JP5658531B2 - Scale prevention method and calcium carbonate scale inhibitor - Google Patents

Scale prevention method and calcium carbonate scale inhibitor Download PDF

Info

Publication number
JP5658531B2
JP5658531B2 JP2010238906A JP2010238906A JP5658531B2 JP 5658531 B2 JP5658531 B2 JP 5658531B2 JP 2010238906 A JP2010238906 A JP 2010238906A JP 2010238906 A JP2010238906 A JP 2010238906A JP 5658531 B2 JP5658531 B2 JP 5658531B2
Authority
JP
Japan
Prior art keywords
scale
resin material
metal member
calcium carbonate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010238906A
Other languages
Japanese (ja)
Other versions
JP2012092869A (en
Inventor
浩二 黒木
浩二 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010238906A priority Critical patent/JP5658531B2/en
Publication of JP2012092869A publication Critical patent/JP2012092869A/en
Application granted granted Critical
Publication of JP5658531B2 publication Critical patent/JP5658531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冷却水配管などを構成する金属管表面に対して炭酸カルシウムスケールが付着するのを防止する技術に関する。   The present invention relates to a technique for preventing calcium carbonate scale from adhering to the surface of a metal pipe constituting a cooling water pipe or the like.

たとえば、給湯機用接水部品の水と接する部分には、主に無機物の炭酸カルシウムからなる堆積物(以下、「スケール」という)が付着しやすい。そのメカニズムは以下のように考えられている。すなわち、水中に含有されている炭酸カルシウムが、給湯機内部における水温上昇により溶解度が低下し、過飽和状態となるために、湯中に析出し給湯機配管の接水表面に付着する。一方、給湯機配管等の給湯機用接水部品は熱伝導性、耐熱性に優れたリン酸脱酸銅を使用しているが、この材質は炭酸カルシウムと極めて親和性が良好である。そのために、その最表面層と炭酸カルシウムとが一次結合し強固なスケールとなる。そして、強固な一次結合したスケールの形成は、給湯機の熱伝達を低下させ、出湯温度の低下や燃料の浪費となる原因となっていた。そこで、従来より給湯機配管内を水と一緒にスポンジボールを定期的に流してスケールを掻き取ったり、スケール析出の溶解度の低下を抑えるため最高出湯温度を低下させるなどが取られていたが、抜本的な解決には至っていない。   For example, deposits (hereinafter referred to as “scale”) mainly made of inorganic calcium carbonate are likely to adhere to the water contact parts of water heaters in contact with water. The mechanism is considered as follows. That is, the calcium carbonate contained in the water decreases in solubility due to a rise in water temperature inside the water heater and becomes supersaturated, so that it precipitates in the hot water and adheres to the wetted surface of the water heater pipe. On the other hand, water-contact parts for water heaters such as water heater piping use copper phosphate deoxidized copper having excellent thermal conductivity and heat resistance, but this material has extremely good affinity with calcium carbonate. Therefore, the outermost surface layer and calcium carbonate are primarily bonded to form a strong scale. And the formation of a strong primary combined scale has reduced the heat transfer of the hot water heater, causing a decrease in the temperature of the hot water and a waste of fuel. So, traditionally, sponge balls were periodically flowed together with water in the water heater piping to scrape the scale, or the maximum hot water temperature was lowered to suppress a decrease in the solubility of scale precipitation. No drastic solution has been reached.

特許文献1には、冷却水配管内面にシリコーン皮膜を施しスケール付着を抑制するとあるが、そのメカニズムは明確ではなく、あらゆるケースでスケール防止できるものとはなっていないと考えられている。   In Patent Document 1, there is a silicone film on the inner surface of the cooling water pipe to suppress the adhesion of scale, but the mechanism is not clear, and it is considered that scale cannot be prevented in all cases.

特開2001−208285号公報JP 2001-208285 A

スケール付着抑制技術として世の中には様々な技術及び製品があるが、いずれも明確なメカニズムの根拠がなく、非常に限定された条件下のみで有効であり汎用が乏しいものしか知られていない。   There are various technologies and products in the world as a scale adhesion suppression technique, but none of them has a clear basis for the mechanism, and only the ones that are effective only under very limited conditions and lack general versatility are known.

本発明の目的は、上記実情に鑑み、冷却水配管などを構成する金属管表面に対して、より汎用的に、スケールを防止することができる技術を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a technique that can prevent scales more versatilely on the surface of a metal pipe constituting a cooling water pipe or the like.

本発明者は、上記目的のため鋭意研究した結果、炭酸カルシウムを主成分とするスケールが形成する際には、前記スケールに対する金属部材の表面状態が大きく影響することを見出し、この表面状態の改善に、カチオン性イオン導電型の樹脂材料からなる被膜が有効に用いられることを見出した。   As a result of diligent research for the above purpose, the present inventor has found that when a scale mainly composed of calcium carbonate is formed, the surface state of the metal member with respect to the scale greatly affects the surface state. In addition, it has been found that a coating made of a cationic ion conductive resin material can be used effectively.

〔構成1〕
即ち、本発明のスケール防止方法の特徴構成は、金属部材に被膜を形成して、その金属部材に接触する水からの炭酸カルシウムを主成分とするスケールの形成を防止するスケール防止方法であって、
カチオン性イオン導電型の樹脂材料からなる被膜を前記金属部材の水との接触面に形成して、炭酸カルシウムを主成分とするスケールの形成を防止する点にある。
[Configuration 1]
That is, the characteristic configuration of the scale prevention method of the present invention is a scale prevention method for forming a film on a metal member and preventing formation of a scale mainly composed of calcium carbonate from water in contact with the metal member. ,
A film made of a cationic ion conductive resin material is formed on the contact surface of the metal member with water to prevent the formation of a scale mainly composed of calcium carbonate.

〔作用効果1〕
つまり、本発明者の検討によると、スケールが付着する環境を決定する条件として、スケール付着対象の金属部材表面の電気的特性とスケールを構成する物質の電気的特性との関係が大きく関与する。この点に着目して種々検討した結果、スケール付着対象物表面にカチオン性イオン導電型の樹脂材料の被膜を形成しておくことにより、炭酸カルシウムを主成分とするスケールの付着を大幅に減少させられることを実験的に確認した。
[Operation effect 1]
That is, according to the inventor's study, as a condition for determining the environment to which the scale adheres, the relationship between the electrical characteristics of the surface of the metal member to which the scale is attached and the electrical characteristics of the substance constituting the scale is greatly involved. As a result of various studies focusing on this point, by forming a coating of a cationic ion conductive type resin material on the surface of the scale adhesion target, the adhesion of the scale mainly composed of calcium carbonate is greatly reduced. It was confirmed experimentally.

このような効果を奏することができる原因は、具体的には、一般的なスケール発生条件下で炭酸カルシウムが正に帯電しやすいのに対して、カチオン性イオン導電型の樹脂材料を用いることにより、金属部材の表面が静電気等によって、正電荷に偏る傾向に改質することができるために、前記金属部材と炭酸カルシウムとの接触を電気的に防止することができるものと考えられる。そのため、金属部材に炭酸カルシウムを付着しにくくすることができる。   Specifically, the reason why such an effect can be obtained is that calcium carbonate tends to be positively charged under general scale generation conditions, whereas a cationic ion conductive resin material is used. It is considered that the contact between the metal member and calcium carbonate can be electrically prevented because the surface of the metal member can be modified so as to tend to be positively charged due to static electricity or the like. Therefore, calcium carbonate can be made difficult to adhere to the metal member.

〔構成2〕
また、特に、前記カチオン性イオン導電型の樹脂材料として、4級アンモニウム基を含有する樹脂材料単量体単位を必須構成成分として含む重合体を主鎖とする樹脂材料を用いることができる。
[Configuration 2]
In particular, as the cationic ion conductive resin material, a resin material having a polymer containing a resin material monomer unit containing a quaternary ammonium group as an essential constituent can be used.

〔作用効果2〕
前記カチオン性イオン導電型の樹脂材料として、4級アンモニウム基を含有する樹脂材料単量体単位を必須構成成分として含む重合体を主鎖とする樹脂材料を用いることにより、前記金属部材に非常に高い帯電防止効果を発揮させることができる。
尚、カチオン性イオン導電型の樹脂としては、アンモニウム基を有する共塩基性のものの他、アミノ基を有する弱塩基性のものを用いることもできる。
[Operation effect 2]
By using a resin material having as a main chain a polymer containing a resin material monomer unit containing a quaternary ammonium group as an essential constituent component as the cationic ion conductive resin material, High antistatic effect can be exhibited.
In addition, as the cationic ion conductive resin, in addition to a cobasic resin having an ammonium group, a weak basic resin having an amino group can be used.

〔構成3〕
さらに、前記カチオン性イオン導電型の樹脂材料として、アクリル系樹脂材料を用いることができる。
[Configuration 3]
Furthermore, an acrylic resin material can be used as the cationic ion conductive resin material.

〔作用効果3〕
前記カチオン性イオン導電型の樹脂材料として、アクリル系樹脂材料を用いると、前記樹脂材料は成膜性に優れ、かつ、耐環境性能が高い物となるので好ましい。
尚、前記カチオン性イオン導電型の樹脂材料として、アクリル樹脂系材料以外に、骨格としてポリエステル、ポリエチレン、ポリアルキレングリコール等を主鎖に有する樹脂材料が同様に用いられる。
[Operation effect 3]
It is preferable to use an acrylic resin material as the cationic ion conductive resin material because the resin material has excellent film forming properties and high environmental resistance.
As the cationic ion conductive resin material, in addition to the acrylic resin material, a resin material having a backbone of polyester, polyethylene, polyalkylene glycol, or the like as the skeleton is similarly used.

〔構成4〕
さらに具体的には、前記金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管である場合には、前記カチオン性イオン導電型の樹脂材料がジメチルアミノエチルメタクリレートのメチルクロライド塩単量体単位またはジメチルアミノプロピルアクリルアミドのメチルクロライド塩単量体単位の少なくとも一方を必須構成成分として含む重合体を主鎖とする樹脂材料をもちいることが好ましい。
[Configuration 4]
More specifically, when the metal member is a copper tube for a heat exchanger that circulates cooling water having a pH of 7 to 8 at 30 to 40 ° C., the cationic ion conductive resin material is dimethylaminoethyl methacrylate. It is preferable to use a resin material whose main chain is a polymer containing at least one of a methyl chloride salt monomer unit or a methyl chloride salt monomer unit of dimethylaminopropylacrylamide as an essential constituent component.

ちなみに、ジメチルアミノエチルメタクリレートのメチルクロライド塩単量体およびジメチルアミノプロピルアクリルアミドのメチルクロライド塩単量体は、以下の構造を有する化合物である。   Incidentally, the methyl chloride salt monomer of dimethylaminoethyl methacrylate and the methyl chloride salt monomer of dimethylaminopropyl acrylamide are compounds having the following structures.

ジメチルアミノエチルメタクリレートのメチルクロライド塩:
CH2=C(CH3)−COOCH2CH2+(CH33・Cl-
Methyl chloride salt of dimethylaminoethyl methacrylate:
CH 2 = C (CH 3) -COOCH 2 CH 2 N + (CH 3) 3 · Cl -

メチルアミノプロピルアクリルアミドのメチルクロライド塩:
CH2=CH−CONHCH2CH2CH2+(CH33・Cl-
Methyl chloride salt of methylaminopropylacrylamide:
CH 2 = CH-CONHCH 2 CH 2 CH 2 N + (CH 3) 3 · Cl -

〔作用効果4〕
前記ジメチルアミノエチルメタクリレートのメチルクロライド塩単量体およびジメチルアミノプロピルアクリルアミドのメチルクロライド塩単量体はいずれもアクリル樹脂の構造中にトリメチルアルキルアンモニウムクロライド構造(以下アンモニウム基と称する)を有するので、表面にアンモニウム基を配置した状態で被膜を形成しやすく、このために、界面活性剤的性質をもち、被膜表面における高い帯電防止効果を発揮しやすくなっているものと考えられる。また、これらの樹脂材料は、後述の実験例より、前記金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管である場合に、前記帯電防止効果に基く高いスケール防止効果が確認されている。
[Operation effect 4]
The dimethylaminoethyl methacrylate methyl chloride monomer and the dimethylaminopropyl acrylamide methyl chloride monomer both have a trimethylalkylammonium chloride structure (hereinafter referred to as an ammonium group) in the structure of the acrylic resin. It is considered that a film is easily formed in a state in which an ammonium group is arranged on the surface, and for this reason, it has surfactant properties and is likely to exhibit a high antistatic effect on the film surface. In addition, these resin materials have higher scales based on the antistatic effect when the metal member is a copper tube for a heat exchanger that circulates cooling water having a pH of 7 to 8 at 30 to 40 ° C. The prevention effect has been confirmed.

スケール付着量測定装置の概略図である。It is the schematic of a scale adhesion amount measuring apparatus. 実施例1の銅管のスケール防止効果を示す図である。It is a figure which shows the scale prevention effect of the copper pipe of Example 1. FIG. 比較例1の銅管のスケール防止効果を示す図である。It is a figure which shows the scale prevention effect of the copper pipe of the comparative example 1.

以下に、本発明のスケール防止方法を説明する。尚、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the scale prevention method of this invention is demonstrated. Preferred examples are described below, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

前記金属部材として、pH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管を用い、その表面に、カチオン性イオン導電型の樹脂材料を主成分とする重合体を主鎖とする樹脂材料を被覆した。   As the metal member, a copper tube for a heat exchanger in which cooling water having a pH of 7 to 8 is circulated at 30 to 40 ° C., and a polymer mainly composed of a cationic ion conductive resin material on the surface thereof is used as a main chain. The resin material to be coated was coated.

具体的には、前記銅管を、常温硬化型シリコーンコーティング材(信越化学社製シリコーンコーティング剤KR−400)を20倍に希釈した溶液に5分間浸漬し、24時間常温で乾燥し、下地層(厚み10μm程度)を形成した後、ジメチルアミノエチルメタクリレートのメチルクロライド塩(大成ファインケミカル社製帯電防止ポリマー1SX−3000)を主成分とする樹脂材料をエタノールで20倍に希釈した溶液に5分間浸漬し、24時間常温で乾燥させ、ジメチルアミノエチルメタクリレートのメチルクロライド塩単量体単位を必須構成成分として含む重合体を主鎖とする樹脂材料の被膜を形成した。被膜の厚みは10μm程度である。この被膜は、アンモニウム基を備えたカチオン性で、アクリル樹脂骨格を有するイオン導電型樹脂である。このような薄膜でスケールの発生を防止できるのは、薄膜の正電気的性質により、金属表面の電位を良好にコントロールできるためであると考えられる。   Specifically, the copper tube is immersed for 5 minutes in a solution obtained by diluting a room temperature curable silicone coating material (silicon coating agent KR-400 manufactured by Shin-Etsu Chemical Co., Ltd.) 20 times, and dried at room temperature for 24 hours. (Approx. 10 μm thick), and then immersed in a solution obtained by diluting a resin material mainly composed of methyl chloride salt of dimethylaminoethyl methacrylate (antistatic polymer 1SX-3000 manufactured by Taisei Fine Chemical Co., Ltd.) 20 times with ethanol for 5 minutes. Then, it was dried at room temperature for 24 hours to form a film of a resin material having a polymer containing a methyl chloride salt monomer unit of dimethylaminoethyl methacrylate as an essential constituent. The thickness of the coating is about 10 μm. This coating is a cationic ion-containing resin having an ammonium group and an acrylic resin skeleton. The reason why scale formation can be prevented with such a thin film is thought to be because the potential on the metal surface can be controlled well due to the positive electrical properties of the thin film.

この被膜を形成した銅管の表面に、図1に示すスケール付着量測定装置により、スケールを発生させて、前記被膜によるスケール防止効果を実証した。その結果、図2に示すように、前記銅管の表面における上記被膜のある部分にはスケールが付着せず、上記被膜の無い部分のみにスケールが付着していることが確認できた。   A scale was generated on the surface of the copper tube on which the film was formed, using the scale adhesion amount measuring apparatus shown in FIG. 1, and the scale prevention effect of the film was demonstrated. As a result, as shown in FIG. 2, it was confirmed that scale did not adhere to the portion with the coating on the surface of the copper tube, and scale adhered to only the portion without the coating.

前記スケール付着量測定装置は、図1に示すように、ガス吸収式冷温水機の吸収器・凝縮器部分を模擬した試験対象管1とアクリル管2との二重管を設け、冷却水を流通する管路3に、冷却水を所定温度に制御する冷却部4を設けて、所定の温度、pHの冷却水を試験対象管1の外側に流通させ、他方、温水を流通する管路5に、温水を所定温度に加熱するヒータ6を設けて、前記試験対象管1の表面温度が所定温度になるように、試験対象管1内面に温水を流通させ、これらの流量を制御することで、前記試験対象管1の表面温度(冷却水の温度)におけるスケールの発生を重量により知ることができるように構成してある。   As shown in FIG. 1, the scale adhering amount measuring apparatus is provided with a double pipe of a test object pipe 1 and an acrylic pipe 2 simulating an absorber / condenser part of a gas absorption chiller / heater, A cooling unit 4 for controlling the cooling water to a predetermined temperature is provided in the pipe 3 that circulates, and the cooling water having a predetermined temperature and pH is circulated to the outside of the test target pipe 1 while the pipe 5 that circulates the hot water. In addition, by providing a heater 6 for heating the hot water to a predetermined temperature, the hot water is circulated on the inner surface of the test target tube 1 so that the surface temperature of the test target tube 1 becomes a predetermined temperature, and these flow rates are controlled. The generation of the scale at the surface temperature (cooling water temperature) of the test object tube 1 can be known by weight.

〔実施例〕
図1に示すスケール付着量測定装置により、前記試験対象管として、種々の銅管のスケール付着量の測定を行った場合のスケール重量測定結果を以下に示す。短期間で評価を実施するため、水道水1Lあたり塩化カルシウムを660mg、炭酸水素カルシウムを1000mg溶かしpHを調整剤で8.0としこれを模擬冷却水とした。この冷却水を試験対象管(外径15mm、内径14mm、長さ320mm)の外側に温度35℃に流通させ、銅管内面に温度45℃の温水を流通させ流量を制御することで冷却水の温度を35℃に保った。25時間おきに冷却水は交換し100時間連続で運転して、試験対象管に付着したスケール(CaCO3)の重量を測定することでスケール付着抑制効果を検証した。
〔Example〕
The scale weight measurement results in the case where the scale adhesion amount of various copper pipes as the test target tube are measured by the scale adhesion amount measuring apparatus shown in FIG. 1 are shown below. In order to carry out the evaluation in a short period of time, 660 mg of calcium chloride and 1000 mg of calcium bicarbonate were dissolved per liter of tap water, and the pH was adjusted to 8.0 with a regulator, which was used as simulated cooling water. This cooling water is circulated at a temperature of 35 ° C. outside the test target tube (outer diameter 15 mm, inner diameter 14 mm, length 320 mm), and hot water at a temperature of 45 ° C. is circulated on the inner surface of the copper tube to control the flow rate. The temperature was kept at 35 ° C. The cooling water was changed every 25 hours, the operation was continued for 100 hours, and the scale adhesion inhibitory effect was verified by measuring the weight of the scale (CaCO 3 ) adhering to the test object tube.

〔実施例1〕
銅管にジメチルアミノエチルメタクリレートのメチルクロライド塩単量体単位を必須構成成分として含む重合体を主鎖とする樹脂材料の被膜を形成し、試験対象管とし、スケール付着量を調べた結果を図2に示す。図2において黒色部分が金属部材の表面部分(スケールの発生していない部分)、白色部分がスケールである。
[Example 1]
Fig. 4 shows the results of examining the amount of scale deposited on a copper tube by forming a coating of a resin material with a polymer containing the methyl chloride salt monomer unit of dimethylaminoethyl methacrylate as an essential component as the main chain. It is shown in 2. In FIG. 2, the black portion is the surface portion of the metal member (the portion where no scale is generated), and the white portion is the scale.

〔比較例1〕
銅管をそのまま試験対象管とし、スケール付着量を調べた結果を図3に示す。図3においては、全体が白いスケールに覆われているのがわかる。
[Comparative Example 1]
FIG. 3 shows the result of examining the amount of scale adhesion using the copper tube as the test object tube as it is. In FIG. 3, it can be seen that the whole is covered with a white scale.

その結果、比較例1における銅管にはスケールが0.131g発生したが、実施例1における上記被膜を形成した銅管にはスケールが0.024gしか発生していなかった。これにより、金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管の場合、上記被膜を形成した場合に、有効に用いられることがわかる。尚、ジメチルアミノエチルメタクリレートのメチルクロライド塩単量体単位を必須構成成分として含む重合体は、アンモニウム基を備えたカチオン性で、アクリル樹脂骨格を有するイオン導電型樹脂であるが、他のカチオン性イオン導電型樹脂や、アクリル骨格以外でカチオン性のイオン導電型樹脂であっても、帯電防止効果が有効に発揮される被膜であれば、種々の樹脂材料を採用できるものと考えられる。   As a result, 0.131 g of scale was generated in the copper pipe in Comparative Example 1, but only 0.024 g of scale was generated in the copper pipe on which the above-described coating film was formed in Example 1. Thereby, in the case of the copper tube for heat exchangers in which the metal member circulates cooling water having a pH of 7 to 8 at 30 to 40 ° C., it can be seen that the metal member is effectively used when the coating film is formed. Incidentally, the polymer containing a methyl chloride salt monomer unit of dimethylaminoethyl methacrylate as an essential constituent is a cationic ion-containing resin having an ammonium group and an acrylic resin skeleton, but other cationic properties. Even if the ion conductive resin or a cationic ion conductive resin other than the acrylic skeleton is used, it is considered that various resin materials can be employed as long as the antistatic effect is effectively exhibited.

1 : 試験対象管
1L : 水道水
2 : アクリル管
3 : 管路
4 : 冷却部
5 : 管路
6 : ヒータ
1: Test target pipe 1L: Tap water 2: Acrylic pipe 3: Pipe line 4: Cooling unit 5: Pipe line 6: Heater

Claims (5)

金属部材に被膜を形成して、その金属部材に接触する水からの炭酸カルシウムを主成分とするスケールの形成を防止するスケール防止方法であって、
カチオン性イオン導電型の樹脂材料からなる被膜を前記金属部材の水との接触面に形成して、炭酸カルシウムを主成分とするスケールの形成を防止するスケール防止方法。
A scale preventing method for forming a film on a metal member and preventing formation of a scale mainly composed of calcium carbonate from water in contact with the metal member,
The scale prevention method which forms the film which consists of a cationic ion conductivity type resin material in the contact surface with the water of the said metal member, and prevents formation of the scale which has a calcium carbonate as a main component.
前記カチオン性イオン導電型の樹脂材料が、4級アンモニウム基を含有する樹脂材料単量体単位を必須構成成分として含む重合体を主鎖とする樹脂材料である請求項1に記載のスケール防止方法。   The scale prevention method according to claim 1, wherein the cationic ion conductive resin material is a resin material having a polymer containing a resin material monomer unit containing a quaternary ammonium group as an essential constituent. . 前記カチオン性イオン導電型の樹脂材料が、アクリル系樹脂材料である請求項1または2に記載のスケール防止方法。   The scale prevention method according to claim 1, wherein the cationic ion conductive resin material is an acrylic resin material. 前記金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管であり、前記カチオン性イオン導電型の樹脂材料がジメチルアミノエチルメタクリレートのメチルクロライド塩単量体単位またはジメチルアミノプロピルアクリルアミドのメチルクロライド塩単量体単位の少なくとも一方を必須構成成分として含む重合体を主鎖とする樹脂材料からなる請求項1〜3のいずれか一項に記載のスケール防止方法。   The metal member is a copper tube for a heat exchanger in which cooling water having a pH of 7 to 8 is circulated at 30 to 40 ° C., and the cationic ion conductive resin material is a methyl chloride salt monomer unit of dimethylaminoethyl methacrylate or dimethyl The scale prevention method according to any one of claims 1 to 3, comprising a resin material having a polymer containing at least one of methyl chloride salt monomer units of aminopropylacrylamide as an essential constituent. ジメチルアミノエチルメタクリレートのメチルクロライド塩単量体単位またはジメチルアミノプロピルアクリルアミドのメチルクロライド塩単量体単位の少なくとも一方を必須構成成分として含む重合体を主鎖とする樹脂材料からなり、前記金属部材の水との接触面に被膜を形成して用いられる炭酸カルシウムスケール防止剤。 A resin material as a main chain a polymer containing as essential components at least one of methyl chloride salt monomer units or of dimethylaminopropyl acrylamide methyl chloride salt monomer units of dimethylaminoethyl methacrylate, the metal member A calcium carbonate scale inhibitor used by forming a film on the contact surface with water .
JP2010238906A 2010-10-25 2010-10-25 Scale prevention method and calcium carbonate scale inhibitor Expired - Fee Related JP5658531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238906A JP5658531B2 (en) 2010-10-25 2010-10-25 Scale prevention method and calcium carbonate scale inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238906A JP5658531B2 (en) 2010-10-25 2010-10-25 Scale prevention method and calcium carbonate scale inhibitor

Publications (2)

Publication Number Publication Date
JP2012092869A JP2012092869A (en) 2012-05-17
JP5658531B2 true JP5658531B2 (en) 2015-01-28

Family

ID=46386431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238906A Expired - Fee Related JP5658531B2 (en) 2010-10-25 2010-10-25 Scale prevention method and calcium carbonate scale inhibitor

Country Status (1)

Country Link
JP (1) JP5658531B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112699A (en) * 1980-12-29 1982-07-13 Mitsubishi Metal Corp Heat exchanger for geothermal water
JPH0612217B2 (en) * 1985-04-30 1994-02-16 日本電装株式会社 Aluminum heat exchanger and its manufacturing method
JP3112134B2 (en) * 1993-05-31 2000-11-27 東陶機器株式会社 Activated carbon regeneration type water purifier
JPH0768256A (en) * 1993-09-06 1995-03-14 Matsushita Electric Ind Co Ltd Water softener of bath hot-water supply device
JP2000279952A (en) * 1999-03-31 2000-10-10 Toto Ltd Water purifier
JP2001139096A (en) * 1999-11-17 2001-05-22 Sanyo Electric Co Ltd Feeder for beverage or the like
JP4358536B2 (en) * 2003-03-05 2009-11-04 パナソニック株式会社 Sanitary washing device
JP4106353B2 (en) * 2003-06-23 2008-06-25 三洋化成工業株式会社 Polymer flocculant
JP4286622B2 (en) * 2003-09-25 2009-07-01 日本ペイント株式会社 Cation electrodeposition coating film forming method for automobile wheel and automobile wheel
WO2010018763A1 (en) * 2008-08-11 2010-02-18 関西ペイント株式会社 Water-base coating composition

Also Published As

Publication number Publication date
JP2012092869A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Forrest et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings
JP3196707B2 (en) Corrosion monitoring test specimen, method and apparatus
Kwark et al. Nanocoating characterization in pool boiling heat transfer of pure water
Dou et al. Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion
Kondou et al. Improving the heat dissipation performance of a looped thermosyphon using low-GWP volatile fluids R1234ze (Z) and R1234ze (E) with a super-hydrophilic boiling surface
US20140314947A1 (en) Articles and methods for enhanced boiling heat transfer
EP2912399A1 (en) Heat exchanger element with heat transfer surface coating
Huang et al. The corrosion of X52 steel at an elbow of loop system based on array electrode technology
Park et al. Heat transfer augmentation in two-phase flow heat exchanger using porous microstructures and a hydrophobic coating
Müller‐Steinhagen et al. The effect of surface properties on CaSO4 scale formation during convective heat transfer and subcooled flow boiling
García et al. Influence of the Reynolds number on the thermal effectiveness of tubular heat exchanger subjected to electromagnetic field-based antifouling treatment in an open once-through seawater cooling system
JP5658531B2 (en) Scale prevention method and calcium carbonate scale inhibitor
Wen et al. Experimental study on the pool boiling performance of a highly self-dispersion TiO2 nanofluid on copper surface
Wu et al. A hybrid triboelectric nanogenerator for enhancing corrosion prevention of metal in marine environment
Hussain et al. Superhydrophobic Surface and Lubricant‐Infused Surface: Implementing Two Extremes on Electrodeposited Ni TiO2 Surface to Drive Optimal Wettability Regimes for Droplets’ Multifunctional Behaviors
Metikoš-Huković et al. Corrosion resistance of copper–nickel alloy under fluid jet impingement
JP2008304170A (en) Scale adhesion-resistant heat transfer pipe for heat exchanger
JP2011163623A (en) Scale prevention method
BR112016024677B1 (en) COMPOSITION OF A CURABLE COATING, AND, USE OF A COATING ON A HEAT RELEASE SURFACE
Wan et al. Influence of hydrophobic coatings on fouling mechanism of combined fouling in enhanced tubes
Hu et al. Rapid development of thickness‐controllable superamphiphobic coating on the inner wall of long narrow pipes
JP2016537605A (en) Heat exchanger coating
Al-Otaibi et al. Fouling resistance of brackish water: Comparision of fouling characteristics of coated carbon steel and titanium tubes
JP2007078049A (en) Heating tube for lng vaporizer and lng vaporizer using the heating tube
Knudsen et al. Corrosion of cathodically polarized tsa in subsea mud at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5658531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees