JP5651894B2 - Manufacturing method of jet plate - Google Patents

Manufacturing method of jet plate Download PDF

Info

Publication number
JP5651894B2
JP5651894B2 JP2010075178A JP2010075178A JP5651894B2 JP 5651894 B2 JP5651894 B2 JP 5651894B2 JP 2010075178 A JP2010075178 A JP 2010075178A JP 2010075178 A JP2010075178 A JP 2010075178A JP 5651894 B2 JP5651894 B2 JP 5651894B2
Authority
JP
Japan
Prior art keywords
plate
spray
substrate
film
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010075178A
Other languages
Japanese (ja)
Other versions
JP2011206645A (en
Inventor
恵一 東
恵一 東
明宏 池口
明宏 池口
堀野 裕治
裕治 堀野
茶谷原 昭義
昭義 茶谷原
明彦 重本
明彦 重本
知伸 中本
知伸 中本
仁志 竿本
仁志 竿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaho Industry Co Ltd
Wakayama Prefecture
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Yamaho Industry Co Ltd
Wakayama Prefecture
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaho Industry Co Ltd, Wakayama Prefecture, National Institute of Advanced Industrial Science and Technology AIST filed Critical Yamaho Industry Co Ltd
Priority to JP2010075178A priority Critical patent/JP5651894B2/en
Publication of JP2011206645A publication Critical patent/JP2011206645A/en
Application granted granted Critical
Publication of JP5651894B2 publication Critical patent/JP5651894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)

Description

本発明は、液体もしくは粉粒体を噴霧する噴霧ノズルなどに使用される噴板の製造方法に関する。 The present invention relates to a manufacturing method of a spray plate used for a spray nozzle or the like for spraying a liquid or a granular material.

噴霧技術は工業のみならず、農業においても農薬散布などに用いられている。このような農薬散布作業用の噴霧ノズルにはステンレス鋼など金属製の噴板が多用されている。そして、近年は飛散農薬の環境への影響や残留農薬の問題から、長期間に渡って一定の噴霧量や噴霧性能を維持できる耐久性に優れた噴板が求められている。
そこで、耐摩耗性に優れるセラミックス製の噴板が市販されているが(特許文献1)、プレス成型可能な金属製噴板に比べてセラミックス製噴板は機械加工のコストが高く、更に気温が下がる冬季に噴板に付着した水分による凍害割れを生じるという問題も抱えている。
また、特許文献2にあるように、インクジェットプリンタ等の精密機器用噴板の改良として、ダイヤモンドライクカーボン(Diamond-Like Carbon: 以下、DLCと略称する)をコーティングすることが既に提案されている。しかしながら、このような噴板を屋外において高水圧で使用する場合は表面コーティングが剥離しやすく、更に耐摩耗性に加えて耐食性を必要とする。そのために、農業用ノズルの噴板用としてはDLCコーティングの実用化を難しくしている。
ここで述べるDLCとは、炭素の三次元的結合であるsp3混成軌道と、二次元的結合であるsp2混成軌道、あるいは水素との結合とが不規則に混じり合っていて、特定の結晶構造を持たないアモルファス構造からなる硬質の炭素系皮膜をいう。そして、このDLC膜の特徴として、高い耐摩耗性、耐腐食性などを有することが挙げられる。
Spray technology is used not only in industry, but also in agricultural applications for agricultural chemicals. A spray plate made of metal such as stainless steel is frequently used for such spraying nozzles for spraying agricultural chemicals. In recent years, a spray plate excellent in durability capable of maintaining a constant spray amount and spray performance over a long period of time has been demanded due to the environmental impact of scattered agricultural chemicals and the problem of residual agricultural chemicals.
Therefore, ceramic jet plates with excellent wear resistance are commercially available (Patent Document 1). However, ceramic jet plates are more expensive to machine than metal press plates that can be press-molded, and the temperature is higher. There is also a problem of frost damage caused by moisture adhering to the blow plate in the winter season.
Further, as disclosed in Patent Document 2, it has already been proposed to coat diamond-like carbon (hereinafter abbreviated as DLC) as an improvement of a precision instrument jet plate such as an ink jet printer. However, when such a jet plate is used outdoors at a high water pressure, the surface coating easily peels off, and further requires corrosion resistance in addition to wear resistance. Therefore, it is difficult to put DLC coating to practical use as a spray plate for agricultural nozzles.
The DLC described here is a specific crystal structure in which sp 3 hybrid orbitals, which are three-dimensional bonds of carbon, and sp 2 hybrid orbitals, which are two-dimensional bonds, or bonds with hydrogen are irregularly mixed. This refers to a hard carbon-based film having an amorphous structure that does not have any. As a feature of this DLC film, it has high wear resistance, corrosion resistance, and the like.

一方、ステンレス鋼に関して、コーティング中の表面温度によっては表面鋭敏化が発生し、耐食性が劣化することが指摘されている。特許文献3によれば、DLCコーティングを450℃以下で行うと鋭敏化を避けられるとあるが、以下に示すように、DLCコーティングが施される基体(ワーク)の表面温度を正確に測定することは難しい。このような温度測定には、基体に熱電対を接触させて測る方法と、放射温度計などを用いて非接触で測る方法が知られている。接触式で測定する場合、熱電対にプラズマが当たって、測定温度が変わるおそれや熱電対そのものが破壊されるおそれがあるため、ワークの大きさをプラズマが回り込んでこないほどの大きさにする必要があるなど、ワークの形状が限られる。また、基体全体にコーティングを行う場合、この接触方式であれば基体全体の温度管理はできない。一方、非接触式で測定する場合、基体周辺に厚みをもったプラズマ雲がまとわりついているため、測定している温度が基体そのものの温度か、その周りに群がっているプラズマ自体の温度かどうかの区別をつけることができない。それ故、DLCコーティングが適用されることの多い切削工具などと比べて、噴板基体はサイズが小さく立体形状に富んでいるものが多いため、そのような噴板基体の表面温度を正確に制御しながらDLCコーティングを行うことは困難であると考えられる。 On the other hand, regarding stainless steel, it has been pointed out that surface sensitization occurs depending on the surface temperature during coating, and the corrosion resistance deteriorates. According to Patent Document 3, sensitization can be avoided when DLC coating is performed at 450 ° C. or lower. However, as shown below, the surface temperature of the substrate (workpiece) to which DLC coating is applied should be accurately measured. Is difficult. For such temperature measurement, there are known a method in which a thermocouple is brought into contact with a substrate and a method in which measurement is performed in a non-contact manner using a radiation thermometer or the like. When measuring with the contact method, the plasma is applied to the thermocouple, and the measurement temperature may change or the thermocouple itself may be destroyed. The shape of the workpiece is limited, such as necessity. Further, when the entire substrate is coated, the temperature control of the entire substrate cannot be performed with this contact method. On the other hand, in the case of non-contact measurement, since a thick plasma cloud is gathered around the substrate, whether the temperature being measured is the temperature of the substrate itself or the temperature of the plasma itself clustered around it. I cannot make a distinction. Therefore, compared to cutting tools, etc. where DLC coating is often applied, many of the jet plate bases are small in size and rich in three-dimensional shapes, so the surface temperature of such jet plate bases can be accurately controlled. However, it is considered difficult to perform DLC coating.

特開2008−80251号公報(セラミックス製ノズル)JP 2008-80251 A (Ceramics nozzle) 特開2007−276344号公報(DLCコーティングしたノズル)JP 2007-276344 A (Nozzle with DLC coating) 特開2008−163430号公報(高耐食性部材およびその製造方法)JP 2008-163430 A (High corrosion resistance member and manufacturing method thereof) 特許第3555928号(表面改質方法および表面改質装置)Patent No. 3555928 (surface modification method and surface modification apparatus)

本発明は、上記した従来の問題点に鑑みてなされたものであって、一定量の噴霧を持続して行うための耐食性と耐摩耗性に優れた噴板の製造方法の提供を課題とする。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method for manufacturing a jet plate excellent in corrosion resistance and wear resistance for continuously performing a certain amount of spraying. .

上記したように、一定量の噴霧を継続して行うためには耐食性と耐摩耗性に優れる必要がある。この目的を達するために、本発明者等は様々な表面処理方法を検討してきた。耐摩耗性に優れた表面処理としてはDLCコーティングが有効であり、更にプラズマイオン注入法を用いることによって、噴板基体の陥入した内面にもコーティングできることに加え、処理中の表面温度を抑えることができる。これにより、450℃以上の表面温度で鋭敏化を起こすとされるステンレス鋼において耐摩耗性と耐食性を兼ね備えた噴板の実現が可能であること、更にはプラズマイオン注入により表面を硬化させて耐摩耗性に優れる合成樹脂製噴板の実現が可能であることの知見を得、本発明を完成させるに至った。すなわち、本発明に係る噴板の製造方法は、噴霧口を有する噴板基体の表面に、プラズマイオン注入法によりダイヤモンドライクカーボン膜を形成する噴板の製造方法であって、前記プラズマイオン注入法は、加熱によりガス化したシリコン系ガスをマイナス10kVのパルスバイアス電圧を印加しながら添加することにより、噴板基体の表面に中間層を形成する中間層の形成工程と、前記中間層の形成工程により中間層が形成された噴板基体に対し、成膜原料である炭化水素ガスの存在下でパルスバイアス電圧を印加することにより、噴板基体の周囲にプラズマを発生させ、プラズマ中のイオンを噴板基体に注入し、噴板基体の表面にダイヤモンドライクカーボン膜を形成するイオン注入及び成膜工程とを備えて成り、前記イオン注入及び成膜工程が、高周波電源に対しパルスバイアス電圧をマイナス15kVからマイナス3kVまで変化させながら印加して行なわれることを特徴とするものである。 As described above, in order to continuously perform a certain amount of spraying, it is necessary to have excellent corrosion resistance and wear resistance. In order to achieve this object, the present inventors have studied various surface treatment methods. DLC coating is effective as a surface treatment with excellent wear resistance. Furthermore, by using the plasma ion implantation method, the indented inner surface of the spray plate substrate can be coated, and the surface temperature during the treatment is suppressed. Can do. As a result, it is possible to realize a spray plate having both wear resistance and corrosion resistance in stainless steel, which is supposed to cause sensitization at a surface temperature of 450 ° C. or higher. The inventor has obtained knowledge that it is possible to realize a synthetic resin jet plate having excellent wear properties, and has completed the present invention. That is, a method for manufacturing a jet plate according to the present invention is a method for manufacturing a jet plate in which a diamond-like carbon film is formed on the surface of a jet plate substrate having a spray port by a plasma ion implantation method. The step of forming an intermediate layer on the surface of the injection plate base by adding a silicon gas gasified by heating while applying a pulse bias voltage of minus 10 kV, and the step of forming the intermediate layer By applying a pulse bias voltage in the presence of hydrocarbon gas, which is a film forming raw material, to the jet plate substrate on which the intermediate layer is formed by the above , plasma is generated around the jet plate substrate, and ions in the plasma are injected into噴板substrate made and an ion implantation and deposition process to form a diamond-like carbon film on the surface of the噴板substrate, the ion implantation and Film process is characterized in that which is performed by applying, while varying with respect to the high frequency power supply a pulse bias voltage from the minus 15kV to minus 3 kV.

また、前記発明構成において、噴板基体が、周縁板部と、該周縁板部の底面から上向きに陥入して形成された錐陥部とから成るとともに、噴霧口が錐陥部の頂部に上下貫通して形成されているものである。 Further, in the above-described invention configuration, the spray plate substrate includes a peripheral plate portion and a conical recess portion formed by indenting upward from the bottom surface of the peripheral plate portion, and the spray port is formed at the top of the conical recess portion. It is formed so as to penetrate vertically.

更に、前記した各発明構成において、ダイヤモンドライクカーボン膜の厚みが0.5μm以上5μm以下であるものである。 Furthermore, in each of the above-described invention configurations, the diamond-like carbon film has a thickness of 0.5 μm or more and 5 μm or less.

また、前記した各発明構成において、噴板基体がステンレス鋼製であるものである。 In each of the above-described invention configurations, the injection plate base is made of stainless steel.

そして、前記した各発明構成において、噴板基体が合成樹脂製であるものである。 And in each above-mentioned each invention structure, a nozzle plate base | substrate is a product made from a synthetic resin.

更に、前記した各発明構成において、噴板は農業用噴霧ノズルに使用されるものである。 Further, in each of the above-described invention configurations, the spray plate is used for an agricultural spray nozzle.

本発明製造方法による噴板によれば、噴霧口を有する噴板基体の表面にプラズマイオン注入法によるダイヤモンドライクカーボン膜が形成されているので、DLC膜の剥離を生じにくくなる。これにより、噴板の耐摩耗性を向上させて寿命を大幅に延長することができる。因みに、これまでの噴板基体の表面改質としてはめっきが用いられてきたが、このようなめっき処理方法では母材とめっきの見分けがつきにくいために、めっきが剥がれたか否かを目視で確認することは難しかった。これに対し、本発明のDLCコーティングによる特徴として、DLC膜は黒い光沢色を有していて噴板基体の色調と大きく異なるため、噴板基体の噴霧口の異常や白色であることの多い噴霧薬剤の付着を即座に且つ簡単に確認することができる。 According to the jet plate according to the manufacturing method of the present invention, since the diamond-like carbon film is formed on the surface of the jet plate base having the spray port by the plasma ion implantation method, the DLC film is hardly peeled off. Thereby, the wear resistance of the injection plate can be improved and the life can be extended significantly. Incidentally, plating has been used as a surface modification of the injection plate substrate so far, but since it is difficult to distinguish between the base material and the plating in such a plating method, it is visually confirmed whether or not the plating has been peeled off. It was difficult to confirm. On the other hand, as a feature of the DLC coating of the present invention, the DLC film has a black glossy color and is greatly different from the color tone of the jet plate base. The adhesion of the drug can be confirmed immediately and easily.

そして、プラズマイオン注入法のイオン注入及び成膜工程が、高周波電源に対しパルスバイアス電圧をマイナス15kVからマイナス3kVまで変化させながら印加して行なわれるので、膜中応力によるDLC膜剥離のおそれがなく、噴板基体との密着力が大きく噴霧作業中に摩損することのないDLC膜を得ることができる。 Since the ion implantation and film forming steps of the plasma ion implantation method are performed by changing the pulse bias voltage from −15 kV to −3 kV to the high frequency power supply, there is no possibility of peeling of the DLC film due to stress in the film. In addition, a DLC film having a large adhesion force with the injection plate substrate and not being worn during the spraying operation can be obtained.

また、噴板基体が周縁板部と錐陥部とから成るような立体的なものである場合でも、錐陥部頂部の噴霧口はもとより噴板裏面である錐陥部にも、DLCコーティングを行なうことができる。更には、周縁板部と錐陥部の境界部分においても、経時使用によるDLCコーティングの剥離が起こらないため、耐摩耗性を向上させて噴板寿命を大幅に延ばすことができる。 In addition, even when the spray plate base is a three-dimensional structure consisting of a peripheral plate portion and a conical recess, a DLC coating is applied not only to the spray port at the top of the conical recess, but also to the conical recess on the back of the spray plate. Can be done. Furthermore, since the DLC coating does not peel off over time at the boundary portion between the peripheral plate portion and the conical recess portion, the wear resistance can be improved and the life of the jet plate can be extended significantly.

更に、ダイヤモンドライクカーボン膜の厚みを0.5μm以上5μm以下としたものでは、噴板の充分な耐久性が得られ、噴霧圧力によりDLC膜が摩損したりしない。また、内部応力によりDLC膜が剥離するということがなく、得られる耐久性のわりに成膜コストが低くて済むという利点を有する。 Further, when the thickness of the diamond-like carbon film is 0.5 μm or more and 5 μm or less, sufficient durability of the injection plate is obtained, and the DLC film is not worn by the spray pressure. Further, there is an advantage that the DLC film is not peeled off due to internal stress, and the film forming cost can be reduced instead of the obtained durability.

また、噴板基体として、安価で入手の容易なステンレス鋼製または合成樹脂製のものを用いることができ、耐食性と耐摩耗性に富んでいるにも拘わらず廉価な噴板を提供することができる。 Further, it is possible to use an inexpensive and easily available stainless steel or synthetic resin as the base plate, and to provide an inexpensive base plate despite its high corrosion resistance and wear resistance. it can.

本発明の一実施形態に係る噴板の斜視図である。It is a perspective view of the injection plate concerning one embodiment of the present invention. (a)は前記噴板の縦断面図、(b)は前記噴板を装着した噴霧ノズルの縦断面図である。(A) is a longitudinal cross-sectional view of the said injection plate, (b) is a longitudinal cross-sectional view of the spray nozzle equipped with the said injection plate. 前記噴板の噴板基体にDLC膜を形成する際に使用されるプラズマイオン注入装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the plasma ion implantation apparatus used when forming a DLC film in the nozzle plate base | substrate of the said nozzle plate. 本発明の別の実施形態に係る噴板の斜視図である。It is a perspective view of the jet plate which concerns on another embodiment of this invention. 前記別の噴板を装着した噴霧ノズルの縦断面図である。It is a longitudinal cross-sectional view of the spray nozzle equipped with the another jet plate. 前記噴板を備える噴霧ノズルを用いた噴霧試験装置の概略構成図である。It is a schematic block diagram of the spray test apparatus using the spray nozzle provided with the said jet plate. DLCコーティング処理を施した噴板とDLCコーティング処理を施していない噴板の噴霧試験における経過時間と噴霧量増加率との関係を表したグラフの図である。It is a figure showing the relationship between the elapsed time and the spray rate increase rate in the spray test of the spray plate which performed the DLC coating process, and the spray plate which has not performed the DLC coating process. (a)はDLCコーティング処理を施した噴板端面の噴霧試験前後における電子顕微鏡写真の図、(b)はDLCコーティング処理を施していない噴板端面の噴霧試験前後における電子顕微鏡写真の図である。(A) is the figure of the electron micrograph before and behind the spray test of the spray plate end surface which performed DLC coating processing, (b) is the figure of the electron micrograph before and after the spray test of the spray plate end surface which has not performed DLC coating processing. . (a)は実施例6においてマイナス3kVのパルスバイアス電圧を印加してDLCコーティングを行った噴板を実施例5の噴霧試験に供したものを底面から撮影した写真の図、(b)は実施例6においてマイナス15kVのパルスバイアス電圧を印加してDLCコーティングを行った噴板を実施例5の噴霧試験に供したものを底面から撮影した写真の図、(c)は実施例2においてDLCコーティングを行った噴板を実施例5による200時間の噴霧試験に供したものを底面から撮影した写真の図である。(A) is a photograph of a photograph taken from the bottom of a jet plate subjected to DLC coating by applying a minus 3 kV pulse bias voltage in Example 6 and subjected to the spray test of Example 5, and (b) is an implementation. A photograph of a photograph taken from the bottom of the spray plate subjected to the DLC coating applied with a pulse bias voltage of minus 15 kV in Example 6 and subjected to the spray test of Example 5, and (c) is a DLC coating in Example 2 FIG. 7 is a photograph of a photograph taken from the bottom of a spray plate subjected to a 200-hour spray test according to Example 5;

以下に、図を用いて本発明の実施の形態を説明する。なお、本発明はこれら実施の形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。図1は本発明の一実施形態に係る噴板の斜視図、図2(a)は前記噴板の縦断面図、図2(b)は前記噴板を装着した噴霧ノズルの縦断面図である。
図1および図2において、本実施形態に係る噴板1は、噴板基体2にダイヤモンドライクカーボン(DLC)コーティングが施されて、噴板基体2の表面全体にDLC膜6が形成されている。噴板基体2は、平面視で円形リング状に形成された周縁板部3の内縁部とつながって上向きに突出した円錐状部4と、この円錐状部4の頂部に上下貫通して形成された噴霧口5とを有している。円錐状部4の底面(裏面)は周縁板部3の底面3Aから上向きに陥入して形成された円錐状の錐陥部4Aとなっている。このような噴板1は例えば農業用の薬液散布に用いられる噴霧ノズルの主要部品として使用される。図2に示すように、噴霧ノズル10は、内部に液体流路を有するノズル本体11と、ノズル本体11の液体流路内に配備されて流体に旋回流を与える旋回中子14と、旋回中子14の上端開口に設置される噴板1と、噴板1の周縁板部3上に設置されて噴板1、旋回中子14およびO−リング13を押下する押さえ部材15と、ノズル本体11に螺止されて押さえ部材15を固定するキャップ12とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to these embodiments at all, and can be implemented in various modes without departing from the scope of the invention. 1 is a perspective view of an ejection plate according to an embodiment of the present invention, FIG. 2 (a) is a longitudinal sectional view of the ejection plate, and FIG. 2 (b) is a longitudinal sectional view of a spray nozzle equipped with the ejection plate. is there.
1 and 2, a jet plate 1 according to the present embodiment has a jet-like substrate 2 coated with diamond-like carbon (DLC), and a DLC film 6 is formed on the entire surface of the jet plate base 2. . The jet plate base 2 is formed so as to penetrate up and down at the top of the conical portion 4 and the conical portion 4 that protrudes upwardly connected to the inner edge of the peripheral plate portion 3 formed in a circular ring shape in plan view. And a spray port 5. The bottom surface (back surface) of the conical portion 4 is a conical concavity portion 4A formed by indenting upward from the bottom surface 3A of the peripheral plate portion 3. Such a jet plate 1 is used as a main part of a spray nozzle used for, for example, spraying agricultural chemicals. As shown in FIG. 2, the spray nozzle 10 includes a nozzle main body 11 having a liquid flow path therein, a swivel core 14 that is disposed in the liquid flow path of the nozzle main body 11 to give a swirl flow to the fluid, A nozzle plate 1 installed at the upper end opening of the core 14, a pressing member 15 which is installed on the peripheral plate portion 3 of the nozzle plate 1 and depresses the nozzle plate 1, the turning core 14 and the O-ring 13, and a nozzle body 11 and a cap 12 that is screwed to 11 to fix the pressing member 15.

上記したDLC膜の形成技術として種々の方法が知られているが、本発明の噴板基体のように錐陥部を有する立体的なもので、錐陥部の奥まったところにもコーティング処理を施す必要のある被成膜物に対しては、成膜性および密着性等の良さを理由として、プラズマイオン注入法が好適である。この「プラズマイオン注入法」は、プラズマに浸した噴板基体に高電圧パルスを印加して、噴板基体の表面に形成されるシース電場で炭素などを加速してコーティング、またはイオン注入するものであり、噴板基体の表面に沿ってイオンシースができるため、三次元表面部へイオン注入できるとともに、噴板基体周囲のプラズマから直接にイオンを引き出すので、イオン電流を大きくとることが可能である。そのため、成膜時間が短くてすみ、噴板基体の温度上昇を抑えることができる。 Various methods are known as the DLC film formation technique described above, but it is a three-dimensional structure having a conical recess as in the injection plate substrate of the present invention, and a coating process is also applied to the deep part of the concavity. For an object to be deposited, plasma ion implantation is preferred because of its good film formability and adhesion. This “plasma ion implantation method” is a method in which a high voltage pulse is applied to a spray plate substrate immersed in plasma, and carbon or the like is accelerated by a sheath electric field formed on the surface of the spray plate substrate to perform coating or ion implantation. Since an ion sheath can be formed along the surface of the jet plate substrate, ions can be implanted into the three-dimensional surface, and ions can be directly extracted from the plasma around the jet plate substrate, so that the ion current can be increased. is there. Therefore, the film formation time can be shortened, and the temperature rise of the injection plate substrate can be suppressed.

本発明におけるDLCは、マイナス15kV以上マイナス3kV以下のパルスバイアス電圧を印加したプラズマイオン注入法により噴板基体の表面に形成されることが好ましい。その理由は、パルスバイアスがマイナス15kVを下回ると、膜中応力によりDLC膜が剥離する不具合が発生するからである。一方、パルスバイアス電圧がマイナス3kVを上回ると、噴板基体とDLC膜との密着力が小さくなるために、噴霧作業中にDLC膜が削られるという不具合が生じる。 The DLC in the present invention is preferably formed on the surface of the injection plate substrate by a plasma ion implantation method to which a pulse bias voltage of minus 15 kV to minus 3 kV is applied. The reason is that when the pulse bias is less than minus 15 kV, there is a problem that the DLC film peels off due to stress in the film. On the other hand, when the pulse bias voltage exceeds −3 kV, the adhesion between the injection plate substrate and the DLC film becomes small, and thus there is a problem that the DLC film is scraped during the spraying operation.

本発明に用いる噴板基体の材料としては、一定以上の硬度および強度を有するものであれば特に限定されないが、例えば金属、合成樹脂、セラミックなどを用いることができる。そのうち、金属としては、特にプレス成型可能な鋼材、例えばステンレス鋼、チタン合金、アルミニウム合金などが挙げられる。また、合成樹脂としては、射出成型法や圧縮成型法により成型可能なポリエチレンやポリ塩化ビニルなどを用いることができる。 The material of the injection plate base used in the present invention is not particularly limited as long as it has a certain level of hardness and strength, but for example, metals, synthetic resins, ceramics and the like can be used. Among them, examples of the metal include steel materials that can be press-molded, such as stainless steel, titanium alloy, and aluminum alloy. As the synthetic resin, polyethylene, polyvinyl chloride, or the like that can be molded by an injection molding method or a compression molding method can be used.

前記した噴板基体にDLC膜を形成する際には、図3に示すようなプラズマイオン注入装置が使用される。プラズマイオン注入装置20は、例えば、真空槽21と、真空槽21に対し絶縁部22を介して貫通設置されている金属製の導体電極23と、導体電極23に接続された高周波電源24および直流パルスバイアス電源25と、真空槽21に連結された真空排気装置26と、空槽21に連結されたガス供給装置27とから構成されている。このようなプラズマイオン注入装置20は例えば栗田製作所社製の市販装置を用いることができる。導体電極23の先端には、試料である噴板基体2が取り付けられる。 When the DLC film is formed on the above-described nozzle plate base, a plasma ion implantation apparatus as shown in FIG. 3 is used. The plasma ion implantation apparatus 20 includes, for example, a vacuum chamber 21, a metal conductor electrode 23 provided through the vacuum chamber 21 through an insulating portion 22, a high-frequency power source 24 connected to the conductor electrode 23, and a direct current. A pulse bias power source 25, a vacuum exhaust device 26 connected to the vacuum chamber 21, and a gas supply device 27 connected to the empty chamber 21 are configured. As such a plasma ion implantation apparatus 20, for example, a commercially available apparatus manufactured by Kurita Manufacturing Co., Ltd. can be used. A spray plate substrate 2 as a sample is attached to the tip of the conductor electrode 23.

このプラズマイオン注入装置20では、まず槽内に噴板基体2を配置させた真空槽21を真空排気装置26により真空吸引した上で、真空槽21内に給気管28経由で低圧炭化水素ガス(プラズマ形成ガス)を導入する。そして、プラズマ生成用の高周波電源24とイオン注入用のパルスバイアス電源25とから出力される、例えば13.56MHzの交流の高周波パルス電圧と直流の負の高電圧パルス電圧とを整合回路(図示省略)によって重畳(相互の誘導障害を防止しながら、お互いに結合する)させる。そして、この重畳した電力を、導体電極23を介して噴板基体2に印加する。それにより、噴板基体2の周囲に炭化水素ガスプラズマを発生させると共に、このプラズマ中のイオンを負の高電圧パルスバイアス電圧によって噴板基体2に誘引・注入させる。また、このイオンのラジカル種の衝撃、積層中にもイオン注入を伴いながら、噴板基体2の表面にDLC膜の形成を行うのである。 In this plasma ion implantation apparatus 20, first, a vacuum chamber 21 in which the nozzle plate base 2 is disposed in the chamber is vacuum-evacuated by a vacuum exhaust device 26, and then the low-pressure hydrocarbon gas ( Plasma forming gas) is introduced. Then, a matching circuit (not shown in the drawing), for example, an AC high frequency pulse voltage of 13.56 MHz and a DC negative high voltage pulse voltage output from the plasma generating high frequency power source 24 and the ion implantation pulse bias power source 25 is used. ) To overlap (bond to each other while preventing mutual inductive failure). Then, the superimposed electric power is applied to the injection plate base 2 via the conductor electrode 23. As a result, a hydrocarbon gas plasma is generated around the jet plate substrate 2 and ions in the plasma are attracted and injected into the jet plate substrate 2 by a negative high voltage pulse bias voltage. In addition, a DLC film is formed on the surface of the spray plate substrate 2 while the ion radicals are bombarded and bombarded with ions.

なお、このプラズマイオン注入法により形成されるDLC膜は、以下のような「基体表面へのイオン注入」、「中間層の形成」、「成膜」の3工程によってその厚みや硬さ等を調整することができる。すなわち、「表面へのイオン注入」工程においてはメタンやアセチレンなどの炭化水素ガス、またはヘキサメチルジシロキサンやテトラメチルシランなどのシリコン系ガスを使用することで表面硬度を上昇させる。「中間層の形成」工程においては、同様に、炭化水素ガスやシリコン系ガスによって密着性を向上させる。最後の「成膜」工程においては、DLC膜の厚みを調整する。そして、上記した各段階において、導入ガスの種類、導入ガス流量、真空度、高周波電力、高電圧パルス間隔などを適宜設定することにより、形成すべきDLC膜の厚みや硬さ等を調整することができる。 The DLC film formed by this plasma ion implantation method has the thickness, hardness, etc., by the following three steps of “ion implantation to the substrate surface”, “formation of intermediate layer”, and “film formation”. Can be adjusted. That is, in step "ions Note entry into surface" increases the surface hardness by using a silicon-based gas such as hydrocarbon gas or hexamethyldisiloxane and tetramethylsilane, such as methane and acetylene. Similarly, in the “intermediate layer formation” step , adhesion is improved by a hydrocarbon gas or a silicon-based gas. In the final “film formation” step, the thickness of the DLC film is adjusted. In each stage described above, the thickness, hardness, etc. of the DLC film to be formed are adjusted by appropriately setting the type of the introduced gas, the introduced gas flow rate, the degree of vacuum, the high frequency power, the high voltage pulse interval, etc. Can do.

上記のような調整により、本発明の噴板基体に形成するDLC膜を、膜厚が0.5〜5μm程度の範囲にコーティングすると良い。なぜならば、DLC膜の膜厚が上記範囲よりも薄すぎたり、膜硬度が低すぎたりした場合は、噴板としての充分な耐久性が得られず、噴霧作業の噴霧圧力によりDLC膜が摩滅する。逆に、DLC膜の膜厚が厚すぎたり硬度が高いすぎたりした場合は、内部応力によりDLC膜が剥離しやすいうえ、成膜コストのわりに耐久性が僅かしか向上しないためである。 By adjusting as described above, the DLC film formed on the injection plate base of the present invention is preferably coated in a range of about 0.5 to 5 μm. This is because if the thickness of the DLC film is too thin than the above range or the film hardness is too low, sufficient durability as a spray plate cannot be obtained, and the DLC film is worn out by the spray pressure of the spraying operation. To do. Conversely, if the DLC film is too thick or too hard, the DLC film is easily peeled off due to internal stress, and durability is only slightly improved for the film formation cost.

上記のように、プラズマイオン注入法によりDLC膜を形成する手法は、膜強度が高く耐久性に富むDLC膜を形成しにくいとされる「立体形状」の噴板基体に対して極めて好適である。すなわち、周縁板部3の底面3Aと錐陥部4Aの内周面との成す角度θ(図2参照)が40度以上80度以下であるような立体的な噴板基体2についても好適に使用できるのである。一方で、噴霧作業においては、図2(a)中の6Aで示す境目位置での摩耗が発生しやすいと想定されるが、DLC膜6のコーティングにより境目位置6Aでの摩耗の発生を防ぐことができる。 As described above, the method of forming the DLC film by the plasma ion implantation method is extremely suitable for the “three-dimensional” jet plate base which is difficult to form a DLC film having high film strength and high durability. . That is, it is also suitable for the three-dimensional injection plate base 2 in which the angle θ (see FIG. 2) formed by the bottom surface 3A of the peripheral plate portion 3 and the inner peripheral surface of the conical recess portion 4A is 40 degrees or more and 80 degrees or less. It can be used. On the other hand, in the spraying operation, it is assumed that wear at the boundary position indicated by 6A in FIG. 2A is likely to occur, but the occurrence of wear at the boundary position 6A is prevented by coating the DLC film 6. Can do.

尚、上記の実施形態では、周縁板部3の底面3Aから上向きに陥入して形成された錐陥部4Aを有するような立体的な噴板基体2から作製した噴板1を例示したが、本発明の噴板はそのような立体形状を有する噴板基体を用いるものに限定されない。図4に示すように、例えばステンレス鋼板などの板材からプレス成型などによって成形された噴板基体2aを用いた噴板1aも本発明に含まれる。この噴板1aは、中央部に噴霧口5を有する平板円板状の噴板基体2aの表面全体にDLC膜6が形成されている。 In the above embodiment, the jet plate 1 made from the three-dimensional jet plate base 2 having the conical indented portion 4A formed by indenting upward from the bottom surface 3A of the peripheral plate portion 3 is exemplified. The jet plate of the present invention is not limited to the one using the jet plate base having such a three-dimensional shape. As shown in FIG. 4, for example, a jet plate 1a using a jet plate base 2a formed by press molding or the like from a plate material such as a stainless steel plate is also included in the present invention. In this jet plate 1a, a DLC film 6 is formed on the entire surface of a flat plate-like jet plate base 2a having a spray port 5 in the center.

前記の噴板1aは、図5に示すような噴霧ノズル10に使用される。噴霧ノズル10aは、例えば、内部に液体流路を有するノズル本体11aと、ノズル本体11aの液体流路の上端開口に設置される噴板1aと、ノズル本体11の上端縁部に螺止されて噴板1aおよびシールリング13aを固定するキャップ12と、ノズル本体11aの液体流路内に配備されて流体に旋回流を与える旋回中子14aとを備えている。このような平板状の噴板1aは、先述した噴板1と比べて、よりいっそう構成が簡素であり安価に提供することができる。そして、このように安価であるにも拘わらず耐食性と耐摩耗性は併せ持っている。 The nozzle plate 1a is used in a spray nozzle 10 as shown in FIG. The spray nozzle 10 a is screwed to, for example, a nozzle body 11 a having a liquid channel inside, a spray plate 1 a installed at the upper end opening of the liquid channel of the nozzle body 11 a, and an upper edge of the nozzle body 11. The cap 12 which fixes the jet plate 1a and the seal ring 13a, and the turning core 14a which is arrange | positioned in the liquid flow path of the nozzle main body 11a and gives a swirl flow to the fluid are provided. Such a flat plate 1a has a simpler structure and can be provided at a lower cost than the previously described plate 1. And although it is cheap, it has both corrosion resistance and wear resistance.

引続き、本発明を実施例によって更に詳しく説明する。
まず、実施例1を説明する。
「ステンレス鋼製噴板に対する膜厚0.5μmのDLCコーティング」:
先端に噴霧口が開口していて直径10mm高さ5mmの円錐部を有する直径15mm板厚0.5mmのステンレス鋼(SUS 304)製の噴板基体に対し、プラズマイオン注入装置(栗田製作所社製:図3参照)を用いてDLCコーティングを施した。その際の前処理として、加熱によってガス化したヘキサメチルジシロキサン(中間層となる)をマイナス10kVのパルスバイアス電圧を印加しながら添加した。その後、アセチレンを成膜原料として用い、マイナス15kVのパルスバイアス電圧をマイナス3kVまで変化させながら50Wの高周波電源出力でDLCコーティングを施すことにより、噴板基体の表面全体にわたってDLC膜を成膜させた。このとき噴板基体と一緒に、一部をマスキングしたシリコン基板も同じ真空槽に入れてDLCコーティングを行い、コーティング後にシリコン基板とDLC膜との段差を表面粗さ計により測定したところ、0.5μmであった。これより、噴板基体表面のDLC膜の厚みが0.5μmであると推定した。
Subsequently, the present invention will be described in more detail by way of examples.
First, Example 1 will be described.
“DLC coating with a thickness of 0.5 μm on stainless steel spray plate”:
Plasma ion implanter (manufactured by Kurita Manufacturing Co., Ltd.) for a spray plate substrate made of stainless steel (SUS 304) having a diameter of 15 mm and a thickness of 0.5 mm and having a conical portion having a diameter of 10 mm and a height of 5 mm with a spray port at the tip. : See Fig. 3). As a pretreatment at that time, hexamethyldisiloxane gasified by heating (being an intermediate layer) was added while applying a minus 10 kV pulse bias voltage. Thereafter, acetylene was used as a film forming raw material, and a DLC coating was applied at a high frequency power output of 50 W while changing a pulse bias voltage of −15 kV to −3 kV, thereby forming a DLC film over the entire surface of the injection plate substrate. . At this time, the silicon substrate partially masked together with the nozzle plate substrate was also put in the same vacuum chamber and DLC coating was performed. After coating, the step between the silicon substrate and the DLC film was measured with a surface roughness meter. It was 5 μm. From this, it was estimated that the thickness of the DLC film on the surface of the injection plate substrate was 0.5 μm.

「ステンレス鋼製噴板に対する膜厚3μmのDLCコーティング」:
先端に噴霧口が開口していて直径10mm高さ5mmの円錐部を有する直径15mm板厚0.5mmのステンレス鋼(SUS 304)製の噴板基体に対し、プラズマイオン注入装置(栗田製作所社製)を用いてDLCコーティングを施した。その際の前処理として、加熱によってガス化したヘキサメチルジシロキサンを中間層として圧力0.4Paでマイナス8kVのパルスバイアス電圧を印加しながら添加した。その後、アセチレンを成膜原料として用い、圧力1.2Paでマイナス10kVのパルスバイアス電圧を徐々にマイナス3kVまで変化させながら50Wの高周波電源出力でDLCコーティングを行なった。そして、実施例1と同様の方法で噴板基体表面のDLC膜の厚みを推定したところ、3μmであった。
“DLC coating with a thickness of 3 μm on stainless steel spray plate”:
Plasma ion implanter (manufactured by Kurita Manufacturing Co., Ltd.) for a spray plate substrate made of stainless steel (SUS 304) having a diameter of 15 mm and a thickness of 0.5 mm and having a conical portion having a diameter of 10 mm and a height of 5 mm with a spray port at the tip. DLC coating was applied using As a pretreatment at that time, hexamethyldisiloxane gasified by heating was added as an intermediate layer while applying a pulse bias voltage of minus 8 kV at a pressure of 0.4 Pa. Thereafter, acetylene was used as a film forming material, and DLC coating was performed with a high frequency power output of 50 W while gradually changing the pulse bias voltage of minus 10 kV to minus 3 kV at a pressure of 1.2 Pa. And when the thickness of the DLC film on the surface of the injection plate substrate was estimated by the same method as in Example 1, it was 3 μm.

「ステンレス鋼製噴板に対する膜厚5μmのDLCコーティング」:
先端に噴霧口が開口していて直径10mm高さ5mmの円錐部を有する直径15mm板厚0.5mmのステンレス鋼(SUS 304)製の噴板基体に対し、プラズマイオン注入装置(栗田製作所社製)を用いてDLCコーティングを施した。その際の前処理として、加熱によってガス化したヘキサメチルジシロキサンを中間層として圧力0.4Paでマイナス8kVのパルスバイアス電圧を印加しながら添加した。その後、アセチレンを原料として、圧力1.2Paでマイナス10kVのパルスバイアス電圧を徐々にマイナス3kVまで変化させながら50Wの高周波出力でDLCコーティングを行なった。そして、実施例1と同様の方法でDLC膜の厚みを推定したところ、5μmであった。
“DLC coating with a thickness of 5 μm on stainless steel spray plate”:
Plasma ion implanter (manufactured by Kurita Manufacturing Co., Ltd.) for a spray plate substrate made of stainless steel (SUS 304) having a diameter of 15 mm and a thickness of 0.5 mm and having a conical portion having a diameter of 10 mm and a height of 5 mm with a spray port at the tip. DLC coating was applied using As a pretreatment at that time, hexamethyldisiloxane gasified by heating was added as an intermediate layer while applying a pulse bias voltage of minus 8 kV at a pressure of 0.4 Pa. Thereafter, DLC coating was performed with a high frequency output of 50 W using acetylene as a raw material while gradually changing the pulse bias voltage of minus 10 kV to minus 3 kV at a pressure of 1.2 Pa. And when the thickness of the DLC film was estimated by the method similar to Example 1, it was 5 micrometers.

「合成樹脂製噴板に対する膜厚3μmのDLCコーティング」:
先端に噴霧口が開口していて直径10mm高さ5mmの円錐部を有する直径15mm板厚0.5mmの合成樹脂(ポリエチレン)製の噴板基体に対し、プラズマイオン注入装置(栗田製作所社製)を用いてDLCコーティングを施した。真空槽内において金属性負電極に対して飛来するイオンが当たるような配置で合成樹脂製噴板基体を設置し、DLCコーティングを行った。その際の前処理として、加熱によってガス化したヘキサメチルジシロキサンを中間層としてマイナス10kVのパルスバイアス電圧を印加して添加した。その後、アセチレンを成膜原料としてマイナス15kVのパルスバイアス電圧をマイナス3kVまで変化させながら、膜厚3μmのDLC膜を基板表面にコーティングした。取り出した製品噴板を確認したが、プラズマによる温度上昇に起因する劣化は見られなかった。
“DLC coating with a film thickness of 3 μm on a synthetic resin spray plate”:
Plasma ion implantation device (manufactured by Kurita Manufacturing Co., Ltd.) for a spray plate base made of synthetic resin (polyethylene) having a diameter of 15 mm and a thickness of 0.5 mm and having a conical portion having a diameter of 10 mm and a height of 5 mm with a spray port at the tip DLC coating was applied using In the vacuum chamber, a synthetic resin jet plate base was placed in such an arrangement that the incoming ions hit the metallic negative electrode, and DLC coating was performed. As a pretreatment at that time, hexamethyldisiloxane gasified by heating was added as an intermediate layer by applying a minus 10 kV pulse bias voltage. Thereafter, a DLC film having a thickness of 3 μm was coated on the substrate surface while changing the pulse bias voltage of −15 kV to −3 kV using acetylene as a film forming material. The product ejection plate that was taken out was confirmed, but no deterioration due to temperature rise due to plasma was observed.

「ステンレス鋼製噴板に対する噴霧試験」:
実施例1と実施例3において作製したDLCコーティング済みの噴板に対し、図6に示すような循環式の噴霧試験装置30を用いて噴霧試験を行なった。噴霧試験装置30は、炭酸カルシウムを80倍の水で希釈した炭酸カルシウム水溶液Cを貯留する貯液槽31と、貯液槽31内に配備されて炭酸カルシウム水溶液Cを撹拌する撹拌機32と、一端が貯液槽31内に配置され他端が貯液槽31内の上部空間に配置された循環路34と、循環路34の他端に連結された噴板1付きの噴霧ノズル10と、貯液槽31内の液を循環路34内で圧送する動力噴霧機33と、循環路34内の液流量を検出するための圧力計35とを備えている。動力噴霧機33は汎用機であるために構造の図示は省略するが、例えば循環路34が接続される吸水口を有するシリンダと、シリンダ内で往復動する弁付きのピストンと、ピストンを駆動させる駆動機構と、噴霧ノズル10につながるシリンダ先端の吐出弁と、吐出側の流体圧を蓄圧する空気室と、吐出圧を設定するための調圧弁とを備えている。
“Spray test on stainless steel spray plate”:
A spray test was performed on the DLC-coated spray plate produced in Example 1 and Example 3 using a circulation type spray test apparatus 30 as shown in FIG. The spray test apparatus 30 includes a liquid storage tank 31 that stores a calcium carbonate aqueous solution C obtained by diluting calcium carbonate with 80 times water, a stirrer 32 that is provided in the liquid storage tank 31 and stirs the calcium carbonate aqueous solution C, A circulation path 34 having one end disposed in the liquid storage tank 31 and the other end disposed in an upper space in the liquid storage tank 31; a spray nozzle 10 with the injection plate 1 connected to the other end of the circulation path 34; A power sprayer 33 that pumps the liquid in the liquid storage tank 31 in the circulation path 34 and a pressure gauge 35 for detecting the liquid flow rate in the circulation path 34 are provided. Since the power sprayer 33 is a general-purpose machine, the illustration of the structure is omitted. However, for example, a cylinder having a water inlet to which a circulation path 34 is connected, a piston with a valve that reciprocates in the cylinder, and a piston are driven. A drive mechanism, a discharge valve at the tip of the cylinder connected to the spray nozzle 10, an air chamber for accumulating fluid pressure on the discharge side, and a pressure regulating valve for setting the discharge pressure are provided.

この噴霧試験装置30では、動力噴霧機33が2.0M Paの吐出圧(設定圧)で炭酸カルシウム水溶液Cを循環路34内に圧送し、噴霧ノズル10の噴板1から貯液槽31内に噴霧させる。このとき、圧力計35により計測された圧力と、動力噴霧機33で設定されている一定の吐出圧との圧力差から、循環路34内での流量すなわち噴霧量が推算される。そして、一定時間後の噴霧量変化を算出し、それを試験初期の噴霧量で割ったものを噴霧量増加率として百分率で導出した。尚、試験は、各実施例の噴板とともに、参照用の表面未処理のステンレス鋼(SUS 304)製の噴板基体(比較例1〜3(いずれも同じ製造ロット製品))も同時に行なった。 In the spray test apparatus 30, the power sprayer 33 pumps the calcium carbonate aqueous solution C into the circulation path 34 at a discharge pressure (set pressure) of 2.0 MPa, and the spray nozzle 10 supplies the spray plate 1 to the liquid storage tank 31. To spray. At this time, from the pressure difference between the pressure measured by the pressure gauge 35 and the constant discharge pressure set by the power sprayer 33, the flow rate, that is, the spray amount in the circulation path 34 is estimated. Then, the change in the spray amount after a certain time was calculated, and the result obtained by dividing the change by the spray amount at the initial stage of the test was derived as a percentage by increasing the spray amount. In addition, the test was performed simultaneously with the injection plate of each Example, as well as the reference surface untreated stainless steel (SUS 304) injection plate substrate (Comparative Examples 1 to 3 (both of the same production lot products)). .

まず、実施例1のDLC膜厚0.5μmの噴板と比較例1の噴板(基体)とを噴霧試験装置30に供して噴霧試験を10時間行なった。その結果を下記の表1に示す。 First, the spray plate of Example 1 having a DLC film thickness of 0.5 μm and the spray plate (base) of Comparative Example 1 were subjected to the spray test apparatus 30 and subjected to a spray test for 10 hours. The results are shown in Table 1 below.

Figure 0005651894
Figure 0005651894

表1によると、DLCコーティング(膜厚0.5μm)を行った実施例1の噴板は噴霧量増加率が2.2 %であったのに対し、比較例1の噴板(基体)は4.7%で、2倍以上の増加率となり、噴板(基体)の噴霧口の摩耗が大きいことが判る。尚、試験後、実施例1の噴板の表面を肉眼で観察したところ、部分的なDLC膜の剥離が確認されている。 According to Table 1, while the spray plate of Example 1 subjected to DLC coating (film thickness 0.5 μm) had a spray rate increase rate of 2.2%, the spray plate (substrate) of Comparative Example 1 At 4.7%, the increase rate is twice or more, and it can be seen that the spray plate (substrate) has a large wear on the spray nozzle. After the test, when the surface of the ejection plate of Example 1 was observed with the naked eye, partial peeling of the DLC film was confirmed.

つぎに、実施例3のDLC膜厚5μmの噴板と比較例3の噴板(基体)とを噴霧試験装置30に供して噴霧試験を50時間行なった。その結果を下記の表2に示す。 Next, the spray plate of Example 3 having a DLC film thickness of 5 μm and the spray plate (base) of Comparative Example 3 were subjected to the spray test apparatus 30 and the spray test was performed for 50 hours. The results are shown in Table 2 below.

Figure 0005651894
Figure 0005651894

表2によれば、DLCコーティング(膜厚5μm)を行った実施例3の噴板は噴霧量増加率が1.0%であったのに対し、比較例3の噴板(基体)は2.0%であって実施例1の噴板と同様に2倍の増加率となり、噴板(基体)の噴霧口の摩耗が大きかった。試験後、実施例3の噴板の表面を肉眼で観察したところ、DLC膜の剥離は確認されなかった。
更に、噴霧試験後の実施例3の噴板と比較例3の噴板(基体)のそれぞれの噴霧口の端面を走査型電子顕微鏡により500倍の倍率で観察した。得られた顕微鏡写真を図8に示す。図8の顕微鏡写真によれば、表面未処理である比較例3の噴板(基体)は、噴霧試験後、図8(b)に示すように、炭酸カルシウム水溶液によって表面が摩滅していた。これに対し、DLCコーティングを施した実施例3の噴板については、図8(a)に示すように、噴霧試験後も噴霧口端面の表面に著しい劣化が視認されず、DLC膜が残存していることが確認された。
According to Table 2, the spray plate of Example 3 with DLC coating (film thickness 5 μm) had a spray rate increase rate of 1.0%, whereas the spray plate (base) of Comparative Example 3 had 2 It was 0.0%, and the rate of increase was twice the same as that of the jet plate of Example 1, and wear of the spray port of the jet plate (substrate) was large. After the test, when the surface of the ejection plate of Example 3 was observed with the naked eye, peeling of the DLC film was not confirmed.
Furthermore, the end surfaces of the spray ports of the spray plate of Example 3 and the spray plate (substrate) of Comparative Example 3 after the spray test were observed with a scanning electron microscope at a magnification of 500 times. The obtained micrograph is shown in FIG. According to the photomicrograph of FIG. 8, the surface of the jet plate (substrate) of Comparative Example 3, which was untreated, was worn by the aqueous calcium carbonate solution after the spray test, as shown in FIG. 8 (b). On the other hand, as shown in FIG. 8 (a), the nozzle plate of Example 3 to which DLC coating was applied did not show significant deterioration on the surface of the end face of the spray port even after the spray test, and the DLC film remained. It was confirmed that

続いて、実施例2のDLC膜厚3μmの噴板と比較例2の噴板(基体)とを噴霧試験装置30に供し、実施例1および実施例3の噴板と同様に、80倍希釈の炭酸カルシウム水溶液を100時間噴霧し、その後加速試験として、希釈倍率40倍に濃くした炭酸カルシウム水溶液を用いて更に100時間、合計200時間噴霧試験を行った。その結果を下記の表3および図7に示す。 Subsequently, the spray plate of Example 2 having a DLC film thickness of 3 μm and the spray plate (base) of Comparative Example 2 were subjected to the spray test apparatus 30 and diluted 80 times as in the spray plates of Examples 1 and 3. The calcium carbonate aqueous solution was sprayed for 100 hours, and then, as an accelerated test, a spray test was further conducted for 100 hours using the calcium carbonate aqueous solution concentrated at a dilution ratio of 40 times for a total of 200 hours. The results are shown in Table 3 below and FIG.

Figure 0005651894
Figure 0005651894

表3および図7によれば、比較例2の噴板(基体)は噴霧量変化率が4.6%であったのに対し、DLCコーティングを行った実施例2の噴板(膜厚3μm)は1.0%であったことから、過酷な加速試験を経た場合でも、実施例2の噴板は耐摩耗性が高く耐久性がよいことが判る。また、この実施例2の噴板はDLC膜の剥離も肉眼で確認できなかった。 According to Table 3 and FIG. 7, the spray plate (base body) of Comparative Example 2 had a spray rate change rate of 4.6%, whereas the spray plate of Example 2 with DLC coating (film thickness 3 μm) ) Was 1.0%, it can be seen that the jet plate of Example 2 has high wear resistance and good durability even after a severe acceleration test. In addition, it was not possible to visually confirm the peeling of the DLC film in the jet plate of Example 2.

「剥離したステンレス鋼製噴板」:
先端に噴霧口が開口していて直径10mm高さ5mmの円錐部を有する直径15mm板厚0.5mmのステンレス鋼(SUS 304)製の噴板2つに対し、プラズマイオン注入装置(栗田製作所社製)を用いて圧力0.7PaでDLCコーティングを施した。その際に、一方(比較例4)にはアセチレンを成膜原料としてマイナス15kVのパルスバイアス電圧を一定に印加し、他方(比較例5)にはアセチレンを成膜原料としてマイナス3kVのパルスバイアス電圧を一定に印加して、それぞれにDLCコーティング処理を施した。実施例1と同様の方法で噴板基体表面のDLC膜の膜厚を推定したところ、いずれも3μmであった。
“Peeled stainless steel spray plate”:
Plasma ion implanter (Kurita Manufacturing Co., Ltd.) for two spray plates made of stainless steel (SUS 304) with a diameter of 15 mm and a thickness of 0.5 mm and having a conical section with a diameter of 10 mm and a height of 5 mm with a spray port at the tip. DLC coating was performed at a pressure of 0.7 Pa. At that time, a negative bias voltage of minus 15 kV was applied to one (Comparative Example 4) using acetylene as a film forming material, and a negative 3 kV pulse bias voltage was applied to the other (Comparative Example 5) using acetylene as a film forming material. Was applied constantly, and each was subjected to DLC coating treatment. When the film thickness of the DLC film on the surface of the spray plate substrate was estimated by the same method as in Example 1, all were 3 μm.

そして、両者に対し実施例5に示した噴霧試験を10時間行ない、噴霧試験終了後に、それぞれの噴板を底面(裏面)側から写真撮影した。撮影結果を図9に示す。その結果、マイナス3kVのパルスバイアス電圧を印加した噴板は、図9(a)に示すように、炭酸カルシウム水溶液が当ってDLC膜が摩耗し、特に上半分のDLC膜が剥がれて、噴板基体の下地4Zであるステンレス鋼の露出が確認された。一方、図9(b)に示すように、マイナス15kVのパルスバイアス電圧を印加した噴板は、写真上側3分の1程度のDLC膜が剥離して下地4Zが露出し、残っているDLC膜には残留応力により皺と亀裂が生じていた。他方で、適切にDLCコーティングを行った実施例2の噴板を実施例5による200時間の噴霧試験に供したが、図9(c)に示すように、DLC膜の剥離は見られなかった。 Then, the spray test shown in Example 5 was performed for both for 10 hours, and after the spray test was finished, each jet plate was photographed from the bottom surface (back surface) side. The imaging results are shown in FIG. As a result, as shown in FIG. 9A, the jet plate to which a pulse bias voltage of minus 3 kV is applied wears the DLC film due to the calcium carbonate aqueous solution, and the upper half of the DLC film is peeled off. The exposure of the stainless steel as the base 4Z of the substrate was confirmed. On the other hand, as shown in FIG. 9B, the jet plate to which a pulse bias voltage of minus 15 kV is applied has a DLC film of about one third of the upper side of the photograph peeled off to expose the base 4Z, and the remaining DLC film There were wrinkles and cracks due to residual stress. On the other hand, the jet plate of Example 2 appropriately coated with DLC was subjected to a 200-hour spray test according to Example 5, but no DLC film peeling was observed as shown in FIG. 9C. .

本発明に係る噴板は耐食性および耐摩耗性に優れるため、屋内用途に加え、農業ハウスを始めとする屋外用途に利用することができる。ノズルの耐久性向上によって長期間にわたり均一な散布を実行できる。それゆえ、植物工場プラント内での水分・養分散布に用いるような場合、交換に要するメンテナンスコストを低減できる。 Since the jet plate according to the present invention is excellent in corrosion resistance and wear resistance, it can be used for outdoor applications including agricultural houses in addition to indoor applications. Uniform spraying can be performed over a long period of time by improving the durability of the nozzle. Therefore, when it is used as a moisture / nutrient dispersing cloth in a plant factory plant, the maintenance cost required for replacement can be reduced.

1,1a 噴板
2,2a 噴板基体
3 周縁板部
3A 底面
4 円錐状部
4A 錐陥部
5 噴霧口
6 DLC膜
10,10a 噴霧ノズル
20 プラズマイオン注入装置
24 高周波電源
25 パルスバイアス電源
DESCRIPTION OF SYMBOLS 1,1a Spray plate 2,2a Spray plate base | substrate 3 Peripheral plate part 3A Bottom face 4 Conical part 4A Concave part 5 Spray port 6 DLC film 10, 10a Spray nozzle 20 Plasma ion implantation apparatus 24 High frequency power supply 25 Pulse bias power supply

Claims (6)

噴霧口を有する噴板基体の表面に、プラズマイオン注入法によりダイヤモンドライクカーボン膜を形成する噴板の製造方法であって、
前記プラズマイオン注入法は、加熱によりガス化したシリコン系ガスをマイナス10kVのパルスバイアス電圧を印加しながら添加することにより、噴板基体の表面に中間層を形成する中間層の形成工程と、前記中間層の形成工程により中間層が形成された噴板基体に対し、成膜原料である炭化水素ガスの存在下でパルスバイアス電圧を印加することにより、噴板基体の周囲にプラズマを発生させ、プラズマ中のイオンを噴板基体に注入し、噴板基体の表面にダイヤモンドライクカーボン膜を形成するイオン注入及び成膜工程とを備えて成り、
前記イオン注入及び成膜工程が、高周波電源に対しパルスバイアス電圧をマイナス15kVからマイナス3kVまで変化させながら印加して行なわれることを特徴とする噴板の製造方法。
A method for producing a spray plate, in which a diamond-like carbon film is formed on a surface of a spray plate substrate having a spray port by a plasma ion implantation method,
In the plasma ion implantation method, an intermediate layer forming step for forming an intermediate layer on the surface of the injection plate substrate by adding a silicon gas gasified by heating while applying a pulse bias voltage of minus 10 kV; By applying a pulse bias voltage in the presence of a hydrocarbon gas that is a film forming raw material to the jet plate substrate on which the intermediate layer has been formed by the intermediate layer forming step , plasma is generated around the jet plate substrate, Comprising ion implantation and film-forming steps for injecting ions in plasma into a nozzle plate substrate and forming a diamond-like carbon film on the surface of the nozzle plate substrate;
A method for producing a jet plate, wherein the ion implantation and film forming steps are performed while changing a pulse bias voltage from −15 kV to −3 kV to a high-frequency power source.
噴板基体が、周縁板部と、該周縁板部の底面から上向きに陥入して形成された錐陥部とから成るとともに、噴霧口が錐陥部の頂部に上下貫通して形成されていることを特徴とする請求項1に記載の噴板の製造方法The spray plate substrate is composed of a peripheral plate portion and a conical recess portion formed by indenting upward from the bottom surface of the peripheral plate portion, and a spray port is formed through the top portion of the conical recess portion. 2. A method for producing a spout plate according to claim 1, wherein: ダイヤモンドライクカーボン膜の厚みが0.5μm以上5μm以下であることを特徴とする請求項1または請求項のいずれか一項に記載の噴板の製造方法噴板method according to claim 1 or any one of claims 2 thickness of the diamond-like carbon film is equal to or is 0.5μm or more 5μm or less. 噴板基体がステンレス鋼製であることを特徴とする請求項1から請求項までのいずれか一項に記載の噴板の製造方法噴板method according to any one of claims 1 to 3, characterized in that噴板substrate is made of stainless steel. 噴板基体が合成樹脂製であることを特徴とする請求項1から請求項までのいずれか一項に記載の噴板の製造方法噴板method according to any one of claims 1 to 3, characterized in that噴板substrate is made of a synthetic resin. 噴板が農業用噴霧ノズルに使用されるものであることを特徴とする請求項1から請求項5までのいずれか一項に記載の噴板の製造方法。6. The method of manufacturing a spray plate according to claim 1, wherein the spray plate is used for an agricultural spray nozzle.
JP2010075178A 2010-03-29 2010-03-29 Manufacturing method of jet plate Active JP5651894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075178A JP5651894B2 (en) 2010-03-29 2010-03-29 Manufacturing method of jet plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075178A JP5651894B2 (en) 2010-03-29 2010-03-29 Manufacturing method of jet plate

Publications (2)

Publication Number Publication Date
JP2011206645A JP2011206645A (en) 2011-10-20
JP5651894B2 true JP5651894B2 (en) 2015-01-14

Family

ID=44938354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075178A Active JP5651894B2 (en) 2010-03-29 2010-03-29 Manufacturing method of jet plate

Country Status (1)

Country Link
JP (1) JP5651894B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722819B2 (en) * 2012-03-26 2015-05-27 株式会社クボタ Rice seedling planting mechanism
CN105498990A (en) * 2016-01-18 2016-04-20 江阴锕电尔电化设备有限公司 Nozzle discharging port of spraying equipment
CN105498998B (en) * 2016-01-18 2018-01-23 江阴锕电尔电化设备有限公司 A kind of spraying equipment nozzle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378823B2 (en) * 1999-02-12 2003-02-17 菊水化学工業株式会社 Single-head spray gun and coating system using it
JP2000319784A (en) * 1999-05-07 2000-11-21 Riken Corp Sliding component and its production
JP4900547B2 (en) * 2001-01-31 2012-03-21 京セラ株式会社 Needle for weft insertion nozzle and weft insertion nozzle using the same
JP2004276568A (en) * 2003-03-19 2004-10-07 Fuji Xerox Co Ltd Ink jet recording head
JP4545536B2 (en) * 2004-09-17 2010-09-15 太平洋セメント株式会社 Vacuum suction jig
JP4762535B2 (en) * 2004-12-14 2011-08-31 ヤマホ工業株式会社 Nozzle for liquid spray
JP2007330900A (en) * 2006-06-15 2007-12-27 Toppan Printing Co Ltd Die head
JP2010025221A (en) * 2008-07-18 2010-02-04 Ntn Corp Member for rolling bearing and rolling bearing
JP2009288433A (en) * 2008-05-28 2009-12-10 Bando Chem Ind Ltd Charging roller for electrophotographic apparatus, and electrophotographic apparatus

Also Published As

Publication number Publication date
JP2011206645A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
Azar et al. The role of droplets on the cavitation erosion damage of TiN coatings produced with cathodic arc physical vapor deposition
JP5651894B2 (en) Manufacturing method of jet plate
JP6798997B2 (en) Process parts with improved plasma etching resistance and methods for strengthening their plasma etching resistance
RU2677816C2 (en) Sliding element, in particular piston ring
CN106809795A (en) A kind of superhydrophobic microstructure and preparation method thereof
US20160076129A1 (en) Component for plasma processing apparatus, and manufacturing method therefor
CN102076885A (en) Component for rotary machine
CN102133835A (en) Method for realizing metal embossing effect on plastic-rubber base material
JP2009127059A (en) Method for forming diamond-like carbon film
CN101768011A (en) Preparation method of corrosion resistant diamond film
CN106625270A (en) Stainless-steel surface treatment technology
JP5082113B2 (en) Carrier for holding object to be polished and method for manufacturing the same
KR101208768B1 (en) A method for manufacturing ceramic coating layer for improving corrosion resistance of metal and a thing having a ceramic coating layer thereof
CN115874142A (en) Diamond-like coating and method for plating diamond-like coating on metal surface
CN210276895U (en) Multi-structure film layer covering blades of soybean milk machine
CN101550539B (en) Method for depositing protection film on the ceramics valve core surface
JP4599371B2 (en) Amorphous carbon hydrogen solid coating member and method for producing the same
JP4858507B2 (en) Carrier for holding an object to be polished
JP5082114B2 (en) Manufacturing method of carrier for holding object to be polished
CN105714292A (en) Surface-hardening treatment method for hard sealing ball valve sealing pair
TW520402B (en) A method for processing a low sticking surface of an article
CN104513960A (en) Method for preparing color titanium nitride film through magnetron sputtering
Lv et al. Investigating the Effects of the current density on the properties of Ni-P-La2O3 composite coatings
JP2010030016A (en) Method for manufacturing non-metallic carrier for holding polishing material
Morozov et al. The study of island carbon coating on nitrogen-activated polyurethane surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5651894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250