JP5655773B2 - Electrode material application amount measurement method - Google Patents

Electrode material application amount measurement method Download PDF

Info

Publication number
JP5655773B2
JP5655773B2 JP2011279593A JP2011279593A JP5655773B2 JP 5655773 B2 JP5655773 B2 JP 5655773B2 JP 2011279593 A JP2011279593 A JP 2011279593A JP 2011279593 A JP2011279593 A JP 2011279593A JP 5655773 B2 JP5655773 B2 JP 5655773B2
Authority
JP
Japan
Prior art keywords
coating
electrode material
coating amount
electrode plate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011279593A
Other languages
Japanese (ja)
Other versions
JP2013131369A (en
Inventor
鈴木 繁
繁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011279593A priority Critical patent/JP5655773B2/en
Publication of JP2013131369A publication Critical patent/JP2013131369A/en
Application granted granted Critical
Publication of JP5655773B2 publication Critical patent/JP5655773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、基材の表面に塗布された電極材料の塗布量を測定する塗布量測定方法に関する。より詳細には、オフラインで実重量測定を行う電極材料の塗布量測定方法に関するものである。   The present invention relates to a coating amount measuring method for measuring a coating amount of an electrode material applied to the surface of a substrate. More specifically, the present invention relates to a method for measuring the coating amount of an electrode material that performs off-line actual weight measurement.

近年、モータを駆動源として搭載したハイブリッド車両や電気自動車等の電動車両が普及しつつある。こうした電動車両には、充電や放電を行うための二次電池が搭載されている。二次電池の電極板は、帯状の金属箔(基材)に活物質を塗布することによって製造されている。具体的に電極板の製造過程では、金属箔の両面にペースト状の活物質を塗布し、その活物質を乾燥させ、乾燥させた活物質を金属箔とともにプレスロールにて圧延し、圧延後の薄膜を適切な幅および長さに切断することが行われている。   In recent years, electric vehicles such as hybrid vehicles and electric vehicles equipped with a motor as a drive source are becoming popular. Such an electric vehicle is equipped with a secondary battery for charging and discharging. The electrode plate of the secondary battery is manufactured by applying an active material to a strip-shaped metal foil (base material). Specifically, in the manufacturing process of the electrode plate, a paste-like active material is applied to both surfaces of the metal foil, the active material is dried, and the dried active material is rolled with a metal foil with a press roll. Cutting thin films into appropriate widths and lengths has been performed.

この二次電池では、充電や放電を行う際、正極板の塗工膜に含まれる正極活物質と、負極板の塗工膜に含まれる負極活物質との間で、イオンの吸蔵や放出が行われる。イオンの吸蔵や放出を適切に行うためには、正極板や負極板の表面にペースト状の活物質が均一に塗布されている必要がある。   In this secondary battery, when charging or discharging, ions are occluded or released between the positive electrode active material contained in the coating film of the positive electrode plate and the negative electrode active material contained in the coating film of the negative electrode plate. Done. In order to appropriately perform occlusion and release of ions, a paste-like active material needs to be uniformly applied to the surfaces of the positive electrode plate and the negative electrode plate.

そのため、電極板に塗布された電極材料の塗布量を測定している。この塗布量の測定方法としては、例えば、CCDセンサで電極板の幅方向の全長に亘って撮像し、撮像データに基づいて電極板上の電池材料の膜厚を測定し、塗布量をフィードバック制御するものがある(特許文献1参照)。また、β線やX線などの放射線を塗布物に照射して透過量を測定し、測定透過量に基づき単位面積当たりの電極材料の塗布量を測定するものもある(特許文献2参照)。
ところが、このような測定方法では、測定装置が高価であることなどから、安価に電極材料の塗布量を測定することができなかった。
Therefore, the application amount of the electrode material applied to the electrode plate is measured. As a method for measuring the coating amount, for example, an image is taken over the entire length of the electrode plate with a CCD sensor, the film thickness of the battery material on the electrode plate is measured based on the imaging data, and the coating amount is feedback controlled. (See Patent Document 1). In addition, there is also a technique in which the amount of transmission is measured by irradiating a coating with radiation such as β-rays or X-rays, and the amount of electrode material applied per unit area is measured based on the measured amount of transmission (see Patent Document 2).
However, such a measuring method cannot measure the coating amount of the electrode material at a low cost because the measuring device is expensive.

そこで、安価に電極材料の塗布量を測定するために、電極材料が塗布された電極板をサンプリングして(切り抜き)、そのサンプルの塗布量を実重量測定により測定することが行われている。このような測定方法では、例えば、図10に示すように、塗工膜(電極材料)が塗布された帯状の電極板から一部を切り取って(図10(a)参照)、サンプルを取得し(図10(b)参照)、そのサンプルの重量を測定する。その後、サンプルの塗工膜を削り取って(図10(c)参照)、再度重量を測定する。そして、測定した重量の差から塗布量を算出している。   Therefore, in order to measure the application amount of the electrode material at a low cost, the electrode plate coated with the electrode material is sampled (cut out), and the application amount of the sample is measured by actual weight measurement. In such a measurement method, for example, as shown in FIG. 10, a part is cut out from a belt-like electrode plate coated with a coating film (electrode material) (see FIG. 10A) to obtain a sample. (See FIG. 10B), and the weight of the sample is measured. Thereafter, the sample coating film is scraped off (see FIG. 10C), and the weight is measured again. Then, the coating amount is calculated from the measured weight difference.

特開2007−066821号公報JP 2007-066821 A 特開平9−161792号公報Japanese Patent Laid-Open No. 9-161792

しかしながら、従来の実重量測定による塗布量測定方法では、電極部材の除去作業に多大な時間がかかるため、測定時間が非常に長いという問題があった。このように除去作業に多大な時間がかかるのは、電極は、10〜15μm程度の非常に薄い電極板(基材)上に50μm程度の塗工膜が形成されたものであるため、破損しないように樹脂製のブレードを用いて電極板から塗工膜(電極材料)を荒除去をした後、スポンジ状部材によって拭き取るという特殊な除去作業を行う必要があるからである。   However, the conventional method for measuring the coating amount by actual weight measurement has a problem in that the measurement time is very long because it takes a long time to remove the electrode member. Thus, the removal work takes a lot of time because the electrode is formed by forming a coating film of about 50 μm on a very thin electrode plate (base material) of about 10 to 15 μm, so that it does not break. This is because, after the coating film (electrode material) is roughly removed from the electrode plate using a resin blade, it is necessary to perform a special removal operation of wiping with a sponge-like member.

また、電極板の表面には微少な凹凸があるため、塗工膜を電極板から完全に除去することが難しく、測定誤差が生じてしまうので塗布量を精度良く測定することができなかった。
さらに、切り出したサンプル(図10(b)参照)の重量をその面積で割ることにより、単位面積当たりの重量を算出しているため、塗布量のばらつきまで把握することはできなかった。
Moreover, since the surface of the electrode plate has minute irregularities, it is difficult to completely remove the coating film from the electrode plate, and a measurement error occurs, so that the coating amount cannot be measured with high accuracy.
Furthermore, since the weight per unit area was calculated by dividing the weight of the cut sample (see FIG. 10B) by the area, it was impossible to grasp the variation in the coating amount.

そこで、本発明は上記した問題点を解決するためになされたものであり、基材の表面に塗布された電極材料の塗布量を、安価で簡易にかつ短時間で精度良く測定することができる方法を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and the amount of the electrode material applied to the surface of the base material can be measured inexpensively, easily and accurately in a short time. It aims to provide a method.

上記課題を解決するためになされた本発明の一態様は、電極材料が塗布された塗工部と、前記塗工部の両側に位置し電極材料が塗布されていない未塗工部が、帯状の基材の幅方向に形成された電極板における電極材料の塗布量を測定する測定方法において、前記塗工部と前記未塗工部とが形成された電極板を、基材搬送方向の同一位置で幅方向にて、前記塗工部と前記未塗工部とそれぞれ打ち抜く打ち抜き工程と、前記打ち抜き工程にて前記塗工部及び前記未塗工部でそれぞれ打ち抜いた部分についてそれぞれ重量を測定して単位面積当たりの重量をそれぞれについて算出する重量算出工程と、前記重量算出工程で算出された単位面積当たりの重量の差に基づき電極材料の塗布量を求める塗布量算出工程と、を含むことを特徴とする。 One aspect of the present invention made in order to solve the above problems is that a coated part to which an electrode material is applied and an uncoated part that is located on both sides of the coated part and to which no electrode material is applied are in a band shape. In the measuring method for measuring the coating amount of the electrode material on the electrode plate formed in the width direction of the substrate, the electrode plate on which the coated part and the uncoated part are formed is the same in the substrate transport direction. at transverse direction at the position, the measuring coated portion and said punching step of punching out the respective between uncoated portion, respectively the weight on the coated portion and a portion in which the punched out respectively in the uncoated portions at the punching step A weight calculation step for calculating the weight per unit area, and a coating amount calculation step for obtaining the coating amount of the electrode material based on the difference in weight per unit area calculated in the weight calculation step. It is characterized by.

この塗布量測定方法では、打ち抜き工程にて、基材搬送方向の同一位置で幅方向において、電極板の塗工部と未塗工部とをそれぞれ打ち抜く。これにより、塗工部と未塗工部についてそれぞれサンプルを取得する。次に、重量算出工程にて、打ち抜き工程で取得した塗工部と未塗工部とのサンプルについてそれぞれ重量を測定する。そして、塗工部と未塗工部とのサンプルについてそれぞれ単位面積当たりの重量を算出する。その後、塗布量算出工程にて、重量算出工程で算出した塗工部と未塗工部との単位面積当たりの重量差に基づき電極材料の塗布量を求める。すなわち、打ち抜いた塗工部の単位面積当たりの重量から打ち抜いた未塗工部の単位面積当たりの重量を差し引いて、電極材料の塗布量を算出する。   In this coating amount measuring method, in the punching process, the coated portion and the uncoated portion of the electrode plate are punched in the width direction at the same position in the substrate transport direction. Thereby, a sample is acquired about a coated part and an uncoated part, respectively. Next, in the weight calculation process, the weights of the coated part and uncoated part samples obtained in the punching process are measured. And the weight per unit area is calculated about the sample of a coating part and an uncoated part, respectively. Thereafter, in the coating amount calculation step, the coating amount of the electrode material is obtained based on the weight difference per unit area between the coated portion and the uncoated portion calculated in the weight calculation step. That is, the coating amount of the electrode material is calculated by subtracting the weight per unit area of the uncoated part that has been punched from the weight per unit area of the stamped coated part.

このようにして電極材料の塗布量を測定するため、電極板の塗工部と未塗工部の重量を正確に求めることができるので、電極材料の塗布量を精度良く測定することができる。また、電極部材の除去作業が不要となるため、測定時間を非常に短くすることができる。さらに、測定装置が高価になることもないため、安価に電極材料の塗布量を測定することができる。
従って、この塗布量測定方法によれば、安価で簡易にかつ短時間で、電極材料の塗布量を精度良く測定することができる。
Since the coating amount of the electrode material is measured in this way, the weights of the coated portion and the uncoated portion of the electrode plate can be accurately obtained, so that the coating amount of the electrode material can be accurately measured. Moreover, since the removal operation of an electrode member becomes unnecessary, measurement time can be shortened very much. Furthermore, since the measuring device does not become expensive, it is possible to measure the coating amount of the electrode material at a low cost.
Therefore, according to this coating amount measuring method, the coating amount of the electrode material can be accurately measured with a low cost and in a short time.

上記した塗布量測定方法において、前記打ち抜き工程では、前記塗工部を2箇所以上で打ち抜くことが望ましい。   In the coating amount measuring method described above, in the punching step, it is desirable to punch the coating part at two or more locations.

このようにすることにより、安価で簡易にかつ短時間で、電極材料の塗布量を精度良く測定することができるとともに、電極板の幅方向における塗布量のばらつきも把握することができる。   By doing so, it is possible to measure the application amount of the electrode material with high accuracy at a low cost, in a short time, and to grasp variations in the application amount in the width direction of the electrode plate.

上記した塗布量測定方法において、前記打ち抜き工程では、角部に丸みを持たせて前記塗工部を打ち抜くことが望ましい。   In the coating amount measuring method described above, in the punching step, it is desirable to punch the coating portion with rounded corners.

このようにすることにより、電極板の塗工部を打ち抜く際に、電極板からの電極材料の剥がれを抑制することができる。従って、塗工部の重量をより正確に測定することができる。これにより、電極材料の塗布量を一層精度良く測定することができる。   By doing in this way, when punching out the coating part of an electrode plate, peeling of the electrode material from an electrode plate can be suppressed. Therefore, the weight of the coated part can be measured more accurately. Thereby, the application amount of the electrode material can be measured with higher accuracy.

この場合には、前記角部のR面取りの大きさが、R5(mm)以上となるように打ち抜けば良い。 In this case, the corner portion may be punched so that the R chamfer size of the corner portion is equal to or greater than R5 (mm) .

このようにすることにより、電極板からの電極材料の剥がれを確実に抑制することができる。従って、塗工部の重量をより一層正確に測定することができる。これにより、電極材料の塗布量をより一層精度良く測定することができる。   By doing in this way, peeling of the electrode material from an electrode plate can be suppressed reliably. Therefore, the weight of the coated part can be measured more accurately. Thereby, the application amount of the electrode material can be measured with higher accuracy.

本発明に係る電極材料の塗布量測定方法によれば、上記した通り、安価で簡易にかつ短時間で、電極材料の塗布量を精度良く測定することができる。   According to the electrode material application amount measuring method of the present invention, as described above, the electrode material application amount can be accurately measured in a short time, at a low cost.

電極板の概略構成を示す平面図である。It is a top view which shows schematic structure of an electrode plate. 電極板の幅方向の断面を示す断面図である。It is sectional drawing which shows the cross section of the width direction of an electrode plate. 打ち抜く箇所及び形状を模式的に示す図である。It is a figure which shows typically the location and shape which are pierce | punched. 塗布量を測定するために必要な測定時間の比較結果を示す図である。It is a figure which shows the comparison result of the measurement time required in order to measure a coating amount. 塗布量の測定ばらつきの比較結果を示す図である。It is a figure which shows the comparison result of the measurement dispersion | variation in application amount. 塗工部を打ち抜いた塗工部サンプルの角部を拡大した図である。It is the figure which expanded the corner | angular part of the coating part sample which punched the coating part. 塗工部サンプルの角部における形状(Rの大きさ)による塗布量の測定ばらつきの結果を示す図である。It is a figure which shows the result of the measurement dispersion | variation in the coating amount by the shape (size of R) in the corner | angular part of a coating part sample. 塗工部を複数箇所で打ち抜く場合の一例を示す図である。It is a figure which shows an example in the case of punching a coating part in multiple places. 図8に示す各位置で打ち抜いた各塗工部サンプルの塗布量を示す図である。It is a figure which shows the application quantity of each coating part sample punched in each position shown in FIG. 従来の塗布量測定方法の手順を示す図である。It is a figure which shows the procedure of the conventional coating amount measuring method.

以下、本発明の電極材料の塗布量測定方法を具体化した実施の形態について、図面に基づき詳細に説明する。ここでは、電動車両に搭載するリチウムイオン二次電池の電極となる電極板の製造工程にて、基材に塗布された塗工材(塗工膜)の塗布量を測定する場合について例示する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying a method for measuring an application amount of an electrode material according to the present invention will be described below in detail with reference to the drawings. Here, the case where the application amount of the coating material (coating film) applied to the base material is measured in the manufacturing process of the electrode plate that becomes the electrode of the lithium ion secondary battery mounted on the electric vehicle is illustrated.

そこで、まず、塗布量を測定する電極板について、図1及び図2を参照しながら簡単に説明する。図1は、電極板の概略構成を示す平面図である。図2は、電極板の幅方向の断面を示す断面図である。
図1及び図2に示すように、電極板10は、帯状の基材20の両面に塗工膜21が形成されたものである。塗工膜21は、基材20に塗工材(電極材料)を塗布した後に乾燥させることにより、基材20に結着されている。なお、塗工材は、活物質、導電補助材、バインダ、及び溶媒等が混練された導電性ペーストである。この塗工膜21は、基材20の幅方向(図1では上下方向)の中心付近に塗工されており、この部分が塗工部22となっている。一方、基材20の幅方向の両端部に、塗工膜21が塗工されていない未塗工部23が形成されている。
Therefore, first, an electrode plate for measuring the coating amount will be briefly described with reference to FIGS. FIG. 1 is a plan view showing a schematic configuration of an electrode plate. FIG. 2 is a cross-sectional view showing a cross section of the electrode plate in the width direction.
As shown in FIGS. 1 and 2, the electrode plate 10 has a coating film 21 formed on both surfaces of a belt-like substrate 20. The coating film 21 is bonded to the base material 20 by applying a coating material (electrode material) to the base material 20 and then drying it. The coating material is a conductive paste in which an active material, a conductive auxiliary material, a binder, a solvent, and the like are kneaded. The coating film 21 is applied in the vicinity of the center of the base material 20 in the width direction (vertical direction in FIG. 1), and this portion serves as a coating portion 22. On the other hand, uncoated portions 23 to which the coating film 21 is not applied are formed at both ends in the width direction of the substrate 20.

そして、図2中左側の塗工膜21の塗工幅は、図2中右側の塗工膜21の塗工幅と同じである。また、図2中左側の塗工膜21の幅方向の位置は、図2中右側の塗工膜21の幅方向の位置と同じである。すなわち、図2中左側の塗工膜21は、図2中右側の塗工膜21の真裏の位置にある。本実施形態において、基材20の厚さは、10μm程度であり、塗工膜21の厚さは、乾燥前で40μm程度、乾燥後で30μm程度である。   The coating width of the left coating film 21 in FIG. 2 is the same as the coating width of the right coating film 21 in FIG. Further, the position in the width direction of the coating film 21 on the left side in FIG. 2 is the same as the position in the width direction of the coating film 21 on the right side in FIG. That is, the coating film 21 on the left side in FIG. 2 is in a position directly behind the coating film 21 on the right side in FIG. In this embodiment, the thickness of the base material 20 is about 10 μm, and the thickness of the coating film 21 is about 40 μm before drying and about 30 μm after drying.

電極板10には、正極及び負極の2種類がある。リチウムイオン二次電池の正極板には、基材20としてアルミ箔等を用いることができる。また、正極の塗工膜21を形成する塗工材に含まれる活物質としては、充電時にリチウムイオンを吸蔵し、放電時にリチウムイオンを放出するものであれば良く、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウム遷移金属複合酸化物が挙げられる。   There are two types of electrode plates 10, a positive electrode and a negative electrode. An aluminum foil or the like can be used as the base material 20 for the positive electrode plate of the lithium ion secondary battery. The active material contained in the coating material for forming the coating film 21 of the positive electrode may be any material that occludes lithium ions during charging and releases lithium ions during discharging. For example, lithium cobaltate, nickel Examples thereof include lithium transition metal composite oxides such as lithium oxide and lithium manganate.

一方、リチウムイオン二次電池の負極板には、基材20として銅箔等を用いることができる。また、負極の塗工膜21を形成する塗工材に含まれる活物質としては、放電時にリチウムイオンを吸蔵し、充電時にリチウムイオンを放出するものであれば良く、例えば、天然黒鉛、人造黒鉛等の炭素や、ソフトカーボン、ハードカーボン等の非晶質のアモルファス系炭素が挙げられる。   On the other hand, a copper foil or the like can be used as the base material 20 for the negative electrode plate of the lithium ion secondary battery. The active material contained in the coating material forming the negative electrode coating film 21 may be any material that occludes lithium ions during discharge and releases lithium ions during charging. For example, natural graphite, artificial graphite And amorphous amorphous carbon such as soft carbon and hard carbon.

ここで、正極板と負極板とでは、前述したように材料は異なるが、基材20及び塗工膜21の幅や厚み等に大差はない。さらに正極板も負極板も、図2に示したように、基材20の両面に塗工膜21を塗工したものであることに変わりない。このため、本実施の形態に係る塗布量測定方法は、リチウムイオン二次電池の正極板又は負極板のいずれにも適用することができる。よって、以下では、特に正極と負極とを区別しないで電極板10として説明する。   Here, although the material is different between the positive electrode plate and the negative electrode plate as described above, there is no great difference in the width and thickness of the base material 20 and the coating film 21. Further, as shown in FIG. 2, both the positive electrode plate and the negative electrode plate are formed by coating the coating film 21 on both surfaces of the substrate 20. For this reason, the coating amount measuring method according to the present embodiment can be applied to either the positive electrode plate or the negative electrode plate of the lithium ion secondary battery. Therefore, below, it demonstrates as the electrode plate 10, without distinguishing especially a positive electrode and a negative electrode.

次に、上記した電極板に塗布された塗工材(塗工膜)の塗布量を測定する方法について、図3を参照しながら説明する。図3は、打ち抜く箇所及び形状を模式的に示す図である。
本実施の形態に係る塗布量測定方法では、オフラインでサンプルを取得して塗工膜21の塗布量を測定する。具体的には、打ち抜き工程、重量算出工程、及び塗布量算出工程を、この順に実施して、基材20に塗布された塗工材(塗布膜21)の塗布量を測定する。そこで、以下、各工程について説明する。
Next, a method for measuring the coating amount of the coating material (coating film) applied to the above electrode plate will be described with reference to FIG. FIG. 3 is a diagram schematically showing a location and shape to be punched.
In the coating amount measurement method according to the present embodiment, a sample is obtained offline and the coating amount of the coating film 21 is measured. Specifically, the punching step, the weight calculation step, and the coating amount calculation step are performed in this order, and the coating amount of the coating material (coating film 21) applied to the substrate 20 is measured. Therefore, each step will be described below.

まず、打ち抜き工程では、上記した電極板10を、図3に示すように、打ち抜き機にて打ち抜く。具体的には、基材搬送方向(図3では左右方向)の同一位置で電極板の幅方向(図3では上下方向)にて、塗工部22と未塗工部23とにおいて、それぞれ矩形状に電極板10を打ち抜く。これにより、電極板10から塗工部サンプル22aと未塗工部サンプル23aとが切り出される。   First, in the punching process, the electrode plate 10 is punched with a punching machine as shown in FIG. Specifically, each of the coated part 22 and the uncoated part 23 is rectangular in the width direction (up and down direction in FIG. 3) of the electrode plate at the same position in the substrate transport direction (left and right direction in FIG. 3). The electrode plate 10 is punched into a shape. Thereby, the coated part sample 22a and the uncoated part sample 23a are cut out from the electrode plate 10.

続いて、重量算出工程では、打ち抜き工程で取得した塗工部サンプル22aと未塗工部サンプル23aについてそれぞれ単位面積当たりの重量を算出する。すなわち、まず、塗工部サンプル22aと未塗工部サンプル23aとの重量を測定する。そして、塗工部サンプル22a及び未塗工部サンプル23aの各面積が既知(算出可能)であるから、測定した各重量と各面積とから、塗工部サンプル22aの単位面積当たりの重量A(g/mm2 )及び未塗工部サンプル23aの単位面積当たりの重量B(g/mm2 )をそれぞれ算出する。 Subsequently, in the weight calculation process, the weight per unit area is calculated for each of the coated part sample 22a and the uncoated part sample 23a acquired in the punching process. That is, first, the weights of the coated part sample 22a and the uncoated part sample 23a are measured. And since each area of the coating part sample 22a and the uncoated part sample 23a is known (calculatable), from the measured weight and each area, the weight A per unit area of the coating part sample 22a ( g / mm 2 ) and the weight B (g / mm 2 ) per unit area of the uncoated part sample 23a are calculated.

そして、塗布量算出工程では、重量算出工程で算出した塗工部サンプル22aと未塗工部サンプル23aとの重量差に基づき、塗工膜21の塗布量を求める。つまり、塗工部サンプル22aの重量に含まれる基材20の重さを、未塗工部サンプル23aの重量とみなして、塗工膜21の塗布量C(g/mm2 )を、C=A−Bにより求める。 In the coating amount calculation step, the coating amount of the coating film 21 is obtained based on the weight difference between the coated portion sample 22a and the uncoated portion sample 23a calculated in the weight calculating step. That is, the weight of the base material 20 included in the weight of the coated part sample 22a is regarded as the weight of the uncoated part sample 23a, and the coating amount C (g / mm 2 ) of the coated film 21 is expressed as C = Obtained by AB.

このように、本実施の形態に係る塗布量測定方法では、塗工膜21の除去作業が不要であるため、測定時間を非常に短くすることができる。また、センサや放射線を使用しないので測定装置が高価になることがないため、安価に塗工膜21の塗布量を測定することができる。そして、塗工部サンプル22aと未塗工部サンプル23aの各重量A,Bを正確に求めることができるため、塗工膜21の塗布量Cを精度良く測定することができる。   Thus, in the coating amount measuring method according to the present embodiment, the removal work of the coating film 21 is unnecessary, and therefore the measurement time can be shortened very much. In addition, since no sensor or radiation is used, the measuring device does not become expensive, so that the coating amount of the coating film 21 can be measured at a low cost. And since each weight A and B of the coating part sample 22a and the uncoated part sample 23a can be calculated | required correctly, the coating amount C of the coating film 21 can be measured with a sufficient precision.

ここで、従来の実重量測定による塗布量測定方法と、本実施の形態に係る塗布量測定方法とによって塗工膜21の塗布量を測定したので、その比較結果を図4及び図5に示す。図4は、塗工膜の塗布量を測定するために必要な測定時間の比較結果を示す図である。図5は、塗工膜の塗布量の測定ばらつきの比較結果を示す図である。なお、図4及び図5には、従来の実重量測定での塗布量測定方法による測定結果を「100」とした比較結果を示している。   Here, since the coating amount of the coating film 21 was measured by the conventional coating amount measuring method by actual weight measurement and the coating amount measuring method according to the present embodiment, the comparison results are shown in FIGS. 4 and 5. . FIG. 4 is a diagram showing a comparison result of measurement time necessary for measuring the coating amount of the coating film. FIG. 5 is a diagram showing a comparison result of measurement variations of the coating amount of the coating film. 4 and 5 show the comparison results with the measurement result by the coating amount measurement method in the conventional actual weight measurement as “100”.

図4から明らかなように、本実施の形態に係る塗布量測定方法によれば、測定時間が大幅に短縮されていることが判る。より詳細には、本実施の形態に係る塗布量測定方法によれば、従来方法に比べて測定時間をおよそ90%短縮することができる。
また、図5から明らかなように、本実施の形態に係る塗布量測定方法によれば、測定精度が向上していることが判る。より詳細には、本実施の形態に係る塗布量測定方法によれば、従来方法に比べて測定ばらつき(3σ:σは標準偏差)を10%低減する、つまり測定精度を10%向上させることができる。
As is apparent from FIG. 4, according to the coating amount measuring method according to the present embodiment, it can be seen that the measuring time is greatly shortened. More specifically, according to the coating amount measurement method according to the present embodiment, the measurement time can be shortened by about 90% compared to the conventional method.
Further, as apparent from FIG. 5, it can be seen that the measurement accuracy is improved by the coating amount measuring method according to the present embodiment. More specifically, according to the coating amount measurement method according to the present embodiment, the measurement variation (3σ: σ is a standard deviation) can be reduced by 10% compared to the conventional method, that is, the measurement accuracy can be improved by 10%. it can.

このように本実施の形態に係る塗布量測定方法では、塗工部サンプル22aと未塗工部サンプル23aとの重量差に基づき、基材20に塗布された塗工膜21の塗布量を測定するので、塗工膜21の除去作業が不要となり、測定時間を非常に短くすることができるとともに、測定精度を向上させることができる。   Thus, in the coating amount measuring method according to the present embodiment, the coating amount of the coating film 21 applied to the substrate 20 is measured based on the weight difference between the coated portion sample 22a and the uncoated portion sample 23a. Therefore, the removal work of the coating film 21 is not necessary, the measurement time can be shortened and the measurement accuracy can be improved.

ここで、上記した塗布量測定方法の変形例について、図6〜図9を参照しながら説明する。図6は、塗工部を打ち抜いた塗工部サンプルの角部を拡大した図である。図7は、塗工部サンプルの角部における形状(Rの大きさ)による塗布量の測定ばらつきの結果を示す図である。図8は、塗工部を複数箇所で打ち抜く場合の一例を示す図である。図9は、図8に示す各位置で打ち抜いた各塗工部サンプルの塗布量を示す図である。なお、図9には、上記した実施の形態での塗布量測定方法による測定結果を「100」とした比較結果を示している。   Here, a modified example of the coating amount measuring method described above will be described with reference to FIGS. FIG. 6 is an enlarged view of a corner portion of a coating portion sample obtained by punching the coating portion. FIG. 7 is a diagram showing the results of measurement variation in the coating amount due to the shape (R size) at the corners of the coated part sample. FIG. 8 is a diagram illustrating an example of punching a coating portion at a plurality of locations. FIG. 9 is a diagram showing the coating amount of each coating part sample punched out at each position shown in FIG. FIG. 9 shows a comparison result in which the measurement result by the coating amount measurement method in the above embodiment is “100”.

まず、第1の変形例について、図6及び図7を参照しながら説明する。第1の変形例では、塗工部サンプルを取得する際に、角部に丸みを持たせる。具体的には、図6に示すように、塗工部サンプル22aの角部22cについて、R面取りを行って丸みを持たせている。なお、図6には、塗工部サンプル22aにおける1つの角部だけを示しているが、第1の変形例では、塗工部サンプル22aの四隅すべてについて同じ大きさ(形状)の丸みを持たせている。   First, a first modification will be described with reference to FIGS. In the first modification, the corner portion is rounded when the coated portion sample is acquired. Specifically, as shown in FIG. 6, the corner portion 22c of the coating portion sample 22a is rounded by rounding off the chamfer. FIG. 6 shows only one corner in the coated part sample 22a. However, in the first modification, all four corners of the coated part sample 22a have the same size (shape). It is

これにより、第1の変形例では、電極板10の塗工部22を打ち抜いて塗工部サンプル22aを取得する際に、基材20からの塗工膜21の剥がれを抑制することができる。その結果、塗工部サンプル22aの重量をより正確に測定することができる。従って、塗工膜21の塗布量を一層精度良く測定することができる。   Thereby, in the 1st modification, when punching out the coating part 22 of the electrode plate 10 and acquiring the coating part sample 22a, peeling of the coating film 21 from the base material 20 can be suppressed. As a result, the weight of the coated part sample 22a can be measured more accurately. Therefore, the coating amount of the coating film 21 can be measured with higher accuracy.

そして、角部のR面取りの大きさ(半径)は、R5(mm)以上とすると良い。なぜなら、図7に示すように、R面取りの大きさがR5(mm)未満であると、測定ばらつきがほとんど変化しない一方、R面取りの大きさがR5(mm)以上であると、測定ばらつきを小さくすることができるからである。具体的には、R面取りの大きさをR5(mm)以上にすることにより、測定精度を35%程度向上させることができる。
なお、R面取りの大きさの上限は、塗工部サンプル22aの形状が円形になるときの半径となる。
The size (radius) of the R chamfer at the corner is preferably R5 (mm) or more. This is because, as shown in FIG. 7, when the size of the R chamfer is less than R5 (mm) , the measurement variation hardly changes, whereas when the size of the R chamfer is R5 (mm) or more, the measurement variation is This is because it can be made smaller. Specifically, the measurement accuracy can be improved by about 35% by setting the size of the R chamfer to R5 (mm) or more.
In addition, the upper limit of the magnitude | size of R chamfering becomes a radius when the shape of the coating part sample 22a becomes circular.

このように第1の変形例において、角部のR面取りの大きさをR5以上とすることにより、基材20からの塗工膜21の剥がれを確実に抑制することができる。従って、塗工部サンプル22aの重量をより一層正確に測定することができる。これにより、塗工膜21の塗布量をより一層精度良く測定することができる。   As described above, in the first modified example, when the R chamfer size of the corner is set to R5 or more, peeling of the coating film 21 from the substrate 20 can be reliably suppressed. Therefore, the weight of the coated part sample 22a can be measured more accurately. Thereby, the application amount of the coating film 21 can be measured with higher accuracy.

なお、塗工部サンプル22aの角部の少なくとも1つについて丸みを持たせれば、塗布量の測定精度を向上させることができるが、すべての角部について丸みを持たせる方が好ましい。こうすることにより、測定精度の向上率がより大きくなるからである。   Note that if at least one corner of the coated part sample 22a is rounded, the measurement accuracy of the coating amount can be improved, but it is preferable to round all corners. This is because the improvement rate of the measurement accuracy is further increased.

次に、第2の変形例について、図8及び図9を参照しながら説明する。第2の変形例では、塗工部サンプルを複数取得する。具体的には、図8に示すように、塗工部22の幅方向に複数箇所(ここでは6箇所)において同一形状(ここでは矩形状)の塗工部サンプル22aを取得する。   Next, a second modification will be described with reference to FIGS. In the second modification, a plurality of coating part samples are acquired. Specifically, as shown in FIG. 8, a coating part sample 22 a having the same shape (here, rectangular shape) is obtained at a plurality of places (here, six places) in the width direction of the coating part 22.

これにより、図9に示すように、塗工膜21の幅方向の各箇所において、塗工膜21の単位面積当たりの重量を正確に算出することができる。その結果、電極板10の幅方向における塗工膜21の塗布量のばらつきを把握することができる。例えば、図9に示す例では、図8に示す位置(1)から位置(6)に向かって膜厚が厚くなるような分布となっていることが判る。
また、第2の変形例でも、上記したように、安価で簡易にかつ短時間で、塗工膜21の塗布量を精度良く測定することができる。
Accordingly, as shown in FIG. 9, the weight per unit area of the coating film 21 can be accurately calculated at each position in the width direction of the coating film 21. As a result, it is possible to grasp the variation in the coating amount of the coating film 21 in the width direction of the electrode plate 10. For example, in the example shown in FIG. 9, it can be seen that the distribution is such that the film thickness increases from position (1) to position (6) shown in FIG.
Also in the second modified example, as described above, the coating amount of the coating film 21 can be measured with high accuracy at a low cost and in a short time.

なお、第2の変形例において、第1の変形例のように、各塗工部サンプル22aの角部に丸みを持たせるようにしても良い。これにより、塗工膜21の膜厚ばらつき及び塗布量をより一層精度良く測定することができる。   In the second modification, the corners of each coated part sample 22a may be rounded as in the first modification. Thereby, the film thickness variation and the coating amount of the coating film 21 can be measured with higher accuracy.

以上、詳細に説明したように本実施の形態に係る塗布量測定方法によれば、電極板10の塗工部22と未塗工部23とをそれぞれ打ち抜き、塗工部サンプル22aと未塗工部サンプル23aとを取得して、塗工部サンプル22aと未塗工部サンプル23aとの重量差に基づき、基材20に塗布された塗工膜21の塗布量を測定する。従って、塗工膜21の除去作業が不要となり、測定時間を非常に短くすることができるとともに、測定精度を向上させることができる。   As described above in detail, according to the coating amount measuring method according to the present embodiment, the coated portion 22 and the uncoated portion 23 of the electrode plate 10 are respectively punched, and the coated portion sample 22a and the uncoated portion are coated. The part sample 23a is obtained, and the coating amount of the coating film 21 applied to the substrate 20 is measured based on the weight difference between the coated part sample 22a and the uncoated part sample 23a. Therefore, the removal work of the coating film 21 becomes unnecessary, the measurement time can be shortened, and the measurement accuracy can be improved.

なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。例えば、上記した実施の形態では、打ち抜き形状が矩形状のものを例示したが、打ち抜き形状は特に制限はなく、面積が把握できる形状(例えば、四角以外の多角形形状や円形状など)であれば良い。   It should be noted that the above-described embodiment is merely an example and does not limit the present invention in any way, and various improvements and modifications can be made without departing from the scope of the invention. For example, in the above-described embodiment, the punching shape is exemplified as a rectangular shape, but the punching shape is not particularly limited and may be a shape whose area can be grasped (for example, a polygonal shape other than a square or a circular shape). It ’s fine.

10 電極板
20 基材
21 塗工膜
22 塗工部(塗工膜)
22a 塗工部サンプル
22c 角部
23 未塗工部
23a 未塗工部サンプル
DESCRIPTION OF SYMBOLS 10 Electrode board 20 Base material 21 Coating film 22 Coating part (coating film)
22a Coated part sample 22c Corner part 23 Uncoated part 23a Uncoated part sample

Claims (4)

電極材料が塗布された塗工部と、前記塗工部の両側に位置し電極材料が塗布されていない未塗工部が、帯状の基材の幅方向に形成された電極板における電極材料の塗布量を測定する測定方法において、
前記塗工部と前記未塗工部とが形成された電極板を、基材搬送方向の同一位置で幅方向にて、前記塗工部と前記未塗工部とそれぞれ打ち抜く打ち抜き工程と、
前記打ち抜き工程にて前記塗工部及び前記未塗工部でそれぞれ打ち抜いた部分についてそれぞれ重量を測定して単位面積当たりの重量をそれぞれについて算出する重量算出工程と、
前記重量算出工程で算出された単位面積当たりの重量の差に基づき電極材料の塗布量を求める塗布量算出工程と、
を含むことを特徴とする電極材料の塗布量測定方法。
The electrode material in the electrode plate in which the coated part to which the electrode material is applied and the uncoated part to which the electrode material is not applied and which is located on both sides of the coated part are formed in the width direction of the belt-like base material In the measuring method for measuring the coating amount,
The punching step of punching the electrode plate in which the coated part and the uncoated part are formed in the width direction at the same position in the substrate transport direction , respectively, in the coated part and the uncoated part,
A weight calculating step of measuring the weight of each of the portions punched in the coated portion and the uncoated portion in the punching step and calculating the weight per unit area, respectively;
A coating amount calculating step for obtaining a coating amount of the electrode material based on a difference in weight per unit area calculated in the weight calculating step;
A method for measuring an application amount of an electrode material, comprising:
請求項1に記載する電極材料の塗布量測定方法において、
前記打ち抜き工程では、前記塗工部を2箇所以上で打ち抜く
ことを特徴とする電極材料の塗布量測定方法。
In the electrode material application amount measuring method according to claim 1,
In the punching step, the coating amount measurement method of the electrode material, wherein the coating part is punched at two or more locations.
請求項1又は請求項2に記載する電極材料の塗布量測定方法において、
前記打ち抜き工程では、角部に丸みを持たせて前記塗工部を打ち抜く
ことを特徴とする電極材料の塗布量測定方法。
In the electrode material coating amount measuring method according to claim 1 or 2,
In the punching step, the coating amount measurement method for the electrode material is characterized by punching the coating portion with rounded corners.
請求項3に記載する電極材料の塗布量測定方法において、
前記角部のR面取りの大きさが、R5(mm)以上となるように打ち抜く
ことを特徴とする電極材料の塗布量測定方法。
In the electrode material application amount measuring method according to claim 3,
The electrode material coating amount measuring method, wherein the corner portion has a rounded chamfer of R5 (mm) or more.
JP2011279593A 2011-12-21 2011-12-21 Electrode material application amount measurement method Active JP5655773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279593A JP5655773B2 (en) 2011-12-21 2011-12-21 Electrode material application amount measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279593A JP5655773B2 (en) 2011-12-21 2011-12-21 Electrode material application amount measurement method

Publications (2)

Publication Number Publication Date
JP2013131369A JP2013131369A (en) 2013-07-04
JP5655773B2 true JP5655773B2 (en) 2015-01-21

Family

ID=48908770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279593A Active JP5655773B2 (en) 2011-12-21 2011-12-21 Electrode material application amount measurement method

Country Status (1)

Country Link
JP (1) JP5655773B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066520A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Coating equipment and coating method
CN114720324B (en) * 2022-06-01 2022-09-06 浙江双元科技股份有限公司 Method, device and system for detecting net coating amount of lithium battery pole piece

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575103B2 (en) * 2004-09-30 2010-11-04 大日本印刷株式会社 Electrode plate manufacturing method and manufacturing apparatus
JP5076301B2 (en) * 2005-10-07 2012-11-21 ソニー株式会社 Secondary battery
JP2009184090A (en) * 2008-02-08 2009-08-20 Toyota Motor Corp Thin film coating sheet test piece cut out method and thin film coating sheet manufacturing device
JP2009193906A (en) * 2008-02-18 2009-08-27 Panasonic Corp Coating wight measuring method of heat resistant layer of electrode plate for battery, manufacturing method and manufacturing device
JP2010033791A (en) * 2008-07-28 2010-02-12 Panasonic Corp Electrode plate for nonaqueous secondary battery, method and device for manufacturing the same, and nonaqueous secondary battery using electrode plate
JP5383471B2 (en) * 2009-12-22 2014-01-08 三菱重工業株式会社 Electrode manufacturing system

Also Published As

Publication number Publication date
JP2013131369A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
Li et al. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing
JP5383502B2 (en) Method for manufacturing battery electrode
DK2492994T3 (en) PROCEDURE FOR MANUFACTURING A LITHIUM SECONDARY BATTERY AND APPARATUS
JP6402308B2 (en) Method and apparatus for detecting displacement of electrode plate in electrode laminate
JP6183348B2 (en) Electrode body and method for producing electrode body
JP2023041827A (en) battery
JP5383471B2 (en) Electrode manufacturing system
KR20130024766A (en) Electrode and method of manufacturing the same
JP6705126B2 (en) Method for manufacturing electrode plate
JP2010086811A (en) Coating device, and coating method
JP6638692B2 (en) Stacked battery
JP5655773B2 (en) Electrode material application amount measurement method
JPWO2015147122A1 (en) All solid state secondary battery
JP2005190787A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method
JP2015060721A (en) Solid battery
Rutz et al. Designing a reference electrode–An approach to fabricate laser perforated reference electrodes for lithium-ion batteries
JP2016004743A (en) Electrode manufacturing device and electrode manufacturing method
JP2010277798A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
EP4002511A1 (en) Method for manufacturing electrode and electrode paste coating device
JP2016181469A (en) Method for manufacturing electrode sheet of power storage device, and inspection method
JP6895761B2 (en) Manufacturing method of all-solid-state battery
US20220069347A1 (en) Solid-state battery
JP2015222685A (en) Electrode for secondary battery
JP6954032B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
CN109841907B (en) Method for manufacturing wound electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151