JP2012028713A - Method of forming gate stack - Google Patents

Method of forming gate stack Download PDF

Info

Publication number
JP2012028713A
JP2012028713A JP2010168792A JP2010168792A JP2012028713A JP 2012028713 A JP2012028713 A JP 2012028713A JP 2010168792 A JP2010168792 A JP 2010168792A JP 2010168792 A JP2010168792 A JP 2010168792A JP 2012028713 A JP2012028713 A JP 2012028713A
Authority
JP
Japan
Prior art keywords
layer
hfo
gate stack
oxygen
hfolayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168792A
Other languages
Japanese (ja)
Other versions
JP5565804B2 (en
Inventor
Yukinori Morita
行則 森田
Shinji Migita
真司 右田
Hiroyuki Ota
裕之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010168792A priority Critical patent/JP5565804B2/en
Priority to PCT/JP2011/065430 priority patent/WO2012014642A1/en
Publication of JP2012028713A publication Critical patent/JP2012028713A/en
Application granted granted Critical
Publication of JP5565804B2 publication Critical patent/JP5565804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02362Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment formation of intermediate layers, e.g. capping layers or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Abstract

PROBLEM TO BE SOLVED: To achieve a higher-k gate stack having an extremely thin equivalent oxide film thickness on the boundary surface where an SiOis not formed, in a gate stack having an HfOlayer as a gate insulating film.SOLUTION: In the method of forming a gate stack, an HfOlayer is formed on a silicon substrate, and heat treated after inserting an oxygen control metal layer having oxygen absorption effect between the HfOlayer and a gate electrode layer, the HfOlayer is then crystallized in order to increase permittivity, and SiOformed on the HfO/Si interface is removed using released oxygen absorption during HfOheat treatment and oxygen removal effect from the HfOlattice.

Description

本発明は、ゲートスタック形成方法に関するものである。   The present invention relates to a gate stack forming method.

近年の集積回路ではSiOにかわり、高誘電率(high-k)ゲート絶縁膜が使用されるようになった。これは、スケーリング則に従い電気的な等価酸化膜厚は薄膜化しつつ、膜の誘電率を増大させることで、実際の膜厚を増加させ、直接トンネル電流を抑制する手法である。最初の世代のhigh-k材料としては、HfO(誘電率約13〜20)が用いられた。 In recent integrated circuits, a high dielectric constant (high-k) gate insulating film has been used instead of SiO 2 . This is a technique for suppressing the tunnel current directly by increasing the actual film thickness by increasing the dielectric constant of the film while reducing the electrical equivalent oxide film thickness according to the scaling law. As the first generation high-k material, HfO 2 (dielectric constant about 13-20) was used.

微細化の進行に伴い、約0.5nm以下という極薄の等価酸化膜厚が必要とされる技術世代において、ゲートスタック全体での等価酸化膜厚を薄膜化する手法はいくつか提案されている。   Several techniques have been proposed to reduce the equivalent oxide thickness of the entire gate stack in a technology generation that requires an ultra-thin equivalent oxide thickness of about 0.5 nm or less as miniaturization progresses. .

ひとつは、ある種の金属をドープしたTiN、TaN等の合金をゲート電極とし、熱処理時にHfOとSiとの界面に存在するSiO層を、ドープした金属による酸素欠陥注入効果により還元分解し、HfOを直接Si上に形成することで、低誘電率の界面SiO層による等価酸化膜厚の増加を抑制する手法である。(非特許文献1、2参照)
しかし、約0.5nm以下の等価酸化膜厚を得るためには低誘電率の界面SiO層を完全に除去した上でも、誘電率13〜20程度のhigh-k絶縁膜ですら直接トンネル電流が流れる領域までも薄膜化する必要が生じるため、この手法は充分なものではない。
The first is to use an alloy such as TiN or TaN doped with a certain metal as a gate electrode, and to reduce and decompose the SiO 2 layer present at the interface between HfO 2 and Si during heat treatment by the oxygen defect injection effect of the doped metal. In this method, HfO 2 is directly formed on Si to suppress an increase in equivalent oxide thickness due to the low dielectric constant interface SiO 2 layer. (See Non-Patent Documents 1 and 2)
However, in order to obtain an equivalent oxide thickness of about 0.5 nm or less, even if the interface SiO 2 layer having a low dielectric constant is completely removed, even a high-k insulating film having a dielectric constant of about 13 to 20 can be directly tunneled. This method is not sufficient because it is necessary to reduce the thickness of the region where the gas flows.

近年研究が進められているのが、従来のhigh-k材料よりも誘電率の高い絶縁層(higher-k材料、誘電率30以上)を用いる手法である。
higher-kゲート絶縁膜を形成する手法はすでに提案されている。図2にそのひとつを紹介する(特許文献1参照)。これはHfO膜上に保護膜を堆積した上で急速熱処理を行い、高誘電率の結晶相(cubic相)を優先的に生成するというものである。
しかしこの手法では、HfOとSiとの界面に、HfOが結晶化する際に放出された酸素によってSiO層が形成され、ゲートスタック全体での等価酸化膜厚が増加してしまうという問題が存在し、極薄の等価酸化膜厚の実現は困難である。
In recent years, research is progressing on a technique using an insulating layer (higher-k material, dielectric constant 30 or more) having a higher dielectric constant than that of a conventional high-k material.
A method for forming a higher-k gate insulating film has already been proposed. One of them is introduced in FIG. 2 (see Patent Document 1). In this method, a protective film is deposited on the HfO 2 film and then rapid thermal processing is performed to preferentially generate a crystal phase (cubic phase) with a high dielectric constant.
However, with this technique, a SiO 2 layer is formed at the interface between HfO 2 and Si by oxygen released when HfO 2 is crystallized, and the equivalent oxide film thickness of the entire gate stack increases. Therefore, it is difficult to realize an extremely thin equivalent oxide film thickness.

特開2008−306036号公報JP 2008-306036 A

K.Choi etal., Tech.Dig VLSI Symp.,2009,pg.138.K. Choi etal., Tech. Dig VLSI Symp., 2009, pg. 138. T.Andoet al., IEDM 09-423〜426T.Andoet al., IEDM 09-423〜426

本発明は、HfO層をゲート絶縁膜とするゲートスタックにおいて、界面にSiO層が形成されない極薄の等価酸化膜厚を持ったhigher-kゲートスタックを実現することを課題とする。 An object of the present invention is to realize a higher-k gate stack having an extremely thin equivalent oxide film thickness in which an SiO 2 layer is not formed at an interface in a gate stack using an HfO 2 layer as a gate insulating film.

上記の課題は、以下のゲートスタック形成方法によって解決される。
(1)シリコン基板上にHfO層及び酸素吸収効果のある酸素制御金属層を順に形成する工程と、HfO層が結晶化する温度で熱処理する工程とを含むゲートスタック形成方法。
(2)シリコン基板上にHfO層を形成し、HfO層とゲート電極層の間に酸素吸収効果のある酸素制御金属層を挿入した上で熱処理を行い、HfO層を結晶化して誘電率を増大させると同時に、HfO熱処理時の放出酸素吸収及びHfO格子からの酸素除去効果を用いてHfO/Si界面に形成されるSiOを除去することを特徴とするゲートスタック形成方法。
(3)上記酸素吸収効果のある酸素制御金属層は、Ti層であることを特徴とする(1)又は(2)に記載のゲートスタック形成方法。
(4)上記ゲート電極層は、TiN電極層であることを特徴とする(2)又は(3)に記載のゲートスタック形成方法。
The above problem is solved by the following gate stack formation method.
(1) A gate stack forming method including a step of sequentially forming an HfO 2 layer and an oxygen-controlling metal layer having an oxygen absorption effect on a silicon substrate, and a heat treatment at a temperature at which the HfO 2 layer is crystallized.
(2) An HfO 2 layer is formed on a silicon substrate, an oxygen control metal layer having an oxygen absorption effect is inserted between the HfO 2 layer and the gate electrode layer, and heat treatment is performed, and the HfO 2 layer is crystallized to form a dielectric. A method of forming a gate stack, characterized by removing SiO 2 formed at the HfO 2 / Si interface by increasing the rate and simultaneously using the released oxygen absorption during the HfO 2 heat treatment and the effect of removing oxygen from the HfO 2 lattice .
(3) The method for forming a gate stack according to (1) or (2), wherein the oxygen-controlling metal layer having an oxygen absorption effect is a Ti layer.
(4) The method for forming a gate stack according to (2) or (3), wherein the gate electrode layer is a TiN electrode layer.

本発明によれば、HfO層上に酸素吸収効果のある酸素制御金属層を形成した上で急速加熱処理を行うことにより、界面のSiO層は形成されず、極薄の等価酸化膜厚を持ったhigher-kゲートスタックが実現できる。 According to the present invention, an oxygen control metal layer having an oxygen absorption effect is formed on the HfO 2 layer, and then rapid heat treatment is performed, so that the SiO 2 layer at the interface is not formed, and an extremely thin equivalent oxide film thickness is formed. A higher-k gate stack with can be realized.

本発明に係るゲートスタック形成方法を説明する図面BRIEF DESCRIPTION OF THE DRAWINGS FIG. 従来のゲートスタック形成方法を説明する図面Drawing explaining a conventional gate stack formation method

本発明に係るゲートスタック形成方法について、図1を参照して詳細に説明する。
(1)Si基板上にゲート絶縁膜となるアモルファスHfO層及び酸素吸収効果のある酸素制御金属層を形成する。(図1左図参照)
(2)急速加熱処理を行う。(図1中央図参照)
(3)この処理によりHfO層は結晶化し高誘電率化する。(図1右図参照)
(4)最後にゲート電極を形成しゲートスタックが完成する。
A method of forming a gate stack according to the present invention will be described in detail with reference to FIG.
(1) An amorphous HfO 2 layer serving as a gate insulating film and an oxygen control metal layer having an oxygen absorption effect are formed on a Si substrate. (See the left figure in Fig. 1)
(2) A rapid heat treatment is performed. (Refer to the central figure in Fig. 1)
(3) By this treatment, the HfO 2 layer is crystallized to increase the dielectric constant. (Refer to the right figure in Fig. 1)
(4) Finally, a gate electrode is formed to complete the gate stack.

酸素吸収効果のある酸素制御金属層の効果は、次のとおりである。(図1中央図参照)
(1)HfO熱処理時の放出酸素を直接吸収し、界面のSiO形成を抑制する。
(2)HfO格子から酸素を除去し酸素欠陥(V)を膜中に導入することで、界面のSiOを還元分解する。
これらの効果によりSiO界面層の形成を抑制する。
The effect of the oxygen control metal layer having an oxygen absorption effect is as follows. (Refer to the central figure in Fig. 1)
(1) The oxygen released during the HfO 2 heat treatment is directly absorbed, and the formation of SiO 2 at the interface is suppressed.
(2) By removing oxygen from the HfO 2 lattice and introducing oxygen defects (V o ) into the film, SiO 2 at the interface is reduced and decomposed.
These effects suppress the formation of the SiO 2 interface layer.

本発明によれば、極薄の等価酸化膜厚を持ったhigher-kゲートスタックを実現できる。
試作では、酸素吸収効果のある金属層として5〜7nmの厚さのTi層とし、熱処理温度は600〜1100℃とした。これによりHfO層の誘電率約46、HfOゲートスタックとして、0.37nmの等価酸化膜厚が得られた。
According to the present invention, a higher-k gate stack having an extremely thin equivalent oxide thickness can be realized.
In the trial manufacture, a Ti layer having a thickness of 5 to 7 nm was used as the metal layer having an oxygen absorption effect, and the heat treatment temperature was 600 to 1100 ° C. As a result, an equivalent oxide film thickness of 0.37 nm was obtained as an HfO 2 layer dielectric constant of about 46 and an HfO 2 gate stack.

Claims (4)

シリコン基板上にHfO層及び酸素吸収効果のある酸素制御金属層を順に形成する工程と、HfO層が結晶化する温度で熱処理する工程とを含むゲートスタック形成方法。 A method for forming a gate stack, comprising: a step of sequentially forming an HfO 2 layer and an oxygen control metal layer having an oxygen absorption effect on a silicon substrate; and a heat treatment at a temperature at which the HfO 2 layer is crystallized. シリコン基板上にHfO層を形成し、HfO層とゲート電極層の間に酸素吸収効果のある酸素制御金属層を挿入した上で熱処理を行い、HfO層を結晶化して誘電率を増大させると同時に、HfO熱処理時の放出酸素吸収及びHfO格子からの酸素除去効果を用いてHfO/Si界面に形成されるSiOを除去することを特徴とするゲートスタック形成方法。 An HfO 2 layer is formed on a silicon substrate, an oxygen control metal layer having an oxygen absorption effect is inserted between the HfO 2 layer and the gate electrode layer, and heat treatment is performed to crystallize the HfO 2 layer to increase the dielectric constant. And simultaneously removing the SiO 2 formed at the HfO 2 / Si interface using the released oxygen absorption during the HfO 2 heat treatment and the effect of removing oxygen from the HfO 2 lattice. 上記酸素吸収効果のある酸素制御金属層は、Ti層であることを特徴とする請求項1又は2に記載のゲートスタック形成方法。   3. The method of forming a gate stack according to claim 1, wherein the oxygen control metal layer having an oxygen absorption effect is a Ti layer. 上記ゲート電極層は、TiN電極層であることを特徴とする請求項2又は3に記載のゲートスタック形成方法。


4. The method of forming a gate stack according to claim 2, wherein the gate electrode layer is a TiN electrode layer.


JP2010168792A 2010-07-28 2010-07-28 Gate stack formation method Expired - Fee Related JP5565804B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010168792A JP5565804B2 (en) 2010-07-28 2010-07-28 Gate stack formation method
PCT/JP2011/065430 WO2012014642A1 (en) 2010-07-28 2011-07-06 Gate stack formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168792A JP5565804B2 (en) 2010-07-28 2010-07-28 Gate stack formation method

Publications (2)

Publication Number Publication Date
JP2012028713A true JP2012028713A (en) 2012-02-09
JP5565804B2 JP5565804B2 (en) 2014-08-06

Family

ID=45529860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168792A Expired - Fee Related JP5565804B2 (en) 2010-07-28 2010-07-28 Gate stack formation method

Country Status (2)

Country Link
JP (1) JP5565804B2 (en)
WO (1) WO2012014642A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133433A1 (en) * 2011-03-28 2012-10-04 独立行政法人産業技術総合研究所 Method for forming gate insulating film and method for manufacturing semiconductor device
JP2012209473A (en) * 2011-03-30 2012-10-25 National Institute Of Advanced Industrial & Technology Method of manufacturing semiconductor and semiconductor device
US9275993B2 (en) 2012-09-07 2016-03-01 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955658B2 (en) * 2012-06-15 2016-07-20 株式会社Screenホールディングス Heat treatment method and heat treatment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260979A (en) * 1999-03-11 2000-09-22 Toshiba Corp Semiconductor device and manufacture thereof
JP2008537359A (en) * 2005-04-21 2008-09-11 インターナショナル・ビジネス・マシーンズ・コーポレーション Gate electrode metal / metal nitride double layer CMOS and semiconductor structures in self-aligned and positively scaled CMOS devices
JP2008306036A (en) * 2007-06-08 2008-12-18 Seiko Epson Corp Method of manufacturing semiconductor device, and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260979A (en) * 1999-03-11 2000-09-22 Toshiba Corp Semiconductor device and manufacture thereof
JP2008537359A (en) * 2005-04-21 2008-09-11 インターナショナル・ビジネス・マシーンズ・コーポレーション Gate electrode metal / metal nitride double layer CMOS and semiconductor structures in self-aligned and positively scaled CMOS devices
JP2008306036A (en) * 2007-06-08 2008-12-18 Seiko Epson Corp Method of manufacturing semiconductor device, and semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014015023; Sungho Heo et al: 'Laser Annealing on Ti Electrode:Impact on Ti/HfO2/SiO2n-Type MOSFET' Electrochemical and Solid-State Letters Vol 11, No 10, 2008, H276-H279 *
JPN6014015024; Changhwan Choi et al: 'Fabrication of TaN-gated Ultra-Thin MOSFETs(EOT<1.0nm) with HfO2 using a Novel Oxygen Scavenging Pro' 2005 Symposium on VLSI Technology Digest of Technical Papers , 2005, p226-227 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133433A1 (en) * 2011-03-28 2012-10-04 独立行政法人産業技術総合研究所 Method for forming gate insulating film and method for manufacturing semiconductor device
JP5652926B2 (en) * 2011-03-28 2015-01-14 独立行政法人産業技術総合研究所 Method for forming gate insulating film and method for manufacturing semiconductor device
JP2012209473A (en) * 2011-03-30 2012-10-25 National Institute Of Advanced Industrial & Technology Method of manufacturing semiconductor and semiconductor device
US9275993B2 (en) 2012-09-07 2016-03-01 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same

Also Published As

Publication number Publication date
JP5565804B2 (en) 2014-08-06
WO2012014642A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP6192577B2 (en) Graphene-based field effect transistor
TWI447913B (en) Replacement metal gate transistors with reduced gate oxide leakage
CN104347418B (en) The forming method of MOS transistor
CN1713389A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2010505281A5 (en)
CN1505114A (en) Method for fabricating semiconductor device
JP5565804B2 (en) Gate stack formation method
CN104821276B (en) The production method of MOS transistor
CN103295891A (en) Manufacturing method for gate dielectric layer and manufacturing method for transistor
JP2008027932A (en) Process for fabricating semiconductor device and atomic layer deposition equipment
CN104733303B (en) The minimizing technology of pseudo- grid and the forming method of MOS transistor
JP2006253440A (en) Semiconductor device and method of manufacturing the same
JP2008078253A (en) Manufacturing method of semiconductor device
JP2004079931A (en) Manufacturing method for semiconductor device
JP5652926B2 (en) Method for forming gate insulating film and method for manufacturing semiconductor device
CN103515194A (en) Method of fabricating semiconductor device
KR101455263B1 (en) Method for reducing native oxide on substrate and method for manufacturing a semiconductor device using the same
JP2006114747A5 (en)
JP2008258487A (en) Apparatus for manufacturing semiconductor device
TWI593023B (en) Method for forming wafer
TWI440082B (en) A method for removing geox
CN103165440A (en) Manufacturing method of high-dielectric-constant metal grid electrode semiconductor device
TW201724500A (en) Method for fabricating nanowires for horizontal gate all around devices for semiconductor applications
JP6065366B2 (en) Manufacturing method of semiconductor device
TW540111B (en) Method for making a semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5565804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees