shows the relationship between the Si content of the Mo electrode film and the thickness of the sulfide layer after the sulfidation treatment. FIG. 3 shows the relationship between the Si content of the Mo electrode film and the rate of change in sheet resistance after sulfidation.
1-3,
(1) The volume resistivity before sulfidation increases as the amount of Si added increases (FIG. 1).
(2) Even with the slight addition of Si, the sulfidation of the Mo electrode can be suppressed (FIGS. 2 and 3).
(3) In order to obtain an electrode material having excellent sulfidation resistance, the Si content is preferably in the range of 0 at% <Si ≦ 10 at%.
I understand that.
In addition, the effect in the above sulfurization process can be similarly expected in the selenization process.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係る電極材料は、
(a)硫黄ガス、硫黄化合物ガス、又は、硫黄ガス若しくは硫黄化合物ガスと不活性ガスとの混合ガス、又は、
(b)セレンガス、セレン化合物ガス、又は、セレンガス若しくはセレン化合物ガスと不活性ガスとの混合ガス、
に曝される電極に用いることができる。
また、本発明に係る電極材料は、薄膜太陽電池、光導電セル、フォトダイオード、フォトトランジスター、色素増感型太陽電池、薄膜電場発光素子、エレクトロルミネッセンスディスプレイなどの各種素子の電極として広く用いることができる。
The electrode material according to the present invention is:
(A) sulfur gas, sulfur compound gas, sulfur gas or a mixed gas of sulfur compound gas and inert gas, or
(B) selenium gas, selenium compound gas, or mixed gas of selenium gas or selenium compound gas and inert gas,
It can be used for an electrode exposed to.
In addition, the electrode material according to the present invention can be widely used as an electrode of various elements such as a thin film solar cell, a photoconductive cell, a photodiode, a phototransistor, a dye-sensitized solar cell, a thin film electroluminescent device, and an electroluminescence display. it can.

Claims (2)

以下の構成を備えた素子。
(1)前記素子は、少なくともSiを含有し、Moを70at%以上含むことを特徴とする電極材料からなる電極を備えている。
(2)前記素子は、薄膜太陽電池、光導電セル、フォトダイオード、フォトトランジスター、色素増感型太陽電池、薄膜電場発光素子、又は、エレクトロルミネッセンスディスプレイからなる。
(3)前記素子は、発光層又は光吸収層として、Sを含む層又はSeを含む層を含む。
(4)前記電極は、Si含有量が0at%超10at%以下である。
An element having the following configuration.
(1) The element includes an electrode made of an electrode material containing at least Si and containing 70 at% or more of Mo.
(2) The element comprises a thin film solar cell, a photoconductive cell, a photodiode, a phototransistor, a dye-sensitized solar cell, a thin film electroluminescent element, or an electroluminescence display.
(3) The said element contains the layer containing S or the layer containing Se as a light emitting layer or a light absorption layer.
(4) The electrode has an Si content of more than 0 at% and not more than 10 at%.
前記素子は、製造工程のいずれかの段階において硫化雰囲気又はセレン化雰囲気に曝されたものからなる請求項1に記載の素子。 The device according to claim 1, wherein the device is exposed to a sulfurizing atmosphere or a selenizing atmosphere at any stage of the manufacturing process.
JP2009160739A 2009-07-07 2009-07-07 element Expired - Fee Related JP5659464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160739A JP5659464B2 (en) 2009-07-07 2009-07-07 element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160739A JP5659464B2 (en) 2009-07-07 2009-07-07 element

Publications (2)

Publication Number Publication Date
JP2011018464A JP2011018464A (en) 2011-01-27
JP5659464B2 true JP5659464B2 (en) 2015-01-28

Family

ID=43596103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160739A Expired - Fee Related JP5659464B2 (en) 2009-07-07 2009-07-07 element

Country Status (1)

Country Link
JP (1) JP5659464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049571A (en) * 2012-08-30 2014-03-17 Toyota Central R&D Labs Inc Photoelectric element
JP5660091B2 (en) * 2012-08-30 2015-01-28 株式会社豊田中央研究所 Electrode element electrode
JP2016100458A (en) * 2014-11-21 2016-05-30 セイコーエプソン株式会社 Method of manufacturing photoelectric conversion device and method of manufacturing electronic apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141569A (en) * 1988-11-24 1990-05-30 Hitachi Ltd Superconducting material
JP4230713B2 (en) * 1992-08-27 2009-02-25 株式会社東芝 Electronic component and manufacturing method thereof
JPH08162271A (en) * 1994-12-05 1996-06-21 Fuji Electric Co Ltd Connecting method by soldering for display panel connection terminal part
JPH08195281A (en) * 1995-01-18 1996-07-30 Fuji Electric Co Ltd Thin film electroluminescent element and its manufacture
JPH11195753A (en) * 1997-10-27 1999-07-21 Seiko Epson Corp Semiconductor device and manufacture thereof
JPH11274534A (en) * 1998-03-25 1999-10-08 Yazaki Corp I-iii-vi compound semiconductor and thin film solar cell using the same
JP2006164595A (en) * 2004-12-03 2006-06-22 Doshisha Thin film heating element and its manufacturing method
JP2006196521A (en) * 2005-01-11 2006-07-27 Hitachi Metals Ltd Multilayer wiring film
JP5204965B2 (en) * 2006-10-25 2013-06-05 日立アプライアンス株式会社 Absorption heat pump

Also Published As

Publication number Publication date
JP2011018464A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
KR101869337B1 (en) Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same
TWI427814B (en) Method of manufacturing solar cell
JP6096790B2 (en) Conductive substrate for photovoltaic cells
JP4937379B2 (en) Thin film solar cell
JP5709662B2 (en) CZTS thin film solar cell manufacturing method
Katagiri et al. Solar cell without environmental pollution by using CZTS thin film
JP6313428B2 (en) Back contact substrate for photovoltaic cell or photovoltaic cell module
JP3679771B2 (en) Photovoltaic device and method for manufacturing photovoltaic device
CN105449009A (en) Photoelectric conversion device, and solar cell
WO2014177621A1 (en) Back contact substrate for a photovoltaic cell or module
JP5070720B2 (en) Solar cell and manufacturing method thereof
JP5659464B2 (en) element
KR20180034274A (en) CZTS-based thin film solar cell comprising silver and method the same
US20190013424A1 (en) Technique for Achieving Large-Grain Ag2ZnSn(S,Se)4 Thin Films
WO2015067738A1 (en) Back contact substrate for a photovoltaic cell or module
CN104022179B (en) The solar cell for forming the method for the cushion of solar cell and being consequently formed
US10014431B2 (en) Thin film solar cell and method of fabricating the same
KR102227799B1 (en) Method for manufacturing CIGS thin film solar cell
KR101541450B1 (en) Method for manufacturing CZTS-based thin film solar cell
JP2012253239A (en) Czts thin film solar cell manufacturing method
CN109729745B (en) Copper-based chalcogenide photovoltaic device and forming method thereof
WO2013081114A1 (en) Thin film solar cell
CN107735867B (en) Photovoltaic cell and manufacturing method thereof
KR102513863B1 (en) Flexible CZTSSe thin film solar cells and manufacturing method thereof
JP5709652B2 (en) CZTS thin film solar cell manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

LAPS Cancellation because of no payment of annual fees