JPH04202778A - Ion implantation device - Google Patents

Ion implantation device

Info

Publication number
JPH04202778A
JPH04202778A JP33748890A JP33748890A JPH04202778A JP H04202778 A JPH04202778 A JP H04202778A JP 33748890 A JP33748890 A JP 33748890A JP 33748890 A JP33748890 A JP 33748890A JP H04202778 A JPH04202778 A JP H04202778A
Authority
JP
Japan
Prior art keywords
disk
ion
disks
implanted
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33748890A
Other languages
Japanese (ja)
Inventor
Satoshi Yamada
聡 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33748890A priority Critical patent/JPH04202778A/en
Publication of JPH04202778A publication Critical patent/JPH04202778A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the number of wafers implanted with an ion at one time without need for a large space by using plural disks for charging a wafer and superposing the disks on one another. CONSTITUTION:A positive ion formed in an arc chamber is drawn out by a drawing electrode and implanted in the surface of a wafer 9 charged on disks 81 and 82. One disk 81 is placed close to an ion source, and the other disk 82 is separated from the disk 81 by the distance 10. A hatched part 11 is irradiated with an ion beam, the disks 81 and 82 are rotated at high speed in direction of the arrow A and scanned in direction of the arrow B, and the ion is implanted in the wafers on the disks 81 and 82. Since the two disks are used, the wafers twice more than before are implanted with the ion at one time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種半導体製造工程において、P型。[Detailed description of the invention] (Industrial application field) The present invention applies to P-type semiconductors in various semiconductor manufacturing processes.

n型不純物拡散を目的とするイオン注入装置に関するも
のである。
The present invention relates to an ion implantation device for diffusing n-type impurities.

〔従来の技術〕[Conventional technology]

第3図は従来の大電流イオン注入装置の断面図である。 FIG. 3 is a cross-sectional view of a conventional large current ion implanter.

図において、イオン源であるアークチャンバー(1)に
^sH3ガスなど注入を行う元素を含むガスを送り込む
。このガスにフィラメント(2)に電流を流すことによ
り、放出される熱電子か衝突するためアークチャンバー
(1)内はプラズマ状態となり、”As” * As”
++ 八s23などノイオンか生成される。こわらのイ
オンは引き出し電極(3)を負バイアスすることにより
、アークチャンバー(1)のビーム引き比し用スリット
から引き出される。この引き出されたイオンビーム中に
はAs”、 As2”など重複した同位元素や異種のイ
オンか混在しているため、その中から必要な7 S A
 S +だけを取り出すために質量分析器(4)を利用
している。
In the figure, a gas containing an element to be implanted, such as ^sH3 gas, is fed into the arc chamber (1) which is an ion source. By passing a current through the filament (2) in this gas, the emitted thermionic electrons collide and the inside of the arc chamber (1) becomes a plasma state, resulting in "As" * As
++ No ions such as 8s23 are generated. The stiff ions are extracted from the beam ratio slit in the arc chamber (1) by applying a negative bias to the extraction electrode (3). This extracted ion beam contains duplicate isotopes such as As'' and As2'' as well as different types of ions, so the necessary 7 S A is selected from among them.
A mass spectrometer (4) is used to extract only S+.

この質量分析器(4)は磁界を変化させることにより、
イオン質量を選択している。つまり、7 S A S 
”イオンより質量が重いイオンは、質量分析管(4)内
を曲がり切れずに質量分析管(4)内に衝突し、質量が
軽いイオンは逆に曲がり易く同様に質量分析管(4)内
に衝突することになる。
This mass spectrometer (4) changes the magnetic field to
Selecting ion mass. In other words, 7 S A S
``Ions whose mass is heavier than the ions cannot bend through the mass spectrometer tube (4) and collide into the mass spectrometer tube (4), whereas ions whose mass is lighter tend to bend easily and similarly fall into the mass spectrometer tube (4). will collide with.

このように取り出された7 S As“は、更にビーム
ライン中の分析スリット(5)上で75As+に近い質
量を持つイオンを取り除き、成形スリット(6)で更に
ビーム面積を限定している。
From the 7 S As extracted in this way, ions having a mass close to 75 As+ are further removed on the analysis slit (5) in the beam line, and the beam area is further limited on the shaping slit (6).

このイオンビームはビーム量計測系であるファラデー(
7)を通り第2図に示した様にディスク(8)が図示へ
方向に高速回転し図示B方向にスキャンすることにより
13枚のウェハ(9)の表面にイオン注入が行なわれる
This ion beam is measured by Faraday (
As shown in FIG. 2, the disk (8) rotates at high speed in the direction shown in the figure and scans in the direction B in the figure, thereby implanting ions into the surfaces of the thirteen wafers (9).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の大電流イオン注入装置は以上のように構成されて
いたので、イオン注入は1枚のディスクにウェハが装填
され、このディスクが高速回転し、一定方向にスキャン
する構造になっており。
Conventional high-current ion implanters are configured as described above, and ion implantation is performed by loading a wafer onto a single disk, which rotates at high speed and scans in a fixed direction.

ウェハが大口径化すれば従来と同枚数のウェハを一度に
注入を行うためにはディスク半径を大きくせねばならず
、しかもこの構造はスペースの関係上、限度があるとい
う問題点かあった。
If the diameter of the wafer becomes larger, the radius of the disk must be increased in order to implant the same number of wafers at once as in the past, and this structure has a problem in that there is a limit due to space constraints.

本発明は上記のような問題点を解消するためになされた
もので、スペースを取ることなく1回の注入ウェハ数を
増加させるイオン注入装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ion implantation apparatus that can increase the number of wafers implanted at one time without taking up space.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るイオン注入装置は、ウェハ装填を行うディ
スクを1枚から複数枚にし、それぞれのディスクを重ね
るような構造とすることによって、1度にイオン注入を
行うウニ八枚数を増加させたものである。
The ion implantation device according to the present invention increases the number of wafers that can be implanted at one time by increasing the number of wafer loading disks from one to a plurality and stacking each disk. It is.

〔作用〕[Effect]

本発明におけるイオン注入装置は、ディスク枚数を増加
させることにより、ディスク半径を大きくすることなく
、また、スペースも取らずに、1度にイオン注入を行う
ウニ八枚数を増加させることかでき、こわによりスルー
ブツト向上を図ることができる。
By increasing the number of disks, the ion implantation device of the present invention can increase the number of sea urchins that can be ion-implanted at one time without increasing the disk radius or taking up space. As a result, throughput can be improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

なお5本発明の大電流イオン注入装置はイオン注入を行
うウェハが装填しているディスク以外は前記従来の大電
流イオン注入装置と同一なので、ディスクの構造につい
て説明する。
5. Since the high current ion implantation apparatus of the present invention is the same as the conventional high current ion implantation apparatus except for the disk loaded with the wafer to be ion implanted, the structure of the disk will be explained.

′41図は本発明の一実施例であるディスクの正面図で
、図において、  (8])  (82)はディスク、
(9)はウェハである。
Figure '41 is a front view of a disk that is an embodiment of the present invention. In the figure, (8) (82) is a disk,
(9) is a wafer.

本発明の大電流イオン注入装置は従来と同様にアークチ
ャンバー(1)内で生成した75As”などの正イオン
が引き出し電極により引き出され、質量分析器(4)、
分析スリット(6)、成形スリット・ファラデーカップ
(7)を通過してディスク(al)  (82)上に装
填したウェハ(9)表面に注入される。本発明のディス
クは第1図に示すように、2枚のディスク(81)  
(82)においてイオン源に近いディスク(81)に対
して、その後のディスク(82)はウェハ1枚分以上の
間隔(10)だけずらした構造となフている。イオンビ
ームが斜線部(11)のように照射されているとすれば
、2枚のディスク(81)  (82)がA方向に高速
回転し、B方向にスキャンすることによフて、2枚のデ
ィスク(81)  (82)上のウェハ26枚(9)に
イオン注入が行なわれる。
In the high current ion implantation device of the present invention, positive ions such as 75As" generated in the arc chamber (1) are extracted by the extraction electrode as in the conventional case, and the mass spectrometer (4)
It passes through an analysis slit (6), a shaped slit Faraday cup (7) and is injected onto the surface of a wafer (9) loaded onto a disk (al) (82). As shown in FIG. 1, the disc of the present invention includes two discs (81).
In (82), the subsequent disk (82) is shifted from the disk (81) near the ion source by an interval (10) equal to or more than one wafer. If the ion beam is irradiated as shown in the shaded area (11), the two disks (81) and (82) rotate at high speed in the A direction and scan in the B direction. Ion implantation is performed on 26 wafers (9) on disks (81) and (82).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、ディスクを2枚重ねるよ
うな構造とすることにより、従来の1枚のディスクに装
填し得るウニ八枚数の2倍のウニへ数を1度に注入処理
することかでき、スルーブツトの向上がはかれるという
効果かある。
As described above, according to the present invention, by using a structure in which two discs are stacked, it is possible to inject twice as many sea urchins at once as the number of eight sea urchins that can be loaded onto one conventional disc. This has the effect of improving throughput.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である大電流イオン注入装置
のディスクの正面図、第2図は従来の大電流イオン注入
装置のディスクの正面図、第3図は従来および本発明共
通の大電流イオン注入装置の断面図である。図において
、(8])  (82)(8)はディスク、(9)はウ
ェハ、(10)はディスクの間隔、(11)はイオンビ
ームを示す。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a front view of a disk of a large current ion implanter which is an embodiment of the present invention, FIG. 2 is a front view of a disk of a conventional large current ion implanter, and FIG. 3 is a front view of a disk of a conventional large current ion implanter. FIG. 2 is a cross-sectional view of a high current ion implanter. In the figure, (8]) (82) (8) is a disk, (9) is a wafer, (10) is an interval between disks, and (11) is an ion beam. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  元素を正イオン化し、そのイオンを静電的に加速し、
この加速された正イオンを対象物に打ち込むイオン注入
装置で注入対象物をディスクに装填し、このディスクが
高速回転、スキャン運動により注入を行う装置でディス
クを複数枚重ねる様に使用し、イオン発生部に近いディ
スクに対して、このディスクの次のディスクは常に注入
対象物の大きさ分以上移動して配置され、どのディスク
上の対象物にもイオンガ照射されるようにしたことを特
徴とするイオン注入装置。
Positively ionizes the element, accelerates the ion electrostatically,
An ion implantation device that implants these accelerated positive ions into the target object loads the implanted object into a disk, and this disk rotates at high speed and performs the implantation by scanning motion. The disk next to this disk is always moved by at least the size of the object to be injected with respect to the disk near the center, so that the object on any disk can be irradiated with ion gas. Ion implanter.
JP33748890A 1990-11-30 1990-11-30 Ion implantation device Pending JPH04202778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33748890A JPH04202778A (en) 1990-11-30 1990-11-30 Ion implantation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33748890A JPH04202778A (en) 1990-11-30 1990-11-30 Ion implantation device

Publications (1)

Publication Number Publication Date
JPH04202778A true JPH04202778A (en) 1992-07-23

Family

ID=18309125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33748890A Pending JPH04202778A (en) 1990-11-30 1990-11-30 Ion implantation device

Country Status (1)

Country Link
JP (1) JPH04202778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840356A2 (en) * 1996-10-30 1998-05-06 Ebara Corporation Ion implantation system and method adapted for serial wafer processing
JP2013089427A (en) * 2011-10-17 2013-05-13 Nissin Ion Equipment Co Ltd Energy beam irradiation device and work conveyance mechanism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128938A (en) * 1974-03-29 1975-10-11
JPS59198594A (en) * 1983-04-25 1984-11-10 Mitsubishi Electric Corp Semiconductor memory device
JPS63239683A (en) * 1987-03-27 1988-10-05 Hitachi Ltd Semiconductor memory
JPS63257242A (en) * 1987-04-14 1988-10-25 Nec Corp Semiconductor storage device with logic circuit
JPH01150300A (en) * 1987-12-07 1989-06-13 Hitachi Ltd Semiconductor storage device
JPH01278744A (en) * 1988-05-02 1989-11-09 Nec Corp Dynamic random access memory
JPH0222470A (en) * 1988-07-08 1990-01-25 Matsushita Electric Ind Co Ltd Production of thin metallic film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128938A (en) * 1974-03-29 1975-10-11
JPS59198594A (en) * 1983-04-25 1984-11-10 Mitsubishi Electric Corp Semiconductor memory device
JPS63239683A (en) * 1987-03-27 1988-10-05 Hitachi Ltd Semiconductor memory
JPS63257242A (en) * 1987-04-14 1988-10-25 Nec Corp Semiconductor storage device with logic circuit
JPH01150300A (en) * 1987-12-07 1989-06-13 Hitachi Ltd Semiconductor storage device
JPH01278744A (en) * 1988-05-02 1989-11-09 Nec Corp Dynamic random access memory
JPH0222470A (en) * 1988-07-08 1990-01-25 Matsushita Electric Ind Co Ltd Production of thin metallic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840356A2 (en) * 1996-10-30 1998-05-06 Ebara Corporation Ion implantation system and method adapted for serial wafer processing
EP0840356A3 (en) * 1996-10-30 2000-03-22 Ebara Corporation Ion implantation system and method adapted for serial wafer processing
JP2013089427A (en) * 2011-10-17 2013-05-13 Nissin Ion Equipment Co Ltd Energy beam irradiation device and work conveyance mechanism

Similar Documents

Publication Publication Date Title
US4421988A (en) Beam scanning method and apparatus for ion implantation
US6130436A (en) Acceleration and analysis architecture for ion implanter
US4661712A (en) Apparatus for scanning a high current ion beam with a constant angle of incidence
US8242468B2 (en) Ion implanter for photovoltaic cell fabrication
US6403967B1 (en) Magnet system for an ion beam implantation system using high perveance beams
US6838677B2 (en) Extraction and deceleration of low energy beam with low beam divergence
KR20000070521A (en) Ion accelerator for use in ion implanter
JPH10106475A (en) Mev neutral beam ion implantation device
US6528804B1 (en) Method and apparatus for low energy ion implantation
JPH04202778A (en) Ion implantation device
McKenna A personal historical perspective of ion implantation equipment for semiconductor applications
EP0066175B1 (en) Ion implanter
JPH03134947A (en) Ion implantation device
KR0143433B1 (en) Ion implanter
KR100664375B1 (en) Ion implantation apparatus
JPS62285354A (en) Ion implanter
JPH11337699A (en) Injector with high frequency acceleration tube and high frequency large current ion implantation device thereof
JPH04132151A (en) Ion implanter and setup method
JP3244883B2 (en) Ion implantation method
KR100720396B1 (en) Ion implantation apparatus using neuter beam and ion implantation method
Aitken The development of ion implanter technology
CN114256045A (en) Method for improving metal pollution of ion implanter
O'Connor et al. The use of negative ions to enhance beam currents at low energies in an MeV ion implanter
JPS63304563A (en) Ion implantation
JPH0273626A (en) Ion implanting apparatus