JP5655759B2 - Energy beam irradiation device and workpiece transfer mechanism - Google Patents

Energy beam irradiation device and workpiece transfer mechanism Download PDF

Info

Publication number
JP5655759B2
JP5655759B2 JP2011228383A JP2011228383A JP5655759B2 JP 5655759 B2 JP5655759 B2 JP 5655759B2 JP 2011228383 A JP2011228383 A JP 2011228383A JP 2011228383 A JP2011228383 A JP 2011228383A JP 5655759 B2 JP5655759 B2 JP 5655759B2
Authority
JP
Japan
Prior art keywords
orbit
region
workpiece
irradiation
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011228383A
Other languages
Japanese (ja)
Other versions
JP2013089427A (en
Inventor
正敏 小野田
正敏 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Ion Equipment Co Ltd
Original Assignee
Nissin Ion Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Ion Equipment Co Ltd filed Critical Nissin Ion Equipment Co Ltd
Priority to JP2011228383A priority Critical patent/JP5655759B2/en
Priority to FR1257893A priority patent/FR2981497A1/en
Priority to SG2012069068A priority patent/SG189613A1/en
Priority to CN2012103949461A priority patent/CN103050359A/en
Publication of JP2013089427A publication Critical patent/JP2013089427A/en
Application granted granted Critical
Publication of JP5655759B2 publication Critical patent/JP5655759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67213Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67718Changing orientation of the substrate, e.g. from a horizontal position to a vertical position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/201Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated for mounting multiple objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation

Description

本発明は、イオン注入装置や電子線照射装置などのようにエネルギー線を照射するエネルギー線照射システム及びそれに用いられるワーク搬送機構に関するものである。   The present invention relates to an energy beam irradiation system that irradiates an energy beam such as an ion implantation device or an electron beam irradiation device, and a work transfer mechanism used therefor.

特許文献1に示す枚様式のイオン注入装置では、ウェハをそれぞれ別個に周回させる2つのウェハ駆動機構を設け、イオンビーム照射領域において2つの周回軌道を一致させるとともに、各ウェハの周回速度あるいは周回位相を制御することによって、前記イオンビーム照射領域を2つのウェハのいずれかが常に通過するように構成されている。このことによって、イオンビームのウェハに対する照射効率を上げることができる。   In the single-type ion implantation apparatus shown in Patent Document 1, two wafer drive mechanisms for individually circulating wafers are provided, the two circular trajectories are made to coincide in the ion beam irradiation region, and the peripheral speed or phase of each wafer is matched. By controlling this, one of the two wafers always passes through the ion beam irradiation region. As a result, the irradiation efficiency of the ion beam on the wafer can be increased.

ところでこの特許文献1において、各ウェハの周回軌道は、ビーム照射領域を含む直進軌道部分において一致し、その他の部分は前記直線軌道部分の両側に分かれて分離するように構成されている。   By the way, in this patent document 1, the circular orbit of each wafer is coincident with the straight orbit portion including the beam irradiation region, and the other portions are separated and separated on both sides of the linear orbit portion.

特開平10−134761号公報Japanese Patent Laid-Open No. 10-134761

しかしながら、このような構成であると、2つの周回軌道を確保するだけの空間が必要となり、一定以上には装置をコンパクト化できないという問題がある。そしてかかる問題点は、イオン注入装置のみならず、ワークにエネルギー線を照射するエネルギー線照射システム全般に共通することである。   However, such a configuration requires a space for securing two orbits, and there is a problem that the apparatus cannot be made compact beyond a certain level. Such a problem is common not only to an ion implantation apparatus but also to an energy beam irradiation system for irradiating a workpiece with an energy beam.

本発明はかかる問題を鑑みてなされたものであって、この種のエネルギー線照射システムにおいて、ワークに効率的にエネルギー線を照射できるようにしながらも、飛躍的なコンパクト化を可能とすべく図ったものである。   The present invention has been made in view of such a problem. In this type of energy beam irradiation system, the energy beam can be efficiently irradiated onto the workpiece, while at the same time achieving a drastic compactness. It is a thing.

すなわち本発明に係るエネルギー線照射システムは、エネルギー線を所定の照射領域に向かって射出するエネルギー線射出機構と、前記エネルギー線が照射される対象物である第1ワークを、前記照射領域を含む所定の第1周回軌道に沿って周回させる第1周回機構と、前記エネルギー線が照射される対象物である第2ワークを、前記照射領域を含む所定の第2周回軌道に沿って周回させる第2周回機構とを具備し、各周回軌道によって形成される仮想の周回面が互いに平行であるとともに、前記第1周回軌道と前記第2周回軌道は同一平面上にあり、前記平面上にある周回面と垂直な方向から視たときに、前記第1周回軌道で囲まれる領域と前記第2周回軌道で囲まれる領域との少なくとも一部が重なるように構成されていることを特徴とするものである。
なお、ここで「重なる」に、接することは含まれない。
That is, the energy beam irradiation system according to the present invention includes an energy beam injection mechanism that emits an energy beam toward a predetermined irradiation region, and a first workpiece that is an object irradiated with the energy beam, the irradiation region. A first turning mechanism for turning along a predetermined first orbit, and a second work that is an object to be irradiated with the energy beam is made to circulate along a predetermined second orbit including the irradiation region. A virtual circuit formed by each circular track is parallel to each other, and the first circular track and the second circular track are on the same plane, and the circular circuit is on the plane. When viewed from a direction perpendicular to the surface, at least a portion of the region surrounded by the first orbit and the region surrounded by the second orbit are configured to overlap. Is shall.
Here, “overlap” does not include touching.

具体的な実施態様としては、前記各周回軌道が、互いに平行な直線軌道とそれらの端部間を結ぶ半円軌道とからそれぞれ形成されており、前記各周回軌道における半円軌道の中心が、前記直線軌道方向から視て合致するように構成してあるものを挙げることができる。   As a specific embodiment, the respective circular orbits are respectively formed from mutually parallel linear orbits and semicircular orbits connecting the end portions thereof, and the centers of the semicircular orbits in the respective orbits are The thing comprised so that it may match | view by seeing from the said linear track direction can be mentioned.

このようなものであれば、双方の周回軌道を合致させることができるので、コンパクト化により寄与できる。また、双方の周回軌道が合致していない場合であっても、双方の周回軌道における半円軌道の旋回半径を近づけることができるので、コンパクト化により寄与できる。
コンパクト化に最も好ましい態様は、前記各周回軌道が互いに合致するように構成することである。
If it is such, since both circular orbits can be made to correspond, it can contribute by compactization. Further, even if both the circular orbits do not match, the turning radius of the semicircular orbits in both the circular orbits can be made closer, which can contribute to downsizing.
The most preferable aspect for downsizing is that the respective orbits are configured to coincide with each other.

2つの周回軌道を利用してエネルギー線の照射効率を高めるには、前記照射領域に進入した第1ワークが当該照射領域から完全に離れる前に、第2ワークが当該照射領域に進入するように構成してあるものが好ましい。   In order to increase the energy beam irradiation efficiency using two orbits, the second workpiece enters the irradiation region before the first workpiece that has entered the irradiation region completely leaves the irradiation region. What is comprised is preferable.

その場合、前記第1ワーク又は第2ワークを、周回移動方向に沿って複数並べることができるようにしておけば、第1又は第2いずれかの1ワークにエネルギー線を照射する時間が長くなり、他方のワークをその間に周回させて後ろの位置に移動させる時間に余裕ができるので、連続エネルギー線照射処理が容易になる。   In that case, if a plurality of the first workpieces or the second workpieces can be arranged along the circumferential movement direction, the time for irradiating the energy beam to one of the first or second workpieces becomes longer. Since the time for moving the other work around and moving it to the rear position can be afforded, the continuous energy ray irradiation process is facilitated.

前記ワークが周回軌道に沿って1周したときに、前記周回面と垂直な方向から視て、当該ワークが最初の自転角度に戻るように構成しておけば、配線の捻じれや捻じれによる断線の防止を図ることができる。   If the workpiece is configured to return to the initial rotation angle when viewed once from the direction perpendicular to the circumferential surface when the workpiece makes one round along the circular path, the wiring may be twisted or twisted. It is possible to prevent disconnection.

上記効果に加え、エネルギー線の照射領域の裏側を通過するときに、該エネルギー線の影響を受けにくくするには、前記周回面と垂直な方向から視て、前記ワークは、前記照射領域からその裏側領域に向かう間に180度自転し前記裏側領域においてそのエネルギー線照射面の裏面をエネルギー線照射方向に向けるとともに、前記裏側領域から前記照射領域に向かう間に−180度自転して最初の自転角度に戻るように構成してあるものが望ましい。   In addition to the above effect, when passing through the back side of the irradiation area of the energy beam, in order to make it less susceptible to the influence of the energy beam, when viewed from a direction perpendicular to the circumferential surface, While rotating toward the back side region, it rotates 180 degrees, and in the back side region, the back surface of the energy beam irradiation surface is directed in the energy beam irradiation direction, and from the back side region toward the irradiation region, it rotates at -180 degrees and the first rotation. What is configured to return to an angle is desirable.

このように構成した本発明によれば、2つの周回機構を設けてエネルギー線照射効率の向上を図りながらも、それら2つの周回機構による第1周回軌道の領域と第2周回軌道の領域とが少なくとも一部重なり合うことから、2つの周回軌道分の面積は必要なくなり、その重なり合った分だけ面積を削減できるのでコンパクトな構成を実現できる。   According to the present invention configured as described above, while providing two orbiting mechanisms to improve the energy beam irradiation efficiency, the area of the first orbit and the area of the second orbit by the two orbiting mechanisms can be reduced. Since it overlaps at least partially, the area for two orbits is no longer necessary, and the area can be reduced by the overlapped area, so that a compact configuration can be realized.

本発明の一実施形態におけるエネルギー線照射システムを示す概略斜視図。1 is a schematic perspective view showing an energy beam irradiation system in one embodiment of the present invention. 同実施形態の周回機構を示す正面図。The front view which shows the rotation mechanism of the embodiment. 同実施形態の周回軌道を示す平面図。The top view which shows the circumference track | orbit of the embodiment. 同実施形態のウェハの動きを示す模式的動作説明図。The typical operation explanatory view showing the motion of the wafer of the embodiment. 同実施形態のウェハの動きを示す模式的動作説明図。The typical operation explanatory view showing the motion of the wafer of the embodiment. 本発明の他の実施形態におけるウェハの動きを示す平面図。The top view which shows the motion of the wafer in other embodiment of this invention. 本発明のさらに他の実施形態における正面方向から視た周回機構及び平面方向から視た周回軌道を示す説明図。Explanatory drawing which shows the rotation mechanism seen from the front direction in the further another embodiment of this invention, and the circulation track | orbit seen from the plane direction. 本発明のさらに他の実施形態における正面方向から視た周回機構及び平面方向から視た周回軌道を示す説明図。Explanatory drawing which shows the rotation mechanism seen from the front direction in the further another embodiment of this invention, and the circulation track | orbit seen from the plane direction.

以下、本発明に係るエネルギー線照射システムにつき図面を参照して説明する。   Hereinafter, an energy beam irradiation system according to the present invention will be described with reference to the drawings.

このエネルギー線照射システム100は、図1に示すように、ワークたるウェハWにエネルギー線たるイオンビームIBを照射してイオンを注入するものであり、図示しない真空チャンバー内に設けたイオン注入室においてイオンビームIBを射出するイオンビーム射出機構(図示しない)と、イオンビームIBが照射可能な位置にウェハWを搬送するウェハ搬送機構10とを具備するものである。   As shown in FIG. 1, this energy beam irradiation system 100 irradiates a wafer W, which is a workpiece, with an ion beam IB, which is an energy beam, and implants ions. In an ion implantation chamber provided in a vacuum chamber (not shown). An ion beam ejection mechanism (not shown) that ejects the ion beam IB and a wafer transport mechanism 10 that transports the wafer W to a position where the ion beam IB can be irradiated are provided.

イオンビーム射出機構は、例えばリボン状のイオンビームIBを、イオン注入室内に設定した照射領域P(図4等に示す)に向かって射出する既知のものであるため、詳細についての説明は省略する。   The ion beam ejection mechanism is a known one that ejects, for example, a ribbon-shaped ion beam IB toward an irradiation region P (shown in FIG. 4 and the like) set in the ion implantation chamber, and thus detailed description thereof is omitted. .

ウェハ搬送機構10は、イオン注入室に隣接して設けた真空予備室(図示しない)とイオン注入室に設けた待機位置との間でウェハを移動させる内外移動機構(図示しない)、イオンビームIBの照射領域Pを途中で横切るようにウェハW1(W2)を周回させる周回機構1、2、及び前記内外移動機構と周回機構1、2との間でのウェハW1(W2)の受け渡しを行う受け渡し機構を具備したものである。   The wafer transfer mechanism 10 includes an internal / external movement mechanism (not shown) for moving the wafer between a vacuum preparatory chamber (not shown) provided adjacent to the ion implantation chamber and a standby position provided in the ion implantation chamber, and an ion beam IB. Circulates the wafers W1 (W2) so as to cross the irradiation region P in the middle, and the wafer W1 (W2) is transferred between the inside / outside moving mechanism and the circulators 1 and 2 It has a mechanism.

内外移動機構及び受け渡し機構に関しては、例えば特許4766156号公報に記載されているような既知のものであるので、ここでは、図示及び説明を省略し、本エネルギー線照射システム100の特徴構成たる周回機構1、2について、以下に詳述する。   Since the inside / outside movement mechanism and the delivery mechanism are known as described in, for example, Japanese Patent No. 4766156, the illustration and description are omitted here, and the orbiting mechanism which is a characteristic configuration of the energy beam irradiation system 100 1 and 2 will be described in detail below.

この実施形態において、前記周回機構は2つ設けられている。各周回機構1、2ともに、支柱11、21、この支柱11、21からラジアル方向に突出するアーム12、22と、前記アーム12、22を支柱11、21の軸線周りに旋回させる旋回手段13、23と、前記アーム12、22の先端部に取り付けられて支柱11、21の軸線と平行に延びる板状のウェハ支持部材14、24と、前記支柱11、21をアーム12、22及びウェハ支持部材14、24とともにその軸線とは垂直な方向に直進させる直進手段15、25とをそれぞれ具備する。   In this embodiment, two circulator mechanisms are provided. Each of the revolving mechanisms 1 and 2 includes the support pillars 11 and 21, arms 12 and 22 projecting in a radial direction from the support pillars 11 and 21, and turning means 13 for turning the arms 12 and 22 around the axis of the support pillars 11 and 21. 23, plate-like wafer support members 14 and 24 attached to the distal ends of the arms 12 and 22 and extending in parallel with the axes of the columns 11 and 21, and the columns 11 and 21 are connected to the arms 12 and 22 and the wafer support member. 14 and 24, and linearly moving means 15 and 25 for linearly moving in a direction perpendicular to the axis thereof, respectively.

まず第1周回機構1から、図1、図2を参照して詳述する。
この第1周回機構1における支柱11は、基台16から起立する円柱状のものである。
アーム12は、前記支柱11の先端部11bからラジアル方向に突出する板状のものである。
First, the first turning mechanism 1 will be described in detail with reference to FIGS.
The support column 11 in the first circulation mechanism 1 is a columnar one that stands up from the base 16.
The arm 12 has a plate-like shape that protrudes in the radial direction from the distal end portion 11 b of the support column 11.

旋回手段13は、例えばモータであり、その駆動軸(図示しない)が支柱11の基端部11aに接続してある。そしてこの支柱11をその軸線周りに回転させることでアーム12を旋回させ得るように構成してある。なお、支柱11を回さずにアーム12を直接旋回させるような構造でも構わない。   The turning means 13 is, for example, a motor, and a drive shaft (not shown) is connected to the base end portion 11 a of the column 11. The arm 12 can be turned by rotating the support column 11 about its axis. A structure in which the arm 12 is directly turned without turning the support 11 may be used.

ウェハ支持部材(以下、プラテンとも言う。)14は、その表面に複数のウェハW1を例えば静電吸着して支持する例えば概略長板状をなすものであり、その長手方向が支柱11の軸線と平行で、かつその面板部がアーム12の延伸方向と垂直になるように前記アーム12の先端から垂下させてある。なお、この実施形態では、図1等に示すように、このプラテン14をアーム12に枢支させることで、該プラテン14がアーム12に対して垂下している状態と平行となる状態との間で回転できるように構成してある。これは、前記受け渡し機構との間でウェハを授受するためであり、具体的には、前記受け渡し機構との間でウェハW1を授受するときにはプラテン14を平行状態とし、周回させるときにはプラテン14を垂下状態とする。   A wafer support member (hereinafter also referred to as a platen) 14 has, for example, a substantially long plate shape that supports, for example, electrostatic adsorption on and supports a plurality of wafers W1 on its surface. The arm plate 12 is suspended from the tip of the arm 12 so that it is parallel and the face plate portion is perpendicular to the extending direction of the arm 12. In this embodiment, as shown in FIG. 1 and the like, the platen 14 is pivotally supported by the arm 12 so that the platen 14 is suspended from the arm 12 and parallel to the arm 12. It can be rotated with. This is because the wafer is transferred to and from the transfer mechanism. Specifically, when the wafer W1 is transferred to and from the transfer mechanism, the platen 14 is set in a parallel state, and the platen 14 is suspended when it is rotated. State.

直進手段15は、ここでは例えば、支柱11の基端部11aを支える前記基台16を支柱11の軸線とは垂直な方向に貫通するネジ孔151と、このネジ孔151に螺合するネジ部材152と、このネジ部材152を回転させるモータ等のアクチュエータ153とからなり、このネジ部材152を正逆回転させることによって、基台16がネジ部材152の延伸方向に沿って直線的に進退するように構成したネジ送り方式のものである。なお、直進手段15として上述したネジ送り方式のみならず、ベルト方式など、種々の方式の機構を用いることができる。   Here, the rectilinear means 15 includes, for example, a screw hole 151 that passes through the base 16 that supports the base end portion 11a of the column 11 in a direction perpendicular to the axis of the column 11, and a screw member that is screwed into the screw hole 151. 152 and an actuator 153 such as a motor for rotating the screw member 152. By rotating the screw member 152 forward and backward, the base 16 linearly advances and retreats along the extending direction of the screw member 152. This is a screw feed method. Note that various types of mechanisms such as a belt method as well as the above-described screw feeding method can be used as the linearly moving means 15.

さらにこの第1周回機構1は、前記旋回手段13及び直進手段15を制御、より具体的には各手段13、15に設けられたモータ13、153を制御するための電気回路からなる制御部(図示しない)を有している。この制御部は、図3に示すように、前記軸線方向から視て、ウェハW1を一方向に直進、180度旋回、逆方向に直進、−180度旋回という4つの動作を繰り返させて周回移動させる。
すなわち、第1周回機構1による周回軌道(第1周回軌道)O1は、互いに平行で等しい長さの直線軌道L11、L12と、それら直線軌道L11、L12の端部間を接続する半円軌道C11、C12とからなる。
Further, the first circulation mechanism 1 controls the turning means 13 and the rectilinear means 15, and more specifically, a control unit comprising an electric circuit for controlling the motors 13 and 153 provided in the means 13 and 15 ( (Not shown). As shown in FIG. 3, this control unit moves around the wafer W <b> 1 by repeating the four operations of moving straight in one direction, turning 180 degrees, moving in the opposite direction, and turning −180 degrees as viewed from the axial direction. Let
In other words, the orbit (first orbit) O1 by the first orbiting mechanism 1 is a straight orbit L11 and L12 having parallel and equal lengths and a semicircular orbit C11 connecting between the ends of the straight orbits L11 and L12. , C12.

より具体的に説明すると、この制御部は、ウェハW1を直進させるときは、直進手段15を作動させるとともに、旋回手段13を制御してウェハの表面が周回軌道O1の外側を向くようにアーム12の角度を直進方向と垂直に固定する。なお、イオンビームIBは、一方の直進運動の途中でウェハW1の表面に垂直に照射される。すなわち、一方の直線軌道L11の途中にウェハW1の表面に対して垂直に進んでくるイオンビームIBの照射領域Pが設けてある。   More specifically, when the wafer W1 is moved straight, this control unit operates the straight movement means 15 and controls the turning means 13 so that the surface of the wafer faces the outside of the circular orbit O1. The angle of is fixed perpendicularly to the straight direction. The ion beam IB is irradiated perpendicularly to the surface of the wafer W1 in the course of one straight movement. That is, an irradiation region P of the ion beam IB that travels perpendicularly to the surface of the wafer W1 is provided in the middle of the one linear trajectory L11.

一方、この制御部は、ウェハW1を旋回させるときには、直進手段15を停止するとともに、旋回手段13を動作させてアーム12を正方向または逆方向に180度旋回させる。しかして、このように旋回動作時の旋回角度が一方では+180度、他方が−180度に設定してるのは、ウェハW1を1周回させたときにウェハW1がその周回に伴って自転しないようにするためである。すなわち、前記構成によって、ウェハW1を支持するウェハ支持部材14、アーム12及び支柱11の自転角度は、ウェハW1が1周回したときに元に戻るようにしてあり、ウェハW1を何度周回させても、これらウェハ支持部材14、アーム12及び支柱11に接続されている電気ケーブル等が自転によって捩れて断線するといった不具合を未然に防止するようにしてある。   On the other hand, when the wafer W1 is swung, the controller stops the straight advance means 15 and operates the swivel means 13 to turn the arm 12 180 degrees in the forward or reverse direction. Thus, the reason why the turning angle during the turning operation is set to +180 degrees on the one hand and to -180 degrees on the other hand is that when the wafer W1 is rotated one time, the wafer W1 does not rotate along with the rotation. It is to make it. That is, with the above-described configuration, the rotation angles of the wafer support member 14, the arm 12, and the support column 11 that support the wafer W1 are restored when the wafer W1 makes one turn, and the wafer W1 is turned many times. However, it is possible to prevent a problem that the electric cable or the like connected to the wafer support member 14, the arm 12, and the column 11 is twisted and disconnected due to rotation.

次に、第2周回機構2について図1、図2を参照して詳述する。
この第2周回機構2における支柱21は、吊り下げ構造体27によって吊り下げられたものであり、前記直進方向から視て、その先端面が前記第1周回機構1の支柱11の先端面と対向するように軸線を合致させて配置してある。前記吊り下げ構造体27は、基台26とこの基台26から起立する起立部材271と、起立部材271の先端から直角に延びる懸架体272とからなる概略L字型をなすもので、前記懸架体272の先端部から前記支柱21が後述する旋回手段23を介在させて垂下させてある。
アーム22は、前記支柱21の先端部からラジアル方向に突出する板状のものである。
Next, the second turning mechanism 2 will be described in detail with reference to FIGS.
The support column 21 in the second circulation mechanism 2 is suspended by a suspension structure 27, and its front end surface is opposed to the front end surface of the support column 11 of the first rotation mechanism 1 as viewed from the straight traveling direction. As shown, the axes are aligned. The suspension structure 27 has a substantially L shape including a base 26, a standing member 271 standing from the base 26, and a suspension body 272 extending perpendicularly from the tip of the standing member 271. The support column 21 is suspended from the distal end of the body 272 with a turning means 23 described later.
The arm 22 has a plate-like shape protruding in the radial direction from the tip end portion of the support column 21.

旋回手段23は、例えばモータであり、その駆動軸が支柱22の基端部21aに接続してある。そして、第1周回機構1と同様、前記支柱21をその軸線周りに回転させることでアーム22、ひいてはウェハ支持部材24を旋回させ得るように構成してある。なお、この実施形態では、ウェハ支持部材24の旋回半径を第1周回機構1と同一に設定してある。   The turning means 23 is, for example, a motor, and a drive shaft thereof is connected to the base end portion 21 a of the column 22. As in the first turning mechanism 1, the support 22 can be rotated around its axis so that the arm 22 and thus the wafer support member 24 can be turned. In this embodiment, the turning radius of the wafer support member 24 is set to be the same as that of the first rotation mechanism 1.

プラテン24は、第1周回機構1と同様、その表面に複数のウェハW2を例えば静電吸着して支持する例えば概略長板状をなすものであり、その長手方向が支柱21の軸線と平行で、かつその面板部がアーム22の延伸方向と垂直になるように前記アーム22の先端から回転可能に垂下させてある。なお、このプラテン24におけるウェハ支持領域24aは、第1周回機構1のプラテン14におけるウェハ支持領域14aと同一高さとなるように設定してある。   The platen 24 has, for example, a substantially long plate shape for supporting a plurality of wafers W2 on the surface thereof by, for example, electrostatic attraction, as in the first rotating mechanism 1, and the longitudinal direction thereof is parallel to the axis of the support column 21. In addition, the face plate portion is suspended from the tip of the arm 22 so as to be perpendicular to the extending direction of the arm 22. The wafer support area 24a in the platen 24 is set to have the same height as the wafer support area 14a in the platen 14 of the first circulation mechanism 1.

直進手段25は、支柱21を吊り下げ構造体27を介して支える基台26を貫通するネジ孔251と、このネジ孔251に螺合するネジ部材252と、このネジ部材252を回転させるモータ等のアクチュエータ253とからなり、第1周回機構1と同様、このネジ部材252を正逆回転させることによって、基台26がネジ部材252の延伸方向に沿って進退するように構成したものである。ネジ部材252の延伸方向は第1周回機構1のネジ部材152の延伸方向と平行に設定してある。   The rectilinear means 25 includes a screw hole 251 that penetrates the base 26 that supports the column 21 via the suspension structure 27, a screw member 252 that is screwed into the screw hole 251, a motor that rotates the screw member 252, and the like. In the same manner as the first turning mechanism 1, the base 26 is configured to advance and retract along the extending direction of the screw member 252 by rotating the screw member 252 forward and backward. The extending direction of the screw member 252 is set in parallel to the extending direction of the screw member 152 of the first circulator 1.

さらにこの第2周回機構2は、第1周回機構1同様、前記旋回手段23及び直進手段25を制御するための電気回路からなる制御部を有している。この制御部は、ここでは第1周回機構1と同じ軌道で同じ向きにウェハW1、W2を周回させる。すなわち、第2周回機構2による周回軌道(第1周回軌道)O2は、互いに平行で等しい長さの直線軌道L21、L22と、それら直線軌道L21、L22の端部間を接続する半円軌道C21、C22とからなる。
なお、この制御部は、物理的には第1周回機構1と共用でもよいし別体でもよい。
Further, like the first turning mechanism 1, the second turning mechanism 2 has a control unit including an electric circuit for controlling the turning means 23 and the rectilinear means 25. Here, the control unit circulates the wafers W1 and W2 in the same direction on the same track as the first circulator 1. That is, the orbit (first orbit) O2 by the second orbiting mechanism 2 is a straight orbit L21 and L22 that are parallel to each other and have the same length, and a semicircular orbit C21 that connects between the ends of the straight orbits L21 and L22. , C22.
Note that this control unit may be physically shared with the first circulation mechanism 1 or may be separate.

次に、このように構成したエネルギー線照射システム100の動作につき説明する。
例えば図4(A)に示すように、第1周回機構1で周回しているウェハ(以下、第1ウェハとも言う。)W1が照射領域Pを通過し終わる前であり、第2周回機構2で周回しているウェハ(以下、第2ウェハとも言う。)W2が同照射領域Pに進入し始めたところから説明を始める。
Next, operation | movement of the energy beam irradiation system 100 comprised in this way is demonstrated.
For example, as shown in FIG. 4 (A), the second circulator mechanism 2 is before the wafer circulated by the first circulator 1 (hereinafter also referred to as the first wafer) W1 passes through the irradiation region P. The description starts from the point when wafer W2 (hereinafter also referred to as a second wafer) W2 starts to enter the irradiation region P.

この図4(A)の状態では、各ウェハW1、W2は、予め定められた互いに等しいイオン注入用速度で移動する。その後、先に照射領域Pから離れた第1ウェハW1は、図4(B)、図4(C)に示すように、移動速度を増して周回する一方、照射領域Pにある第2ウェハW2は、前記イオン注入用速度で移動を続ける。   In the state of FIG. 4A, each of the wafers W1 and W2 moves at a predetermined ion implantation speed. Thereafter, as shown in FIGS. 4B and 4C, the first wafer W1 previously separated from the irradiation region P goes around while increasing the moving speed, while the second wafer W2 in the irradiation region P. Continues to move at the ion implantation speed.

そして、第1ウェハW1は、図5(D)に示すように、第2ウェハW2が照射領域Pを通過し終わる前に追いついて、前記照射領域Pに進入し、その速度を前記イオン注入用速度に戻す。その後、照射領域Pから離れた第2ウェハW2は、図5(E)、図5(F)に示すように、移動速度を増して周回する一方、照射領域Pにある第1ウェハW1は、前記イオン注入用速度で移動を続ける。   Then, as shown in FIG. 5D, the first wafer W1 catches up before the second wafer W2 finishes passing through the irradiation region P, enters the irradiation region P, and the speed thereof is used for the ion implantation. Return to speed. Thereafter, as shown in FIGS. 5E and 5F, the second wafer W2 away from the irradiation region P goes around with an increased moving speed, while the first wafer W1 in the irradiation region P is The movement is continued at the ion implantation speed.

そして、第2ウェハW2が第1ウェハW1に追いついて、図4(A)の状態に戻る。
このようにして、各ウェハW1、W2は、予め定められた回数だけ周回することによって、所定量のイオンを注入される。
Then, the second wafer W2 catches up with the first wafer W1 and returns to the state of FIG.
In this way, a predetermined amount of ions is implanted into each of the wafers W1 and W2 by orbiting a predetermined number of times.

しかして、このようなものであれば、2つの周回機構1、2を利用してウェハW1、W2を間断なくイオンビームIBの照射領域Pに進入させるので、注入効率を上げることができるという基本的な効果を奏し得る。   If this is the case, the wafers W1 and W2 are allowed to enter the irradiation region P of the ion beam IB without interruption using the two orbiting mechanisms 1 and 2, so that the implantation efficiency can be increased. Effects can be obtained.

しかも、2つの周回機構1、2を設けているにも拘わらず、第1周回軌道O1と第2周回軌道O2の軌道が合致しているので、それら周回面と垂直な方向から視たときに、1つの周回軌道分の面積で構成でき、飛躍的なコンパクト化が可能となる。   Moreover, although the two orbiting mechanisms 1 and 2 are provided, the orbits of the first orbit O1 and the second orbit O2 coincide with each other. It can be configured with an area equivalent to one orbit and can be remarkably compact.

なお、本発明は前記実施形態に限られない。
例えば、プラテン上に配置されるウェハの枚数は1枚でもいい。ただし、複数枚であれば、スループットが向上する。
The present invention is not limited to the above embodiment.
For example, the number of wafers arranged on the platen may be one. However, if there are a plurality of sheets, the throughput is improved.

また、1つのプラテン上に搭載されるウェハ枚数が増えると、各プラテン上に搭載されたウェハを処理するまでに要する時間が長くなる。その為、一方のプラテンを他方のプラテンの後ろの位置に移動させるまでの時間に余裕ができるので、連続注入処理が容易になる。この場合、プラテンの構成によっては、プラテンの長手方向は支柱の軸線と垂直になる場合もある。   As the number of wafers mounted on one platen increases, the time required to process the wafers mounted on each platen increases. As a result, a sufficient time is allowed to move one platen to a position behind the other platen, so that the continuous injection process is facilitated. In this case, depending on the configuration of the platen, the longitudinal direction of the platen may be perpendicular to the axis of the column.

プラテンの搬送枚数は2枚以上であればいいので、複数枚のプラテンを搬送させる構成にしてもいい。このことにより、スループットの向上や連続注入処理の容易化を促進できる。   Since the number of transported platens may be two or more, it may be configured to transport a plurality of platens. Thereby, improvement of throughput and facilitation of continuous injection processing can be promoted.

イオンビームの本数は1本に限らない。例えば図6に示すように、2本以上のイオンビームIBが照射される構成であってもいい。2本のイオンビームIBが照射される場合、イオンビームIBを有効利用することを考えると、プラテンの数は3以上が好ましい。ここでは図6では3枚のプラテン14、24、34とそれに搭載される3つのウェハW1、W2、W3を示している。   The number of ion beams is not limited to one. For example, as shown in FIG. 6, a configuration in which two or more ion beams IB are irradiated may be used. When two ion beams IB are irradiated, considering the effective use of the ion beam IB, the number of platens is preferably 3 or more. Here, FIG. 6 shows three platens 14, 24, 34 and three wafers W1, W2, W3 mounted thereon.

また、第1周回軌道O1で囲まれる領域と前記第2周回軌道O2で囲まれる領域との少なくとも一部が重なればよく、そのためには、各周回機構1、2における旋回軸を一致させる必要はない。例えば、図7に示すように、直進方向から視たときの旋回軸を周回機構毎に異ならせてもよい。また、図8に示すように、旋回軸の位置は同じだが、旋回半径が互いに異なるようにしてもよい。いずれも第1周回軌道O1で囲まれる領域と前記第2周回軌道O2で囲まれる領域との一部が重なっており、その重なりの分だけ、コンパクト化を図れる。   Further, it is only necessary that at least a part of the region surrounded by the first orbiting track O1 and the region surrounded by the second orbiting track O2 overlap with each other. There is no. For example, as shown in FIG. 7, the turning axis when viewed from the straight traveling direction may be different for each revolving mechanism. Moreover, as shown in FIG. 8, the position of the turning axis is the same, but the turning radii may be different from each other. In any case, a part of the region surrounded by the first orbital track O1 and the region surrounded by the second orbital track O2 overlap each other, and the size reduction can be achieved by the overlap.

イオンビームのみならず、電子線や光線、陽子線などのようなエネルギー線をワークに照射するシステム、例えば、電子線照射装置、スパッタリング装置、プラズマドーピング装置などにも本発明を適用して同様の効果を奏し得る。   The present invention can be applied not only to an ion beam but also to a system that irradiates a workpiece with an energy beam such as an electron beam, a light beam, or a proton beam, such as an electron beam irradiation device, a sputtering device, or a plasma doping device. Can have an effect.

エネルギー線の照射効率を高める構成としては、少なくとも1枚のウェハが照射領域内に位置していることがもっとも望ましいが、このような構成に限られない。例えば、エネルギー線の大きさやプラテンの構成によっては、少なくとも1枚のウェハを照射領域内に位置させることができない場合もある。このような場合には、出来るだけエネルギー線を各ウェハが連続して横切るように構成しておけばよい。   As a configuration for improving the energy beam irradiation efficiency, it is most desirable that at least one wafer is positioned in the irradiation region, but the configuration is not limited to such a configuration. For example, depending on the size of the energy beam and the configuration of the platen, there are cases where at least one wafer cannot be positioned in the irradiation region. In such a case, it is only necessary that each energy beam be continuously traversed by each wafer.

ビーム形状はどのようなものでもよい、例えば断面が正方形状のものや、スポット状のものでも構わない。ウェハ形状も円形のみならず、例えば矩形でも構わない。プラテンへのウェハの搬送は手動にしてもいい。
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能である。
Any beam shape may be used. For example, the beam may have a square cross section or a spot shape. The wafer shape may be not only circular but also rectangular, for example. The wafer may be transferred manually to the platen.
In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・エネルギー線照射システム
P ・・・照射領域
W1 ・・・第1ワーク
O1 ・・・第1周回軌道
1 ・・・第1周回機構
W2 ・・・第2ワーク
O2 ・・・第2周回軌道
2 ・・・第2周回機構
L11、L12、L21、L22・・・直線軌道
C11、C12、C21、C22・・・半円軌道
10 ・・・ワーク搬送機構
DESCRIPTION OF SYMBOLS 100 ... Energy beam irradiation system P ... Irradiation area W1 ... 1st workpiece | work O1 ... 1st circumference track 1 ... 1st circumference mechanism W2 ... 2nd workpiece O2 ... 2nd Orbit 2: Second orbiting mechanism L11, L12, L21, L22 ... Linear orbit C11, C12, C21, C22 ... Semicircular orbit 10 ... Work transfer mechanism

Claims (8)

エネルギー線を所定の照射領域に向かって射出するエネルギー線射出機構と、
前記エネルギー線が照射される対象物である第1ワークを、前記照射領域を含む所定の第1周回軌道に沿って周回させる第1周回機構と、
前記エネルギー線が照射される対象物である第2ワークを、前記照射領域を含む所定の第2周回軌道に沿って周回させる第2周回機構とを具備し、
前記第1周回軌道と前記第2周回軌道は同一平面上にあり、前記平面上にある周回面と垂直な方向から視たときに、前記第1周回軌道で囲まれる領域と前記第2周回軌道で囲まれる領域との少なくとも一部が重なるように構成されていることを特徴とするエネルギー線照射システム。
An energy ray emission mechanism that emits energy rays toward a predetermined irradiation region;
A first circulation mechanism that circulates a first workpiece, which is an object irradiated with the energy rays, along a predetermined first orbit including the irradiation area;
A second turning mechanism for turning a second workpiece, which is an object irradiated with the energy rays, along a predetermined second turning track including the irradiation region;
The first orbit and the second orbit are on the same plane, and when viewed from a direction perpendicular to the orbiting plane on the plane, the region surrounded by the first orbit and the second orbit It is comprised so that at least one part may overlap with the area | region enclosed by energy beam irradiation system characterized by the above-mentioned.
前記各周回軌道が、互いに平行な直線軌道とそれらの端部間を結ぶ半円軌道とからそれぞれ形成されており、前記各周回軌道における半円軌道の中心が、前記直線軌道方向から視て合致すように構成してある請求項1記載のエネルギー線照射システム。   The circular orbits are respectively formed from mutually parallel linear orbits and semicircular orbits connecting the ends thereof, and the centers of the semicircular orbits in the respective orbits coincide with each other when viewed from the linear orbital direction. The energy beam irradiation system according to claim 1, which is configured as described above. 前記各周回軌道が、互いに合致するように構成してある請求項1又は2記載のエネルギー線照射システム。   The energy beam irradiation system according to claim 1, wherein the respective orbits are configured to coincide with each other. 前記照射領域に進入した第1ワークが当該照射領域から完全に離れる前に、第2ワークが当該照射領域に進入するように構成してある請求項1乃至3いずれか記載のエネルギー線照射システム。   The energy beam irradiation system according to any one of claims 1 to 3, wherein the second workpiece enters the irradiation region before the first workpiece that has entered the irradiation region completely leaves the irradiation region. 前記第1ワーク又は第2ワークを周回移動方向に沿って複数並べることができるように構成してある請求項1乃至4いずれか記載のエネルギー線照射システム。   The energy beam irradiation system according to any one of claims 1 to 4, wherein a plurality of the first workpieces or the second workpieces can be arranged along a circumferential movement direction. 前記ワークが周回軌道に沿って1周したときに、前記周回面と垂直な方向から視て、当該ワークが最初の自転角度に戻るように構成してある請求項1乃至5いずれか記載のエネルギー線照射システム。   The energy according to any one of claims 1 to 5, wherein when the workpiece makes one round along a circular path, the workpiece returns to an initial rotation angle when viewed from a direction perpendicular to the circular surface. X-ray irradiation system. 前記周回面と垂直な方向から視て、前記ワークは、前記照射領域からその裏側領域に向かう間に180度自転し前記裏側領域においてそのエネルギー線照射面の裏面をエネルギー線照射方向に向けるとともに、前記裏側領域から前記照射領域に向かう間に−180度自転して最初の自転角度に戻るように構成してあることを特徴とする請求項6記載のエネルギー線照射システム。   As viewed from the direction perpendicular to the circumferential surface, the work rotates 180 degrees while going from the irradiation region to the backside region, and the back surface of the energy ray irradiation surface is directed to the energy ray irradiation direction in the backside region, The energy beam irradiation system according to claim 6, wherein the energy beam irradiation system is configured to rotate by −180 degrees and return to an initial rotation angle while moving from the back region to the irradiation region. エネルギー線が照射される対象物である第1ワークを、該エネルギー線の照射領域を含む所定の第1周回軌道に沿って周回させる第1周回機構と、
前記エネルギー線が照射される対象物である第2ワークを、前記照射領域を含む所定の第2周回軌道に沿って周回させる第2周回機構とを具備し、
前記第1周回軌道と前記第2周回軌道は同一平面上にあり、前記平面上にある周回面と垂直な方向から視たときに、前記第1周回軌道で囲まれる領域と前記第2周回軌道で囲まれる領域との少なくとも一部が重なるように構成されていることを特徴とするワーク搬送機構。
A first circulation mechanism that circulates a first workpiece, which is an object irradiated with energy rays, along a predetermined first orbit including an irradiation region of the energy rays;
A second turning mechanism for turning a second workpiece, which is an object irradiated with the energy rays, along a predetermined second turning track including the irradiation region;
The first orbit and the second orbit are on the same plane, and when viewed from a direction perpendicular to the orbiting plane on the plane, the region surrounded by the first orbit and the second orbit A workpiece transfer mechanism configured to overlap at least a part of a region surrounded by
JP2011228383A 2011-10-17 2011-10-17 Energy beam irradiation device and workpiece transfer mechanism Active JP5655759B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011228383A JP5655759B2 (en) 2011-10-17 2011-10-17 Energy beam irradiation device and workpiece transfer mechanism
FR1257893A FR2981497A1 (en) 2011-10-17 2012-08-20 Energy beam irradiation system i.e. ion implantation system, for irradiating ionic beam as e.g. electron beam on work plate, has irradiation regions partially overlapping with each other in direction perpendicular to orbital surfaces
SG2012069068A SG189613A1 (en) 2011-10-17 2012-09-17 Energy beam irradiation device and work transport mechanism
CN2012103949461A CN103050359A (en) 2011-10-17 2012-10-17 Beam irradiation system and energy transfer mechanism of work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228383A JP5655759B2 (en) 2011-10-17 2011-10-17 Energy beam irradiation device and workpiece transfer mechanism

Publications (2)

Publication Number Publication Date
JP2013089427A JP2013089427A (en) 2013-05-13
JP5655759B2 true JP5655759B2 (en) 2015-01-21

Family

ID=47998604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228383A Active JP5655759B2 (en) 2011-10-17 2011-10-17 Energy beam irradiation device and workpiece transfer mechanism

Country Status (4)

Country Link
JP (1) JP5655759B2 (en)
CN (1) CN103050359A (en)
FR (1) FR2981497A1 (en)
SG (1) SG189613A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202778A (en) * 1990-11-30 1992-07-23 Mitsubishi Electric Corp Ion implantation device
JPH10134761A (en) * 1996-10-30 1998-05-22 Ebara Corp Ion implantation device and method
US6987272B2 (en) * 2004-03-05 2006-01-17 Axcelis Technologies, Inc. Work piece transfer system for an ion beam implanter
JP4766156B2 (en) * 2009-06-11 2011-09-07 日新イオン機器株式会社 Ion implanter

Also Published As

Publication number Publication date
SG189613A1 (en) 2013-05-31
CN103050359A (en) 2013-04-17
JP2013089427A (en) 2013-05-13
FR2981497A1 (en) 2013-04-19

Similar Documents

Publication Publication Date Title
JP5430115B2 (en) Scanning irradiation equipment for charged particle beam
US8653473B2 (en) Charged particle beam irradiation device
KR100967502B1 (en) Multi directional mechanical scanning in an ion implanter
JP4602366B2 (en) Multi-leaf collimator
US8866109B2 (en) Charged-particle beam irradiation device
US7259380B2 (en) Scanning mechanism of an ion implanter
JP2011224342A5 (en)
JP5873481B2 (en) Charged particle beam irradiation equipment
WO2006064613A1 (en) Charged particle beam irradiator and rotary gantry
CN103624544A (en) Assembling machine
JP5655759B2 (en) Energy beam irradiation device and workpiece transfer mechanism
JP2012224878A (en) Mechanism for moving workpiece for vapor deposition apparatus, and vapor deposition method using the same
JP6113128B2 (en) Particle beam irradiation equipment
JP5792864B2 (en) Particle beam irradiation equipment
JP2004306057A (en) Laser beam welding equipment
KR102099581B1 (en) System for removing electricity and dust from surface of subject
CN110169208A (en) The method of adjustment of particle accelerating system and particle accelerating system
JP2014203713A (en) Energy beam irradiation system and work transfer mechanism
US9415508B1 (en) Multi-link substrate scanning device
JP2001178834A (en) Charged particle irradiation system
JP5545287B2 (en) Energy beam irradiation device and workpiece transfer mechanism
JP5329988B2 (en) Particle beam irradiation equipment
JP5661152B2 (en) Particle beam irradiation equipment
JP2019021439A (en) Ion beam irradiation apparatus and ion beam irradiation method
JP6087183B2 (en) Charged particle beam therapy system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5655759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250