JP2020110784A - Scaling inhibitor using sintered ceramics and method for manufacturing the same - Google Patents

Scaling inhibitor using sintered ceramics and method for manufacturing the same Download PDF

Info

Publication number
JP2020110784A
JP2020110784A JP2019005795A JP2019005795A JP2020110784A JP 2020110784 A JP2020110784 A JP 2020110784A JP 2019005795 A JP2019005795 A JP 2019005795A JP 2019005795 A JP2019005795 A JP 2019005795A JP 2020110784 A JP2020110784 A JP 2020110784A
Authority
JP
Japan
Prior art keywords
scale
scale inhibitor
raw material
less
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019005795A
Other languages
Japanese (ja)
Other versions
JP6780183B2 (en
Inventor
正督 藤
Masatada Fuji
正督 藤
淳裕 山下
Atsuhiro Yamashita
淳裕 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Api Shoji Co Ltd
Nagoya Institute of Technology NUC
Original Assignee
Api Shoji Co Ltd
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Api Shoji Co Ltd, Nagoya Institute of Technology NUC filed Critical Api Shoji Co Ltd
Priority to JP2019005795A priority Critical patent/JP6780183B2/en
Publication of JP2020110784A publication Critical patent/JP2020110784A/en
Application granted granted Critical
Publication of JP6780183B2 publication Critical patent/JP6780183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a scale inhibitor and a method for manufacturing the agent without an addition of chemicals to an aqueous system and has an excellent scale-preventing function to prevent scale adhesion.SOLUTION: A scale inhibitor includes a sintered ceramic raw powder containing silica and alumina as the main components and has a zeta potential of -20 mV or less on the surface of the sintered powder at a pH of 5.5 to 8.5 or less. It is preferable that (Si at%)/(Al at%) in the surface composition of the sintered body be 1.2 or more and 2.5 or less.SELECTED DRAWING: Figure 3

Description

本発明はセラミック焼結体を用いたスケール防止剤、及びその製造方法に関する。 The present invention relates to a scale preventive agent using a ceramic sintered body and a method for producing the same.

従来、冷却水等の水系において配管や熱交換器の内部にスケールが付着することを防ぐために、カルボン酸ポリマー(アニオン性ポリマー)やホスホン酸塩からなるスケール防止剤が用いられている。これらのスケール防止剤を水系に添加すれば、配管内の炭酸カルシウムや赤錆等からなるスケール付着を防止することができる。 Conventionally, in a water system such as cooling water, a scale inhibitor composed of a carboxylic acid polymer (anionic polymer) or a phosphonate is used in order to prevent scale from adhering to the inside of a pipe or a heat exchanger. By adding these scale inhibitors to the water system, it is possible to prevent the scale adhesion of calcium carbonate, red rust, etc. in the pipe.

しかし、これらのスケール防止剤では、処理対象となる水系にスケール防止剤を所定の濃度となるように添加しなければならないため、管理に手間がかかるという欠点があった。また、添加されたスケール防止剤はドレン水等として廃棄される分があるため、その消耗分を補充しなければならず、経費がかかるという欠点もあった。 However, these scale inhibitors have the drawback that it takes time to manage because the scale inhibitor must be added to the water system to be treated so as to have a predetermined concentration. In addition, since the added scale inhibitor is partly discarded as drain water or the like, the consumed part must be replenished, which is disadvantageous in terms of cost.

一方、セラミックの焼結体を水系に存在させるだけで、スケールの付着を防止する技術も知られている。例えば、特許文献1では、所定のケイ酸塩からなる球状焼結体を容器に装入し、容器の下部から処理水を導入して、処理水の水流によりセラミック粒子を水中で流動、相互摩擦、衝突させることによって処理水を活性化し、炭酸カルシウムや赤錆によるスケールの付着を防止することができる(請求項1、段落番号[0001]、[0012]、[0013]及び[0017]参照)。この方法によれば、水系に薬剤を添加する必要がないため、薬剤に要する経費が不要となるとともに、薬剤添加の管理も不要となり、メンテナンスが容易となる。 On the other hand, there is also known a technique of preventing scale from adhering only by allowing a ceramic sintered body to exist in an aqueous system. For example, in Patent Document 1, a spherical sintered body made of a predetermined silicate is charged into a container, treated water is introduced from the lower part of the container, and a ceramic particle is caused to flow in water by the water flow of the treated water, resulting in mutual friction. It is possible to activate the treated water by collision and prevent the scale from adhering due to calcium carbonate or red rust (see claim 1, paragraph numbers [0001], [0012], [0013] and [0017]). According to this method, since it is not necessary to add the drug to the water system, the cost required for the drug is not required, and the management of the addition of the drug is not required, which facilitates maintenance.

特開平7−39888号公報JP-A-7-39888

しかしながら、特許文献1に示すスケール防止剤では、炭酸カルシウムや赤錆によるスケールの付着を防止する能力が充分とはいえず、スケール防止機能のさらなる向上が望まれていた。本発明は、上記従来の実情に鑑みてなされたものであり、水系に薬剤を添加する必要がなく、スケール付着の防止機能に優れたスケール防止剤及びその製造方法を提供することを解決すべき課題としている。 However, the scale inhibitor described in Patent Document 1 cannot be said to have sufficient ability to prevent scale adhesion due to calcium carbonate or red rust, and further improvement of the scale preventing function has been desired. The present invention has been made in view of the above conventional circumstances, it is not necessary to add a chemical agent to the water system, it should be solved to provide a scale inhibitor excellent in the function of preventing scale adhesion and its manufacturing method. It is an issue.

本発明者らは、様々な岩石や、様々なセラミック粉末を焼成して得た焼結体についてのスケール防止効果について研究を重ねた。その結果、成分としてシリカ分とアルミナ分を含有するセラミック原料粉であって、ゼータ電位が所定の値以下であれば、優れたスケール防止効果を発揮することを見出し、本発明を完成するに至った。 The present inventors have conducted extensive research on the scale prevention effect of various rocks and sintered bodies obtained by firing various ceramic powders. As a result, it was found that a ceramic raw material powder containing a silica component and an alumina component as components and having a zeta potential of not more than a predetermined value exerts an excellent scale preventing effect, and has completed the present invention. It was

すなわち、本発明のスケール防止剤は、主成分としてシリカ分とアルミナ分を含有するセラミック原料粉の焼結体からなり、該焼結体表面のpH5.5以上8.5以下におけるゼータ電位が−20mV以下であることを特徴とする。 That is, the scale inhibitor of the present invention is composed of a sintered body of ceramic raw material powder containing silica and alumina as main components, and the zeta potential at pH 5.5 or more and 8.5 or less on the surface of the sintered body is -20 mV or less. Is characterized in that

本発明のスケール防止剤が優れたスケール防止効果を奏することについて、その理由については完全には明確とはなっていないが、次のように考えられる。
・シリカ分の役割
本発明のスケール防止剤は、主成分としてシリカ分を含有するセラミック原料粉の焼結体からなるため、表面には多くのシラノール基が存在する。さらに、このスケール防止剤は、pH5.5以上8.5以下におけるゼータ電位が−20mV以下であるという、大きく負側に振れた値とされている。すなわち、焼結体自身の表面はマイナスチャージを有しており、シラノール基から水中へ水素イオンを放出する。この放出された水素イオンが水のアルカリ化を防ぎ、赤錆発生を抑制する。また、シラノール基から放出された水素イオンが水中の炭酸イオンを炭酸水素イオンへと変化させることにより、炭酸カルシウムの析出が抑制される。
・Al分の役割
さらに、本発明のスケール防止剤は、主成分としてルイス酸点となるAl分を含有しているため、このルイス酸点が孤立電子対を有する分子やイオンを吸着する役割を担う。このため、溶存酸素のイオン化を阻害することとなり、配管等の鉄が酸化されて赤錆となることを防ぐことができると考えられる。
・焼結体としたことによる効果
また、このスケール防止剤はセラミックの焼結体からなるため、粉体に比べて重量が大きく、焼結体の微振動によって分子レベルの摩砕効果が発揮される。このため、例えスケール防止剤の表面に炭酸カルシウムが析出したとしても、摩砕効果によって削り取られ、絶えずフレッシュなシラノール基が表面に存在することとなり、シラノール基からの水素イオンの放出が妨げられることがない。
The reason why the scale preventive agent of the present invention has an excellent scale preventing effect is not completely clear, but it is considered as follows.
-Role of silica content Since the scale inhibitor of the present invention comprises a sintered body of ceramic raw material powder containing silica as a main component, many silanol groups are present on the surface. Further, this scale inhibitor has a zeta potential of −20 mV or less at pH 5.5 or more and 8.5 or less, which is a value largely deviated to the negative side. That is, the surface of the sintered body itself has a negative charge and releases hydrogen ions from the silanol groups into water. The released hydrogen ions prevent the alkalization of water and suppress the generation of red rust. Further, the hydrogen ions released from the silanol groups change the carbonate ions in the water into hydrogen carbonate ions, whereby the precipitation of calcium carbonate is suppressed.
Role of Al component Further, since the scale inhibitor of the present invention contains Al component as a Lewis acid point as a main component, this Lewis acid point plays a role of adsorbing a molecule or ion having a lone electron pair. Carry. Therefore, it is considered that the ionization of dissolved oxygen is hindered, and it is possible to prevent the iron in the pipe and the like from being oxidized and becoming red rust.
-Effects of using a sintered body In addition, since this scale inhibitor is made of a ceramic sintered body, it has a larger weight than powder, and the microvibration of the sintered body exerts a grinding effect at the molecular level. It Therefore, even if calcium carbonate is deposited on the surface of the scale inhibitor, it will be scraped off by the grinding effect, and constantly fresh silanol groups will be present on the surface, which will prevent the release of hydrogen ions from the silanol groups. There is no.

したがって、本発明のスケール防止剤によれば、水系に薬剤を添加することなく、赤錆や炭酸カルシウムによるスケール付着を防止することができる。 Therefore, according to the scale inhibitor of the present invention, scale adhesion due to red rust or calcium carbonate can be prevented without adding a chemical agent to the water system.

スケール防止剤を構成している焼結体の表面組成におけるSi/Alの値(at%の比率)は1.2以上2.5以下であることが好ましい。本発明者らは、スケール防止剤の焼結体の表面組成におけるSi/Alの値(at%の比率)が1.2以上2.5以下であれば、pH5.5以上8.5以下におけるゼータ電位が−20mV以下となることを見出した。このことは、シラノール基から水中へ水素イオンが放出されていることを意味し、この放出された水素イオンが水のアルカリ化を防ぎ、赤錆発生を抑制する。また、シラノール基から放出された水素イオンが水中の炭酸イオンを炭酸水素イオンへと変化させることにより、炭酸カルシウムの析出が抑制される。 The Si/Al value (at% ratio) in the surface composition of the sintered body that constitutes the scale inhibitor is preferably 1.2 or more and 2.5 or less. The inventors have found that if the Si/Al value (at% ratio) in the surface composition of the sintered body of the scale inhibitor is 1.2 or more and 2.5 or less, the zeta potential at pH 5.5 or more and 8.5 or less. Was found to be -20 mV or less. This means that hydrogen ions are released from the silanol groups into water, and the released hydrogen ions prevent alkalization of water and suppress red rust generation. Further, the hydrogen ions released from the silanol groups change the carbonate ions in the water into hydrogen carbonate ions, whereby the precipitation of calcium carbonate is suppressed.

また、本発明のスケール防止剤は、表面組成と内部組成とが異なっていてもよい。最表面とその内側の組成が異なることで、構造的な歪みによる表面活性が現れる。これはシリカアルミナ等の固体触媒で面内二次元的にいわれていることであり、本発明の効果を高めることができる。また、表面組成と内部組成とを共に主成分としてシリカ分とアルミナ分を含有するセラミック原料粉の焼結体とする場合には、(内部組成における(Siのat%)/(Alのat%))>(表面組成における(Siのat%)/(Alのat%))とすることが好ましい。こうであれば、焼結体を製造する場合、熱の伝わりにくい焼結体内部が焼結の容易なシリカ分の多い組成となるため、焼結が容易となる。 Further, the scale inhibitor of the present invention may have different surface composition and internal composition. Due to the difference in composition between the outermost surface and the inside, surface activity appears due to structural distortion. This is because it is said to be two-dimensionally in-plane with a solid catalyst such as silica-alumina, and the effect of the present invention can be enhanced. Further, in the case of forming a sintered body of ceramic raw material powder containing both silica and alumina as the main components of both the surface composition and the internal composition, ((at% of Si in internal composition)/(at% of Al) ))>((at% of Si in surface composition)/(at% of Al)) is preferable. If this is the case, when a sintered body is manufactured, the inside of the sintered body, which does not easily transmit heat, has a composition with a large amount of silica, which facilitates sintering, so that sintering is facilitated.

また、本発明のスケール防止剤の表面粗さRaは、5μm以下であることが好ましい。本発明者らの試験結果によれば、表面粗さRaが5μm以下である場合に、スケール防止効果がより優れている。 The surface roughness Ra of the scale preventive agent of the present invention is preferably 5 μm or less. According to the test results of the present inventors, the scale prevention effect is more excellent when the surface roughness Ra is 5 μm or less.

本発明のスケール防止剤は、次のようにして製造することができる。すなわち、本発明のスケール防止剤製造方法は、主成分としてシリカ分とアルミナ分を含有するセラミック原料粉を用意する原料準備工程と、前記セラミック原料粉に水を添加して所定の形状に成型する成型工程と、成型工程で得られた成型物を1100℃以上1300℃未満の温度で焼成する焼成工程とを備えたことを特徴とする。 The scale inhibitor of the present invention can be manufactured as follows. That is, the scale inhibitor manufacturing method of the present invention comprises a raw material preparing step of preparing a ceramic raw material powder containing silica and alumina as main components, and water is added to the ceramic raw material powder to form a predetermined shape. It is characterized by comprising a molding step and a firing step of firing the molded product obtained in the molding step at a temperature of 1100°C or higher and lower than 1300°C.

本発明のスケール防止剤の製造方法における成型工程において、水とともに塑性付与剤を添加することも好ましい。こうであれば、塑性付与剤の添加により塑性が付与され、造粒が容易となる。 In the molding step of the method for producing a scale inhibitor of the present invention, it is also preferable to add a plasticizer together with water. In this case, plasticity is imparted by the addition of the plasticity imparting agent, and granulation becomes easy.

本発明のスケール防止剤の製造工程図である。It is a manufacturing-process figure of the scale inhibitor of this invention. 本発明のスケール防止剤の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the scale inhibitor of this invention. スケール付着試験装置の模式図である。It is a schematic diagram of a scale adhesion test apparatus. 実施例1〜4及び比較例1、2におけるpHとゼータ電位との関係を示すグラフである。It is a graph which shows the relationship between pH and Zeta potential in Examples 1-4 and Comparative Examples 1 and 2. 実施例1及び比較例1のスケール付着試験後の試験片の写真である。3 is a photograph of a test piece after a scale adhesion test in Example 1 and Comparative Example 1.

以下、本発明を具体化した実施形態について、図面を参照しつつ説明する。
実施形態のスケール防止剤は、主成分としてシリカ分とアルミナ分を含有するセラミック原料粉の焼結体からなり、該焼結体表面のpH5.5以上8.5以下におけるゼータ電位が−20mV以下である。このスケール防止剤は図1に示す工程によって製造することができる。
Embodiments embodying the present invention will be described below with reference to the drawings.
The scale inhibitor of the embodiment is composed of a sintered body of ceramic raw material powder containing silica and alumina as main components, and the zeta potential at the surface of the sintered body at pH 5.5 or more and 8.5 or less is -20 mV or less. .. This scale inhibitor can be manufactured by the process shown in FIG.

(原料準備工程S1)
原料としては、目的のSi分及びAl分を含有し、焼成した時に酸化物系のセラミックとなるものであれば、特に限定はされない。このようなセラミックとしては、アモルファスシリカ,アルミナの他,ムライト,結晶性シリカ,水酸化アルミニウム等があげられる。また、ベントナイト、カオリナイト、メタカオリン、モンモリロナイト等の粘土鉱物粉体、石英、ムライト等のSiO2-Al2O3系無機質粉体等を用いることができる。これらの中でも、粘土鉱物粉体や石英粉体は、安価かつ大量に得られるため、好適である。その他、フライアッシュ、キラ、ガラス、ペーパースラッジ、アルミドロス等の廃棄物粉体を用いることができる。
(Raw material preparation step S1)
The raw material is not particularly limited as long as it contains the target Si content and Al content and becomes an oxide ceramic when fired. Examples of such ceramics include amorphous silica and alumina, mullite, crystalline silica, aluminum hydroxide and the like. Further, clay mineral powder such as bentonite, kaolinite, metakaolin and montmorillonite, SiO 2 —Al 2 O 3 based inorganic powder such as quartz and mullite can be used. Among these, clay mineral powder and quartz powder are preferable because they are inexpensive and can be obtained in large quantities. In addition, waste powder such as fly ash, killer, glass, paper sludge, and aluminum dross can be used.

焼成されたスケール防止剤のSi分とAl分の仕込み比率は、at%で表したときのSi/Alが1.2以上2.5以下とすることが好ましく、さらに好ましいのは1.3以上2.3以下であり、最も好ましいのは1.4以上2.2以下である。Si分とAl分の仕込み比率をこの範囲とすれば、焼成されたスケール防止剤のpH5.5以上8.5以下におけるゼータ電位が−20mV以下とすることができる。なお、スケール防止剤の内部と表面部分との組成を変える場合には、表面部分のSi分とAl分の仕込み比率を上記の範囲とすればよい(表面部分と内部の組成を変化させる方法としては、後述するように、内部組成調合原料で造粒した後、表面組成調製用の調合原料でコーティングを行う方法が挙げられる)。セラミックス原料粉の混合方法としては特に限定はないが、湿式で解砕・粒子径分布を調整することが挙げられる。 As for the charging ratio of Si content and Al content of the calcined scale inhibitor, Si/Al when expressed in at% is preferably 1.2 or more and 2.5 or less, and more preferably 1.3 or more. It is 2.3 or less, and most preferably 1.4 or more and 2.2 or less. When the charging ratio of the Si content and the Al content is within this range, the zeta potential of the calcined scale inhibitor at pH 5.5 or more and 8.5 or less can be -20 mV or less. In addition, when changing the composition of the inside and the surface portion of the scale inhibitor, the charging ratio of the Si content and the Al content of the surface portion may be within the above range (as a method of changing the composition of the surface portion and the inside). As described later, a method of granulating with the internal composition preparation raw material and then coating with the preparation raw material for surface composition preparation can be mentioned). The method of mixing the ceramic raw material powder is not particularly limited, but examples thereof include wet crushing and particle size distribution adjustment.

(成型工程S2)
セラミックス原料粉の成形方法については、特に限定はなく、転動造粒成形法等を用いることができる。この場合において、粉体に回転や振動を与えながら水を噴霧して,粉体の凝集現象を利用して球状顆粒の成型物を成長させる成形方法が好ましい。なお、スケール防止剤の内部と表面とで組成を変える方法としては、内部組成調合原料で造粒した後、表面組成調製用の調合原料でコーティングを行う方法が挙げられる。また、造粒時において、水にポリビニルアルコールやカルボキシメチルセルロースなどの塑性付与剤を添加してもよい。
(Molding process S2)
The method for molding the ceramic raw material powder is not particularly limited, and a rolling granulation method or the like can be used. In this case, a molding method is preferred in which water is sprayed while the powder is rotated or vibrated to grow a spherical granular molded product by utilizing the agglomeration phenomenon of the powder. As a method of changing the composition between the inside and the surface of the scale inhibitor, there may be mentioned a method of granulating with the internal composition preparation raw material and then coating with the preparation raw material for surface composition preparation. Further, at the time of granulation, a plasticizer such as polyvinyl alcohol or carboxymethyl cellulose may be added to water.

(焼成工程S3)
成型工程で得られた成型物を1100〜1300℃の温度で焼成する。焼成炉については特に限定はなく、電気炉、ガス焼成炉などを用いることができる。
(Firing step S3)
The molded product obtained in the molding process is fired at a temperature of 1100-1300°C. The firing furnace is not particularly limited, and an electric furnace, a gas firing furnace, or the like can be used.

以下、本発明を具体化した実施例について、比較例と比較しつつ詳細に説明する。
(実施例1〜4及び比較例1、2)
実施例1〜4及び比較例1、2では図1に示す工程により、スケール防止剤1を製造した。このスケール防止剤1は、図2に示すように、シリカとアルミナの焼結体からなる内核1aが、同じくシリカとアルミナの焼結体からなる外殻1bによって包まれた構造とされている。ただし、内核1aの組成は外殻1bの組成よりもシリカ分が多くなっている。以下、このスケール防止剤1の製造方法について詳細に述べる。
Hereinafter, examples embodying the present invention will be described in detail in comparison with comparative examples.
(Examples 1 to 4 and Comparative Examples 1 and 2)
In Examples 1 to 4 and Comparative Examples 1 and 2, the scale inhibitor 1 was manufactured by the process shown in FIG. As shown in FIG. 2, the scale preventive agent 1 has a structure in which an inner core 1a made of a sintered body of silica and alumina is surrounded by an outer shell 1b made of a sintered body of silica and alumina. However, the composition of the inner core 1a has more silica than the composition of the outer shell 1b. Hereinafter, the method for producing the scale inhibitor 1 will be described in detail.

(原料準備工程S1)
原料としては、内核1a用のセラミック原料粉としてシリカとアルミナを所定の混合比(実施例1ではat%比でSi/Al=4.05、実施例2では2.87、実施例3では3.29、実施例4では3.41、比較例1では3.43、比較例2では38.41)で混合した。また、外殻1b用のセラミック原料粉としてシリカとアルミナを所定の混合比(実施例1ではat%比でSi/Al=1.99、実施例2では1.53、実施例3では1.79、実施例4では1.87、比較例1では2.81、比較例2では3.42)で混合した。
(Raw material preparation step S1)
As a raw material, silica and alumina as a ceramic raw material powder for the inner core 1a have a predetermined mixing ratio (Si/Al=4.05 in an at% ratio in Example 1, 2.87 in Example 2, 3.29 in Example 3, and Example 4). 3.41 in Comparative Example 1, 3.43 in Comparative Example 1, and 38.41 in Comparative Example 2. Further, as a ceramic raw material powder for the outer shell 1b, silica and alumina are mixed at a predetermined mixing ratio (Si/Al=1.99 in at% ratio in Example 1, 1.53 in Example 2, 1.79 in Example 3 and 1.79 in Example 4). 1.87, 2.81 in Comparative Example 1, and 3.42) in Comparative Example 2.

(成型工程S2)
こうして得られた内核1a用のセラミックス原料粉を用い、転動造粒成形法によって造粒した。この造粒方法は、セラミック原料粉に回転や振動を与えながら水を噴霧して,粉体の凝集現象を利用して球状顆粒の成型物を成長させる成形方法である。こうして、内核1a用のセラミックス原料粉を造粒して平均粒子径が約4mmの成型物を調製した後、外殻1b用のセラミックス原料粉を用い、転動造粒成形法によって粒子径が約5mmとなるように造粒した。こうして、シリカとアルミナの焼結体からなる内核1aが、同じくシリカとアルミナの焼結体からなる外殻1bによって包まれた構造の成型物を調製した。
(Molding process S2)
The ceramic raw material powder for the inner core 1a thus obtained was used for granulation by a tumbling granulation method. This granulation method is a molding method in which water is sprayed on a ceramic raw material powder while being rotated or vibrated to grow a spherical granular molded product by utilizing the agglomeration phenomenon of the powder. In this way, the ceramic raw material powder for the inner core 1a is granulated to prepare a molded product having an average particle size of about 4 mm, and then the ceramic raw material powder for the outer shell 1b is used to obtain a particle size of about 4 mm by the rolling granulation method. It was granulated so as to have a size of 5 mm. Thus, a molded product having a structure in which the inner core 1a made of a sintered body of silica and alumina was surrounded by the outer shell 1b made of a sintered body of silica and alumina was prepared.

(焼成工程S3)
成型工程S2で得られた成型物を電気炉に入れ、実施例1及び実施例2では1250℃、実施例3及び実施例4では1300℃、比較例1では1300℃、比較例2では1100℃で2時間焼成した。
(Firing step S3)
The molded product obtained in the molding step S2 was put into an electric furnace, and it was 1250° C. in Examples 1 and 2, 1300° C. in Examples 3 and 4, 1300° C. in Comparative Example 1, and 1100° C. in Comparative Example 2. It was baked for 2 hours.

−評 価−
上記実施例1〜4及び比較例1〜2について、以下の試験を行った。
(ゼータ電位の測定)
ゼータ電位はCAD 社製の流動電位方式 ゼータ電位測定装置(商品名:Model ZetaCAD)を用いて測定した。測定時の溶液は0.01Mの塩酸溶液及び0.1Mの水酸化ナトリウム溶液を用いて所定のpHとなるように添加した。結果を図3に示す。また、実施例及び比較例のスケール防止剤の表面組成及び内部組成及びゼータ電位の測定結果について表1に示す。
− Evaluation −
The following tests were performed on the above Examples 1 to 4 and Comparative Examples 1 and 2.
(Measurement of zeta potential)
The zeta potential was measured using a streaming potential type zeta potential measuring device (trade name: Model ZetaCAD) manufactured by CAD. A 0.01 M hydrochloric acid solution and a 0.1 M sodium hydroxide solution were added to the solution at the time of measurement so that the solution had a predetermined pH. Results are shown in FIG. In addition, Table 1 shows the measurement results of the surface composition and internal composition and the zeta potential of the scale inhibitors of Examples and Comparative Examples.

図3及び表1から、外殻における(Siのat%)/(Alのat%)が1.53以上1.99以下の範囲にある実施例1〜実施例4については、pH5.5以上8.5以下におけるゼータ電位が−20mV以下であることが分かった。これに対して、外殻における(Siのat%)/(Alのat%)が2.81である比較例1では、pH 5.5におけるゼータ電位が-9mV、外殻における(Siのat%)/(Alのat%)が3.42である比較例2では、pH 5.5におけるゼータ電位が-17mVとなり、いずれも−20mV以上であることが分かった。 From FIG. 3 and Table 1, pH 5.5 or more for Examples 1 to 4 in which (at% of Si)/(at% of Al) in the outer shell is in the range of 1.53 or more and 1.99 or less. It was found that the zeta potential below 8.5 was -20 mV or below. On the other hand, in Comparative Example 1 in which (at% of Si)/(at% of Al) in the outer shell was 2.81, the zeta potential at pH 5.5 was -9 mV, and in the outer shell (at% of Si). In Comparative Example 2 in which / (at% of Al) was 3.42, the zeta potential at pH 5.5 was -17 mV, which was found to be -20 mV or more.

(表面粗さRaの測定)
実施例1〜4及び比較例1,2について、オリンパス社製のレーザ顕微鏡を用いて、表面粗さRaを測定した。結果を表2に示す。
(Measurement of surface roughness Ra)
With respect to Examples 1 to 4 and Comparative Examples 1 and 2, the surface roughness Ra was measured using a laser microscope manufactured by Olympus. The results are shown in Table 2.

(スケール付着試験)
実施例1〜4及び比較例1、2のスケール防止剤のスケール付着防止性能を、図4に示すスケール付着試験装置によって評価した。すなわち、スケール防止剤1を、ステンレス鋼製の円筒状容器2内に装入し、ポンプ3によって容器2の下部から処理水を導入して、処理水の水流によりスケール防止剤1を水中で流動、相互摩擦、衝突させた。容器2内の上部と下部には、水を通過させるがセラミック粒子1を通過させないメッシュ状の仕切板4、5を設けた。容器2から排出された処理水は流出管6を通って、容器7に流入された。容器7にはメッシュ状の仕切板8が設けられており、仕切板8上にガラス板9を載置した。
処理水を41日間循環させ、5.7cm×3.9cmのガラス板9に付着したスケールについて、スガ試験機株式会社製のヘーズメーターHZ-V3、SEM-EDXでの分析
及び目視による色の違いに基づき評価した。なお、ブランクとしてスケール防止剤を容器2に入れないで同様の試験を行った。結果を図5及び表3に示す。なお、図5における点線で囲った四角部分は、試料を固定するためにクリップで止められていた部分であり、判定外の箇所である。
(Scale adhesion test)
The scale adhesion preventive performance of the scale inhibitors of Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated by the scale adhesion test apparatus shown in FIG. That is, the scale inhibitor 1 is loaded into a stainless steel cylindrical container 2, treated water is introduced from the lower portion of the container 2 by a pump 3, and the scale inhibitor 1 is caused to flow in water by the water flow of the treated water. , Mutual friction, collision. The upper and lower parts of the container 2 were provided with mesh-shaped partition plates 4 and 5 which allow water to pass but not the ceramic particles 1. The treated water discharged from the container 2 flowed into the container 7 through the outflow pipe 6. The container 7 is provided with a mesh-shaped partition plate 8, and the glass plate 9 is placed on the partition plate 8.
The treated water was circulated for 41 days, and the scale attached to the glass plate 9 of 5.7 cm x 3.9 cm was analyzed by Hazemeter HZ-V3 and SEM-EDX manufactured by Suga Test Instruments Co., Ltd. evaluated. As a blank, the same test was conducted without putting the scale inhibitor in the container 2. The results are shown in FIG. 5 and Table 3. In addition, a square portion surrounded by a dotted line in FIG. 5 is a portion which is fixed by a clip for fixing the sample and is a portion outside the determination.

その結果、表面のpH5.5以上8.5以下におけるゼータ電位が−20mV以下である実施例1〜4では、ガラス板9の全光線透過率及び平行光線透過率が比較例1、2及びブランクよりも高く、拡散透過率が低いことから、実施例1〜4のガラス板9の曇り度が比較例1、2及びブランクの曇り度よりも低いことが分かった。また、ガラス板9上の付着物をSEM-EDXで分析したところ、カルシウムと酸素とカーボンの多い部分や鉄と酸素の多い部分が存在した。このことから、スケールは炭酸カルシウム及び酸化鉄からなることが分かった。
以上の結果から、実施例1〜4のスケール防止剤は比較例1、2及びブランクと比べて、炭酸カルシウム及び酸化鉄のスケール防止機能に優れていることが分かった。特に、外殻における(Siのat%)/(Alのat%)が1.53以上1.99以下の範囲にある実施例は、90日間の循環浸漬したガラスのヘーズ値から判断した結果,いずれも高いスケール抑制効果を示した。一方比較例1、2はスケール抑制効果が小さかった。
As a result, in Examples 1 to 4 in which the zeta potential at a surface pH of 5.5 to 8.5 was -20 mV or less, the total light transmittance and the parallel light transmittance of the glass plate 9 were higher than those of Comparative Examples 1 and 2 and the blank. Since it was high and the diffuse transmittance was low, it was found that the haze of the glass plates 9 of Examples 1 to 4 was lower than the haze of Comparative Examples 1 and 2 and the blank. Further, when the deposits on the glass plate 9 were analyzed by SEM-EDX, a portion rich in calcium and oxygen and carbon and a portion rich in iron and oxygen were present. From this, it was found that the scale was composed of calcium carbonate and iron oxide.
From the above results, it was found that the scale inhibitors of Examples 1 to 4 were excellent in the scale inhibiting function of calcium carbonate and iron oxide as compared with Comparative Examples 1 and 2 and the blank. In particular, in the examples in which the (at% of Si)/(at% of Al) in the outer shell was in the range of 1.53 or more and 1.99 or less, the result determined from the haze value of the glass that had been immersed in circulation for 90 days, All showed high scale-inhibiting effect. On the other hand, Comparative Examples 1 and 2 had a small scale suppressing effect.

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The invention is not limited to the description of the embodiments of the invention. Various modifications are also included in the present invention within the scope that can be easily conceived by those skilled in the art without departing from the scope of the claims.

本発明のスケール防止剤は、水系に薬剤を添加する必要がなく、赤さびや炭酸カルシウムによるスケールを防止できるため、冷却水等のスケール付着防止剤として好適に用いることができる。 The scale preventive agent of the present invention does not require addition of a chemical agent to the water system and can prevent scales caused by red rust and calcium carbonate, and thus can be suitably used as a scale adhesion preventive agent for cooling water and the like.

S1…原料準備工程、S2…成型工程、S3…焼成工程
1…スケール防止剤(1a…内核,1b…外殻)、2…容器、3…ポンプ、4、5…仕切板、6…流出管、7…容器、8…仕切板、9…ガラス板
S1... Raw material preparation step, S2... Molding step, S3... Firing step 1... Scale inhibitor (1a... Inner core, 1b... Outer shell), 2... Container, 3... Pump, 4, 5... Partition plate, 6... Outflow pipe , 7... container, 8... partition plate, 9... glass plate

Claims (6)

主成分としてシリカ分とアルミナ分を含有するセラミック原料粉の焼結体からなり、該焼結体表面のpH5.5以上8.5以下におけるゼータ電位が−20mV以下であることを特徴とするスケール防止剤。 A scale inhibitor comprising a sintered body of ceramic raw material powder containing silica and alumina as main components, wherein the zeta potential at the surface of the sintered body at pH 5.5 or more and 8.5 or less is -20 mV or less. .. 前記焼結体の表面組成における(Siのat%)/(Alのat%)が1.2以上2.5以下とされているスケール防止剤。 A scale inhibitor in which (Si at%)/(Al at%) in the surface composition of the sintered body is 1.2 to 2.5. 表面組成と内部組成とが異なっている請求項1又は2に記載のスケール防止剤。 The scale inhibitor according to claim 1 or 2, wherein the surface composition and the internal composition are different. 表面粗さRaが5μm以下である請求項1乃至3のいずれか1項に記載のスケール防止剤。 The scale inhibitor according to any one of claims 1 to 3, which has a surface roughness Ra of 5 µm or less. 請求項1のスケール防止剤の製造方法であって、
主成分としてシリカ分とアルミナ分を含有し、(Siのat%)/(Alのat%)が1.2以上2.5以下とされているセラミック原料粉を用意する原料準備工程と、
前記セラミック原料粉に水を添加して所定の形状に成型する成型工程と、
成型工程で得られた成型物を1100℃以上1300℃未満の温度で焼成する焼成工程と、
を備えたスケール防止剤の製造方法。
A method for producing the scale inhibitor according to claim 1, wherein
A raw material preparing step of preparing a ceramic raw material powder containing silica and alumina as main components and having (Si at%)/(Al at%) of 1.2 to 2.5.
A molding step of adding water to the ceramic raw material powder to mold it into a predetermined shape,
A firing step of firing the molded product obtained in the molding step at a temperature of 1100°C or higher and lower than 1300°C,
A method for producing an anti-scale agent, comprising:
請求項6のケール防止剤の製造方法における成型工程において、水とともに塑性付与剤を添加するスケール防止剤の製造方法。 A method for producing a scale inhibitor, comprising adding a plasticity-imparting agent together with water in the molding step in the method for producing an anti-kale agent according to claim 6.
JP2019005795A 2019-01-17 2019-01-17 Anti-scale agent using ceramic sintered body and its manufacturing method Active JP6780183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019005795A JP6780183B2 (en) 2019-01-17 2019-01-17 Anti-scale agent using ceramic sintered body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019005795A JP6780183B2 (en) 2019-01-17 2019-01-17 Anti-scale agent using ceramic sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020110784A true JP2020110784A (en) 2020-07-27
JP6780183B2 JP6780183B2 (en) 2020-11-04

Family

ID=71667957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019005795A Active JP6780183B2 (en) 2019-01-17 2019-01-17 Anti-scale agent using ceramic sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6780183B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739888A (en) * 1993-07-26 1995-02-10 Nippon Chisui Kk Method for preparing activated water
JP2002361288A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Scale preventing method for cooling water system
JP2004182574A (en) * 2002-12-06 2004-07-02 Asahi Kasei Corp Particulate ceramics and method of manufacturing the same
JP2005270769A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Scale prevention method
JP2011163623A (en) * 2010-02-08 2011-08-25 Osaka Gas Co Ltd Scale prevention method
JP2016084264A (en) * 2014-10-28 2016-05-19 日本碍子株式会社 Method for forming layered double hydroxide dense film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739888A (en) * 1993-07-26 1995-02-10 Nippon Chisui Kk Method for preparing activated water
JP2002361288A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Scale preventing method for cooling water system
JP2004182574A (en) * 2002-12-06 2004-07-02 Asahi Kasei Corp Particulate ceramics and method of manufacturing the same
JP2005270769A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Scale prevention method
JP2011163623A (en) * 2010-02-08 2011-08-25 Osaka Gas Co Ltd Scale prevention method
JP2016084264A (en) * 2014-10-28 2016-05-19 日本碍子株式会社 Method for forming layered double hydroxide dense film

Also Published As

Publication number Publication date
JP6780183B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US4792468A (en) Method of forming refractory masses from compositions of matter of specified granulometry
CN101415477B (en) Low expansion corrosion resistant ceramic foam filters for molten aluminum filtration
US20090324919A1 (en) Layers or coatings which are stable at high temperatures and composition for producing them
JP2009517327A5 (en)
PL208526B1 (en) Porous material and method for production thereof
WO2019173905A1 (en) Composite structural material compositions resistant to biodegradation
JPH11128639A (en) Ceramic filter and its production
CN1651352A (en) Tundish dry ribration material for continuous casting and its preparation method
JPS58131115A (en) Filter material having stable porous shape
JP2020110784A (en) Scaling inhibitor using sintered ceramics and method for manufacturing the same
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
JP2006206338A (en) Highly corrosion-resistant refractory
JP2007099533A (en) Porous ceramic-made sound absorbing material
RU2358827C1 (en) Suspension for manufacturing of ceramic shell moulds into foundring by dispensable pattern
JP2680841B2 (en) Filter cartridge for molten aluminum filtration and filtration device using the same
JP4338193B2 (en) Wet spraying method for premix material
CN109865795B (en) Foundry coating composition prepared from industrial dust
JP3057313B2 (en) Ceramic porous membrane and method for producing the same
JP2002361266A (en) Chemicals for water treatment and method for using the same
JP2003176127A (en) alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
JPH0812465A (en) Production of porous sintered compact
JP3612766B2 (en) Anti-corrosive porous ceramics and method for producing the same
JP2503043B2 (en) Process for producing silicon carbide based sludge for cast molding
JP2020507552A (en) Single additive heat resistant material suitable for multiple application methods
KR100449053B1 (en) Buoyant Filter for Treatment of Wastewater and Method for Manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200713

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6780183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250