JP2011163623A - Scale prevention method - Google Patents

Scale prevention method Download PDF

Info

Publication number
JP2011163623A
JP2011163623A JP2010025729A JP2010025729A JP2011163623A JP 2011163623 A JP2011163623 A JP 2011163623A JP 2010025729 A JP2010025729 A JP 2010025729A JP 2010025729 A JP2010025729 A JP 2010025729A JP 2011163623 A JP2011163623 A JP 2011163623A
Authority
JP
Japan
Prior art keywords
scale
zeta potential
water
metal member
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010025729A
Other languages
Japanese (ja)
Inventor
Koji Kuroki
浩二 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010025729A priority Critical patent/JP2011163623A/en
Publication of JP2011163623A publication Critical patent/JP2011163623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of preventing scale with respect to a metal pipe surface constituting cooling water piping etc. in a more versatile approach. <P>SOLUTION: When a metal member is a copper pipe for a heat exchanger in which cooling water of pH 7-8 is made to flow at 30-40°C, a film mainly composed of at least one type of a material selected from zinc oxide and aluminum oxide is formed on the surface of the copper pipe. Due to this, since zeta potential of calcium carbonate and zeta potential of the film surface assume the same sign, the scale prevention effect can be extremely enhanced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷却水配管などを構成する金属管表面に対して炭酸カルシウムスケールが付着するのを防止する技術に関する。   The present invention relates to a technique for preventing calcium carbonate scale from adhering to the surface of a metal pipe constituting a cooling water pipe or the like.

たとえば、給湯機用接水部品の水と接する部分には、主に無機物の炭酸カルシウムからなる堆積物(以下、「スケール」という)が付着しやすい。そのメカニズムは以下のように考えられている。すなわち、水中に含有されている炭酸カルシウムが、給湯機内部における水温上昇により溶解度が低下し、過飽和状態となるために、湯中に析出し給湯機配管の接水表面に付着する。一方、給湯機配管等の給湯機用接水部品は熱伝導性、耐熱性に優れたリン酸脱酸銅を使用しているが、この材質が炭酸カルシウムと極めて親和性が良好である。そのために、その最表面層と炭酸カルシウムとが一次結合し強固なスケールとなる。そして、強固な一次結合したスケールの形成は、給湯機の熱伝達を低下させ、出湯温度の低下や燃料の浪費となる原因となっていた。そこで、従来より給湯機配管内を水と一緒にスポンジボールを定期的に流してスケールを掻き取ったり、スケール析出の溶解度の低下を抑えるため最高出湯温度を低下させるなどが取られていたが、抜本的な解決には至っていない。   For example, deposits (hereinafter referred to as “scale”) mainly made of inorganic calcium carbonate are likely to adhere to the water contact parts of water heaters that come into contact with water. The mechanism is considered as follows. That is, the calcium carbonate contained in the water decreases in solubility due to a rise in water temperature inside the water heater and becomes supersaturated, so that it precipitates in the hot water and adheres to the wetted surface of the water heater pipe. On the other hand, water-contact parts for water heaters such as water heater piping use copper phosphate deoxidized copper having excellent thermal conductivity and heat resistance, and this material has extremely good affinity with calcium carbonate. Therefore, the outermost surface layer and calcium carbonate are primarily bonded to form a strong scale. And the formation of a strong primary combined scale has reduced the heat transfer of the hot water heater, causing a decrease in the temperature of the hot water and a waste of fuel. So, traditionally, sponge balls were periodically flowed together with water in the water heater piping to scrape the scale, or the maximum hot water temperature was lowered to suppress a decrease in the solubility of scale precipitation. No drastic solution has been reached.

特許文献1には、冷却水配管内面にシリコーン皮膜を施しスケール付着を抑制するとあるが、そのメカニズムは明確ではなく、あらゆるケースでスケール防止できるものとはなっていないと考えられている。また、特許文献2には、冷却水配管内面にシリカ皮膜を施しスケール付着を抑制するとあるが、付着抑制のメカニズムとして、ゼータ電位が挙げられているが、必ずしもすべての金属管、冷却水の条件下でシリカ皮膜を伝熱管表面に施すことが有効とは限らなかった。   In Patent Document 1, there is a silicone film on the inner surface of the cooling water pipe to suppress the adhesion of scale, but the mechanism is not clear, and it is considered that scale cannot be prevented in all cases. Patent Document 2 discloses that the silica film is applied to the inner surface of the cooling water pipe to suppress the adhesion of the scale. As a mechanism for suppressing the adhesion, the zeta potential is cited, but the conditions for all the metal pipes and the cooling water are not necessarily included. It was not always effective to apply a silica film to the heat transfer tube surface below.

ここでゼータ電位とは溶液中の微粒子の周りに形成する電気二重層中の、液体流動が起こり始める「すべり面」の電位であり、粒子間の反発・凝集作用の指標となるものである。   Here, the zeta potential is a “slip surface” potential at which liquid flow starts to occur in the electric double layer formed around the fine particles in the solution, and serves as an index of the repulsion / aggregation action between the particles.

特開2001−208285号公報JP 2001-208285 A 特開2008−298415号公報JP 2008-298415 A

スケール付着抑制技術として世の中には様々な技術及び製品があるが、いずれも明確なメカニズムの根拠がなく、非常に限定された条件下のみで有効であり汎用が乏しいものしか知られていない。そのため、さらに、汎用的にスケール防止できる技術が望まれている。   There are various technologies and products in the world as a scale adhesion suppression technique, but none of them has a clear basis for the mechanism, and only the ones that are effective only under very limited conditions and lack general versatility are known. Therefore, a technique capable of preventing scales for general purposes is desired.

本発明の目的は、上記実情に鑑み、冷却水配管などを構成する金属管表面に対して、より汎用的に、スケールを防止することができる技術を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a technique that can prevent scales more versatilely on the surface of a metal pipe constituting a cooling water pipe or the like.

本発明者は、上記目的のため鋭意研究した結果、金属管表面へのスケールの付着には、ゼータ電位が関与しているものの、スケールの付着条件は温度、pHが特定の領域にある時のゼータ電位に基き決まっていると考えられることを新たに見出し、本発明は、この新知見に基づき完成することができた。   As a result of intensive research for the above purpose, the present inventor has found that, although the zeta potential is involved in the deposition of the scale on the surface of the metal tube, the deposition condition of the scale is that when the temperature and pH are in a specific region. The present inventors have newly found out that it is considered to be determined based on the zeta potential, and the present invention has been completed based on this new finding.

つまり、本発明者によると、スケールの付着する環境下では、スケール付着対象の金属部材表面のゼータ電位が、そのスケールを構成する物質のゼータ電位と同符号になっていることに加えて、そのスケールの付着条件は、スケールの付着する環境下における温度、pHが関与しているのである。   That is, according to the present inventors, in the environment where the scale adheres, in addition to the zeta potential of the surface of the metal member to which the scale is attached having the same sign as the zeta potential of the substance constituting the scale, The scale deposition conditions involve the temperature and pH in the environment where the scales adhere.

〔構成〕
即ち、本発明のスケール防止方法の特徴構成は、金属部材に被膜を形成して、その金属部材に接触する水からのスケールの形成を防止するスケール防止方法であって、
前記金属部材の使用状態においてその金属部材に接触する水のpH、温度の使用環境で、スケール成分と同符号のゼータ電位を有する材料からなる被膜を前記金属部材の水との接触面に形成する点にある。
〔Constitution〕
That is, the characteristic configuration of the scale prevention method of the present invention is a scale prevention method for forming a film on a metal member and preventing formation of scale from water in contact with the metal member,
A coating made of a material having a zeta potential having the same sign as the scale component is formed on the surface of the metal member in contact with water in an environment where the pH and temperature of the water in contact with the metal member are in use. In the point.

また、特に、前記金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管である場合には、前記銅管表面に、酸化亜鉛および酸化アルミニウムから選択される少なくとも一種の材料を主成分とする被膜を形成することにある。   In particular, when the metal member is a copper tube for a heat exchanger that circulates cooling water having a pH of 7 to 8 at 30 to 40 ° C., at least one selected from zinc oxide and aluminum oxide is provided on the surface of the copper tube. It is to form a film mainly composed of the above material.

〔作用効果〕
つまり、本発明者によると、スケールの付着する環境下では、スケール付着対象の金属部材表面のゼータ電位が、そのスケールを構成する物質のゼータ電位と同符号になっていることに加えて、そのスケールの付着条件は、スケールの付着する環境下における温度、pHが関与していることをに着目して種々検討した結果、スケール付着対象物表面のゼータ電位を前記スケール付着対象物の使用環境下の温度、pHにおけるゼータ電位に基き設定すれば、スケールの付着を大幅に減少させられること実験的に確認した。
[Function and effect]
That is, according to the present inventors, in the environment where the scale adheres, in addition to the zeta potential of the surface of the metal member to which the scale is attached having the same sign as the zeta potential of the substance constituting the scale, As a result of various studies paying attention to the fact that the temperature and pH in the environment to which the scale adheres are involved in the adhesion conditions of the scale, the zeta potential on the surface of the scale adhesion object is determined under the environment in which the scale adhesion object is used. It was experimentally confirmed that the adhesion of scale can be greatly reduced by setting based on the zeta potential at the temperature and pH.

これは、前記特許文献2に示されるように、スケール粒子のゼータ電位を単純にマイナスにすればよいという単純な設定ではスケール防止を実現できないことを意味し、伝熱管等にスケール付着防止のための被膜を形成するような場合の被膜選択設計を的確に行うために非常に有用である。   This means that, as shown in Patent Document 2, it is impossible to prevent scale by simply setting the zeta potential of the scale particles to be negative, and for preventing the scale from adhering to the heat transfer tube or the like. This is very useful for accurately designing the film selection in the case of forming a film.

具体的には、前記金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管である場合には、前記銅管表面に、酸化亜鉛および酸化アルミニウムから選択される少なくとも一種の材料を主成分とする被膜を形成することにより、炭酸カルシウムのゼータ電位と前記被膜表面のゼータ電位とが同符号になるので、スケール防止効果のきわめて高い熱交換器用銅管を提供することができた。   Specifically, when the metal member is a copper tube for a heat exchanger that circulates cooling water having a pH of 7 to 8 at 30 to 40 ° C., at least selected from zinc oxide and aluminum oxide on the surface of the copper tube. By forming a coating composed mainly of a kind of material, the zeta potential of calcium carbonate and the zeta potential of the coating surface have the same sign. I was able to.

即ち、熱交換器の伝熱面表面は通常酸化銅(II)(CuO)であるが、そのゼータ電位は図1、2、3に示すとおり冷却水の温度・pHにより変化する。例えば、通常ガス吸収式冷温水機の冷却水のpHは8.0で温度は約35℃であるが、この条件下では、図2を参照すると、伝熱面表面(CuO)のゼータ電位は‘−’となっており、スケールの主成分であるCaCO3のゼータ電位は‘+’となっているため、この条件下では、CaCO3は付着しやすい状態となっている。また、図3を参照すると、仮に冷却水のpHは8.0で温度が45℃である場合、この条件下では伝熱面表面(CuO)のゼータ電位は‘+’となっている。また、スケールの主成分であるCaCO3のゼータ電位は‘+’となっており、この条件下では、CaCO3は付着しにくい状態となっている。ここで、SiO2皮膜を伝熱管表面に施した場合、伝熱面表面のゼータ電位は‘−’となり、逆にCaCO3を付着しやすくなる。つまり、冷却水中に含まれる主たるスケールの成分の冷却水使用環境におけるゼータ電位と伝熱管表面のゼータ電位との関係において決定されることによってはじめてスケール付着抑制効果が得られことがわかる。 That is, the heat transfer surface of the heat exchanger is usually copper oxide (II) (CuO), but its zeta potential varies depending on the temperature and pH of the cooling water as shown in FIGS. For example, the pH of the cooling water of a gas absorption chiller / heater is usually 8.0 and the temperature is about 35 ° C. Under these conditions, referring to FIG. 2, the zeta potential of the heat transfer surface (CuO) is Since the zeta potential of CaCO 3 , which is the main component of the scale, is “+”, CaCO 3 is easily attached under these conditions. Referring to FIG. 3, if the pH of the cooling water is 8.0 and the temperature is 45 ° C., the zeta potential of the heat transfer surface (CuO) is “+” under this condition. Further, the zeta potential of CaCO 3 , which is the main component of the scale, is “+”. Under these conditions, CaCO 3 is difficult to adhere. Here, when the SiO 2 film is applied to the surface of the heat transfer tube, the zeta potential on the surface of the heat transfer surface becomes “−”, and conversely, CaCO 3 is likely to adhere. That is, it is understood that the scale adhesion suppression effect is obtained only by determining the relationship between the zeta potential of the main scale components contained in the cooling water in the cooling water use environment and the zeta potential of the heat transfer tube surface.

尚、本発明では、ゼータ電位を、ゼータ電位測定装置(ゼータサイザーナノシリーズNano−Z:シスメックス(株)製)を用いレ−ザ・ドップラー法で測定した。具体的に、図1〜3の例では、以下の手順で測定を行った。   In the present invention, the zeta potential was measured by a laser Doppler method using a zeta potential measuring device (Zeta Sizer Nano Series Nano-Z: manufactured by Sysmex Corporation). Specifically, in the example of FIGS. 1-3, the measurement was performed in the following procedure.

ビーカーに試料を0.5g入れ、イオン交換水を50ml加え、超音波にて2分間分散を行い、試料濃度1.0質量%の分散液を調整した。また別に塩酸と水酸化ナトリウムを用い、pHが異なる水溶液を作製した。各水溶液38mlに1.0質量%の分散液を2ml投入し超音波にて2分間分散を行い、十分に分散調整したものをサンプル液としてレ−ザ・ドップラー法で測定した。   0.5 g of the sample was put in a beaker, 50 ml of ion-exchanged water was added, and dispersion was performed with ultrasonic waves for 2 minutes to prepare a dispersion having a sample concentration of 1.0% by mass. Separately, aqueous solutions having different pH were prepared using hydrochloric acid and sodium hydroxide. 2 ml of a 1.0% by mass dispersion was added to 38 ml of each aqueous solution, and the mixture was dispersed by ultrasonic waves for 2 minutes, and a sufficiently dispersed dispersion was measured as a sample liquid by the laser Doppler method.

種々の物質の25℃におけるゼータ電位のpH依存性を示す図である。It is a figure which shows the pH dependence of the zeta potential in 25 degreeC of various substances. 種々の物質の35℃におけるゼータ電位のpH依存性を示す図である。It is a figure which shows the pH dependence of the zeta potential in 35 degreeC of various substances. 種々の物質の45℃におけるゼータ電位のpH依存性を示す図である。It is a figure which shows the pH dependence of the zeta potential in 45 degreeC of various substances. スケール付着量測定装置の概略図である。It is the schematic of a scale adhesion amount measuring apparatus. 実施例1の銅管のスケール防止効果を示す図である。It is a figure which shows the scale prevention effect of the copper pipe of Example 1. FIG. 比較例1の銅管のスケール防止効果を示す図である。It is a figure which shows the scale prevention effect of the copper pipe of the comparative example 1.

以下に、本発明のスケール防止方法を説明する。尚、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the scale prevention method of this invention is demonstrated. Preferred examples are described below, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

前記金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管であり、前記銅管表面に、酸化亜鉛被膜を形成する。   The metal member is a copper tube for a heat exchanger in which cooling water having a pH of 7 to 8 is circulated at 30 to 40 ° C., and a zinc oxide film is formed on the surface of the copper tube.

この被膜を形成した銅管の表面に、図4に示すスケール付着量測定装置により、スケールを発生させて、前記被膜によるスケール防止効果を実証した。その結果、図5に示すように、前記銅管の表面には酸化亜鉛被膜のある部分にはスケールが付着せず、亜鉛被膜の無い部分のみにスケールが付着していることが確認できた。   A scale was generated on the surface of the copper tube on which the coating was formed, using a scale adhesion amount measuring apparatus shown in FIG. 4, and the scale prevention effect of the coating was verified. As a result, as shown in FIG. 5, it was confirmed that no scale was attached to the surface of the copper tube where the zinc oxide coating was present, and only the portion where there was no zinc coating was attached.

前記スケール付着量測定装置は、図4に示すように、ガス吸収式冷温水機の吸収器・凝縮器部分を模擬した試験対象管1とアクリル管2との二重管を設け、冷却水を流通する管路3に、冷却水を所定温度に制御する冷却部4を設けて、所定の温度、pHの冷却水を試験対象管1の外側に流通させ、他方、温水を流通する管路5に、温水を所定温度に加熱するヒータ6を設けて、前記試験対象管1の表面温度が所定温度になるように、試験対象管1内面に温水を流通させ、これらの流量を制御することで、前記試験対象管1の表面温度(冷却水の温度)におけるスケールの発生を重量により知ることができるように構成してある。   As shown in FIG. 4, the scale adhering amount measuring apparatus is provided with a double pipe of a test object pipe 1 and an acrylic pipe 2 simulating an absorber / condenser part of a gas absorption chiller / heater, A cooling unit 4 for controlling the cooling water to a predetermined temperature is provided in the pipe 3 that circulates, and the cooling water having a predetermined temperature and pH is circulated to the outside of the test target pipe 1 while the pipe 5 that circulates the hot water. In addition, by providing a heater 6 for heating the hot water to a predetermined temperature, the hot water is circulated on the inner surface of the test target tube 1 so that the surface temperature of the test target tube 1 becomes a predetermined temperature, and these flow rates are controlled. The generation of the scale at the surface temperature (cooling water temperature) of the test object tube 1 can be known by weight.

〔実施例〕
図4に示すスケール付着量測定装置により、前記試験対象管として、種々の銅管のスケール付着量の測定を行った場合のスケール重量測定結果を以下に示す。短期間で評価を実施するため、水道水1Lあたり塩化カルシウムを660mg、炭酸水素カルシウムを1000mg溶かしpHを調整剤で8.0としこれを模擬冷却水とした。この冷却水を試験対象管(外径15mm、内径14mm、長さ320mm)の外側に温度35℃に流通させ、銅管内面に温度45℃の温水を流通させ流量を制御することで冷却水の温度を35℃に保った。25時間おきに冷却水は交換し100時間連続で運転して、試験対象管に付着したスケール(CaCO3)の重量を測定することでスケール付着抑制効果を検証した。
〔Example〕
The scale weight measurement results when the scale adhesion amounts of various copper pipes are measured as the test target tubes by the scale adhesion amount measuring apparatus shown in FIG. 4 are shown below. In order to carry out the evaluation in a short period of time, 660 mg of calcium chloride and 1000 mg of calcium bicarbonate were dissolved per liter of tap water, and the pH was adjusted to 8.0 with a regulator, which was used as simulated cooling water. This cooling water is circulated at a temperature of 35 ° C. outside the test target tube (outer diameter 15 mm, inner diameter 14 mm, length 320 mm), and hot water at a temperature of 45 ° C. is circulated on the inner surface of the copper tube to control the flow rate. The temperature was kept at 35 ° C. The cooling water was changed every 25 hours, the operation was continued for 100 hours, and the scale adhesion inhibitory effect was verified by measuring the weight of the scale (CaCO 3 ) adhering to the test object tube.

〔実施例1〕
銅管に亜鉛メッキを行い、試験対象管とし、スケール付着量を調べた。この試験対象管は、使用条件下で、酸化亜鉛被膜を形成した状態となっている。
[Example 1]
The copper pipe was galvanized to make a test object pipe, and the amount of scale adhered was examined. The test object tube is in a state in which a zinc oxide film is formed under use conditions.

〔比較例1〕
銅管をそのまま試験対象管とし、スケール付着量を調べた。
[Comparative Example 1]
The copper tube was used as the test tube as it was, and the amount of scale adhered was examined.

〔比較例2〕
銅管をイソプロパノールで脱脂洗浄し自然乾燥させた後、濃硫酸120mlに重クロム酸ナトリウム30g添加し、蒸留水1,000mlに溶解した酸溶液に浸した。約3分後、取り出した後水洗し60℃で約30分間乾燥した。その後、すぐに濃度10%のシリコーンレジン溶液に約30分間浸し、取り出したのち乾燥し、約200℃で熱硬化させシリコーン皮膜を形成した銅管を得た。(特許文献1実施例参照)
この銅管を試験対象管とし、スケール付着量を調べた。
[Comparative Example 2]
The copper tube was degreased and washed with isopropanol and allowed to dry naturally, and then 30 g of sodium dichromate was added to 120 ml of concentrated sulfuric acid and immersed in an acid solution dissolved in 1,000 ml of distilled water. After about 3 minutes, the product was taken out, washed with water, and dried at 60 ° C. for about 30 minutes. Then, it was immediately immersed in a silicone resin solution having a concentration of 10% for about 30 minutes, taken out, dried, and thermally cured at about 200 ° C. to obtain a copper tube on which a silicone film was formed. (Refer to Examples in Patent Document 1)
This copper tube was used as a test tube, and the amount of scale adhered was examined.

〔比較例3〕
先ず、銅管を、イソプロパノール又はヘキサン等により溶剤脱脂又はアルカリ脱脂を行い、硫酸等によって洗浄する。その後、銅管をシリカ分散液に室温〜40℃程度に浸漬した後に、室温〜100℃で乾燥させ、シリカ被膜を形成した銅管を得た。(特許文献2実施例参照)
この銅管を試験対象管とし、スケール付着量を調べた。
[Comparative Example 3]
First, the copper tube is subjected to solvent degreasing or alkali degreasing with isopropanol or hexane, and washed with sulfuric acid or the like. Thereafter, the copper tube was immersed in a silica dispersion at room temperature to about 40 ° C. and then dried at room temperature to 100 ° C. to obtain a copper tube on which a silica film was formed. (Refer to Examples in Patent Document 2)
This copper tube was used as a test tube, and the amount of scale adhered was examined.

その結果、本条件下における銅管表面と炭酸カルシウム粒子のゼータ電位を表1に示す。また、100時間経過した後の銅管表面に付着した炭酸カルシウムの重量の結果を表2に、比較例1及び実施例1の写真を図5、6示すが、亜鉛メッキを施した銅管へは、部分的にしかスケールが付着していないのに対して、比較例1のものでは、一面にスケールが付着しており、本発明の構成によれば、スケール(CaCO3)の重量は少なくなっており、スケールの発生が防止できていることがわかる。これより冷却水中に含まれる主たるスケールの成分のゼータ電位と銅管表面のゼータ電位を同じ符号にすれば、スケールはつきにくくなり銅管表面へのスケールの付着量を減らすことが可能となることがわかった。 As a result, the zeta potential of the copper tube surface and calcium carbonate particles under this condition is shown in Table 1. Moreover, although the result of the weight of the calcium carbonate adhering to the copper pipe surface after 100 hours passed is shown in Table 2, the photograph of the comparative example 1 and Example 1 is shown to FIG. In contrast, the scale is only partially attached to the surface of Comparative Example 1, but the scale is attached to one side. According to the configuration of the present invention, the weight of the scale (CaCO 3 ) is small. It can be seen that the generation of scale can be prevented. From this, if the zeta potential of the main scale component contained in the cooling water and the zeta potential of the copper tube surface are made the same sign, the scale becomes difficult to attach and the amount of scale attached to the copper tube surface can be reduced. I understood.

尚、図1〜3の結果より、金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管の場合、上記酸化亜鉛被膜に加えて、酸化アルミニウム被膜を形成した場合にも、スケールの成分のゼータ電位と銅管表面のゼータ電位を同じ符号にすることができ、有効に用いられることがわかる。 In addition, from the result of FIGS. 1-3, in the case of the copper pipe for heat exchangers which a metal member distribute | circulates the cooling water of pH 7-8 at 30-40 degreeC, In addition to the said zinc oxide film, when an aluminum oxide film is formed In addition, it can be seen that the zeta potential of the scale component and the zeta potential of the copper tube surface can be made the same sign and can be used effectively.

1 試験対象管
2 アクリル管
3 冷却水を流通する管路
4 冷却部
5 温水を流通する管路
6 ヒータ
DESCRIPTION OF SYMBOLS 1 Test object pipe 2 Acrylic pipe 3 Pipe line which distribute | circulates cooling water 4 Cooling part 5 Pipe line which distribute | circulates hot water 6 Heater

Claims (2)

金属部材に被膜を形成して、その金属部材に接触する水からのスケールの形成を防止するスケール防止方法であって、
前記金属部材の使用状態においてその金属部材に接触する水のpH、温度の使用環境で、CaCO3と同符号のゼータ電位を有する材料からなる被膜を前記金属部材の水との接触面に形成するスケール防止方法。
A scale prevention method for forming a film on a metal member and preventing formation of scale from water in contact with the metal member,
A coating made of a material having a zeta potential having the same sign as CaCO 3 is formed on the surface of the metal member in contact with water in the usage environment of the pH and temperature of the water in contact with the metal member in the use state of the metal member. Scale prevention method.
前記金属部材がpH7〜8の冷却水を30〜40℃で流通する熱交換器用銅管であり、前記銅管表面に、酸化亜鉛および酸化アルミニウムから選択される少なくとも一種の材料を主成分とする被膜を形成する請求項1に記載のスケール防止方法。   The metal member is a copper tube for a heat exchanger in which cooling water having a pH of 7 to 8 is circulated at 30 to 40 ° C., and has at least one material selected from zinc oxide and aluminum oxide as a main component on the surface of the copper tube. The scale prevention method according to claim 1, wherein a film is formed.
JP2010025729A 2010-02-08 2010-02-08 Scale prevention method Pending JP2011163623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025729A JP2011163623A (en) 2010-02-08 2010-02-08 Scale prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025729A JP2011163623A (en) 2010-02-08 2010-02-08 Scale prevention method

Publications (1)

Publication Number Publication Date
JP2011163623A true JP2011163623A (en) 2011-08-25

Family

ID=44594527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025729A Pending JP2011163623A (en) 2010-02-08 2010-02-08 Scale prevention method

Country Status (1)

Country Link
JP (1) JP2011163623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515604A (en) * 2012-02-15 2015-05-28 コリア ハイドロ アンド ニュークリア パワー カンパニー リミティッド Sludge reduction steam generator and method for manufacturing tube sheet for sludge reduction steam generator
JP2020110784A (en) * 2019-01-17 2020-07-27 国立大学法人 名古屋工業大学 Scaling inhibitor using sintered ceramics and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500094A (en) * 1987-07-17 1990-01-18 バッテル・メモリアル・インスティチュート Electrofiltration device and method for preventing filter fouling in cross-flow filtration
JPH0599588A (en) * 1991-10-03 1993-04-20 Kobe Steel Ltd Heat transfer tube for heat exchanger and manufacture thereof
JPH0743335A (en) * 1993-07-30 1995-02-14 Shimadzu Corp Interface potential-measuring device
JP2001280890A (en) * 2000-03-30 2001-10-10 Kobe Steel Ltd Heat exchanger
JP2002273477A (en) * 2001-03-21 2002-09-24 Kurita Water Ind Ltd Scale preventing method
US20040007345A1 (en) * 2000-11-08 2004-01-15 Pcc Structurals, Inc. Method for processing casting materials to increase slurry lifetime
JP2008298415A (en) * 2007-06-04 2008-12-11 Kobe Steel Ltd Heat transfer tube for heat exchanger with superior scale adhesion resistance and manufacturing method of the same
US20090041807A1 (en) * 2004-07-19 2009-02-12 Gorringe Andrew R Stable Compositions Containing Omvs

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500094A (en) * 1987-07-17 1990-01-18 バッテル・メモリアル・インスティチュート Electrofiltration device and method for preventing filter fouling in cross-flow filtration
JPH0599588A (en) * 1991-10-03 1993-04-20 Kobe Steel Ltd Heat transfer tube for heat exchanger and manufacture thereof
JPH0743335A (en) * 1993-07-30 1995-02-14 Shimadzu Corp Interface potential-measuring device
JP2001280890A (en) * 2000-03-30 2001-10-10 Kobe Steel Ltd Heat exchanger
US20040007345A1 (en) * 2000-11-08 2004-01-15 Pcc Structurals, Inc. Method for processing casting materials to increase slurry lifetime
JP2002273477A (en) * 2001-03-21 2002-09-24 Kurita Water Ind Ltd Scale preventing method
US20090041807A1 (en) * 2004-07-19 2009-02-12 Gorringe Andrew R Stable Compositions Containing Omvs
JP2008298415A (en) * 2007-06-04 2008-12-11 Kobe Steel Ltd Heat transfer tube for heat exchanger with superior scale adhesion resistance and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515604A (en) * 2012-02-15 2015-05-28 コリア ハイドロ アンド ニュークリア パワー カンパニー リミティッド Sludge reduction steam generator and method for manufacturing tube sheet for sludge reduction steam generator
JP2020110784A (en) * 2019-01-17 2020-07-27 国立大学法人 名古屋工業大学 Scaling inhibitor using sintered ceramics and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Forrest et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings
Karimzadehkhouei et al. The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling
Yang et al. Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid
JPS582596A (en) Surface treatment for heat exchanger made of aluminum
US20140314947A1 (en) Articles and methods for enhanced boiling heat transfer
Lee et al. Influence of heated surfaces and fluids on pool boiling heat transfer
Wang et al. Facilely constructing micro-nanostructure superhydrophobic aluminum surface with robust ice-phobicity and corrosion resistance
Hidema et al. Adhesive behavior of a calcium carbonate particle to solid walls having different hydrophilic characteristics
Pech-Canul et al. Electrochemical behavior of tube-fin assembly for an aluminum automotive condenser with improved corrosion resistance
JP2010174269A (en) Method of manufacturing aluminum member
Shen et al. Bubble activation from a hydrophobic spot at “negative” surface superheats in subcooled boiling
JP2011163623A (en) Scale prevention method
Chang et al. Heat transfer performance of jet impingement flow boiling using Al 2 O 3-water nanofluid
US20120308775A1 (en) Hydrophilic surfaces and process for preparing
Wan et al. Influence of hydrophobic coatings on fouling mechanism of combined fouling in enhanced tubes
JP2010270952A (en) Method of manufacturing water repellent aluminum member
Kim Effect of surface roughness on pool boiling heat transfer in subcooled water-CuO nanofluid
Liu et al. Fabrication of environmentally friendly superhydrophobic coatings for corrosion protection under simulated conditions of antifreeze solutions for heat-source tower
Hu et al. Rapid development of thickness‐controllable superamphiphobic coating on the inner wall of long narrow pipes
Kumar et al. Heat transfer and pressure drop of Al2O3 nanofluid as coolant in shell and helically coiled tube heat exchanger
JP5658531B2 (en) Scale prevention method and calcium carbonate scale inhibitor
JP2017155302A (en) Coating for inner surface of metallic water piping, water piping and heat exchanger
JPWO2004033980A1 (en) Manufacturing method of heat exchange system
Hamda et al. Bubble dynamics in pool boiling of nanofluids
JP5599763B2 (en) Water-soluble resin, fin material for heat exchanger using the same, and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140918