JP5686753B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5686753B2
JP5686753B2 JP2012030082A JP2012030082A JP5686753B2 JP 5686753 B2 JP5686753 B2 JP 5686753B2 JP 2012030082 A JP2012030082 A JP 2012030082A JP 2012030082 A JP2012030082 A JP 2012030082A JP 5686753 B2 JP5686753 B2 JP 5686753B2
Authority
JP
Japan
Prior art keywords
pipe
side connection
refrigerant
oil
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012030082A
Other languages
Japanese (ja)
Other versions
JP2013167384A (en
Inventor
遠藤 和広
和広 遠藤
能登谷 義明
義明 能登谷
高藤 亮一
亮一 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012030082A priority Critical patent/JP5686753B2/en
Publication of JP2013167384A publication Critical patent/JP2013167384A/en
Application granted granted Critical
Publication of JP5686753B2 publication Critical patent/JP5686753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガス側接続配管の圧力損失を低減し、エネルギー効率の向上を図ると共に、ガス側接続配管の細径化を図る空気調和装置に関する。   The present invention relates to an air conditioner that reduces pressure loss in a gas side connection pipe, improves energy efficiency, and reduces the diameter of the gas side connection pipe.

特許文献1には、蒸発器と圧縮機との間に、冷媒中に含有されて冷凍装置内を循環する潤滑油を分離すると共に、この分離された潤滑油を圧縮機側に戻す潤滑油分離器を配設した冷凍装置が記載されている。分離した潤滑油を圧縮機に戻しているため、蒸発器から圧縮機までの間における冷媒配管の潤滑油が減少するため、蒸発器から圧縮機までの間における圧力損失を低減することができる。   Patent Document 1 discloses a lubricating oil separation between an evaporator and a compressor that separates the lubricating oil contained in the refrigerant and circulated in the refrigeration apparatus and returns the separated lubricating oil to the compressor side. A refrigeration apparatus with a vessel is described. Since the separated lubricating oil is returned to the compressor, the lubricating oil in the refrigerant pipe between the evaporator and the compressor is reduced, so that the pressure loss between the evaporator and the compressor can be reduced.

また、特許文献2には、流路拡大部を有するびん形のオイルセパレータ本体と、オイルセパレータ本体内壁と環状の隙間を保って配置されたガス排出管と、オイルセパレータ本体の底部近傍に開口した油排出管とを備えたオイルセパレータが記載されている。管内を油分を含むガスが流れる場合、ガスは管の中央部を早く流れ、油は管壁に沿ってゆっくり流れる性質を示す。油は上流から下流に行くに従い、環状部でガスから分離されオイルセパレータ本体の内壁に沿って流下し底部に溜り、油排出管により排出される。   Further, in Patent Document 2, a bottle-shaped oil separator body having a flow passage enlarged portion, a gas discharge pipe arranged with an annular gap maintained between the inner wall of the oil separator body, and an opening near the bottom of the oil separator body. An oil separator with an oil discharge pipe is described. When a gas containing oil flows in the pipe, the gas flows fast in the center of the pipe, and the oil flows slowly along the pipe wall. As the oil goes from upstream to downstream, the oil is separated from the gas at the annular portion, flows down along the inner wall of the oil separator body, accumulates at the bottom, and is discharged through the oil discharge pipe.

特開平3−17479号公報Japanese Patent Laid-Open No. 3-17479 実開平1−82468号公報Japanese Utility Model Publication No. 1-82468

特許文献1は、冷房運転と暖房運転とで冷媒の流れが逆方向となる冷暖房空気調和装置に関する構成について、何ら開示していない。つまり、特許文献1に記載のサイクル構成に四方切換弁を取り付けて冷暖房空気調和装置にすると、凝縮器入口の高温高圧冷媒が低圧である圧縮機入口に流れる短絡流れが形成され、効率が大幅に低下する。   Patent Document 1 does not disclose any configuration relating to a cooling / heating air conditioner in which the refrigerant flows in opposite directions during the cooling operation and the heating operation. That is, when a four-way switching valve is attached to the cycle configuration described in Patent Document 1 to form an air conditioning air conditioning apparatus, a short-circuit flow is formed in which the high-temperature high-pressure refrigerant at the condenser inlet flows to the compressor inlet at a low pressure, and the efficiency is greatly increased. descend.

また、特許文献2のオイルセパレータの油排出管は、オイルセパレータ本体の底部に溜った油のみを排出し、ガス冷媒を流通させることは想定していない。   Moreover, the oil discharge pipe of the oil separator of Patent Document 2 does not assume that only the oil accumulated at the bottom of the oil separator body is discharged and the gas refrigerant is circulated.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、冷房時及び暖房時におけるガス側接続配管の圧力損失を低減する空気調和装置を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide an air conditioner that reduces the pressure loss of the gas-side connection pipe during cooling and heating.

上記目的を達成する本発明の特徴は、圧縮機と、四方弁と、室外熱交換器と、膨張弁と、液側接続配管と、室内熱交換器と、ガス側接続配管とを冷媒配管で接続した空気調和装置において、室内熱交換器とガス側接続配管との間に油分離器を設け、油分離器の油戻し配管をガス側接続配管と四方弁との間の冷媒配管に接続し、冷房運転時、冷凍機油及び冷媒を前記油分離器の前記油戻し配管から前記ガス側接続配管と前記四方弁との間の前記冷媒配管へ流通させ、暖房運転時、冷凍機油及び冷媒を前記ガス側接続配管と前記四方弁との間の前記冷媒配管から前記油分離器の前記油戻し配管へ流通させることである。
A feature of the present invention that achieves the above object is that a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a liquid side connection pipe, an indoor heat exchanger, and a gas side connection pipe are refrigerant pipes. In the connected air conditioner, an oil separator is provided between the indoor heat exchanger and the gas side connection pipe, and the oil return pipe of the oil separator is connected to the refrigerant pipe between the gas side connection pipe and the four-way valve. , During cooling operation, refrigeration oil and refrigerant are circulated from the oil return pipe of the oil separator to the refrigerant pipe between the gas side connection pipe and the four-way valve. It is made to distribute | circulate from the said refrigerant | coolant piping between a gas side connection piping and the said four-way valve to the said oil return piping of the said oil separator .

本発明によれば、冷房時及び暖房時におけるガス側接続配管の圧力損失を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pressure loss of the gas side connection piping at the time of cooling and heating can be reduced.

本発明の第1の実施例に係る空気調和装置の系統図である。1 is a system diagram of an air conditioner according to a first embodiment of the present invention. 図1の油分離器の構造図である。FIG. 2 is a structural diagram of the oil separator of FIG. 1. 図2の油分離器の断面構造図である。FIG. 3 is a cross-sectional structure diagram of the oil separator of FIG. 2. 本発明の第2の実施例に係る空気調和装置の系統図である。It is a systematic diagram of the air conditioning apparatus which concerns on the 2nd Example of this invention. 第2のガス側接続配管の管径に対する圧力損失低減率である。It is the pressure loss reduction rate with respect to the pipe diameter of the second gas side connection pipe. 第2のガス側接続配管の管径に対する管摩擦係数である。It is a pipe friction coefficient with respect to the pipe diameter of the second gas side connection pipe.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明に係る空気調和装置の一実施例を、図1乃至図3を用いて説明する。図1は、空気調和装置100の系統図である。空気調和装置100は熱源側で室外に設置される室外ユニット1と、利用側で室内に設置される室内ユニット2と、2本のガス側接続配管(第1のガス側接続配管23、第2のガス側接続配管24)と、1本の液側接続配管15とを備える。   An embodiment of an air conditioner according to the present invention will be described with reference to FIGS. FIG. 1 is a system diagram of the air conditioner 100. The air conditioner 100 includes an outdoor unit 1 installed outside on the heat source side, an indoor unit 2 installed indoors on the usage side, and two gas side connection pipes (first gas side connection pipe 23, second gas Gas-side connection pipe 24) and one liquid-side connection pipe 15 are provided.

冷媒としてR410A、R32、R1234yf等が使用される。また、冷凍機油として相溶性のある油が使用される。   R410A, R32, R1234yf, etc. are used as the refrigerant. Moreover, compatible oil is used as refrigerating machine oil.

冷媒を圧縮する圧縮機11は、冷房運転と暖房運転で冷媒の流れの方向を切替える四方弁12に接続される。室外ファン13aにより送られてくる室外空気と冷媒との熱交換を行う室外熱交換器13は一方を四方弁12に接続され、他方を、開度が調整可能な冷媒を減圧する膨張弁14を介して、室外液側接続口15aに接続される。液側接続配管15は室外液側接続口15aと室内液側接続口15bに接続される。   The compressor 11 that compresses the refrigerant is connected to a four-way valve 12 that switches the direction of the refrigerant flow between the cooling operation and the heating operation. One of the outdoor heat exchangers 13 for exchanging heat between the outdoor air sent by the outdoor fan 13a and the refrigerant is connected to the four-way valve 12, and the other is provided with an expansion valve 14 for reducing the pressure of the refrigerant whose opening degree can be adjusted. To the outdoor liquid side connection port 15a. The liquid side connection pipe 15 is connected to the outdoor liquid side connection port 15a and the indoor liquid side connection port 15b.

室内液側配管16の一方は室内液側接続口15bに接続され、他方は室内熱交換器17に接続される。室内熱交換器17は室内ファン17bにより送られてくる室内空気と冷媒との熱交換を行う。   One of the indoor liquid side pipes 16 is connected to the indoor liquid side connection port 15 b and the other is connected to the indoor heat exchanger 17. The indoor heat exchanger 17 performs heat exchange between the indoor air sent by the indoor fan 17b and the refrigerant.

冷媒から冷凍機油を分離する油分離器19は二重管構造で、外管30側は、第1の室内ガス側配管18を介して室内熱交換器17に接続され、内管31側は、第2の室内ガス側配管20、第1の室内ガス側接続口23b、第1のガス側接続配管23、第1の室外ガス側接続口23aの順に接続される。また、油分離器19の油戻し口32は、室内油戻し配管21、第2の室内ガス側接続口24b、第2のガス側接続配管24、第2の室外ガス側接続口24aの順に接続される。   The oil separator 19 that separates the refrigerating machine oil from the refrigerant has a double pipe structure, the outer pipe 30 side is connected to the indoor heat exchanger 17 via the first indoor gas side pipe 18, and the inner pipe 31 side is The second indoor gas side pipe 20, the first indoor gas side connection port 23b, the first gas side connection pipe 23, and the first outdoor gas side connection port 23a are connected in this order. In addition, the oil return port 32 of the oil separator 19 is connected in the order of the indoor oil return pipe 21, the second indoor gas side connection port 24b, the second gas side connection pipe 24, and the second outdoor gas side connection port 24a. Is done.

第1の室外ガス側接続口23aは室外ガス側配管25を介して四方弁12に接続され、第2の室外ガス側接続口24aは室外油戻し配管26を介して室外ガス側配管25のY字部25aで接続される。Y字部25aで、冷房時に合流、暖房時に分岐する際、流路がY字形になっているため、流路損失の低減を図ることができる。   The first outdoor gas side connection port 23a is connected to the four-way valve 12 via the outdoor gas side piping 25, and the second outdoor gas side connection port 24a is connected to the Y of the outdoor gas side piping 25 via the outdoor oil return piping 26. It is connected by the character part 25a. When the Y-shaped portion 25a joins at the time of cooling and branches at the time of heating, the flow path is Y-shaped, so that the flow path loss can be reduced.

次に図2及び図3を用いて、油分離器19の構造及び作用を説明する。図2は油分離器19の構造図、図3は図2のA−A断面図及びB−B断面図を示す。油分離器19は絞り加工を施した外管30と内管31とからなる二重管構造で、外管30の拡大部30aと内管31の縮小部31bとで嵌め合うとともに、油戻し口用拡大部30bと油戻し口32とで嵌め合い、ロウ付け接合したものである。油分離器19の外管30側から流入したガス冷媒及び冷凍機油のうち、液体である冷凍機油は外管30の内壁面に沿って流れ、気体であるガス冷媒は外管30の中心を流れる。外管30の内壁面に沿って流れる冷凍機油は、外管30と内管31との間隙に流れ込み、油戻し口32より流出する。一方、ガス冷媒は主に内管31の内側に流入し、他端より流出する。   Next, the structure and operation of the oil separator 19 will be described with reference to FIGS. FIG. 2 is a structural diagram of the oil separator 19, and FIG. 3 is a cross-sectional view taken along line AA and BB in FIG. 2. The oil separator 19 has a double pipe structure including an outer pipe 30 and an inner pipe 31 that have been subjected to drawing processing. The oil separator 19 fits between an enlarged portion 30a of the outer pipe 30 and a reduced portion 31b of the inner pipe 31, and an oil return port. The enlarged portion 30b and the oil return port 32 are fitted and brazed and joined. Of the gas refrigerant and the refrigerating machine oil flowing in from the outer pipe 30 side of the oil separator 19, the refrigerating machine oil that is liquid flows along the inner wall surface of the outer pipe 30, and the gas refrigerant that is a gas flows through the center of the outer pipe 30. . The refrigerating machine oil flowing along the inner wall surface of the outer tube 30 flows into the gap between the outer tube 30 and the inner tube 31 and flows out from the oil return port 32. On the other hand, the gas refrigerant mainly flows into the inner pipe 31 and flows out from the other end.

また、二重管構造である油分離器19の配管の長さ方向が室内ガス側配管18の長さ方向と同じであり、油分離器19の外径形状がガス側配管18の外径形状から大きく変わらないので、コンパクトに配置することができる。   Further, the length direction of the pipe of the oil separator 19 having a double pipe structure is the same as the length direction of the indoor gas side pipe 18, and the outer diameter shape of the oil separator 19 is the outer diameter shape of the gas side pipe 18. Therefore, it can be arranged compactly.

また、油分離器を水平に設置した場合、外管30の内壁面に沿って流れる冷凍機油は、重力の影響により、下側が厚い分布となる。したがって、より冷凍機油が流入しやすいように、油戻し口32を内管31よりも重力方向において、下側に位置させる。   When the oil separator is installed horizontally, the lower side of the refrigerating machine oil flowing along the inner wall surface of the outer tube 30 has a thick distribution due to the influence of gravity. Therefore, the oil return port 32 is positioned below the inner pipe 31 in the direction of gravity so that the refrigerating machine oil can flow more easily.

以上の構成における冷房運転及び暖房運転の動作について説明する。まず、冷房運転時の動作を、図1を用いて説明する。図において、実線矢印が冷房運転時の冷媒流れ方向を示す。   The operation of the cooling operation and the heating operation in the above configuration will be described. First, the operation during the cooling operation will be described with reference to FIG. In the figure, solid arrows indicate the direction of refrigerant flow during cooling operation.

冷房運転時、圧縮機11で圧縮され、冷凍機油を含んだ高温高圧となったガス冷媒は、四方弁12を通って、室外熱交換器13に流入する。この高温高圧のガス冷媒は、室外熱交換器13において、室外ファン13aにより送られてくる室外空気により冷却され、凝縮する。この高圧の凝縮した冷媒は、膨張弁14で減圧され、低温低圧の気液二相冷媒となり、液側接続配管15、室内液側配管16を通って、室内熱交換器17に流入する。室内熱交換器17を流れる気液二相冷媒は、室内熱交換器17bにより送られてくる室内空気により加熱され蒸発し、低圧のガス冷媒となる。この時、室内空気を冷却することにより室内の冷房を行う。   During the cooling operation, the gas refrigerant compressed at the compressor 11 and having a high temperature and high pressure containing the refrigerating machine oil flows into the outdoor heat exchanger 13 through the four-way valve 12. This high-temperature and high-pressure gas refrigerant is cooled and condensed in the outdoor heat exchanger 13 by the outdoor air sent by the outdoor fan 13a. The high-pressure condensed refrigerant is depressurized by the expansion valve 14 to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 17 through the liquid side connection pipe 15 and the indoor liquid side pipe 16. The gas-liquid two-phase refrigerant flowing through the indoor heat exchanger 17 is heated and evaporated by the indoor air sent by the indoor heat exchanger 17b, and becomes a low-pressure gas refrigerant. At this time, the room air is cooled by cooling the room air.

室内熱交換器17の出口側の室内ガス側配管18の冷媒は冷凍機油を含み、冷凍機油は配管の壁面に沿って流れ、ガス冷媒は配管の中心を流れている。これらのガス冷媒と冷凍機油からなる冷媒は、二重管構造の油分離器19内で油分離され、油分離されたガス冷媒は室内ガス側配管20に流入し、第1のガス側接続配管23、室外ガス側配管25、四方弁12を通って再び圧縮機11に戻る。また、分離された冷凍機油は室内油戻し配管21に流入し、第2のガス側接続配管24、室外油戻し配管26を通って、室外ガス側配管25のY字部25aでガス冷媒と合流する。なお、第2のガス側接続配管24には、第1のガス側接続配管23側流路と第2のガス側接続配管24側流路との圧力損失がバランスするように、冷凍機油だけでなくガス冷媒も流れる。   The refrigerant in the indoor gas side pipe 18 on the outlet side of the indoor heat exchanger 17 contains refrigeration oil, the refrigeration oil flows along the wall surface of the pipe, and the gas refrigerant flows in the center of the pipe. The refrigerant composed of the gas refrigerant and the refrigerating machine oil is separated in an oil separator 19 having a double pipe structure, and the gas refrigerant separated from the oil flows into the indoor gas side pipe 20 and the first gas side connection pipe. 23, the outdoor gas side pipe 25 and the four-way valve 12 are returned to the compressor 11 again. The separated refrigerating machine oil flows into the indoor oil return pipe 21, passes through the second gas side connection pipe 24 and the outdoor oil return pipe 26, and merges with the gas refrigerant at the Y-shaped portion 25 a of the outdoor gas side pipe 25. To do. It should be noted that the second gas side connection pipe 24 is composed only of refrigerating machine oil so that the pressure loss between the first gas side connection pipe 23 side flow path and the second gas side connection pipe 24 side flow path is balanced. Gas refrigerant also flows.

この時、第1のガス側接続配管23には油分離されたガス冷媒が流れるので、圧力損失の低減を図ることができる。すなわち、ガス冷媒に冷凍機油が混入した場合、圧力損失は純冷媒の数倍になるため、冷凍機油の混入したガス冷媒を1本の配管で流すより、ガス冷媒と冷凍機油を分離し、2本の配管を用いてそれぞれ流すほうが、圧力損失を大幅に低減することができる。これにより、エネルギー効率の向上を図ることができる。   At this time, since the oil-separated gas refrigerant flows through the first gas side connection pipe 23, the pressure loss can be reduced. That is, when refrigerating machine oil is mixed in the gas refrigerant, the pressure loss is several times that of the pure refrigerant. Therefore, the gas refrigerant and the refrigerating machine oil are separated from each other by flowing the gas refrigerant mixed with the refrigerating machine oil through one pipe. The pressure loss can be greatly reduced by using each of the pipes. Thereby, energy efficiency can be improved.

次に暖房運転時の動作について説明する。図1において、破線矢印が暖房運転時の冷媒流れ方向を示す。   Next, operation during heating operation will be described. In FIG. 1, a broken-line arrow indicates the refrigerant flow direction during heating operation.

暖房運転時、圧縮機11で圧縮され、高温高圧となったガス冷媒は、四方弁12を通って、室外ガス側配管25のY字部25aで分流し、片方は第1のガス側接続配管23、室内ガス側配管20、油分離器19に流入し、他方は室外油戻し配管26、第2のガス側接続配管24、室内油戻し配管21、油分離器19に流入する。第1のガス側接続配管23側流路と第2のガス側接続配管24側流路とのガス冷媒の流量割合は、圧力損失がバランスする流量割合となる。なお、この時、油分離器19では油分離作用は行われない。   During the heating operation, the gas refrigerant compressed by the compressor 11 and having a high temperature and high pressure passes through the four-way valve 12 and is diverted by the Y-shaped portion 25a of the outdoor gas side pipe 25, one of which is the first gas side connection pipe. 23, flows into the indoor gas side pipe 20 and the oil separator 19, and the other flows into the outdoor oil return pipe 26, the second gas side connection pipe 24, the indoor oil return pipe 21, and the oil separator 19. The flow rate ratio of the gas refrigerant in the first gas side connection pipe 23 side flow path and the second gas side connection pipe 24 side flow path is a flow rate ratio in which pressure loss is balanced. At this time, the oil separator 19 does not perform oil separation.

油分離器19で合流した高温高圧のガス冷媒は、室内ガス側配管18を通って、室内熱交換器17に流入し、室内ファン17bにより送られてくる室内空気により冷却され、凝縮する。この時、室内空気を加熱することにより室内の暖房を行う。高圧の凝縮冷媒は、室内液側配管16、液側接続配管15を通り、膨張弁14で減圧され、低温低圧の気液二相冷媒となり、室外熱交換器13に流入する。室外熱交換器13を流れる気液二相冷媒は、室外ファン13aにより送られてくる室外空気により加熱され蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁12を通って再び圧縮機11に戻る。   The high-temperature and high-pressure gas refrigerant merged in the oil separator 19 flows into the indoor heat exchanger 17 through the indoor gas side pipe 18, and is cooled and condensed by the indoor air sent by the indoor fan 17b. At this time, the room air is heated by heating the room air. The high-pressure condensed refrigerant passes through the indoor liquid side pipe 16 and the liquid side connection pipe 15, is decompressed by the expansion valve 14, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 13. The gas-liquid two-phase refrigerant flowing in the outdoor heat exchanger 13 is heated and evaporated by the outdoor air sent by the outdoor fan 13a, and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant returns to the compressor 11 again through the four-way valve 12.

この時、冷房運転時に油戻し流路として使用した第2のガス側接続配管24側流路にも、ガス冷媒を流通させたため、第1のガス側接続配管23側流路だけに流通させた場合より、圧力損失を低減することができ、エネルギー効率の向上を図ることができる。また、本発明は、ガス側接続配管の圧力損失低減分を、ガス側接続配管の細径化に当てることができる。   At this time, since the gas refrigerant was also circulated through the second gas side connection pipe 24 side channel used as the oil return channel during the cooling operation, the gas refrigerant was circulated only through the first gas side connection pipe 23 side channel. In some cases, pressure loss can be reduced, and energy efficiency can be improved. Moreover, this invention can apply the pressure loss reduction part of gas side connection piping to diameter reduction of gas side connection piping.

空気調和装置100の定格冷房能力は8kWで、第1のガス側接続配管23の管径は12.7mm、第2のガス側接続配管24の管径は6.35mm、液側接続配管15の管径は9.52mmである。従来の定格冷房能力8kWの冷凍空調装置のガス側接続配管は1本で管径は15.88mm(配管肉厚が1mm)であり、その内径断面積は151mm2に対して、本実施例の管径12.7mmのガス側接続配管23(配管肉厚が0.8mm)の内径断面積は97mm2、管径6.35mmのガス側接続配管24(配管肉厚が0.8mm)の内径断面積は18mm2で、合計の内径断面積は115mm2で、冷媒の流路断面積を小さくでき、配管の外径断面積も小さくなるので、配管スペースを小さくできる。また、配管径が小さいため、施工性の向上を図ることができる。 The rated cooling capacity of the air conditioner 100 is 8 kW, the diameter of the first gas side connection pipe 23 is 12.7 mm, the diameter of the second gas side connection pipe 24 is 6.35 mm, and the liquid side connection pipe 15 The tube diameter is 9.52 mm. A conventional refrigeration air conditioner with a rated cooling capacity of 8 kW has a single gas side connection pipe with a pipe diameter of 15.88 mm (pipe wall thickness is 1 mm) and an inner diameter cross-section of 151 mm 2 . The inner diameter cross-sectional area of the gas-side connection pipe 23 (pipe thickness is 0.8 mm) with a pipe diameter of 12.7 mm is 97 mm 2 , and the inner diameter of the gas-side connection pipe 24 (pipe thickness is 0.8 mm) with a pipe diameter of 6.35 mm The sectional area is 18 mm 2 , the total inner diameter sectional area is 115 mm 2 , the refrigerant channel sectional area can be reduced, and the outer diameter sectional area of the piping is also reduced, so that the piping space can be reduced. Moreover, since the pipe diameter is small, the workability can be improved.

なお、従来の油分離器は油戻し配管に冷凍機油のみ流すため、油戻し配管に径が小さい。例えば、管径3.18mm(肉厚0.8mm)を用いており、その内径断面積は2mm2で、第1のガス側接続配管23の管径12.7mm(内径断面積97mm2)との内径断面積の比率は約2%である。 The conventional oil separator has a small diameter in the oil return pipe because only the refrigeration oil flows through the oil return pipe. For example, a pipe diameter of 3.18 mm (wall thickness of 0.8 mm) is used, the inner diameter cross-sectional area is 2 mm 2 , and the first gas side connection pipe 23 has a pipe diameter of 12.7 mm (inner diameter cross-sectional area of 97 mm 2 ). The ratio of the inner diameter cross-sectional area is about 2%.

この時、第1のガス側接続配管と油戻し配管にガス冷媒のみ流れると仮定し、冷媒の物性(冷媒:R410A、密度:40.22kg/m3、動粘度:3.07×10-72/s)とニクラウゼの式(後述)を用いて、流量と圧力損失の関係(全流量:0.0483kg/s)を求めると、例えば管径3.18mmの油戻し配管に流れる冷媒は全体の1%未満である。そして、油戻し配管にガス冷媒がバイパスする効果として、第1のガス側接続配管の圧力損失低減率は1%未満である。 At this time, it is assumed that only the gas refrigerant flows through the first gas side connection pipe and the oil return pipe, and the physical properties of the refrigerant (refrigerant: R410A, density: 40.22 kg / m 3 , kinematic viscosity: 3.07 × 10 −7 m 2 / s) and Nicklaus's equation (described later), the relationship between the flow rate and the pressure loss (total flow rate: 0.0483 kg / s) is calculated. For example, the refrigerant flowing in the oil return pipe having a tube diameter of 3.18 mm is Less than 1% of the total. As an effect of bypassing the gas refrigerant to the oil return pipe, the pressure loss reduction rate of the first gas side connection pipe is less than 1%.

圧力損失Δpは(式1)で表せる。   The pressure loss Δp can be expressed by (Formula 1).

Δp=λ×l/d×ρv2/2 ………(式1)
また、管摩擦係数λは、(式2)のニクラウゼの式で表せる。
Δp = λ × l / d × ρv 2/2 ......... ( Equation 1)
Further, the pipe friction coefficient λ can be expressed by the Nikrose expression of (Expression 2).

λ=0.0032+0.221/Re0.237 ………(式2)
なお、特許文献1には、冷媒配管が約16mm程度、油戻し配管が4〜5mm程度の例が述べられており、内径断面積の比率は3〜6%程度であり、2%より若干大きいが、ガス冷媒をバイパスする効果として、同様に小さい。
λ = 0.0032 + 0.221 / Re 0.237 (Formula 2)
Patent Document 1 describes an example in which the refrigerant pipe is about 16 mm and the oil return pipe is about 4 to 5 mm, and the ratio of the inner diameter cross-sectional area is about 3 to 6%, which is slightly larger than 2%. However, the effect of bypassing the gas refrigerant is similarly small.

一方、本実施例の油戻し流路となる第2のガス側接続配管24の管径6.35mm(内径断面積18mm2)の第1のガス側接続配管23との内径断面積の比率は19%である。 On the other hand, the ratio of the inner diameter cross-sectional area of the second gas-side connecting pipe 24 serving as the oil return flow path of the present embodiment to the first gas-side connecting pipe 23 having a pipe diameter of 6.35 mm (inner diameter cross-sectional area of 18 mm 2 ) is 19%.

この時、第2のガス側接続配管24に流れる冷媒は全体の約10%で、第2のガス側接続配管24にガス冷媒がバイパスする効果として、第1のガス側接続配管の圧力損失低減率は16%となり、効果が大きい。圧力損失低減10%の時の、第2のガス側接続配管24と第1のガス側接続配管23との内径断面積は12%であり、ガス冷媒の圧力損失低減の効果を得られる。第2のガス側接続配管24にガス冷媒も流すことで、第1のガス側接続配管23に流れるガス冷媒の量を減らして圧力損失を低減することができ、エネルギー効率の向上を図ることができる。なお、圧力損失がバランスするように、第1のガス側接続配管23側流路と第2のガス側接続配管24側流路にガス冷媒が分配される。   At this time, the refrigerant flowing through the second gas side connection pipe 24 is about 10% of the total, and as an effect of bypassing the gas refrigerant to the second gas side connection pipe 24, the pressure loss of the first gas side connection pipe is reduced. The rate is 16% and the effect is great. When the pressure loss is reduced by 10%, the inner diameter cross-sectional area of the second gas side connection pipe 24 and the first gas side connection pipe 23 is 12%, and the effect of reducing the pressure loss of the gas refrigerant can be obtained. By flowing the gas refrigerant through the second gas side connection pipe 24, the amount of the gas refrigerant flowing through the first gas side connection pipe 23 can be reduced to reduce the pressure loss, and the energy efficiency can be improved. it can. The gas refrigerant is distributed to the first gas side connection pipe 23 side flow path and the second gas side connection pipe 24 side flow path so that the pressure loss is balanced.

図5に第1のガス側接続配管の管径が12.7mm(肉厚0.8mm)である場合における第2のガス側接続配管の管径に対する圧力損失低減率を示す。図6に第2のガス側接続配管の管径に対する管摩擦係数を示す。図5に示すように、第2のガス側接続配管24の管径が6mm(肉厚0.8mm)以下では圧力損失低減率が低く、管径が6mmを超えると圧力損失低減率が大きく向上する。これは、図6に示すように、第2のガス側接続配管24の管径が6mm以下では第2のガス側接続配管24の管摩擦係数が大きいからである。従って、油戻し流路に冷凍機油だけでなく、ガス冷媒も流して、圧力損失低減の効果を得るためには、第2のガス側接続配管24の内径断面積は、第1のガス側接続配管23の内径断面積の略15%以上にすることが望ましい。   FIG. 5 shows the pressure loss reduction ratio with respect to the pipe diameter of the second gas side connection pipe when the pipe diameter of the first gas side connection pipe is 12.7 mm (wall thickness: 0.8 mm). FIG. 6 shows the pipe friction coefficient with respect to the pipe diameter of the second gas side connection pipe. As shown in FIG. 5, the pressure loss reduction rate is low when the diameter of the second gas side connection pipe 24 is 6 mm (thickness 0.8 mm) or less, and the pressure loss reduction rate is greatly improved when the pipe diameter exceeds 6 mm. To do. This is because, as shown in FIG. 6, when the pipe diameter of the second gas side connection pipe 24 is 6 mm or less, the pipe friction coefficient of the second gas side connection pipe 24 is large. Therefore, in order to obtain not only the refrigerating machine oil but also the gas refrigerant through the oil return flow path to obtain the effect of reducing the pressure loss, the inner diameter cross-sectional area of the second gas side connection pipe 24 is the first gas side connection. It is desirable to make it approximately 15% or more of the inner diameter cross-sectional area of the pipe 23.

本発明の他の実施例を図4を用いて説明する。図4に示す空気調和装置101は、油分離器19を室内ユニット2と別体にしたものである。同等部分には同一符号を付し、その詳細な説明は省略する。   Another embodiment of the present invention will be described with reference to FIG. The air conditioner 101 shown in FIG. 4 is obtained by separating the oil separator 19 from the indoor unit 2. Equivalent parts are denoted by the same reference numerals, and detailed description thereof is omitted.

図4は、空気調和装置101の系統図である。油分離器19の外管30は室内ユニット2の室内ガス側接続口40bに接続され、内管31は第1の油分離器ガス側接続口41aを介して、第1のガス側接続配管23に接続され、油戻し口32は第2の油分離器ガス側接続口41bを介して、第2のガス側接続配管24に接続される。また、Y字管43は、第1のY字管ガス側接続口42aを介して、第1のガス側接続配管23に接続され、第2のY字管ガス側接続口42bを介して、第2のガス側接続配管24に接続され、室外ガス側接続口40aを介して、室外ガス側配管25に接続される。   FIG. 4 is a system diagram of the air conditioner 101. The outer pipe 30 of the oil separator 19 is connected to the indoor gas side connection port 40b of the indoor unit 2, and the inner pipe 31 is connected to the first gas side connection pipe 23 via the first oil separator gas side connection port 41a. The oil return port 32 is connected to the second gas side connection pipe 24 via the second oil separator gas side connection port 41b. Moreover, the Y-shaped tube 43 is connected to the first gas-side connecting pipe 23 via the first Y-shaped tube gas side connection port 42a, and via the second Y-shaped tube gas side connection port 42b. It is connected to the second gas side connection pipe 24 and is connected to the outdoor gas side pipe 25 through the outdoor gas side connection port 40a.

冷房運転時、室内熱交換器17の出口側の室内ガス側配管18の冷媒は冷凍機油を含み、冷凍機油は配管の壁面に沿って流れ、ガス冷媒は配管の中心を流れている。これらのガス冷媒と冷凍機油からなる冷媒は、室内ユニットの外に配置された二重管構造の油分離器19内で油分離され、油分離されたガス冷媒は、第1のガス側接続配管23、Y字管43、室外ガス側配管25、四方弁12を通って再び圧縮機11に戻る。また、分離された冷凍機油は第2のガス側接続配管24を通って、Y字管43でガス冷媒と合流する。なお、第2のガス側接続配管24には、第1のガス側接続配管23側流路と第2のガス側接続配管24側流路との圧力損失がバランスするように、冷凍機油だけでなくガス冷媒も流れる。   During the cooling operation, the refrigerant in the indoor gas side pipe 18 on the outlet side of the indoor heat exchanger 17 contains refrigeration oil, the refrigeration oil flows along the wall surface of the pipe, and the gas refrigerant flows in the center of the pipe. The refrigerant composed of these gas refrigerant and refrigerating machine oil is oil-separated in an oil separator 19 having a double pipe structure arranged outside the indoor unit, and the gas refrigerant separated from the oil is supplied to the first gas side connection pipe. 23, the Y-shaped pipe 43, the outdoor gas side pipe 25, and the four-way valve 12 are returned to the compressor 11 again. The separated refrigerating machine oil passes through the second gas side connection pipe 24 and merges with the gas refrigerant at the Y-shaped pipe 43. It should be noted that the second gas side connection pipe 24 is composed only of refrigerating machine oil so that the pressure loss between the first gas side connection pipe 23 side flow path and the second gas side connection pipe 24 side flow path is balanced. Gas refrigerant also flows.

暖房運転時、圧縮機11で圧縮され、高温高圧となったガス冷媒は、四方弁12を通って、Y字管43で分流し、片方は第1のガス側接続配管23、油分離器19に流入し、他方は第2のガス側接続配管24、油分離器19に流入する。第1のガス側接続配管23側流路と第2のガス側接続配管24側流路とのガス冷媒の流量割合は、圧力損失がバランスする流量割合となる。なお、この時、油分離器19では油分離作用は行われない。   During the heating operation, the gas refrigerant compressed by the compressor 11 and having become high temperature and high pressure passes through the four-way valve 12 and is divided by the Y-shaped pipe 43, one of which is the first gas side connection pipe 23 and the oil separator 19. The other flows into the second gas side connection pipe 24 and the oil separator 19. The flow rate ratio of the gas refrigerant in the first gas side connection pipe 23 side flow path and the second gas side connection pipe 24 side flow path is a flow rate ratio in which pressure loss is balanced. At this time, the oil separator 19 does not perform oil separation.

この時、油分離器19を室内ユニット2と別体に設けたので、従来のユニットに、油分離器、Y字管を追加し、2本の接続配管を用いることにより、圧力損失を低減し、エネルギー効率の向上を図ることができる。   At this time, since the oil separator 19 is provided separately from the indoor unit 2, an oil separator and a Y-shaped pipe are added to the conventional unit, and pressure loss is reduced by using two connecting pipes. , Energy efficiency can be improved.

また、ガス側接続配管の圧力損失低減分を、ガス側接続配管の細径化に当てることにより、配管スペースを小さくできるとともに、配管径が小さいため、施工性の向上を図ることができる。   Further, by applying the reduced pressure loss of the gas side connection pipe to the diameter reduction of the gas side connection pipe, the piping space can be reduced and the workability can be improved since the pipe diameter is small.

なお、本実施例では、二重管構造の油分離器について述べたが、本構造に限定されるものではない。   In the present embodiment, the oil separator having a double pipe structure has been described, but the present invention is not limited to this structure.

本発明の空気調和装置は、圧縮機と、四方弁と、室外熱交換器と、膨張弁と、液側接続配管と、室内熱交換器と、ガス側接続配管とを冷媒配管で接続した空気調和装置において、室内熱交換器とガス側接続配管との間に油分離器を設け、油分離器の油戻し配管をガス側接続配管と四方弁との間の冷媒配管に接続した。   The air conditioner of the present invention is an air in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a liquid side connection pipe, an indoor heat exchanger, and a gas side connection pipe are connected by a refrigerant pipe. In the harmony device, an oil separator was provided between the indoor heat exchanger and the gas side connection pipe, and the oil return pipe of the oil separator was connected to the refrigerant pipe between the gas side connection pipe and the four-way valve.

また、油分離器の油戻し配管の内径断面積をガス側接続配管の内径断面積の略15%以上とした。   Further, the inner diameter cross-sectional area of the oil return pipe of the oil separator was set to about 15% or more of the inner diameter cross-sectional area of the gas side connection pipe.

また、冷房運転時、冷凍機油及び冷媒を油分離器の油戻し配管からガス側接続配管と四方弁との間の冷媒配管へ流通させ、暖房運転時、冷凍機油及び冷媒をガス側接続配管と四方弁との間の冷媒配管から油分離器の油戻し配管へ流通させる。   Further, during the cooling operation, the refrigeration oil and the refrigerant are circulated from the oil return pipe of the oil separator to the refrigerant pipe between the gas side connection pipe and the four-way valve, and during the heating operation, the refrigeration oil and the refrigerant are connected to the gas side connection pipe. The refrigerant pipe between the four-way valve is circulated to the oil return pipe of the oil separator.

また、油分離器を二重管構造とし、油分離器の前記油戻し配管は二重管構造の外管である。   The oil separator has a double pipe structure, and the oil return pipe of the oil separator is an outer pipe having a double pipe structure.

1 室外ユニット
2 室内ユニット
11 圧縮機
12 四方弁
13 室外熱交換器
14 膨張弁
15 液側接続配管
17 室内熱交換器
19 油分離器
23、24 ガス側接続配管
43 Y字管
100、101 空気調和装置
λ 管摩擦係数
l 長さ
d 管内径
ρ 密度
v 速度
Re レイノルズ数
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger 14 Expansion valve 15 Liquid side connection piping 17 Indoor heat exchanger 19 Oil separators 23 and 24 Gas side connection piping 43 Y-shaped pipes 100 and 101 Air conditioning Equipment λ Pipe friction coefficient l Length d Pipe inner diameter ρ Density v Speed Re Reynolds number

Claims (3)

圧縮機と、四方弁と、室外熱交換器と、膨張弁と、液側接続配管と、室内熱交換器と、ガス側接続配管とを冷媒配管で接続した空気調和装置において、
前記室内熱交換器と前記ガス側接続配管との間に油分離器を設け、
前記油分離器の油戻し配管を前記ガス側接続配管と前記四方弁との間の冷媒配管に接続し
冷房運転時、冷凍機油及び冷媒を前記油分離器の前記油戻し配管から前記ガス側接続配管と前記四方弁との間の前記冷媒配管へ流通させ、
暖房運転時、冷凍機油及び冷媒を前記ガス側接続配管と前記四方弁との間の前記冷媒配管から前記油分離器の前記油戻し配管へ流通させることを特徴とする空気調和装置。
In an air conditioner in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a liquid side connection pipe, an indoor heat exchanger, and a gas side connection pipe are connected by a refrigerant pipe.
An oil separator is provided between the indoor heat exchanger and the gas side connection pipe,
Connecting an oil return pipe of the oil separator to a refrigerant pipe between the gas side connection pipe and the four-way valve ;
During cooling operation, refrigeration oil and refrigerant are circulated from the oil return pipe of the oil separator to the refrigerant pipe between the gas side connection pipe and the four-way valve,
An air conditioner in which refrigeration oil and refrigerant are circulated from the refrigerant pipe between the gas side connection pipe and the four-way valve to the oil return pipe of the oil separator during heating operation .
前記油分離器の前記油戻し配管の内径断面積を前記ガス側接続配管の内径断面積の略15%以上とした請求項1に記載の空気調和装置。   The air conditioner according to claim 1, wherein an inner diameter cross-sectional area of the oil return pipe of the oil separator is approximately 15% or more of an inner diameter cross-sectional area of the gas side connection pipe. 前記油分離器を二重管構造とし、
前記油分離器の前記油戻し配管は二重管構造の外管であることを特徴とする請求項1又は2に記載の空気調和装置。
The oil separator has a double pipe structure,
The air conditioner according to claim 1 or 2 , wherein the oil return pipe of the oil separator is an outer pipe having a double pipe structure.
JP2012030082A 2012-02-15 2012-02-15 Air conditioner Expired - Fee Related JP5686753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030082A JP5686753B2 (en) 2012-02-15 2012-02-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030082A JP5686753B2 (en) 2012-02-15 2012-02-15 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013167384A JP2013167384A (en) 2013-08-29
JP5686753B2 true JP5686753B2 (en) 2015-03-18

Family

ID=49177918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030082A Expired - Fee Related JP5686753B2 (en) 2012-02-15 2012-02-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP5686753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464112B2 (en) * 2016-04-08 2019-02-06 株式会社Soken Integrated valve device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240299Y2 (en) * 1980-05-22 1987-10-15
JPH05215417A (en) * 1992-01-31 1993-08-24 Daikin Ind Ltd Air conditioner
JPH062957A (en) * 1992-06-18 1994-01-11 Mitsubishi Heavy Ind Ltd Air conditioner
JPH06323697A (en) * 1993-05-18 1994-11-25 Hitachi Ltd Oil separator for refrigerator
JPH08240350A (en) * 1995-03-07 1996-09-17 Matsushita Refrig Co Ltd Freezing cycle
JPH11173707A (en) * 1997-12-10 1999-07-02 Mitsubishi Electric Corp Refrigeration cycle apparatus and oil separator therefor
JP2000274840A (en) * 1999-03-25 2000-10-06 Mitsubishi Electric Corp Refrigerator

Also Published As

Publication number Publication date
JP2013167384A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
EP2833083B1 (en) Refrigeration device
US10386081B2 (en) Air-conditioning device
JPWO2016051606A1 (en) Air conditioner
EP2618077B1 (en) Heat exchanger and air conditioner including same
CN103982943B (en) Multi-online air-conditioning system
CN216716626U (en) Heat exchanger and air conditioner
JPWO2014199501A1 (en) Air conditioner
JP2011247571A (en) Heat exchanging device and connecting tube used therein
EP2787314B1 (en) Double-pipe heat exchanger and air conditioner using same
CN102455090B (en) Sub-cooling condenser
JP2015010816A (en) Refrigerant circuit and air conditioning equipment
JP2010216692A (en) Heat exchange device for outdoor unit of air conditioning system
JP2012002418A (en) Air conditioner and gas-liquid separator
JP2014137177A (en) Heat exchanger and refrigerator
CN202339054U (en) Subcooling condenser
JP5686753B2 (en) Air conditioner
JP2010261642A (en) Condenser and air conditioning device having the same
JP6273838B2 (en) Heat exchanger
JP2014122770A (en) Heat exchanger
EP3734190A1 (en) Heat exchanger and refrigeration cycle device
JP2012107775A (en) Heat exchanger and air conditioner including the heat exchanger
JP7123238B2 (en) refrigeration cycle equipment
JP2014137172A (en) Heat exchanger and refrigerator
JP7386613B2 (en) Heat exchanger and air conditioner equipped with it
JP2013015258A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150120

R150 Certificate of patent or registration of utility model

Ref document number: 5686753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees