JP5655477B2 - Extruded tube, heat exchanger using the extruded tube, and refrigeration apparatus using the heat exchanger - Google Patents

Extruded tube, heat exchanger using the extruded tube, and refrigeration apparatus using the heat exchanger Download PDF

Info

Publication number
JP5655477B2
JP5655477B2 JP2010222721A JP2010222721A JP5655477B2 JP 5655477 B2 JP5655477 B2 JP 5655477B2 JP 2010222721 A JP2010222721 A JP 2010222721A JP 2010222721 A JP2010222721 A JP 2010222721A JP 5655477 B2 JP5655477 B2 JP 5655477B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
heat exchanger
extruded tube
inner cylindrical
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010222721A
Other languages
Japanese (ja)
Other versions
JP2012077985A (en
Inventor
隆平 加治
隆平 加治
俊 吉岡
俊 吉岡
継紅 劉
継紅 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010222721A priority Critical patent/JP5655477B2/en
Publication of JP2012077985A publication Critical patent/JP2012077985A/en
Application granted granted Critical
Publication of JP5655477B2 publication Critical patent/JP5655477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、押出管に関し、特に、冷凍装置に用いられる2重管熱交換器を成す押出管に関する。   The present invention relates to an extruded tube, and more particularly to an extruded tube constituting a double tube heat exchanger used in a refrigeration apparatus.

従来、冷凍装置に使用される2重管式熱交換器として、例えば、特許文献1(特開2002−181466号公報)に開示されているように、内側の第1流路およびその第1流路を囲む多穴流路に流体を流して互いに熱交換を行わせる押出管から成る交換器が広く普及している。このような2重管熱交換器では、第1流路および多穴流路を仕切る複数の壁は、必要耐圧強度を満たし、且つ可能な限り小さい厚み寸法で形成されていることが望ましい。   Conventionally, as a double-pipe heat exchanger used in a refrigeration apparatus, for example, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-181466), an inner first flow path and its first flow 2. Description of the Related Art An exchanger composed of an extruded tube that allows fluid to flow through a multi-hole flow path that surrounds a channel to exchange heat with each other is widely used. In such a double pipe heat exchanger, it is desirable that the plurality of walls partitioning the first flow path and the multi-hole flow path satisfy the required pressure resistance and be formed with the smallest possible thickness.

しかしながら、一般には、各壁は必要耐圧強度を満たすものの、その厚みの最適値設計の方法が未確立であるため、厚み寸法が大きめに設定される傾向にあり、このことが、軽量化、小型化、および低コスト化を阻害する要因となっている。   However, in general, although each wall satisfies the required pressure resistance strength, the method of designing the optimum value of the thickness has not been established, so the thickness dimension tends to be set larger, which is reduced in weight and size. This is a factor that hinders cost reduction and cost reduction.

本発明の課題は、各流路を仕切る複数の壁の厚みが最適値またはその近傍の値に設定された、小型、軽量、且つ低コストの押出管を提供することにある。   An object of the present invention is to provide a small, lightweight, and low-cost extruded tube in which the thickness of a plurality of walls that partition each flow path is set to an optimum value or a value in the vicinity thereof.

本発明の第1観点に係る押出管は、内側の第1流路と外側の多穴流路とを形成するアルミ製の押出管であって、内円筒部と、外円筒部と、複数の梁部とを有している。外円筒部は、内円筒部の外周面を囲んでいる。複数の梁部は、放射方向に延びて内円筒部と外円筒部とをつないでいる。第1流路は、内円筒部に囲まれた空間である。多穴流路は、内円筒部と外円筒部と梁部とに囲まれた空間である。また、
内円筒部の内径Diが3mm〜8mm、
外円筒部の外径Doが15mm〜26mm、
であ
梁部の円周方向の幅a、内円筒部の厚みb、外円筒部の厚みc、内径Di、外径Do、材料の引張強度σs、及び必要耐圧強度Pbによって決まる、無次元パラメータa*、b*、c*は、
*=a・σs・62/{(1/2)・(Do―Di)・157・Pb}
*=b・σs・62/{(Di/2)・(Do/18)・157・Pb}
*=c・σs・62/{(Do/2)・(Di/6)・157・Pb}
で表され、
多穴流路の総数Nが8〜16であ
総数Nによって設定される係数C1、C2、C3、C4と、無次元パラメータa*、b*、c*との関係は、
*/(a*C2=C1、
(c*−C4)/b*=C3、
C1= 0.17697N+0.72687、
C2= 0.00241N+0.86391、
C3=−0.00960N−0.21260、
C4= 0.00180N+0.36960、
である。
An extruded tube according to a first aspect of the present invention is an extruded tube made of aluminum that forms an inner first flow path and an outer multi-hole flow path, and includes an inner cylindrical portion, an outer cylindrical portion, and a plurality of And a beam portion. The outer cylindrical portion surrounds the outer peripheral surface of the inner cylindrical portion. The plurality of beam portions extend in the radial direction and connect the inner cylindrical portion and the outer cylindrical portion. The first flow path is a space surrounded by the inner cylindrical portion. The multi-hole channel is a space surrounded by the inner cylindrical portion, the outer cylindrical portion, and the beam portion. Also,
The inner diameter Di of the inner cylindrical portion is 3 mm to 8 mm,
The outer diameter Do of the outer cylindrical portion is 15 mm to 26 mm,
Der is,
A dimensionless parameter a * determined by the circumferential width a of the beam portion, the thickness b of the inner cylindrical portion, the thickness c of the outer cylindrical portion, the inner diameter Di, the outer diameter Do, the tensile strength σs of the material, and the required pressure strength Pb . , B * , c * are
a * = a.sigma.s.62 / {(1/2). (Do-Di) .157.Pb}
b * = b · σs · 62 / {(Di / 2) · (Do / 18) · 157 · Pb}
c * = c · σs · 62 / {(Do / 2) · (Di / 6) · 157 · Pb}
Represented by
The total number N is 8 to 16 der multiwell channel is,
The relationship between the coefficients C1, C2, C3, C4 set by the total number N and the dimensionless parameters a * , b * , c * is
b * / (a * ) C2 = C1,
(C * −C4) / b * = C3,
C1 = 0.17697N + 0.72687,
C2 = 0.00241N + 0.86991,
C3 = −0.00960N−0.21260,
C4 = 0.00180N + 0.36960,
It is.

この押出管では、上記数式によって、内円筒部、外円筒部、及び梁部それぞれの最適な壁厚が比較的容易に算出されるので、押出管材料の使用量削減が促進される。   In this extruded tube, the optimum wall thickness of each of the inner cylindrical portion, the outer cylindrical portion, and the beam portion can be calculated relatively easily by the above formula, so that reduction in the amount of extruded tube material used is promoted.

本発明の第観点に係る押出管は、第1観点に係る押出管であって、
引張強度σsが、100N/mm2〜200N/mm2
必要耐圧強度Pbが、30MPa以上、
である。
The extruded tube according to the second aspect of the present invention is an extruded tube according to the first aspect,
Tensile strength σs is 100 N / mm 2 to 200 N / mm 2 ,
The required pressure strength Pb is 30 MPa or more,
It is.

この押出管では、適用可能な引張強度の範囲が広いので、アルミ材料を選択する際、その材料選択の自由度が大きい。   In this extruded tube, since the range of applicable tensile strength is wide, when selecting an aluminum material, the flexibility of the material selection is great.

本発明の第観点に係る押出管は、第1観点又は観点に係る押出管であって、多穴流路のうち、内円筒部側円周面および外円筒部側円周面とは同心円形状を成している。 An extruded tube according to a third aspect of the present invention is an extruded tube according to the first aspect or the second aspect, and includes an inner cylindrical portion-side circumferential surface and an outer cylindrical portion-side circumferential surface of the multi-hole channel. Is concentric.

この押出管では、例えば、多穴流路のうち内円筒部側円周面が内円筒部と同心円形状を成すことによって、内円筒部の厚みbが多穴流路と対峙する領域で一定寸法となるので、耐圧強度が安定する。同様に、多穴流路のうち外円筒部側円周面が外円筒部と同心円形状を成すことによって、外円筒部の厚みcが多穴流路と対峙する領域で一定寸法となるので、耐圧強度が安定する。   In this extruded tube, for example, the inner cylindrical part-side circumferential surface of the multi-hole flow path is concentric with the inner cylindrical part, so that the thickness b of the inner cylindrical part is constant in the region facing the multi-hole flow path. Therefore, the pressure strength is stabilized. Similarly, since the outer cylindrical part side circumferential surface of the multi-hole flow path is concentric with the outer cylindrical part, the thickness c of the outer cylindrical part becomes a constant dimension in the region facing the multi-hole flow path. Stable pressure strength.

本発明の第観点に係る押出管は、第1観点から第観点のいずれかに係る押出管であって、梁部の幅aを2等分する仮想面が内円筒部の中心軸を含み、梁部の幅aを挟む面はその仮想面と平行である。 An extruded tube according to a fourth aspect of the present invention is the extruded tube according to any one of the first to third aspects, wherein the virtual plane that divides the width a of the beam portion into two equals the central axis of the inner cylindrical portion. The plane including the width a of the beam portion is parallel to the virtual plane.

この押出管では、内円筒部から外円筒部にかけて梁部の幅aが同一寸法となるので、梁部の全長(幅aと直交する方向)にわたって耐圧強度が安定する。   In this extruded tube, since the width a of the beam portion is the same from the inner cylindrical portion to the outer cylindrical portion, the compressive strength is stabilized over the entire length of the beam portion (direction perpendicular to the width a).

本発明の第観点に係る熱交換器は、第1観点から第観点に係る押出管を用いた熱交換器であって、第1流路および多穴流路に冷媒が流通する。 The heat exchanger which concerns on the 5th viewpoint of this invention is a heat exchanger using the extruded tube which concerns on a 1st viewpoint to a 4th viewpoint, Comprising: A refrigerant | coolant distribute | circulates to a 1st flow path and a multihole flow path.

この熱交換器は、例えば、空気調和装置の放熱器出口から膨張弁に向う冷媒を冷却する過冷却熱交換器として利用されるので、過冷却熱交換器を搭載する空気調和装置の冷凍能力の向上、および低コスト化に貢献することができる。   This heat exchanger is used, for example, as a supercooling heat exchanger that cools the refrigerant from the radiator outlet of the air conditioner toward the expansion valve, and therefore, the refrigerating capacity of the air conditioner equipped with the supercooling heat exchanger is It can contribute to improvement and cost reduction.

本発明の第観点に係る熱交換器は、第1観点から第観点に係る押出管を用いた熱交換器であって、第1流路および多穴流路の一方に水が流通し、他方に冷媒が流通する。 A heat exchanger according to a sixth aspect of the present invention is a heat exchanger using an extruded tube according to the first to fourth aspects, wherein water flows through one of the first flow path and the multi-hole flow path. The refrigerant circulates on the other side.

この熱交換器は、例えば、ヒートポンプ式給湯機の水―冷媒・熱交換器として利用されるので、ヒートポンプ式給湯機の能力の向上、および低コスト化に貢献することができる。   Since this heat exchanger is used as, for example, a water-refrigerant / heat exchanger of a heat pump type hot water heater, it can contribute to the improvement of the capacity of the heat pump type hot water heater and cost reduction.

本発明の第観点に係る冷凍装置は、第観点または第観点に係る熱交換器を備えた
冷凍装置である。熱交換器が、過冷却熱交換器として利用されたとき、或いは水―冷媒・熱交換器として利用されたとき、冷凍装置の能力も向上し、コストも低減される。
A refrigeration apparatus according to a seventh aspect of the present invention is a refrigeration apparatus including the heat exchanger according to the fifth aspect or the sixth aspect . When the heat exchanger is used as a supercooling heat exchanger or as a water-refrigerant / heat exchanger, the capacity of the refrigeration apparatus is improved and the cost is reduced.

本発明の第1観点に係る押出管では、数式によって、内円筒部、外円筒部、及び梁部それぞれの最適な壁厚が比較的容易に算出されるので、押出管材料の使用量削減が促進される。   In the extruded tube according to the first aspect of the present invention, the optimum wall thickness of each of the inner cylindrical portion, the outer cylindrical portion, and the beam portion is relatively easily calculated by the mathematical formula, so that the usage amount of the extruded tube material can be reduced. Promoted.

本発明の第観点に係る押出管では、適用可能な引張強度の範囲が広いので、アルミ材料を選択する際、その材料選択の自由度が大きい。 In the extruded tube according to the second aspect of the present invention, since the range of applicable tensile strength is wide, when selecting an aluminum material, the degree of freedom in selecting the material is great.

本発明の第観点に係る押出管では、内円筒部の厚みb及び外円筒部の厚みcが多穴流路と対峙する領域で一定寸法となるので、耐圧強度が安定する。 In the extruded tube according to the third aspect of the present invention, since the thickness b of the inner cylindrical portion and the thickness c of the outer cylindrical portion are constant in the region facing the multi-hole flow path, the pressure resistance is stable.

本発明の第観点に係る押出管では、内円筒部から外円筒部にかけて梁部の幅aが同一寸法となるので、梁部の全長(幅aと直交する方向)にわたって耐圧強度が安定する。 In the extruded tube according to the fourth aspect of the present invention, since the width a of the beam portion is the same from the inner cylindrical portion to the outer cylindrical portion, the pressure strength is stabilized over the entire length of the beam portion (direction perpendicular to the width a). .

本発明の第観点に係る熱交換器は、例えば、空気調和装置の放熱器出口から膨張弁に向う冷媒を冷却する過冷却熱交換器として利用されるので、過冷却熱交換器を搭載する空気調和装置の冷凍能力の向上、及び低コスト化に貢献することができる。 Since the heat exchanger which concerns on the 5th viewpoint of this invention is utilized as a supercooling heat exchanger which cools the refrigerant | coolant which goes to the expansion valve from the radiator outlet of an air conditioning apparatus, for example, a supercooling heat exchanger is mounted. It can contribute to the improvement of the refrigerating capacity and cost reduction of the air conditioner.

本発明の第観点に係る熱交換器は、例えば、ヒートポンプ式給湯機の水―冷媒・熱交換器として利用されるので、ヒートポンプ式給湯機の能力向上、及び低コスト化に貢献することができる。 Since the heat exchanger according to the sixth aspect of the present invention is used as, for example, a water-refrigerant / heat exchanger of a heat pump type hot water heater, it can contribute to improvement of the capacity of the heat pump type hot water heater and cost reduction. it can.

本発明の第観点に係る冷凍装置では、冷凍装置の能力が向上し、コストも低減される。 In the refrigeration apparatus according to the seventh aspect of the present invention, the capacity of the refrigeration apparatus is improved and the cost is also reduced.

本発明の一実施形態に係る押出管から成る過冷却熱交換器を使用する冷凍装置の構成図。The block diagram of the freezing apparatus which uses the supercooling heat exchanger which consists of an extrusion pipe concerning one embodiment of the present invention. 押出管の断面図。Sectional drawing of an extrusion pipe. 目標耐圧強度を満たすa、b、cに係る無次元パラメータa*、b*、及びc*の関係を示すグラフ。The graph which shows the relationship of the dimensionless parameters a * , b * , and c * concerning a, b, and c which satisfy | fill target pressure-resistant intensity | strength. 内円筒部の厚みbと外側流路断面積との関係を、梁部の幅a毎に示したグラフ。The graph which showed the relationship between the thickness b of an inner cylindrical part, and an outer side channel cross-sectional area for every width a of a beam part. 梁部の幅a毎に、内円筒部の厚みbおよび外円筒部の厚みcの最適値と許容範囲を示した表。The table | surface which showed the optimum value and tolerance | permissible_range of the thickness b of an inner cylindrical part and the thickness c of an outer cylindrical part for every width a of a beam part. 梁部の幅a、内円筒部の厚みbおよび外円筒部の厚みcが同時に破壊するときの応力分布図。The stress distribution diagram when the width a of the beam portion, the thickness b of the inner cylindrical portion, and the thickness c of the outer cylindrical portion are simultaneously broken.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

(1)空気調和装置
(1−1)全体構成
図1は、本発明の一実施形態に係る押出管から成る過冷却熱交換器を使用する冷凍装置の構成図である。図1において、冷凍装置1は、冷房運転及び暖房運転が可能な空気調和装置であり、室外機3と、室内機5と、室外機3と室内機5とを接続するための液冷媒連絡配管7及びガス冷媒連絡配管9とを備えている。
(1) Air Conditioner (1-1) Overall Configuration FIG. 1 is a configuration diagram of a refrigeration apparatus that uses a supercooling heat exchanger composed of an extruded tube according to an embodiment of the present invention. In FIG. 1, a refrigeration apparatus 1 is an air conditioner capable of cooling operation and heating operation, and a liquid refrigerant communication pipe for connecting an outdoor unit 3, an indoor unit 5, and the outdoor unit 3 and the indoor unit 5. 7 and a gas refrigerant communication pipe 9.

(1−2)室内機
室内機5は、室内熱交換器51と、室内ファン53とを有している。室内熱交換器51では、室内空気との熱交換によって内部を流れる冷媒が蒸発又は放熱し、室内の空気が冷却又は加熱される。室内ファン53は、回転することによって室内空気を取り込んで室内熱交換器51に送風し、室内熱交換器51と室内空気との熱交換を促進する。
(1-2) Indoor Unit The indoor unit 5 includes an indoor heat exchanger 51 and an indoor fan 53. In the indoor heat exchanger 51, the refrigerant flowing inside is evaporated or radiated by heat exchange with the room air, and the room air is cooled or heated. The indoor fan 53 takes in room air by rotating and blows it to the indoor heat exchanger 51 to promote heat exchange between the indoor heat exchanger 51 and room air.

(1−3)室外機
室外機3は、主に、圧縮機21、四路切換弁23、室外熱交換器25、膨張弁29、液側閉鎖弁37、ガス側閉鎖弁39、アキュームレータ31、バイパス路33、及び過冷却熱交換器83を有している。さらに、室外機3は室外ファン41も有している。
(1-3) Outdoor unit The outdoor unit 3 mainly includes a compressor 21, a four-way switching valve 23, an outdoor heat exchanger 25, an expansion valve 29, a liquid side closing valve 37, a gas side closing valve 39, an accumulator 31, A bypass path 33 and a supercooling heat exchanger 83 are provided. Furthermore, the outdoor unit 3 also has an outdoor fan 41.

(1−3−1)圧縮機、四路切換弁およびアキュームレータ
圧縮機21は、ガス冷媒を吸入して圧縮する。圧縮機21の吸込口手前には、アキュームレータ31が配置されており、圧縮機21に液冷媒が直に吸い込まれないようになっている。
(1-3-1) Compressor, four-way switching valve, and accumulator The compressor 21 sucks and compresses the gas refrigerant. An accumulator 31 is arranged in front of the suction port of the compressor 21 so that liquid refrigerant is not directly sucked into the compressor 21.

四路切換弁23は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える。冷房運転時、四路切換弁23は、圧縮機21の吐出側と室外熱交換器25のガス側とを接続するとともに圧縮機21の吸入側とガス側閉鎖弁39とを接続する。つまり、図1の四路切換弁23内の実線で示された状態である。   The four-way switching valve 23 switches the direction of the refrigerant flow when switching between the cooling operation and the heating operation. During the cooling operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 25 and connects the suction side of the compressor 21 and the gas side closing valve 39. That is, this is the state indicated by the solid line in the four-way selector valve 23 in FIG.

また、暖房運転時、四路切換弁23は、圧縮機21の吐出側とガス側閉鎖弁39とを接続するとともに圧縮機21の吸入側と室外熱交換器25のガス側とを接続する。つまり、図1の四路切換弁23内の点線で示された状態である。   During the heating operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side shut-off valve 39 and connects the suction side of the compressor 21 and the gas side of the outdoor heat exchanger 25. That is, this is the state indicated by the dotted line in the four-way selector valve 23 of FIG.

(1−3−2)室外熱交換器
室外熱交換器25では、室外空気との熱交換によって内部を流れる冷媒が放熱又は蒸発する。なお、室ファン41が、この室外熱交換器25と対峙するように配置されており、回転することによって室外空気を取り込んで室外熱交換器25に送風し、室外熱交換器25と室外空気との熱交換を促進する。
(1-3-2) Outdoor heat exchanger In the outdoor heat exchanger 25, the refrigerant flowing inside is radiated or evaporated by heat exchange with outdoor air. Note that the chamber outside the fan 41 is disposed so as to face this outdoor heat exchanger 25, and blown to the outdoor heat exchanger 25 takes in outdoor air by rotating the outdoor heat exchanger 25 and the outdoor air Promote heat exchange with.

(1−3−3)膨張弁
膨張弁29は、冷媒圧力や冷媒流量の調節を行うために、室外熱交換器25と液側閉鎖弁37の間の配管に接続され、冷房運転時及び暖房運転時のいずれにおいても、冷媒を膨張させる機能を有している。
(1-3-3) Expansion Valve The expansion valve 29 is connected to a pipe between the outdoor heat exchanger 25 and the liquid side shut-off valve 37 in order to adjust the refrigerant pressure and the refrigerant flow rate. It has a function of expanding the refrigerant at any time during operation.

(1−3−4)バイパス路と流量調整弁
室外熱交換器25と膨張弁29との間には、冷媒の一部を分岐させてバイパス路33に向わせる分岐点271が設けられている。バイパス路33の途中には、流量調整弁35が接続されている。本実施形態では、流量調整弁35は電動膨張弁である。
(1-3-4) Bypass path and flow rate adjustment valve A branch point 271 is provided between the outdoor heat exchanger 25 and the expansion valve 29 to branch a part of the refrigerant toward the bypass path 33. Yes. A flow rate adjustment valve 35 is connected in the middle of the bypass path 33. In the present embodiment, the flow rate adjustment valve 35 is an electric expansion valve.

(1−3−5)閉鎖弁および冷媒連絡配管
液側閉鎖弁37及びガス側閉鎖弁39は、それぞれ、液冷媒連絡配管7及びガス冷媒連絡配管9に接続されている。液冷媒連絡配管7は、室内機5の室内熱交換器51の液側と室外機3の液側閉鎖弁37との間を接続している。ガス冷媒連絡配管9は、室内機5の室内熱交換器51のガス側と室外機3のガス側閉鎖弁39との間を接続している。
(1-3-5) Closing valve and refrigerant communication pipe The liquid side closing valve 37 and the gas side closing valve 39 are connected to the liquid refrigerant communication pipe 7 and the gas refrigerant communication pipe 9, respectively. The liquid refrigerant communication pipe 7 connects between the liquid side of the indoor heat exchanger 51 of the indoor unit 5 and the liquid side closing valve 37 of the outdoor unit 3. The gas refrigerant communication pipe 9 connects between the gas side of the indoor heat exchanger 51 of the indoor unit 5 and the gas side closing valve 39 of the outdoor unit 3.

その結果、冷房運転時に圧縮機21、室外熱交換器25、膨張弁29および室内熱交換器51の順に冷媒が流れ、暖房運転時に圧縮機21、室内熱交換器51、膨張弁29および室外熱交換器25の順に冷媒が流れる冷凍回路11が形成される。   As a result, the refrigerant flows in the order of the compressor 21, the outdoor heat exchanger 25, the expansion valve 29, and the indoor heat exchanger 51 during the cooling operation, and the compressor 21, the indoor heat exchanger 51, the expansion valve 29, and the outdoor heat during the heating operation. The refrigeration circuit 11 in which the refrigerant flows in the order of the exchanger 25 is formed.

(1−3−6)過冷却熱交換器
過冷却熱交換器83は、室外熱交換器25と膨張弁29との間を流れる冷媒(以後、主冷媒とよぶ)と、バイパス路33を流れる冷媒(以後、バイパス冷媒とよぶ)との間で熱交換を行わせる。本実施形態の過冷却熱交換器83は、内側の流路と外側の流路とを形成するアルミ製の押出管から成る2重管型熱交換器である。
(1-3-6) Supercooling Heat Exchanger The supercooling heat exchanger 83 flows through the bypass (33) and the refrigerant (hereinafter referred to as main refrigerant) flowing between the outdoor heat exchanger 25 and the expansion valve 29. Heat is exchanged with the refrigerant (hereinafter referred to as bypass refrigerant). The supercooling heat exchanger 83 of this embodiment is a double-pipe heat exchanger composed of an aluminum extruded tube that forms an inner channel and an outer channel.

(2)押出管
図2は、押出管の断面図である。図2において、押出管81は、内円筒部71と、外円筒部73と、複数の梁部75とを有している。外円筒部73は、内円筒部71の外周面を囲んでいる。また、内円筒部71と外円筒部73とは同心円形状を成している。
(2) Extruded tube FIG. 2 is a cross-sectional view of the extruded tube. In FIG. 2, the extruded tube 81 has an inner cylindrical portion 71, an outer cylindrical portion 73, and a plurality of beam portions 75. The outer cylindrical portion 73 surrounds the outer peripheral surface of the inner cylindrical portion 71. Further, the inner cylindrical portion 71 and the outer cylindrical portion 73 are concentric.

梁部75は、放射方向に延びて内円筒部71と外円筒部73とをつないでいる。内円筒部71は、第1流路61を形成している。また、内円筒部71と外円筒部73と複数の梁部75とによって、第2流路として多穴流路63が形成されている。   The beam portion 75 extends in the radial direction and connects the inner cylindrical portion 71 and the outer cylindrical portion 73. The inner cylindrical portion 71 forms a first flow path 61. The inner cylindrical portion 71, the outer cylindrical portion 73, and the plurality of beam portions 75 form a multi-hole flow channel 63 as a second flow channel.

本実施形態では、多穴流路63のうち内円筒部71側円周面が内円筒部71と同心円形状を成しており、内円筒部71の厚みbが多穴流路63と対峙する領域で一定寸法となっているので、耐圧強度が安定している。同様に、多穴流路63のうち外円筒部73側円周面が外円筒部73と同心円形状を成しており、外円筒部73の厚みcが多穴流路63と対峙する領域で一定寸法となっているので、耐圧強度が安定している。   In the present embodiment, the inner cylindrical portion 71 side circumferential surface of the multi-hole flow channel 63 is concentric with the inner cylindrical portion 71, and the thickness b of the inner cylindrical portion 71 faces the multi-hole flow channel 63. Since the dimensions are constant in the region, the pressure strength is stable. Similarly, the outer cylindrical portion 73 side circumferential surface of the multi-hole flow channel 63 is concentric with the outer cylindrical portion 73, and the thickness c of the outer cylindrical portion 73 faces the multi-hole flow channel 63. Since the dimensions are constant, the pressure resistance is stable.

図1に示すように、室外熱交換器25から膨張弁29に向う冷媒(以後、主冷媒とよぶ)は、過冷却熱交換器83(押出管81)の第1流路61を通る。また、室外熱交換器25を出た冷媒の一部は分岐点271からバイパス路33へ流れる冷媒(以後、バイパス冷媒とよぶ)となり、途中の流量調整弁35で減圧された後、過冷却熱交換器83(押出管81)の多穴流路63を通って圧縮機21の吸い込み側に向う。このため、過冷却熱交換器83内では、多穴流路63を通るバイパス冷媒が蒸発する際に第1流路61を通る主冷媒の熱量の一部を奪うので、主冷媒は冷却されて過冷却冷媒となる。   As shown in FIG. 1, the refrigerant (hereinafter referred to as main refrigerant) from the outdoor heat exchanger 25 toward the expansion valve 29 passes through the first flow path 61 of the supercooling heat exchanger 83 (extruded pipe 81). Further, a part of the refrigerant that has exited the outdoor heat exchanger 25 becomes a refrigerant that flows from the branch point 271 to the bypass passage 33 (hereinafter referred to as a bypass refrigerant), and is depressurized by the flow rate adjustment valve 35, and then the supercooling heat. It goes to the suction side of the compressor 21 through the multi-hole channel 63 of the exchanger 83 (extruded tube 81). For this reason, in the supercooling heat exchanger 83, when the bypass refrigerant passing through the multi-hole flow path 63 evaporates, a part of the heat amount of the main refrigerant passing through the first flow path 61 is deprived, so that the main refrigerant is cooled. It becomes a supercooled refrigerant.

(3)暖房運転と冷房運転
上記のように構成された冷凍装置について、以下、暖房運転および冷房運転それぞれにおける冷媒の流れを説明する。
(3) Heating Operation and Cooling Operation With regard to the refrigeration apparatus configured as described above, the refrigerant flow in each of the heating operation and the cooling operation will be described below.

(3−1)暖房運転時の冷媒の流れ
図1において、暖房運転時、四路切換弁23は、圧縮機21の吐出側とガス側閉鎖弁39とを接続するとともに圧縮機21の吸入側と室外熱交換器25のガス側とを接続する。また、膨張弁29は開度を絞る。その結果、室外熱交換器25が冷媒の蒸発器として機能し、かつ、室内熱交換器51が冷媒の放熱器として機能する。
(3-1) Flow of Refrigerant During Heating Operation In FIG. 1, during the heating operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side shut-off valve 39 and at the suction side of the compressor 21. And the gas side of the outdoor heat exchanger 25 are connected. In addition, the opening of the expansion valve 29 is reduced. As a result, the outdoor heat exchanger 25 functions as a refrigerant evaporator, and the indoor heat exchanger 51 functions as a refrigerant radiator.

このような状態の冷凍回路11において、低圧の冷媒は、圧縮機21に吸入され、高圧に圧縮された後に吐出される。圧縮機21から吐出された高圧の冷媒は、四路切換弁23、ガス側閉鎖弁39及びガス冷媒連絡配管9を通って、室内熱交換器51に入る。室内熱交換器51に入った高圧の冷媒は、そこで室内空気と熱交換を行って放熱する。これにより、室内空気は加熱される。   In the refrigeration circuit 11 in such a state, the low-pressure refrigerant is sucked into the compressor 21 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 21 enters the indoor heat exchanger 51 through the four-way switching valve 23, the gas side closing valve 39 and the gas refrigerant communication pipe 9. The high-pressure refrigerant that has entered the indoor heat exchanger 51 exchanges heat with the indoor air and radiates heat. Thereby, indoor air is heated.

室内熱交換器51で放熱した高圧の冷媒は、液冷媒連絡配管7及び液側閉鎖弁37を通って、膨張弁29に至る。冷媒は、膨張弁29によって低圧に減圧され、その後、過冷却熱交換器83の第1流路61を通って室外熱交換器25に入る。   The high-pressure refrigerant radiated by the indoor heat exchanger 51 reaches the expansion valve 29 through the liquid refrigerant communication pipe 7 and the liquid side closing valve 37. The refrigerant is decompressed to a low pressure by the expansion valve 29 and then enters the outdoor heat exchanger 25 through the first flow path 61 of the supercooling heat exchanger 83.

過冷却熱交換器83と室外熱交換器25との間には、バイパス路33に通じる分岐点271が設けられている。但し、暖房運転時は、バイパス路33途中の流量調整弁35が閉じられているので、冷媒がバイパス路33へ流れない。それゆえ、過冷却熱交換器83での熱交換は行われない。   A branch point 271 leading to the bypass path 33 is provided between the supercooling heat exchanger 83 and the outdoor heat exchanger 25. However, during the heating operation, the flow rate adjustment valve 35 in the middle of the bypass passage 33 is closed, so that the refrigerant does not flow into the bypass passage 33. Therefore, heat exchange in the supercooling heat exchanger 83 is not performed.

室外熱交換器25に入った冷媒は、そこで、室外ファン41によって供給される室外空気と熱交換を行って蒸発する。室外熱交換器25で蒸発した低圧の冷媒は、四路切換弁23を通じて、再び、圧縮機21に吸入される。   The refrigerant that has entered the outdoor heat exchanger 25 evaporates by exchanging heat with the outdoor air supplied by the outdoor fan 41. The low-pressure refrigerant evaporated in the outdoor heat exchanger 25 is again sucked into the compressor 21 through the four-way switching valve 23.

(3−2)冷房運転時の冷媒の流れ
図1において、冷房運転時、四路切換弁23が、圧縮機21の吐出側と室外熱交換器25のガス側とを接続するとともに圧縮機21の吸入側とガス側閉鎖弁39とを接続する。また、膨張弁29は開度を絞る。その結果、室外熱交換器25が冷媒の放熱器として機能し、且つ、室内熱交換器51が冷媒の蒸発器として機能する。
(3-2) Refrigerant Flow During Cooling Operation In FIG. 1, during the cooling operation, the four-way switching valve 23 connects the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 25 and the compressor 21. Are connected to the gas side closing valve 39. In addition, the opening of the expansion valve 29 is reduced. As a result, the outdoor heat exchanger 25 functions as a refrigerant radiator, and the indoor heat exchanger 51 functions as a refrigerant evaporator.

このような状態の冷媒回路において、低圧の冷媒は、圧縮機21に吸入され、高圧に圧縮され吐出される。圧縮機21から吐出された高圧の冷媒は、四路切換弁23を通じて、室外熱交換器25に送られる。   In the refrigerant circuit in such a state, the low-pressure refrigerant is sucked into the compressor 21, compressed to a high pressure, and discharged. The high-pressure refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 25 through the four-way switching valve 23.

室外熱交換器25に送られた高圧の冷媒は、そこで室外空気と熱交換を行って放熱する。室外熱交換器25において放熱した高圧の冷媒は、過冷却熱交換器83の第1流路61を通って膨張弁29に向う。   The high-pressure refrigerant sent to the outdoor heat exchanger 25 exchanges heat with outdoor air and radiates heat. The high-pressure refrigerant that has radiated heat in the outdoor heat exchanger 25 passes through the first flow path 61 of the supercooling heat exchanger 83 toward the expansion valve 29.

他方、冷媒の一部は過冷却熱交換器83手前の分岐点271からバイパス路33へ流れ、途中の流量調整弁35で減圧された後、過冷却熱交換器83の多穴流路63を通って圧縮機21の吸い込み側に向う。このため、過冷却熱交換器83内では、多穴流路63を通る冷媒が蒸発する際に第1流路61を通る主冷媒の熱量の一部を奪うので、主冷媒は冷却されて過冷却冷媒となる。   On the other hand, a part of the refrigerant flows from the branch point 271 in front of the supercooling heat exchanger 83 to the bypass passage 33 and is decompressed by the flow rate adjusting valve 35 on the way, and then passes through the multi-hole flow passage 63 of the supercooling heat exchanger 83. Pass through to the suction side of the compressor 21. For this reason, in the supercooling heat exchanger 83, when the refrigerant passing through the multi-hole flow path 63 evaporates, a part of the heat quantity of the main refrigerant passing through the first flow path 61 is taken away, so that the main refrigerant is cooled and superheated. It becomes a cooling refrigerant.

過冷却冷媒は膨張弁29に送られて低圧に減圧される。膨張弁29で減圧された低圧の冷媒は、液側閉鎖弁37及び液冷媒連絡配管7を通って、室内熱交換器51に入る。   The supercooled refrigerant is sent to the expansion valve 29 and depressurized to a low pressure. The low-pressure refrigerant depressurized by the expansion valve 29 enters the indoor heat exchanger 51 through the liquid side closing valve 37 and the liquid refrigerant communication pipe 7.

室内熱交換器51に入った低圧の冷媒は、そこで室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却される。室内熱交換器51において蒸発した低圧の冷媒は、ガス冷媒連絡配管9、ガス側閉鎖弁39及び四路切換弁23を通って、再び、圧縮機21に吸入される。   The low-pressure refrigerant that has entered the indoor heat exchanger 51 evaporates by exchanging heat with the indoor air. Thereby, indoor air is cooled. The low-pressure refrigerant evaporated in the indoor heat exchanger 51 passes through the gas refrigerant communication pipe 9, the gas side shut-off valve 39 and the four-way switching valve 23 and is again sucked into the compressor 21.

(4)押出管の設計
本実施形態では、押出管81の軽量化、小型化および低コスト化を図るため、内円筒部71の厚みb、外円筒部73の厚みc、及び梁部75の円周方向の幅aが、第1流路61および多穴流路63それぞれに同一所定圧力を与えたとき同時に破壊する値に設定されている。
(4) Design of extruded tube In this embodiment, in order to reduce the weight, size and cost of the extruded tube 81, the thickness b of the inner cylindrical portion 71, the thickness c of the outer cylindrical portion 73, and the beam portion 75 The width a in the circumferential direction is set to a value that simultaneously destroys when the same predetermined pressure is applied to each of the first channel 61 and the multi-hole channel 63.

その根拠は、押出管81の全ての壁が余分な厚みを削減した最適な寸法で形成されているならば、各流路に作用する圧力を壁が破壊するまで増加させたとき、全ての壁がほぼ同一圧力でほぼ同時に破壊する、と推定されているからである。以下、内円筒部71の厚みb、外円筒部73の厚みc、及び梁部75の幅aの設計方法について説明する。   The basis for this is that if all the walls of the extruded tube 81 are formed with optimum dimensions with reduced excess thickness, all the walls will be removed when the pressure acting on each flow path is increased until the wall breaks. This is because it is estimated that they will break at almost the same pressure at almost the same pressure. Hereinafter, a design method of the thickness b of the inner cylindrical portion 71, the thickness c of the outer cylindrical portion 73, and the width a of the beam portion 75 will be described.

(4−1)手順1
先ず、基本形状である内円筒部71の内径Di、外円筒部73の外径Do、および多穴流路63の総数Nを決定する。このとき、内径Diは3mm〜8mm、外径Doは15mm〜26mm、および総数Nは8〜16である。
(4-1) Procedure 1
First, the inner diameter Di of the inner cylindrical portion 71, the outer diameter Do of the outer cylindrical portion 73, and the total number N of the multi-hole flow paths 63, which are basic shapes, are determined. At this time, the inner diameter Di is 3 mm to 8 mm, the outer diameter Do is 15 mm to 26 mm, and the total number N is 8 to 16.

ここでは、Di=6mm、Do=18mm、N=16とする。   Here, Di = 6 mm, Do = 18 mm, and N = 16.

(4−2)手順2
次に、材料の引張強度σsと、目標耐圧強度を決定する。このとき、引張強度σsは100N/mm2〜200N/mm2、必要耐圧強度Pbは30MPa以上である。
(4-2) Procedure 2
Next, the tensile strength σs of the material and the target pressure strength are determined. At this time, the tensile strength σs is 100 N / mm 2 to 200 N / mm 2 and the required pressure strength Pb is 30 MPa or more.

ここでは、σs=157N/mm2、Pb=62MPaとする。 Here, σs = 157 N / mm 2 and Pb = 62 MPa.

(4−3)手順3
次に、手順1で決定された内径Di、外径Do、および総数Nから製造可能な範囲内で、梁部75の幅aを任意に決定する。
(4-3) Procedure 3
Next, the width a of the beam portion 75 is arbitrarily determined within a manufacturable range from the inner diameter Di, the outer diameter Do, and the total number N determined in the procedure 1.

ここでは、a=0.9とする。   Here, a = 0.9.

(4−4)手順4
次に、手順3で決定した梁部75の幅a、内径Di、外径Do、引張強度σs、及び必要耐圧強度Pbから、幅aに係る無次元パラメータa*を次式から算出する。
(4-4) Procedure 4
Next, the dimensionless parameter a * related to the width a is calculated from the following equation from the width a, the inner diameter Di, the outer diameter Do, the tensile strength σs, and the required pressure strength Pb of the beam portion 75 determined in the procedure 3.

*=a・σs・62/{(1/2)・(Do―Di)・157・Pb}
計算の結果、a*=0.15となる。
a * = a.sigma.s.62 / {(1/2). (Do-Di) .157.Pb}
As a result of the calculation, a * = 0.15.

(4−5)手順5
次に、手順4で算出した無次元パラメータa*を次式に代入して、厚みb、及び厚みcに係る無次元パラメータb*、及びc*を導き出す。
(4-5) Procedure 5
Next, the dimensionless parameter a * calculated in the procedure 4 is substituted into the following equation to derive the dimensionless parameters b * and c * related to the thickness b and the thickness c.

*/(a*C2=C1、
(c*−C4)/b*=C3、
C1= 0.17697N+0.72687、
C2= 0.00241N+0.86391、
C3=−0.00960N−0.21260、
C4= 0.00180N+0.36960、
計算の結果、b*=0.64、c*=0.16となる。
b * / (a * ) C2 = C1,
(C * −C4) / b * = C3,
C1 = 0.17697N + 0.72687,
C2 = 0.00241N + 0.86991,
C3 = −0.00960N−0.21260,
C4 = 0.00180N + 0.36960,
As a result of the calculation, b * = 0.64 and c * = 0.16.

(4−6)手順6
次に、手順5で導き出した無次元パラメータb*、及びc*を次式に代入して、厚みb、及び厚みcを逆算する。
(4-6) Procedure 6
Next, the dimensionless parameters b * and c * derived in the procedure 5 are substituted into the following equations, and the thickness b and the thickness c are calculated backward.

*=b・σs・62/{(Di/2)・(Do/18)・157・Pb}
*=c・σs・62/{(Do/2)・(Di/6)・157・Pb}
計算の結果、b=1.9、c=1.5となる。
b * = b · σs · 62 / {(Di / 2) · (Do / 18) · 157 · Pb}
c * = c · σs · 62 / {(Do / 2) · (Di / 6) · 157 · Pb}
As a result of the calculation, b = 1.9 and c = 1.5.

(4−7)手順4−6の変形例1
なお、上記手順4―6の式に基づいて、無次元パラメータa*から厚みb、及び厚みcを直接算出する式を作成してもよい。具体的な算出式は、
*=a・σs・62/{(1/2)・(Do―Di)・157・Pb}、
b=C1・(a*C2・(Di/2)・(Do/18)・157・Pb/(σs・62)±0.2、
c={C1・C3・(a*C2+C4}・(Do/2)・(Di/6)・157・Pb/(σs・62)±0.2、
C1= 0.17697N+0.72687、
C2= 0.00241N+0.86391、
C3=−0.00960N−0.21260、
C4= 0.00180N+0.36960、
である。
(4-7) Modification 1 of Procedure 4-6
It should be noted that, based on the formula of the above procedure 4-6, formulas for directly calculating the thickness b and the thickness c from the dimensionless parameter a * may be created. The specific calculation formula is
a * = a · σs · 62 / {(1/2) · (Do-Di) · 157 · Pb},
b = C1 · (a * ) C2 · (Di / 2) · (Do / 18) · 157 · Pb / (σs · 62) ± 0.2,
c = {C1 · C3 · (a * ) C2 + C4} · (Do / 2) · (Di / 6) · 157 · Pb / (σs · 62) ± 0.2,
C1 = 0.17697N + 0.72687,
C2 = 0.00241N + 0.86991,
C3 = −0.00960N−0.21260,
C4 = 0.00180N + 0.36960,
It is.

(4−8)手順4−6の変形例2
また、材料の引張強度σsおよび目標耐圧強度が一定として、多穴流路63の総数Nごとに、無次元パラメータa*、b*、及びc*の関係を示すグラフを作成し、b*、及びc*をそのグラフから求めてもよい。
(4-8) Modification 2 of procedure 4-6
Further, assuming that the tensile strength σs of the material and the target pressure strength are constant, a graph showing the relationship between the dimensionless parameters a * , b * , and c * is created for each total number N of the multi-hole flow paths 63, and b * , And c * may be obtained from the graph.

図3は、目標耐圧強度を満たすa、b、及びcに係る無次元パラメータa*、b*、及びc*の関係を示すグラフである。なお、横軸はb*、縦軸はc*を示す。 FIG. 3 is a graph showing the relationship between the dimensionless parameters a * , b * , and c * related to a, b, and c that satisfy the target withstand pressure strength. The horizontal axis represents b * and the vertical axis represents c * .

前提条件がσs=157N/mm2、Pb=62MPa、N=16であるとき、FEM解析によれば、目標耐圧強度を満たす幅a、厚みb、及び厚みcそれぞれに係る無次元パラメータa*、b*、及びc*の組合せは、図3に示す各曲線の上側領域(例えば、a*=0.1における網掛け部分)にあり、各曲線の変曲点が梁部75、内円筒部71、及び外円筒部73の壁が同時に破壊するような無次元パラメータa*、b*、及びc*の組合せである。変曲点では材料の無駄が無く、多穴流路63の穴断面積が最大であり、熱交換器性能が最大となる。 When the preconditions are σs = 157 N / mm 2 , Pb = 62 MPa, N = 16, according to the FEM analysis, the dimensionless parameter a * relating to each of the width a, the thickness b, and the thickness c satisfying the target pressure strength, The combination of b * and c * is in the upper region of each curve shown in FIG. 3 (for example, the shaded portion at a * = 0.1), and the inflection point of each curve is the beam portion 75 and the inner cylindrical portion. 71 and a combination of dimensionless parameters a * , b * , and c * such that the walls of the outer cylindrical portion 73 are destroyed at the same time. There is no waste of material at the inflection point, the hole cross-sectional area of the multi-hole flow path 63 is maximum, and the heat exchanger performance is maximum.

例えば、幅a=0.6のとき、手順4の式によりa*=0.1が得られる。図3のa*=0.1における曲線の変曲点からb*=0.44、及びc*=0.24が読み取れる。 For example, when the width a = 0.6, a * = 0.1 is obtained according to the equation of procedure 4. From the inflection point of the curve at a * = 0.1 in FIG. 3, b * = 0.44 and c * = 0.24 can be read.

*=0.42、及びc*=0.24を手順6の式に代入して、厚みb、及び厚みcを逆算する。その結果、b=1.3、c=2.1が得られる。 Substituting b * = 0.42 and c * = 0.24 into the expression of procedure 6 to calculate the thickness b and the thickness c in reverse. As a result, b = 1.3 and c = 2.1 are obtained.

(5)内円筒部の厚み、外円筒部の厚みの許容範囲
梁部75の幅a、内円筒部71の厚みb、及び外円筒部73の厚みcそれぞれの最適値が決定されても、製造された押出管81の幅a、厚みb及び厚みcそれぞれの仕上がり寸法が最適値から外れていることもあり得る。ここでは、梁部75の幅aが一定であるときの内円筒部71の厚みb、及び外円筒部73の厚みcの許容範囲について説明する。
(5) Thickness of the inner cylindrical portion, allowable range of the thickness of the outer cylindrical portion Even if the optimum values of the width a of the beam portion 75, the thickness b of the inner cylindrical portion 71, and the thickness c of the outer cylindrical portion 73 are determined, The finished dimensions of width a, thickness b and thickness c of the manufactured extruded tube 81 may deviate from the optimum values. Here, an allowable range of the thickness b of the inner cylindrical portion 71 and the thickness c of the outer cylindrical portion 73 when the width a of the beam portion 75 is constant will be described.

図4は、内円筒部の厚みbと外側流路断面積との関係を、梁部の幅a毎に示したグラフである。なお、前提条件は、Di=6mm、Do=18mm、σs=157N/mm2、Pb=62MPaである。 FIG. 4 is a graph showing the relationship between the thickness b of the inner cylindrical portion and the cross-sectional area of the outer flow path for each width a of the beam portion. The preconditions are Di = 6 mm, Do = 18 mm, σs = 157 N / mm 2 , and Pb = 62 MPa.

図4において、横軸は内円筒部の厚みb、縦軸は外側流路断面積比率を示している。外側流路断面積比率は、幅aに対する厚みbが最適値であるときの外側流路断面積を1としている。つまり、幅aに対する厚みbおよび厚みcが最適値のとき、外側流路断面積は最大となり、厚みb及び厚みcが最適値からプラス側およびマイナス側のいずれの側に外れても外側流路断面積は減少し、外側流路断面積比率は1未満となる。   In FIG. 4, the horizontal axis indicates the thickness b of the inner cylindrical portion, and the vertical axis indicates the outer channel cross-sectional area ratio. In the outer channel cross-sectional area ratio, the outer channel cross-sectional area when the thickness b with respect to the width a is an optimum value is 1. That is, when the thickness b and the thickness c with respect to the width a are the optimum values, the outer channel cross-sectional area becomes the maximum, and the outer channel even if the thickness b and the thickness c deviate from the optimum values to either the plus side or the minus side. The cross-sectional area decreases, and the outer channel cross-sectional area ratio becomes less than 1.

図4に示すように、幅a=0.5における厚みbの最適値は1.13であり、外側流路断面積比は1である。一般に、流路断面積は最大値から5%の低下までは許容されるので、幅a=0.5における曲線と比率0.95における水平線との交点間が厚みbの許容範囲である。図4より、幅a=0.5における厚みbの許容範囲は0.95〜1.28(最適値は1.13)である。   As shown in FIG. 4, the optimum value of the thickness b at the width a = 0.5 is 1.13, and the outer channel cross-sectional area ratio is 1. In general, since the flow path cross-sectional area is allowed to decrease from the maximum value to 5%, the allowable range of the thickness b is between the intersections of the curve at the width a = 0.5 and the horizontal line at the ratio 0.95. From FIG. 4, the allowable range of the thickness b at the width a = 0.5 is 0.95 to 1.28 (the optimum value is 1.13).

同様に、幅a=0.7における厚みbの最適値は1.54であり、許容範囲は1.38〜1.71である。また、幅a=0.9における厚みbの最適値は1.93であり、許容範囲は1.77〜2.10である。   Similarly, the optimum value of the thickness b at the width a = 0.7 is 1.54, and the allowable range is 1.38 to 1.71. The optimum value of the thickness b at the width a = 0.9 is 1.93, and the allowable range is 1.77 to 2.10.

図5は、梁部の幅a毎に、内円筒部の厚みbおよび外円筒部の厚みcの最適値と許容範囲を示した表である。図5において、厚みcは、幅aおよび厚みbから算出されており、厚みbが許容範囲の最大値のとき、厚みcは許容範囲の最小値となる。また、最下欄の[a]は、厚みbから逆算した幅aの値である。   FIG. 5 is a table showing optimum values and allowable ranges of the thickness b of the inner cylindrical portion and the thickness c of the outer cylindrical portion for each width a of the beam portion. In FIG. 5, the thickness c is calculated from the width a and the thickness b. When the thickness b is the maximum value in the allowable range, the thickness c is the minimum value in the allowable range. [A] in the bottom column is the value of the width a calculated backward from the thickness b.

一例として、(幅a、厚みb、厚みc)=(0.50、1.13、2.34)で最適値設計された押出管81の製造ロッドを検査した結果は、(幅a、厚みb、厚みc)=(0.41〜0.57、0.95〜1.28、2.54〜2.18)であることが望ましい、と言える。   As an example, the result of inspecting the manufacturing rod of the extruded tube 81 that is optimally designed with (width a, thickness b, thickness c) = (0.50, 1.13, 2.34) is (width a, thickness b, thickness c) = (0.41 to 0.57, 0.95 to 1.28, 2.54 to 2.18).

図6は、梁部の幅a、内円筒部の厚みbおよび外円筒部の厚みcが同時に破壊するときの応力分布図である。図6に示すように、梁部75では、内円筒部71から外円筒部73に至る区間のほぼ中央に応力が集中している。本実施形態では、梁部75の幅aを2等分する仮想面Pが内円筒部71の中心軸を含み、梁部75の幅aを挟む面はその仮想面Pと平行である。つまり、内円筒部71から外円筒部73にかけて梁部75の幅を同一寸法としたことによって、内円筒部71から外円筒部73に至る区間のほぼ中央に応力が集中するようになり、梁部75の全長にわたって耐圧強度が安定する。   FIG. 6 is a stress distribution diagram when the width a of the beam portion, the thickness b of the inner cylindrical portion, and the thickness c of the outer cylindrical portion are simultaneously broken. As shown in FIG. 6, in the beam portion 75, the stress is concentrated substantially at the center of the section from the inner cylindrical portion 71 to the outer cylindrical portion 73. In the present embodiment, the virtual plane P that bisects the width a of the beam portion 75 includes the central axis of the inner cylindrical portion 71, and the plane that sandwiches the width a of the beam portion 75 is parallel to the virtual plane P. In other words, by setting the width of the beam portion 75 to the same dimension from the inner cylindrical portion 71 to the outer cylindrical portion 73, the stress is concentrated at substantially the center of the section from the inner cylindrical portion 71 to the outer cylindrical portion 73. The pressure strength is stable over the entire length of the portion 75.

(6)特徴
(6−1)
押出管81では、内円筒部71の厚みb、外円筒部73の厚みc、及び梁部75の円周方向の幅aが、第1流路61および多穴流路63それぞれに同一所定圧力を与えたとき同時に破壊する値に設定されている。その根拠は、押出管81の全ての壁が余分な厚みを削減した最適な寸法で形成されているならば、各流路に作用する圧力を壁が破壊するまで増加させたとき、全ての壁がほぼ同一圧力でほぼ同時に破壊する、と推定されているからである。
(6) Features (6-1)
In the extruded tube 81, the thickness b of the inner cylindrical portion 71, the thickness c of the outer cylindrical portion 73, and the circumferential width a of the beam portion 75 are the same predetermined pressure in each of the first flow path 61 and the multi-hole flow path 63. Is set to a value that destroys at the same time. The basis for this is that if all the walls of the extruded tube 81 are formed with optimum dimensions with reduced excess thickness, all the walls will be removed when the pressure acting on each flow path is increased until the wall breaks. This is because it is estimated that they will break at almost the same pressure at almost the same pressure.

具体的には、幅a、厚みb、厚みc、内径Di、外径Do、総数N、材料の引張強度σs、及び必要耐圧強度Pbとの関係が、
*=a・σs・62/{(1/2)・(Do―Di)・157・Pb}、
b=C1・(a*C2・(Di/2)・(Do/18)・157・Pb/(σs・62)±0.2、
c={C1・C3・(a*C2+C4}・(Do/2)・(Di/6)・157・Pb/(σs・62)±0.2、
C1= 0.17697N+0.72687、
C2= 0.00241N+0.86391、
C3=−0.00960N−0.21260、
C4= 0.00180N+0.36960、
で表される式を満足する値に設定される。
Specifically, the relationship between the width a, the thickness b, the thickness c, the inner diameter Di, the outer diameter Do, the total number N, the tensile strength σs of the material, and the required pressure strength Pb is
a * = a · σs · 62 / {(1/2) · (Do-Di) · 157 · Pb},
b = C1 · (a * ) C2 · (Di / 2) · (Do / 18) · 157 · Pb / (σs · 62) ± 0.2,
c = {C1 · C3 · (a * ) C2 + C4} · (Do / 2) · (Di / 6) · 157 · Pb / (σs · 62) ± 0.2,
C1 = 0.17697N + 0.72687,
C2 = 0.00241N + 0.86991,
C3 = −0.00960N−0.21260,
C4 = 0.00180N + 0.36960,
Is set to a value that satisfies the expression represented by.

それゆえ、押出管81では、耐圧性を満たすために必要な材料の使用量を下限またはその近傍まで削減可能である。その結果、流路断面積の拡大、軽量化、及び小型化が図られる。   Therefore, in the extruded tube 81, the amount of material used to satisfy pressure resistance can be reduced to the lower limit or the vicinity thereof. As a result, the cross-sectional area of the flow path can be increased, reduced in weight, and reduced in size.

(6−2)
多穴流路63のうち内円筒部71側円周面が内円筒部71と同心円形状を成しており、内円筒部71の厚みbが多穴流路63に対応する領域で一定寸法となるので、耐圧強度が安定する。同様に、多穴流路63のうち外円筒部73側円周面が外円筒部73と同心円形状を成しており、外円筒部73の厚みcが多穴流路63に対応する領域で一定寸法となるので、耐圧強度が安定する。
(6-2)
The inner cylindrical portion 71 side circumferential surface of the multi-hole flow channel 63 is concentric with the inner cylindrical portion 71, and the thickness b of the inner cylindrical portion 71 is constant in a region corresponding to the multi-hole flow channel 63. As a result, the pressure strength is stabilized. Similarly, the outer cylindrical portion 73 side circumferential surface of the multi-hole flow channel 63 is concentric with the outer cylindrical portion 73, and the thickness c of the outer cylindrical portion 73 is a region corresponding to the multi-hole flow channel 63. Since the dimensions are constant, the pressure strength is stable.

(6−3)
押出管81では、梁部75の幅aを2等分する仮想面Pが内円筒部71の中心軸を含み、梁部75の幅aを挟む面はその仮想面Pと平行である。つまり、内円筒部71から外円筒部73にかけて梁部75の幅を同一寸法としたことによって、内円筒部71から外円筒部73に至る区間のほぼ中央に応力が集中するようになり、梁部75の全長にわたって耐圧強度が安定する。
(6-3)
In the extruded tube 81, a virtual plane P that bisects the width a of the beam portion 75 includes the central axis of the inner cylindrical portion 71, and a plane that sandwiches the width a of the beam portion 75 is parallel to the virtual plane P. In other words, by setting the width of the beam portion 75 to the same dimension from the inner cylindrical portion 71 to the outer cylindrical portion 73, the stress is concentrated at substantially the center of the section from the inner cylindrical portion 71 to the outer cylindrical portion 73. The pressure strength is stable over the entire length of the portion 75.

(6−4)
押出管81から成る熱交換器では、第1流路61を流れる冷媒が、多穴流路63を流れる冷媒によって冷却される。それゆえ、過冷却熱交換器に適している。
(6-4)
In the heat exchanger composed of the extruded tube 81, the refrigerant flowing through the first flow path 61 is cooled by the refrigerant flowing through the multi-hole flow path 63. Therefore, it is suitable for a supercooling heat exchanger.

(6−5)
押出管81を用いた熱交換器では、第1流路61を流れる水が、多穴流路63を流れる冷媒によって加熱される。それゆえ、水―冷媒・熱交換器に適している。
(6-5)
In the heat exchanger using the extruded tube 81, the water flowing through the first flow path 61 is heated by the refrigerant flowing through the multi-hole flow path 63. Therefore, it is suitable for water-refrigerant / heat exchangers.

以上のように、本発明によれば、材料の無駄が抑制され、流路断面積が最大値、或いはその近傍の値になるので、熱交換器性能が高い押出管から成る2重管型熱交換器が実現する。よって、空気調和装置に限らずヒートポンプ式給湯機にも有用である。   As described above, according to the present invention, waste of material is suppressed, and the cross-sectional area of the flow path becomes a maximum value or a value in the vicinity thereof, so that a double tube type heat composed of an extruded tube having high heat exchanger performance is obtained. An exchange is realized. Therefore, it is useful not only for an air conditioner but also for a heat pump type water heater.

61 第1流路
63 多穴流路
71 内円筒部
73 外円筒部
75 梁部
81 押出管
83 熱交換器
85 冷凍装置
61 1st flow path 63 Multi-hole flow path 71 Inner cylindrical part 73 Outer cylindrical part 75 Beam part 81 Extrusion pipe 83 Heat exchanger 85 Refrigeration apparatus

特開2002−181466号公報JP 2002-181466 A

Claims (7)

内側の第1流路(61)と外側の多穴流路(63)とを形成するアルミ製の押出管であって、
内円筒部(71)と、
前記内円筒部(71)の外周面を囲む外円筒部(73)と、
放射方向に延びて前記内円筒部(71)と前記外円筒部(73)とをつなぐ複数の梁部(75)と、
を有し、
前記第1流路(61)は、前記内円筒部(71)に囲まれた空間であり、
前記多穴流路(63)は、前記内円筒部(71)と前記外円筒部(73)と前記梁部(75)とに囲まれた空間であり、
前記内円筒部(71)の内径(Di)が3mm〜8mm、
前記外円筒部の外径(Do)が15mm〜26mm、
であ
前記梁部(75)の円周方向の幅(a)、前記内円筒部(71)の厚み(b)、前記外円筒部(73)の厚み(c)、前記内径(Di)、前記外径(Do)、材料の引張強度(σs)、及び必要耐圧強度(Pb)によって決まる、無次元パラメータa*、b*、c*は、
*=a・σs・62/{(1/2)・(Do―Di)・157・Pb}
*=b・σs・62/{(Di/2)・(Do/18)・157・Pb}
*=c・σs・62/{(Do/2)・(Di/6)・157・Pb}
で表され、
前記多穴流路(63)の総数(N)が8〜16であ
前記総数(N)によって設定される係数C1、C2、C3、C4と、前記無次元パラメータa*、b*、c*との関係は、
*/(a*C2=C1、
(c*−C4)/b*=C3、
C1= 0.17697N+0.72687、
C2= 0.00241N+0.86391、
C3=−0.00960N−0.21260、
C4= 0.00180N+0.36960、
である、
押出管(81)。
An aluminum extruded tube that forms an inner first channel (61) and an outer multi-hole channel (63),
An inner cylindrical portion (71);
An outer cylindrical portion (73) surrounding an outer peripheral surface of the inner cylindrical portion (71);
A plurality of beam portions (75) extending in a radial direction and connecting the inner cylindrical portion (71) and the outer cylindrical portion (73);
Have
The first flow path (61) is a space surrounded by the inner cylindrical portion (71),
The multi-hole channel (63) is a space surrounded by the inner cylindrical portion (71), the outer cylindrical portion (73), and the beam portion (75),
An inner diameter (Di) of the inner cylindrical portion (71) is 3 mm to 8 mm,
An outer diameter (Do) of the outer cylindrical portion of 15 mm to 26 mm,
Der is,
The circumferential width (a) of the beam portion (75), the thickness (b) of the inner cylindrical portion (71), the thickness (c) of the outer cylindrical portion (73), the inner diameter (Di), and the outer The dimensionless parameters a * , b * , c * determined by the diameter (Do), the tensile strength (σs) of the material, and the required pressure strength (Pb) are:
a * = a.sigma.s.62 / {(1/2). (Do-Di) .157.Pb}
b * = b · σs · 62 / {(Di / 2) · (Do / 18) · 157 · Pb}
c * = c · σs · 62 / {(Do / 2) · (Di / 6) · 157 · Pb}
Represented by
The total number of multiwell channel (63) (N) is Ri 8 to 16 der,
The relationship between the coefficients C1, C2, C3, C4 set by the total number (N) and the dimensionless parameters a * , b * , c * is as follows:
b * / (a * ) C2 = C1,
(C * −C4) / b * = C3,
C1 = 0.17697N + 0.72687,
C2 = 0.00241N + 0.86991,
C3 = −0.00960N−0.21260,
C4 = 0.00180N + 0.36960,
Is,
Extrusion tube (81).
前記引張強度(σs)が、100N/mm2〜200N/mm2
前記必要耐圧強度(Pb)が、30MPa以上、
である、
請求項1に記載の押出管(81)。
The tensile strength (σs) is 100 N / mm 2 to 200 N / mm 2 ,
The required pressure strength (Pb) is 30 MPa or more,
Is,
The extruded tube (81) according to claim 1.
前記多穴流路(63)のうち、前記内円筒部(71)側円周面および前記外円筒部(73)側円周面とは同心円形状を成す、
請求項1又は請求項に記載の押出管(81)。
Of the multi-hole flow path (63), the inner cylindrical part (71) side circumferential surface and the outer cylindrical part (73) side circumferential surface form a concentric shape,
The extruded tube (81) according to claim 1 or claim 2 .
前記梁部(75)の前記幅(a)を2等分する仮想面が、前記内円筒部(71)の中心軸を含み、
前記梁部(75)の前記幅(a)を挟む面は前記仮想面と平行である、
請求項1から請求項のいずれか1項に記載の押出管(81)。
The virtual plane that bisects the width (a) of the beam portion (75) includes the central axis of the inner cylindrical portion (71),
The surface sandwiching the width (a) of the beam portion (75) is parallel to the virtual surface,
The extruded tube (81) according to any one of claims 1 to 3 .
請求項1から請求項のいずれか1項に記載の押出管を用いた熱交換器であって、
前記第1流路(61)及び前記多穴流路(63)に冷媒が流通する、
熱交換器(83)。
A heat exchanger using the extruded tube according to any one of claims 1 to 4 ,
A refrigerant flows through the first channel (61) and the multi-hole channel (63).
Heat exchanger (83).
請求項1から請求項のいずれか1項に記載の押出管を用いた熱交換器であって、
前記第1流路(61)及び前記多穴流路(63)の一方に水が流通し、他方に冷媒が流通する、
熱交換器(83)。
A heat exchanger using the extruded tube according to any one of claims 1 to 4 ,
Water flows through one of the first flow path (61) and the multi-hole flow path (63), and a refrigerant flows through the other.
Heat exchanger (83).
請求項又は請求項に記載の熱交換器を備えた、
冷凍装置(1)。
The heat exchanger according to claim 5 or claim 6 is provided.
Refrigeration equipment (1).
JP2010222721A 2010-09-30 2010-09-30 Extruded tube, heat exchanger using the extruded tube, and refrigeration apparatus using the heat exchanger Active JP5655477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222721A JP5655477B2 (en) 2010-09-30 2010-09-30 Extruded tube, heat exchanger using the extruded tube, and refrigeration apparatus using the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222721A JP5655477B2 (en) 2010-09-30 2010-09-30 Extruded tube, heat exchanger using the extruded tube, and refrigeration apparatus using the heat exchanger

Publications (2)

Publication Number Publication Date
JP2012077985A JP2012077985A (en) 2012-04-19
JP5655477B2 true JP5655477B2 (en) 2015-01-21

Family

ID=46238447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222721A Active JP5655477B2 (en) 2010-09-30 2010-09-30 Extruded tube, heat exchanger using the extruded tube, and refrigeration apparatus using the heat exchanger

Country Status (1)

Country Link
JP (1) JP5655477B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10053000A1 (en) * 2000-10-25 2002-05-08 Eaton Fluid Power Gmbh Air conditioning system with internal heat exchanger and heat exchanger tube for one
JP2003106784A (en) * 2001-09-28 2003-04-09 Calsonic Kansei Corp Heat exchanger
JP3949484B2 (en) * 2002-03-27 2007-07-25 カルソニックカンセイ株式会社 Double pipe joint, Double pipe joint and double pipe brazing method
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method

Also Published As

Publication number Publication date
JP2012077985A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5927415B2 (en) Refrigeration cycle equipment
JP6180338B2 (en) Air conditioner
EP2752627B1 (en) Refrigeration device
JP5858478B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP5626254B2 (en) Heat exchanger
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
JPWO2018002983A1 (en) Refrigeration cycle equipment
US11841193B2 (en) Heat exchanger for residential HVAC applications
US11022372B2 (en) Air conditioner
KR20120114576A (en) An air conditioner
JP6273838B2 (en) Heat exchanger
JP5655477B2 (en) Extruded tube, heat exchanger using the extruded tube, and refrigeration apparatus using the heat exchanger
JP2012021679A (en) Refrigerant distribution device, heat exchange device with the same, and air conditioning apparatus with the heat exchange device
CN113646597B (en) Refrigeration cycle device
JP6984048B2 (en) Air conditioner
JP2020134107A (en) Heat exchanger and air conditioner including the same
JP2015152241A (en) Outdoor unit of air conditioner
JP6413692B2 (en) Air conditioner
JP7146139B1 (en) heat exchangers and air conditioners
JP5686753B2 (en) Air conditioner
KR101212892B1 (en) Heat exchanger module
WO2008064709A1 (en) Charge minimized heat exchanger
KR101155811B1 (en) Plate heat exchanger and air conditioner including the same
KR20160066807A (en) Indoor unit of air conditioner
TW201525387A (en) Refrigeration cycle device, and air conditioner and water heater using same refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151