JP5652926B2 - Method for forming gate insulating film and method for manufacturing semiconductor device - Google Patents
Method for forming gate insulating film and method for manufacturing semiconductor device Download PDFInfo
- Publication number
- JP5652926B2 JP5652926B2 JP2013507625A JP2013507625A JP5652926B2 JP 5652926 B2 JP5652926 B2 JP 5652926B2 JP 2013507625 A JP2013507625 A JP 2013507625A JP 2013507625 A JP2013507625 A JP 2013507625A JP 5652926 B2 JP5652926 B2 JP 5652926B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hfo
- forming
- insulating film
- gate insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 239000001301 oxygen Substances 0.000 claims description 49
- 229910052760 oxygen Inorganic materials 0.000 claims description 49
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 48
- 238000010438 heat treatment Methods 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 38
- 239000013078 crystal Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 18
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 15
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 238000000231 atomic layer deposition Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 157
- 239000012535 impurity Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000588731 Hafnia Species 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000004335 scaling law Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02181—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02356—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28185—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28194—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Formation Of Insulating Films (AREA)
- Electrodes Of Semiconductors (AREA)
Description
本発明は、ゲート絶縁膜の形成方法及びこのゲート絶縁膜の形成方法を用いた半導体装置の製造方法に関するものである。 The present invention relates to a method for forming a gate insulating film and a method for manufacturing a semiconductor device using the method for forming a gate insulating film.
近年の集積回路では、MOSトランジスタのゲート絶縁膜として、SiO2に代わり、高誘電率(high-k)の材料よりなるゲート絶縁膜が使用されるようになった。これは、スケーリング則に従い電気的な等価酸化膜厚は薄膜化しつつ、絶縁膜の誘電率を増大させることで、実際の膜厚を増加させ、直接トンネル電流を抑制する手法である。最初の世代のhigh-k材料としては、HfO2(酸化ハフニウム、ハフニア;誘電率約13〜20)が用いられた。In recent integrated circuits, a gate insulating film made of a material having a high dielectric constant (high-k) is used instead of SiO 2 as a gate insulating film of a MOS transistor. This is a technique for directly suppressing the tunnel current by increasing the actual film thickness by increasing the dielectric constant of the insulating film while reducing the electrical equivalent oxide film thickness according to the scaling law. HfO 2 (hafnium oxide, hafnia; dielectric constant about 13-20) was used as the first generation high-k material.
トランジスタ加工の微細化の進行に伴い、約0.5nm以下という極薄の等価酸化膜厚が必要とされる世代の技術において、ゲートスタック全体での等価酸化膜厚を薄膜化する手法はいくつか提案されている。 There are several methods to reduce the equivalent oxide thickness of the entire gate stack in the generation technology that requires an extremely thin equivalent oxide thickness of about 0.5 nm or less as transistor processing becomes finer. Proposed.
ひとつは、ある種の金属をドープしたTiN、TaN等の合金をゲート電極とし、熱処理時にHfO2とSiとの界面に存在するSiO2層を、ドープした金属による酸素欠陥注入効果により還元分解し、HfO2を直接Si上に形成することで、低誘電率の界面SiO2層による等価酸化膜厚の増加を抑制する手法である(非特許文献1、2参照)。しかし、この手法では、約0.5nm以下の等価酸化膜厚を得るためには、低誘電率の界面SiO2層を完全に除去したとしても、誘電率13〜20程度のhigh-k絶縁膜を直接トンネル電流が流れる領域まで薄膜化する必要が生じるため、この手法は充分なものではない。The first is to use an alloy such as TiN or TaN doped with a certain metal as a gate electrode, and to reduce and decompose the SiO 2 layer present at the interface between HfO 2 and Si during heat treatment by the oxygen defect injection effect of the doped metal. In this method, HfO 2 is formed directly on Si to suppress an increase in equivalent oxide thickness due to the low dielectric constant interface SiO 2 layer (see Non-Patent
近年研究が進められているのが、従来のhigh-k材料よりも誘電率の高い絶縁層(higher-k材料、誘電率30以上)を用いる手法である。higher-kゲート絶縁膜を形成する手法はすでに提案されている(特許文献1参照)。この手法は、例えばHfO2膜上に保護膜を堆積した上で急速熱処理を行い、HfO2膜中で高誘電率の結晶相(立方晶相)を優先的に生成するというものである。しかし、この手法では、ゲート絶縁膜としてのHfO2と半導体基板としてのSiとの界面に、HfO2が結晶化する際に放出された酸素によってSiO2層が形成され、ゲートスタック全体での等価酸化膜厚が増加してしまうという問題が存在し、極薄の等価酸化膜厚の実現は困難である。In recent years, research is progressing on a technique using an insulating layer (higher-k material, dielectric constant 30 or more) having a higher dielectric constant than that of a conventional high-k material. A method of forming a higher-k gate insulating film has already been proposed (see Patent Document 1). This approach, for example, performs a rapid thermal after having deposited a protective film on the HfO 2 film, is the crystalline phase of the high dielectric constant HfO 2 film in (cubic phase) those that preferentially generated. However, in this method, an SiO 2 layer is formed at the interface between HfO 2 as a gate insulating film and Si as a semiconductor substrate by oxygen released when HfO 2 is crystallized, and the equivalent of the entire gate stack is formed. There is a problem that the oxide film thickness increases, and it is difficult to realize an extremely thin equivalent oxide film thickness.
本発明は、HfO2層をゲート絶縁膜とするゲート絶縁膜の形成方法において、界面にSiO2層が形成されない、極薄の等価酸化膜厚を持ったhigher-kのゲートスタックを実現するゲート絶縁膜の形成方法を、当該ゲート絶縁膜の形成方法を用いた半導体装置の製造方法と共に提供することを目的とする。The present invention relates to a method for forming a gate insulating film using an HfO 2 layer as a gate insulating film, and a gate that realizes a higher-k gate stack having an extremely thin equivalent oxide film thickness without an SiO 2 layer formed at the interface. An object of the present invention is to provide a method for forming an insulating film together with a method for manufacturing a semiconductor device using the method for forming a gate insulating film.
上記の課題を解決する本発明のゲート絶縁膜の形成方法は、シリコン基板上にHfO2層を原子層成長法により形成する工程と、このHfO2層上に酸素吸収効果のある酸素制御金属層を形成する工程と、HfO2層が結晶化する温度に加熱する熱処理をする工程とを含み、かつ、前記熱処理をする工程より前に、HfO2層中に含まれる結晶成長核の量を制御することを特徴とする。 The method for forming a gate insulating film of the present invention that solves the above problems includes a step of forming an HfO 2 layer on a silicon substrate by an atomic layer growth method, and an oxygen control metal layer having an oxygen absorption effect on the HfO 2 layer. forming a, and a step of heat treatment of heating to a temperature of HfO 2 layer is crystallized, and, before the step of the heat treatment, control the amount of crystal growth nuclei contained in the HfO 2 layer in It is characterized by doing.
本発明のゲート絶縁膜の形成方法においては、結晶成長核の量の制御を、形成するHfO2層の膜厚を低減することにより行うことができる。
また、上記の熱処理は、HfO2層を結晶化してHfO2層の誘電率を増大させるとともに、当該熱処理時にHfO2層から放出される酸素を前記酸素制御金属層で吸収しかつ、HfO2格子からの酸素除去効果を用いてHfO2/Si界面に形成されるSiO2を除去する熱処理とすることができる。
更に、酸素吸収効果のある酸素制御金属層は、Ti層、Hf層及びZr層から選ばれる1種の金属層又はHfN及びAlNから選ばれる一種の金属窒化物層であることが好ましい。
また、本発明のゲート絶縁膜の形成方法は、熱処理の前に、酸素制御金属層上にゲート電極層を形成する工程を含む構成とすることができる。
また、本発明の半導体装置の製造方法は、上述した本発明のゲート絶縁膜の形成方法によりゲート絶縁膜を形成する工程を含むものである。In the method for forming a gate insulating film of the present invention, the amount of crystal growth nuclei can be controlled by reducing the thickness of the HfO 2 layer to be formed.
Further, the above heat treatment, along with increasing the dielectric constant of the HfO 2 layer by crystallizing the HfO 2 layer, vital absorb oxygen released from the HfO 2 layer during the heat treatment in the oxygen-controlled metal layer, HfO 2 grid It is possible to perform a heat treatment for removing SiO 2 formed at the HfO 2 / Si interface by using the effect of removing oxygen from the surface.
Furthermore, the oxygen control metal layer having an oxygen absorption effect is preferably one kind of metal layer selected from Ti layer, Hf layer and Zr layer or one kind of metal nitride layer selected from HfN and AlN.
In addition, the method for forming a gate insulating film of the present invention can include a step of forming a gate electrode layer on the oxygen control metal layer before the heat treatment.
The method for manufacturing a semiconductor device of the present invention includes a step of forming a gate insulating film by the above-described method for forming a gate insulating film of the present invention.
本発明によれば、HfO2層上に酸素吸収効果のある酸素制御金属層を形成し、かつ、急速加熱により結晶化させる熱処理を行うことにより、界面にSiO2層は形成させることなく、極薄の等価酸化膜厚を持ったhigher-kゲートスタックが実現できる。According to the present invention, an oxygen control metal layer having an oxygen absorption effect is formed on the HfO 2 layer, and a heat treatment for crystallization by rapid heating is performed, so that no SiO 2 layer is formed at the interface, A higher-k gate stack with a thin equivalent oxide thickness can be realized.
本発明に係るゲート絶縁膜の形成方法及び半導体装置の製造方法の実施形態について、図面を参照して詳細に説明する。
図1に示すように、半導体基板としてのシリコン基板1上に、ゲート絶縁膜となるアモルファスHfO2層2を形成する(図1(a))。このアモルファスHfO2層2は、原子層成長(Atomic Layer Depostion;ALD)法により形成する。
HfO2層2の形成には、原子層成長法の他に、スパッタリング法もあり、スパッタリング法のほうが原子層成長法よりも成膜されるHfO2層中の不純物量が少ない。しかし、原子層成長法は、スパッタリング法よりも300mmといった大径のシリコンウェファの面内均一性に優れ、よって量産に適していて、実際にも一般的に用いられている。したがって、本発明は、実際の量産に適した方法であるために、原子層成長法によりアモルファスHfO2層2を形成する。Embodiments of a method for forming a gate insulating film and a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, an amorphous HfO 2 layer 2 serving as a gate insulating film is formed on a
For the formation of the HfO 2 layer 2, there is a sputtering method in addition to the atomic layer growth method, and the amount of impurities in the HfO 2 layer to be formed is smaller in the sputtering method than in the atomic layer growth method. However, the atomic layer growth method is excellent in in-plane uniformity of a silicon wafer having a large diameter of 300 mm as compared with the sputtering method, and is therefore suitable for mass production, and is generally used in practice. Therefore, since the present invention is a method suitable for actual mass production, the amorphous HfO 2 layer 2 is formed by the atomic layer growth method.
次に、このHfO2層2上に酸素吸収効果のある酸素制御金属層3を形成する(図1(b))。この酸素制御金属層3は、後で行う熱処理時の保護膜としての効果を有するとともに、当該熱処理時にHfO2層2より生じる酸素を吸収する効果を有している。この酸素制御金属層3は、酸素吸収効果を有する金属層又は当該金属層と同様の酸素吸収効果を有する金属窒化物層からなり、例えば、Ti層、Hf層及びZr層から選ばれる1種の金属層又はHfN及びAlNから選ばれる一種の金属窒化物層であることが好ましい。酸素制御金属層3は、蒸着、イオンプレーティング、スパッタリング等によって形成することができる。酸素制御金属層3の膜厚は1〜100nm程度とすることができる。より好ましい膜厚は、10〜100nm程度である。Next, an oxygen
酸素制御金属層3が形成された後、HfO2層2が結晶化する温度に加熱する熱処理を行う(図1(c))。この熱処理は、アモルファスHfO2層2を結晶化させ、アモルファスHfO2よりも誘電率の高い結晶相よりなるHfO2層4を優先的に生成させるための急速熱処理である。熱処理は、例えばN2(窒素ガス)雰囲気で400〜1000℃、好ましくは800〜900℃程度で行う。HfO2の結晶相には、立方晶(cubic)相、単斜晶(monoclinic)相などがあり、なかでも、立方晶相である場合に、高誘電率が得られる。上記熱処理は、HfO2層2を結晶化して立方晶相のHfO2層4を得ることにより、HfO2層の誘電率を増大させるための熱処理である。After the oxygen
また、上記熱処理は、熱処理時にHfO2層2から放出される酸素を酸素制御金属層3で吸収しかつ、HfO2格子からの酸素除去効果を用いてHfO2/Si界面に形成されるSiO2を除去する熱処理である。より詳しく説明すると、熱処理によりアモルファスHfO2層2が立方晶相のHfO2層4に結晶化するとき、結晶格子の組み換えに伴って生じる過剰な酸素がHfO2層2から放出される。この酸素はHfO2層2とシリコン基板1との界面においてシリコン基板1を酸化し、SiO2の内部層を形成してしまう。SiO2はゲート絶縁膜としては立方晶相のHfO2層4よりも低誘電率であり、ゲートスタック全体での等価酸化膜厚が増加するため、ゲート絶縁膜の高誘電率化には不適である。この点について本発明では、HfO2層2上に酸素制御金属層3を形成しているため、HfO2層2から放出される酸素を酸素制御金属層3で直接吸収する。このことにより、HfO2/Si界面におけるSiO2の形成を抑制する。また、仮にSiO2の内部層が形成したとしても、酸素制御金属層3が形成されていることによりHfO2層4のHfO2格子から酸素を除去し、酸素欠陥(Vo)をHfO2層4中に導入することにより、HfO2/Si界面に形成されたSiO2を還元分解して除去する。In the above heat treatment, oxygen released from the HfO 2 layer 2 during the heat treatment is absorbed by the oxygen
したがって、本発明では、HfO2層2上に保護層として酸素制御金属層3を形成してから、結晶化する温度に加熱する熱処理を行ってHfO2層2を立方晶相に結晶化することにより高誘電率の立方晶相が生成すること、及び、HfO2層2とシリコン基板1との間に低誘電率のSiO2が形成することを抑制してHfO2層2が直接シリコン基板1と接するようにすることにより、ゲート絶縁膜を高誘電率とすることができる。Therefore, in the present invention, after forming the oxygen
本発明のゲート絶縁膜の形成方法は、熱処理工程より前に、HfO2層中に含まれる結晶成長核の量を制御する。発明者の研究によれば、シリコン基板上のHfO2層2の形成が、スパッタリング法による場合には、上記の熱処理により立方晶相のHfO2層4を容易に得ることができるが、原子層成長法による場合には、上記の熱処理により立方晶相を容易に得るのが難しかった。その原因について発明者が研究したところ、図2(a)に示すように従来の原子層成長法によりHfO2層102を形成した場合には、HfO2層102中の不純物が、スパッタリング法に比べて多く、このHfO2層102中の不純物を成長核として単斜晶相が立方晶相よりも優先して生成してしまうためであることが判明した。単斜晶相は、立方晶相よりも低誘電率の結晶相であり、単斜晶相が立方晶相に優先して生成しHfO2層102中を占めると、高誘電率のゲート絶縁膜を得るのが困難である。そこで本発明では、熱処理工程より前に、HfO2層中に含まれる結晶成長核の量を制御している。これにより、立方晶相を優先的に生成する。In the method for forming a gate insulating film of the present invention, the amount of crystal growth nuclei contained in the HfO 2 layer is controlled before the heat treatment step. According to the inventor's research, when the formation of the HfO 2 layer 2 on the silicon substrate is performed by the sputtering method, the cubic HfO 2 layer 4 can be easily obtained by the above heat treatment. In the case of the growth method, it has been difficult to easily obtain a cubic phase by the heat treatment. The inventors have studied the cause, and as shown in FIG. 2A, when the HfO 2 layer 102 is formed by the conventional atomic layer growth method, impurities in the HfO 2 layer 102 are compared with the sputtering method. It has been found that the monoclinic phase is preferentially generated over the cubic phase using the impurities in the HfO 2 layer 102 as growth nuclei. The monoclinic phase is a crystal phase having a lower dielectric constant than the cubic phase. When the monoclinic phase is generated in preference to the cubic phase and occupies the HfO 2 layer 102, the gate insulating film having a high dielectric constant is obtained. Is difficult to get. Therefore, in the present invention, the amount of crystal growth nuclei contained in the HfO 2 layer is controlled before the heat treatment step. Thereby, a cubic phase is preferentially generated.
熱処理工程より前に行うHfO2層中に含まれる結晶成長核の量の制御は、より具体的には、HfO2層中で結晶成長核となる不純物の量を減少させることである。HfO2層中の不純物の量を減少させる具体的な手段の一つは、図2(b)に示すように、シリコン基板1上にHfO2層を原子層成長法により形成する際に、HfO2層2の厚さを薄くすることである。HfO2層2は、成膜装置、成膜プロセス等によって定まる成膜条件により、所定の不純物密度を有している。一例として、図3に示すように、原子層成長法によりシリコン基板上に堆積させて形成したHfO2層2は、厚さ1nmのHfO2層の単位面積(cm2)当たりの残留不純物が、およそ1×1013個程度である。したがって、従来のように8.7nm程度の厚さでは、単位面積(cm2)当たり8.7×1013個程度の不純物、換言すれば単斜晶相の結晶成長核が存在することになる。このHfO2層の厚さを2.4nmにすれば、単位面積(cm2)当たり2.4×1013個程度の不純物、換言すれば単斜晶相の結晶成長核が存在することになり、従来の三分の一以下の結晶成長核数になる。したがって、熱処理後は、HfO2層2を誘電率の高い立方晶にすることができる。More specifically, the control of the amount of crystal growth nuclei contained in the HfO 2 layer performed before the heat treatment step is to reduce the amount of impurities serving as crystal growth nuclei in the HfO 2 layer. As a specific means for reducing the amount of impurities in the HfO 2 layer, as shown in FIG. 2B, when forming the HfO 2 layer on the
本発明により、量産に適した原子層成長法を用いてシリコン基板上に、SiO2の内部層を介在させることなく立方晶のHfO2層が容易に得られ、高誘電率が得られた。According to the present invention, a cubic HfO 2 layer was easily obtained on a silicon substrate by using an atomic layer growth method suitable for mass production without interposing an SiO 2 inner layer, and a high dielectric constant was obtained.
本発明において、HfO2層中の不純物の量を減少させる具体的な手段は、HfO2層2の厚さを薄くすることに限られない。他の手段には、シリコン基板1上に原子層成長法によりHfO2層2を形成した後、結晶化のための熱処理の前に、結晶化が生じない温度にHfO2層2を加熱することが考えられる。結晶化が生じない温度に加熱すれば、HfO2層2中の不純物量、結晶成長核量を減少させることができる。In the present invention, specific means for reducing the amount of impurities in the HfO 2 layer in is not limited to reducing the thickness of the HfO 2 layer 2. As another means, after the HfO 2 layer 2 is formed on the
ゲート絶縁膜としてHfO2層を含む本発明の半導体装置の製造方法は、HfO2層4上にゲート電極層5を形成する工程を含む。このゲート電極層5は、HfO2層4上に保護層としての酸素吸収効果のある酸素制御金属層3が形成されている場合には、この酸素制御金属層3上に形成してもよいし、また、HfO2層4上の酸素制御金属層3を除去して、HfO2層4に接して当該HfO2層4上に形成してもよい。ゲート電極層5はTiN電極層やTaN電極層を例示することができる。もっとも、ゲート電極層5の材料は、TiNやTaNに限定されることなく、MOSトランジスタに用いられる公知の材料を用いることができる。また、pMOSトランジスタのゲート電極層5とnMOSトランジスタのゲート電極層5とで、異なる材料を用いてもよい。ゲート電極層5の形成は、上述したHfO2層の結晶化のための熱処理の前に行えばよい。The manufacturing method of the semiconductor device of the present invention including the HfO 2 layer as the gate insulating film includes a step of forming the
(実施例1)
トランジスタの製造に当たり、図4(a)に本発明の一実施例のゲートスタックの模式的な断面図を示すように、シリコン基板11上にHfO2層を原子層成長法により厚さ2.4nmで形成した。次いでHfO2層上に酸素制御金属層としてTi層を厚さ6nmで形成した。次いでTi層上にゲート電極層としてTiN層を厚さ10nmで形成した。
TiN層を形成後、熱処理を900℃に急速加熱して行った。
熱処理後のHfO2層をXRD装置により分析したところ、HfO2層は立方晶相となっていた。また、HfO2層とシリコン基板との界面にSiO2の内部層は存在していなかった。
熱処理後のHfO2層の比誘電率は40、トランジスタ向けゲートスタックとしての等価酸化膜厚は0.25nmであった。Example 1
In manufacturing the transistor, as shown in a schematic cross-sectional view of the gate stack of one embodiment of the present invention in FIG. 4A, an HfO 2 layer is 2.4 nm thick on the silicon substrate 11 by atomic layer growth. Formed with. Next, a Ti layer having a thickness of 6 nm was formed as an oxygen control metal layer on the HfO 2 layer. Next, a TiN layer having a thickness of 10 nm was formed as a gate electrode layer on the Ti layer.
After forming the TiN layer, heat treatment was performed by rapidly heating to 900 ° C.
When the HfO 2 layer after the heat treatment was analyzed with an XRD apparatus, the HfO 2 layer was in a cubic phase. Further, no SiO 2 inner layer was present at the interface between the HfO 2 layer and the silicon substrate.
The relative dielectric constant of the HfO 2 layer after heat treatment was 40, and the equivalent oxide thickness as a gate stack for transistors was 0.25 nm.
(実施例2)
図4(b)に本発明の別の実施例のゲートスタックの模式的な断面図を示すように、実施例1のTi層の代わりに酸素制御金属層としてHf層を厚さ6nmで形成した以外は実施例1と同様にして、ゲートスタックを形成した。
熱処理後のHfO2層をXRD装置により分析したところ、HfO2層は立方晶相となっていた。また、HfO2層とシリコン基板との界面にSiO2の内部層は存在していなかった。
熱処理後のHfO2層の比誘電率は40、トランジスタ向けゲートスタックとしての等価酸化膜厚は0.25nmであった。(Example 2)
As shown in the schematic cross-sectional view of the gate stack of another embodiment of the present invention in FIG. 4B, an Hf layer having a thickness of 6 nm was formed as an oxygen control metal layer instead of the Ti layer of the first embodiment. A gate stack was formed in the same manner as in Example 1 except for the above.
When the HfO 2 layer after the heat treatment was analyzed with an XRD apparatus, the HfO 2 layer was in a cubic phase. Further, no SiO 2 inner layer was present at the interface between the HfO 2 layer and the silicon substrate.
The relative dielectric constant of the HfO 2 layer after heat treatment was 40, and the equivalent oxide thickness as a gate stack for transistors was 0.25 nm.
図5に、実施例1及び実施例2で形成したゲートスタックのCV特性の測定結果を示す。図5(a)に示す実施例1及び図5(b)に示す実施例2のCV特性は、良好であった。 FIG. 5 shows the measurement results of the CV characteristics of the gate stacks formed in Example 1 and Example 2. The CV characteristics of Example 1 shown in FIG. 5A and Example 2 shown in FIG. 5B were good.
1 シリコン基板
2 HfO2層
3 酸素制御金属層
4 HfO2層
5 ゲート電極層DESCRIPTION OF
Claims (6)
このHfO2層上に酸素吸収効果のある酸素制御金属層を形成する工程と、
HfO2層が結晶化する温度に加熱する熱処理をする工程と
を含み、かつ、
前記熱処理をする工程より前に、HfO2層中に含まれる結晶成長核の量を制御することを特徴とするゲート絶縁膜の形成方法。 Forming an HfO 2 layer on a silicon substrate by atomic layer deposition;
Forming an oxygen control metal layer having an oxygen absorption effect on the HfO 2 layer;
And a heat treatment for heating to a temperature at which the HfO 2 layer crystallizes, and
Wherein before the step of heat treatment, a method of forming the gate insulating film, characterized by controlling the amount of crystal growth nuclei contained in HfO 2 layer in.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013507625A JP5652926B2 (en) | 2011-03-28 | 2012-03-27 | Method for forming gate insulating film and method for manufacturing semiconductor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070669 | 2011-03-28 | ||
JP2011070669 | 2011-03-28 | ||
PCT/JP2012/057971 WO2012133433A1 (en) | 2011-03-28 | 2012-03-27 | Method for forming gate insulating film and method for manufacturing semiconductor device |
JP2013507625A JP5652926B2 (en) | 2011-03-28 | 2012-03-27 | Method for forming gate insulating film and method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012133433A1 JPWO2012133433A1 (en) | 2014-07-28 |
JP5652926B2 true JP5652926B2 (en) | 2015-01-14 |
Family
ID=46931148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013507625A Expired - Fee Related JP5652926B2 (en) | 2011-03-28 | 2012-03-27 | Method for forming gate insulating film and method for manufacturing semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5652926B2 (en) |
WO (1) | WO2012133433A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102597980B1 (en) * | 2018-07-26 | 2023-11-02 | 도쿄엘렉트론가부시키가이샤 | Method for forming ferroelectric hafnium zirconium-based film for semiconductor devices |
CN110379709A (en) * | 2019-07-25 | 2019-10-25 | 上海华力集成电路制造有限公司 | The manufacturing method of hafnia film |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008537359A (en) * | 2005-04-21 | 2008-09-11 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Gate electrode metal / metal nitride double layer CMOS and semiconductor structures in self-aligned and positively scaled CMOS devices |
JP2008306036A (en) * | 2007-06-08 | 2008-12-18 | Seiko Epson Corp | Method of manufacturing semiconductor device, and semiconductor device |
JP2010177675A (en) * | 2002-02-28 | 2010-08-12 | Hitachi Kokusai Electric Inc | Method for manufacturing semiconductor device |
JP2011049531A (en) * | 2009-07-31 | 2011-03-10 | Hitachi Kokusai Electric Inc | Method of manufacturing semiconductor device, semiconductor device, and substrate processing apparatus |
JP2012028713A (en) * | 2010-07-28 | 2012-02-09 | National Institute Of Advanced Industrial & Technology | Method of forming gate stack |
-
2012
- 2012-03-27 WO PCT/JP2012/057971 patent/WO2012133433A1/en active Application Filing
- 2012-03-27 JP JP2013507625A patent/JP5652926B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010177675A (en) * | 2002-02-28 | 2010-08-12 | Hitachi Kokusai Electric Inc | Method for manufacturing semiconductor device |
JP2008537359A (en) * | 2005-04-21 | 2008-09-11 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Gate electrode metal / metal nitride double layer CMOS and semiconductor structures in self-aligned and positively scaled CMOS devices |
JP2008306036A (en) * | 2007-06-08 | 2008-12-18 | Seiko Epson Corp | Method of manufacturing semiconductor device, and semiconductor device |
JP2011049531A (en) * | 2009-07-31 | 2011-03-10 | Hitachi Kokusai Electric Inc | Method of manufacturing semiconductor device, semiconductor device, and substrate processing apparatus |
JP2012028713A (en) * | 2010-07-28 | 2012-02-09 | National Institute Of Advanced Industrial & Technology | Method of forming gate stack |
Also Published As
Publication number | Publication date |
---|---|
WO2012133433A1 (en) | 2012-10-04 |
JPWO2012133433A1 (en) | 2014-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4713518B2 (en) | Semiconductor device | |
US10304936B2 (en) | Protection of high-K dielectric during reliability anneal on nanosheet structures | |
TWI512979B (en) | Field-effect transistor device having a metal gate stack with an oxygen barrier layer | |
JP4552973B2 (en) | Manufacturing method of semiconductor device | |
US10847424B2 (en) | Method for forming a nanowire device | |
JP4277268B2 (en) | Method for manufacturing metal compound thin film, and method for manufacturing semiconductor device including the metal compound thin film | |
TWI524534B (en) | Semiconductor device and method for forming the same | |
TWI556445B (en) | Semiconductor structure and manufacturing method of the same | |
JP2006066860A (en) | Manufacturing method for thin film transistor | |
TWI244214B (en) | Semiconductor device and method of fabricating a LTPS film | |
WO2011101931A1 (en) | Semiconductor device and method for manufacturing same | |
JP5565804B2 (en) | Gate stack formation method | |
JP5652926B2 (en) | Method for forming gate insulating film and method for manufacturing semiconductor device | |
US8658490B2 (en) | Passivating point defects in high-K gate dielectric layers during gate stack formation | |
TWI591729B (en) | A graphene field effect transistor with dual gates and the manufacturing method thereof | |
WO2012014775A1 (en) | Semiconductor device and method for manufacturing same | |
JP2011146507A (en) | Semiconductor device and method of manufacturing the same | |
TWI564960B (en) | Method for processing high-k dielectric layer | |
JP2007067229A (en) | Method for manufacturing insulating gate field effect transistor | |
JP5692801B2 (en) | Semiconductor manufacturing method and semiconductor device | |
TWI462176B (en) | Manufacturing method of semiconductor device | |
KR101504548B1 (en) | A deposition method of hafinium-nitride using hydrogen plasma and semiconductor device using the same | |
TW201820615A (en) | Semiconductor device and method for fabricating the same | |
CN105990098A (en) | Method for forming polycrystalline silicon thin film and thin film transistor comprising polycrystalline silicon thin film | |
Migita et al. | Crystallization technique of epitaxial HfO 2 thin films on Si substrates and their potential for advanced high-k gate stack technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5652926 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |