JP2010025221A - Member for rolling bearing and rolling bearing - Google Patents

Member for rolling bearing and rolling bearing Download PDF

Info

Publication number
JP2010025221A
JP2010025221A JP2008187020A JP2008187020A JP2010025221A JP 2010025221 A JP2010025221 A JP 2010025221A JP 2008187020 A JP2008187020 A JP 2008187020A JP 2008187020 A JP2008187020 A JP 2008187020A JP 2010025221 A JP2010025221 A JP 2010025221A
Authority
JP
Japan
Prior art keywords
rolling
rolling bearing
synthetic resin
resin composition
bearing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008187020A
Other languages
Japanese (ja)
Inventor
Kazutoyo Murakami
和豊 村上
Yoshihide Himeno
芳英 姫野
Eiichiro Shimazu
英一郎 島津
Masaki Egami
正樹 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008187020A priority Critical patent/JP2010025221A/en
Priority to EP09713541.2A priority patent/EP2249052B1/en
Priority to US12/735,716 priority patent/US8821024B2/en
Priority to CN2009801058191A priority patent/CN101946099A/en
Priority to PCT/JP2009/053047 priority patent/WO2009104743A1/en
Publication of JP2010025221A publication Critical patent/JP2010025221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2212/00Natural materials, i.e. based on animal or plant products such as leather, wood or cotton or extracted therefrom, e.g. lignin

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for a rolling bearing which can contribute to the suppression, prevention, or reduction of an increase of a concentration of carbon dioxide gas in an atmosphere by reducing the quantity of the carbon dioxide gas generated from a high molecular member when a rolling bearing is discarded and can keep a high continuous use temperature and an elongated durable time, and a rolling bearing using the member. <P>SOLUTION: The member for a rolling bearing is formed of a molded article of a synthetic resin composition so as to be used for a rolling bearing provided with an inner ring 2, an outer ring 3, a plurality of rolling elements 4, and a retainer 5 for retaining the plurality of rolling elements. The member for the rolling bearing is configured as follows. A polymer base material constituting the synthetic resin composition is composed so that its manufacturing raw material at least partially uses a raw material derived from a biomass. The molded article is composed so that a surface layer formed of a material different from that of the synthetic resin composition and having the smaller permeability of the atmosphere component than that of the synthetic resin composition is provided on the surface of a molded article obtained by molding the synthetic resin composition, that is, on the surface exposed in the atmosphere in which the member for the rolling bearing is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は転がり軸受用部材および転がり軸受に関し、特にバイオマス由来の原料を用いて合成された高分子を母材とする合成樹脂組成物の成形体からなる転がり軸受用部材およびこの部材を用いた転がり軸受に関する。   The present invention relates to a rolling bearing member and a rolling bearing, and in particular, a rolling bearing member formed of a molded body of a synthetic resin composition having a polymer synthesized using a biomass-derived raw material as a base material, and a rolling using the member. Related to bearings.

転がり軸受を構成する部材の中でも、特に保持器やシール部材は、合成樹脂組成物や高分子弾性体の成形体として構成される場合が多い。ここで合成樹脂組成物や高分子弾性体は化石資源由来のエンジニアリングプラスチックや合成ゴムが採用されてきた。   Among the members constituting the rolling bearing, in particular, the cage and the seal member are often configured as a molded body of a synthetic resin composition or a polymer elastic body. Here, fossil resource-derived engineering plastics and synthetic rubbers have been adopted as synthetic resin compositions and polymer elastic bodies.

使用済み転がり軸受を産業廃棄物として処分するときの生物環境を害するおそれに対して、従来、生分解性を有する合成樹脂製保持器や樹脂性シール部材またはグリースを適用した軸受が提案されている(特許文献1および特許文献2)。
しかし、生分解性を有する合成樹脂組成物を用いた場合であっても、該合成樹脂組成物を構成する高分子母材が化石資源由来のプラスチック等であると、生分解や燃焼等により最終的に炭酸ガス排出源となり、地球温暖化に悪影響を及ぼすという問題がある。
Conventionally, bearings using biodegradable synthetic resin cages, resin sealing members, or grease have been proposed for the risk of harming the biological environment when used rolling bearings are disposed of as industrial waste. (Patent Document 1 and Patent Document 2).
However, even when a synthetic resin composition having biodegradability is used, if the polymer base material constituting the synthetic resin composition is a plastic derived from a fossil resource, the final result is due to biodegradation or combustion. In other words, it becomes a carbon dioxide emission source and has a problem of adversely affecting global warming.

一方、合成樹脂組成物の成形体を保持器やシール部材に用いた軸受は、設計自由度および生産性が高く、また軸受の重量低減にも寄与するため、近年使用領域の拡大ニーズが高まってきている。しかしながら、これらの合成樹脂を部材として用いた軸受は、総金属製の軸受と比較して、高温下長時間の使用により合成樹脂が次第に劣化し、連続使用温度を高く、また耐久時間を長くすることができないという問題があった。   On the other hand, bearings using synthetic resin composition molded bodies as cages and seal members have high design freedom and productivity, and contribute to reducing the weight of the bearings. ing. However, in the bearings using these synthetic resins as members, the synthetic resin gradually deteriorates as a result of long-term use at high temperatures, and the continuous use temperature is increased and the endurance time is increased as compared with a bearing made of all metals. There was a problem that I could not.

特に、合成樹脂組成物の成形体を製造し、それを廃却するまでの期間に発生する炭酸ガス量を低減し、大気中の炭酸ガス濃度の増加抑制・防止もしくは低減に貢献できるバイオマス由来の原料を用いている合成樹脂組成物の成形体の場合、高分子内部にアミド結合やエステル結合を有する場合が多いため、使用雰囲気ガスによりアミド結合やエステル結合などの加水分解により低分子化してゆき、次第に機械強度が低下してゆく問題がある。そのため、軸受に使用される高分子材料の劣化防止対策が望まれている。
特許第3993377号 特開2004−68913号公報
In particular, it is derived from biomass that can reduce the amount of carbon dioxide generated during the period from the production of a synthetic resin composition molded product to its disposal and contribute to the suppression, prevention or reduction of carbon dioxide concentration in the atmosphere. Synthetic resin composition moldings that use raw materials often have amide bonds or ester bonds inside the polymer, so the molecular weight of the molded product may be reduced by hydrolysis of the amide bond or ester bond depending on the ambient gas used. There is a problem that the mechanical strength gradually decreases. Therefore, a countermeasure for preventing deterioration of the polymer material used for the bearing is desired.
Japanese Patent No. 3993377 JP 2004-68913 A

本発明は、上記問題に対処するためになされたもので、転がり軸受を廃棄した際に高分子部材から発生する炭酸ガス量を低減し、大気中の炭酸ガス濃度の増加抑制・防止もしくは低減に貢献でき、かつ連続使用温度を高く、また耐久時間を長くすることができる転がり軸受用部材およびこの部材を用いた転がり軸受の提供を目的とする。   The present invention has been made to address the above-described problems, and reduces the amount of carbon dioxide generated from the polymer member when the rolling bearing is discarded, thereby suppressing, preventing or reducing the increase in the concentration of carbon dioxide in the atmosphere. An object of the present invention is to provide a rolling bearing member that can contribute, have a high continuous use temperature, and can have a long durability, and a rolling bearing using this member.

本発明の転がり軸受用部材は、外周面に転走面を有する内輪と、内周面に転走面を有する外輪と、上記両転走面間に介在する複数の転動体と、該複数の転動体を保持する保持器とを備えた転がり軸受に用いられる合成樹脂組成物の成形体からなる転がり軸受用部材であって、該転がり軸受用部材は、内輪、外輪、転動体、および保持器から選ばれた少なくとも1つの部材であり、上記合成樹脂組成物を構成する高分子母材は、その製造原料の少なくとも一部がバイオマス由来の原料を用いており、上記成形体は、合成樹脂組成物を成形して得られる成形体の表面であって、転がり軸受用部材が使用される雰囲気に曝される表面に、該合成樹脂組成物とは異なる材質であって、かつ雰囲気成分の透過率が合成樹脂組成物よりも小さい材質の表面層が設けられていることを特徴とする。
特に、転がり軸受用部材が保持器であることを特徴とする。
The rolling bearing member of the present invention includes an inner ring having a rolling surface on the outer peripheral surface, an outer ring having a rolling surface on the inner peripheral surface, a plurality of rolling elements interposed between the both rolling surfaces, and the plurality of rolling elements. A rolling bearing member comprising a molded body of a synthetic resin composition used for a rolling bearing provided with a cage for holding a rolling element, the rolling bearing member comprising an inner ring, an outer ring, a rolling element, and a cage The polymer base material constituting the synthetic resin composition is at least a part selected from the above, and at least a part of the production raw material uses a raw material derived from biomass, and the molded body has a synthetic resin composition. The surface of a molded body obtained by molding a product, which is exposed to the atmosphere in which the rolling bearing member is used, is a material different from the synthetic resin composition and has a transmittance of atmospheric components The surface of the material is smaller than the synthetic resin composition Wherein the is provided.
In particular, the rolling bearing member is a cage.

また、本発明の転がり軸受用部材は、外周面に転走面を有する内輪と、内周面に転走面を有する外輪と、前記両転走面間に介在する複数の転動体と、該複数の転動体を保持する保持器と、シール部材とを備えた転がり軸受に用いられ、高分子弾性体または合成樹脂組成物からなり、該転がり軸受用部材は、上記シール部材であり、上記高分子弾性体または合成樹脂組成物を構成する高分子母材は、その製造原料の少なくとも一部がバイオマス由来の原料を用いており、上記成形体は、合成樹脂組成物を成形して得られる成形体の表面であって、転がり軸受用部材が使用される雰囲気に曝される表面に、該合成樹脂組成物とは異なる材質であって、かつ雰囲気成分の透過率が合成樹脂組成物よりも小さい材質の表面層が設けられていることを特徴とする。   The rolling bearing member of the present invention includes an inner ring having a rolling surface on the outer peripheral surface, an outer ring having a rolling surface on the inner peripheral surface, a plurality of rolling elements interposed between the both rolling surfaces, It is used for a rolling bearing provided with a cage for holding a plurality of rolling elements and a seal member, and is made of a polymer elastic body or a synthetic resin composition, and the rolling bearing member is the seal member, The polymer base material constituting the molecular elastic body or the synthetic resin composition uses a raw material derived from biomass at least a part of the production raw material, and the molded body is obtained by molding the synthetic resin composition. The surface of the body that is exposed to the atmosphere in which the rolling bearing member is used is a material different from the synthetic resin composition, and the transmittance of the atmospheric components is smaller than that of the synthetic resin composition. It is characterized by having a surface layer of material. To.

本発明の転がり軸受用部材に用いられる合成樹脂組成物の成形体または高分子弾性体を構成する高分子母材は、少なくとも放射性炭素14(14C)が含まれることを特徴とする。
また、上記高分子母材は、ポリアミド類、ポリエステル類、セルロース誘導体類から選ばれた少なくとも1つであることを特徴とする。特に、上記高分子母材は、ポリアミド11、ポリアミド6−10、ポリアミド66、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、酢酸セルロース、酢酸プロピオン酸セルロース、酢酸酪酸セルロースから選ばれた少なくとも1つであることを特徴とする。
The polymer base material constituting the molded body or polymer elastic body of the synthetic resin composition used for the rolling bearing member of the present invention is characterized by containing at least radioactive carbon 14 ( 14 C).
The polymer base material is at least one selected from polyamides, polyesters, and cellulose derivatives. In particular, the polymer matrix is at least one selected from polyamide 11, polyamide 6-10, polyamide 66, polytrimethylene terephthalate, polybutylene terephthalate, cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate. It is characterized by.

本発明の転がり軸受用部材が使用される雰囲気は、酸素、オゾンおよび水蒸気から選ばれた少なくとも1つの成分を含むことを特徴とする。また、これら成分を含む雰囲気の透過率が転がり軸受用部材を構成する合成樹脂組成物または高分子弾性体の透過率よりも小さい材質の表面層が設けられていることを特徴とする。雰囲気成分の透過率が小さい材質の表面層を設けることは、バイオマス由来の原料で形成された転がり軸受用部材の表面に気体バリア層を設けることを意味する。   The atmosphere in which the rolling bearing member of the present invention is used includes at least one component selected from oxygen, ozone, and water vapor. Further, the present invention is characterized in that a surface layer made of a material whose permeability of the atmosphere containing these components is smaller than that of the synthetic resin composition or the polymer elastic body constituting the rolling bearing member is provided. Providing a surface layer made of a material having a low permeability of atmospheric components means providing a gas barrier layer on the surface of the rolling bearing member formed of the raw material derived from biomass.

上記気体バリア層となる表面層は、高分子化合物層、セラミックス層および金属層から選ばれた少なくとも1つの表面層であることを特徴とする。
また、上記表面層が設けられた転がり軸受用部材(A部材)の劣化の活性化エネルギーが表面層のない転がり軸受用部材(B部材)の劣化の活性化エネルギーと略同一であり、所定の寿命特性値における耐久温度はA部材がB部材よりも高い温度であることを特徴とする。
The surface layer serving as the gas barrier layer is at least one surface layer selected from a polymer compound layer, a ceramic layer, and a metal layer.
The activation energy for deterioration of the rolling bearing member (A member) provided with the surface layer is substantially the same as the activation energy for deterioration of the rolling bearing member (B member) without the surface layer. The durability temperature in the life characteristic value is characterized in that the A member is higher in temperature than the B member.

本発明の転がり軸受は、外周面に転走面を有する内輪と、内周面に転走面を有する外輪と、両転走面間に介在する複数の転動体と、該複数の転動体を保持する保持器とを備え、上記内輪、外輪、転動体、および保持器から選ばれた少なくとも1つの部材は、製造原料の少なくとも一部がバイオマス由来の原料を用いて得られる高分子母材の合成樹脂組成物の成形体の表面に気体バリア層となる表面層を有することを特徴とする。
また、転がり軸受を構成するシール部材は、製造原料の少なくとも一部がバイオマス由来の原料を用いて得られる高分子を主母材とした高分子弾性体もしくは合成樹脂組成物の表面に気体バリア層となる表面層を有することを特徴とする。
A rolling bearing according to the present invention includes an inner ring having a rolling surface on the outer peripheral surface, an outer ring having a rolling surface on the inner peripheral surface, a plurality of rolling elements interposed between the both rolling surfaces, and the plurality of rolling elements. And at least one member selected from the inner ring, the outer ring, the rolling element, and the cage is a polymer base material obtained by using a raw material derived from biomass at least a part of the production raw material. It has the surface layer used as a gas barrier layer on the surface of the molded object of a synthetic resin composition, It is characterized by the above-mentioned.
Further, the seal member constituting the rolling bearing has a gas barrier layer on the surface of a polymer elastic body or a synthetic resin composition whose main base material is a polymer obtained by using at least a part of the raw material for production. It has the surface layer used as follows.

本発明の転がり軸受用部材は、(1)製造原料の少なくとも一部にバイオマス由来の原料を用いて合成された高分子(以後、バイオプラスチックともいう)を主母材として用いるので、化石資源由来の高分子を用いた場合と比べて、転がり軸受の廃棄・リサイクルの過程で、これら部材から実質的に炭酸ガスを排出しない、または炭酸ガスの排出量を抑制できる、環境負荷の低い保持器および/またはシール等を用いた転がり軸受の提供ができる。(2)バイオプラスチックの表面に気体バリア層を設けるので、バイオプラスチックに含まれているアミド結合およびエステル結合の加水分解を誘発させる要因である酸素や水蒸気などの気体の接触を効果的に防止し、高温下の連続使用を達成することができる。   The rolling bearing member of the present invention uses (1) a polymer synthesized using a biomass-derived raw material as at least a part of the production raw material (hereinafter also referred to as bioplastic) as a main base material. Compared to the case of using the above polymer, a cage with a low environmental load that can substantially prevent carbon dioxide from being discharged from these members or suppress the amount of carbon dioxide in the process of disposal and recycling of rolling bearings, and It is possible to provide a rolling bearing using a seal or the like. (2) Since a gas barrier layer is provided on the surface of the bioplastic, it effectively prevents contact with gases such as oxygen and water vapor, which are factors that induce hydrolysis of amide bonds and ester bonds contained in the bioplastic. , Continuous use under high temperature can be achieved.

本発明において、バイオマスとは、平成18年3月31日に農林水産省で策定されたバイオマス・ニッポン総合戦略に定義されているように、再生可能な生物もしくは植物由来の有機性資源であり、化石資源を除いたものである。このようなバイオマスとしては、廃棄される紙、家畜排泄物、食品廃棄物、建設発生木材、製剤工場残材、黒液(パルプ工場廃液)、下水汚泥、し尿汚泥、稲わら、麦わら、もみ殻、林地残材(間伐材、被害木材等)、飼料作物、でん粉系作物や、蟹や海老等の甲殻類の殻等を原料とするものがある。   In the present invention, biomass is a renewable biological or plant-derived organic resource, as defined in the biomass-Japan comprehensive strategy formulated by the Ministry of Agriculture, Forestry and Fisheries on March 31, 2006, Excluding fossil resources. Such biomass includes discarded paper, livestock waste, food waste, construction wood, pharmaceutical factory residue, black liquor (pulp factory waste), sewage sludge, human waste sludge, rice straw, wheat straw, rice husk , Forest land residues (thinned wood, damaged wood, etc.), feed crops, starch-based crops, shells of shellfish such as firewood and shrimp, etc.

本発明の転がり軸受用部材は、製造原料の少なくとも一部がバイオマス由来の原料を用いて得られる高分子母材から得られる合成樹脂組成物の成形体、または高分子弾性体から製造される。
上記高分子母材は、バイオマス由来の原料を少なくともその一部に用いて合成した高分子である。大気中の炭酸ガスを吸収して成長した植物それらを摂取した生物等から原料を抽出・変性し、重合過程を経て高分子材料としたものである。このため廃棄時に燃焼処分や生分解しても特に大気中の炭酸ガス濃度の増加に寄与しない、または従来の化石系原料から合成される高分子と比べて炭酸ガス排出量を抑制できる、カーボンニュートラル(炭素循環に対して中立(害を及ぼさない))と呼ばれる特徴を持つ。
The rolling bearing member of the present invention is manufactured from a molded body of a synthetic resin composition obtained from a polymer base material obtained by using at least a part of a raw material produced from a biomass-derived raw material, or a polymer elastic body.
The polymer base material is a polymer synthesized using at least part of a biomass-derived raw material. Plants that have grown by absorbing carbon dioxide in the atmosphere are extracted and denatured from living organisms that have ingested them, and then polymerized to form a polymer material. For this reason, carbon neutral, which does not contribute to an increase in carbon dioxide concentration in the atmosphere even when it is disposed of by combustion or biodegradation at the time of disposal, or can suppress carbon dioxide emissions compared to polymers synthesized from conventional fossil materials. It has a feature called (neutral (does no harm) to the carbon cycle).

転がり軸受の多くは、内外輪および転動体が金属である軸受鋼であるため、その廃棄の場合には、通常、鉄としてリサイクルされる。このリサイクル過程で軸受に含まれる高分子部材は燃焼され、炭酸ガスとして処分される場合が多い。
転がり軸受用部材として用いられている高分子母材の炭素元素に着目した場合、その炭素元素は化石資源由来のものとバイオマス由来のものに区分することができる。高分子母材を構成する全炭素元素に占めるバイオマス由来の炭素元素の比率をバイオマス炭素含有率(以後、バイオカーボン度という)として、式(1)により算出することができる。

バイオカーボン度(%)=(バイオマス由来の炭素元素数/高分子母材の全炭素元素数)×100・・・・・・(1)

本発明で用いる高分子母材としては、バイオカーボン度が0%をこえていれば特に問題はないが、燃焼時の炭酸ガス排出量削減の効果を上げるためには、15%以上のバイオカーボン度が好ましく、この値は高ければ高いほどよい。
Many of the rolling bearings are bearing steels in which inner and outer rings and rolling elements are metal, and are usually recycled as iron when discarded. In this recycling process, the polymer member contained in the bearing is often burned and disposed of as carbon dioxide gas.
When paying attention to the carbon element of the polymer base material used as a rolling bearing member, the carbon element can be classified into those derived from fossil resources and those derived from biomass. The ratio of the carbon element derived from biomass to the total carbon elements constituting the polymer base material can be calculated by the formula (1) as the biomass carbon content (hereinafter referred to as biocarbon degree).

Biocarbon degree (%) = (Number of carbon elements derived from biomass / Total number of carbon elements in polymer matrix) × 100 (1)

The polymer matrix used in the present invention is not particularly problematic as long as the degree of biocarbon exceeds 0%, but in order to increase the effect of reducing carbon dioxide emission during combustion, 15% or more of biocarbon is used. The degree is preferred, and the higher this value, the better.

高分子母材がバイオマス由来の原料から構成されているかどうかは、母材中に含まれる放射性炭素14(以後、14Cともいう)の有無を調べることで判定できる。14Cの半減期は5730年であることから、1千万年以上の歳月を経て生成されるとされる化石資源由来の炭素には14Cが全く含まれない。このことから高分子部材中に14Cが含まれていれば、少なくともバイオマス由来の原料を用いていると判断できる。 Whether or not the polymer matrix is composed of biomass-derived raw materials can be determined by examining the presence or absence of radioactive carbon 14 (hereinafter also referred to as 14 C) contained in the matrix. Since the half-life of 14 C is 5730 years, carbon derived from fossil resources, which is supposed to be produced after more than 10 million years, does not contain 14 C at all. From this, if 14 C is contained in the polymer member, it can be determined that at least a raw material derived from biomass is used.

高分子母材のバイオカーボン度は、加速器質量分析(AMS)法やβ線測定法などによる14Cの濃度測定結果から求めることもできる(例えばASTM D6866)。しかしながら、大気中の14C濃度は変動するため、バイオプラスチックス中に含まれる14C濃度も例えば収穫年毎に変動することから、正確なバイオカーボン度を求めるにはそれらの補正を行なう必要がある。 The biocarbon degree of the polymer base material can also be obtained from the concentration measurement result of 14 C by an accelerator mass spectrometry (AMS) method or a β ray measurement method (for example, ASTM D6866). However, since the 14 C concentration in the atmosphere may vary, since it vary from 14 C concentration for example crop year contained in the bio plastics, is to determine the exact Biocarbon degree necessary to perform their correction is there.

化石資源由来の高分子と比べてバイオプラスチックスは、原料の種類が限られ、また醗酵による変換や化学変換を行なう際の自由度も小さい場合が多いことから、その多くはエステル系またアミド系高分子である。またこのことから得られたバイオプラスチックスは加水分解性や生分解性を有している場合が多く、加えて一般的に強度、靭性、耐熱性や耐劣化性が化石資源由来樹脂と比べて劣る場合が多いため、信頼性が要求される機械部品用途には適用しにくいという問題がある。   Compared to polymers derived from fossil resources, bioplastics are limited in the types of raw materials, and often have a small degree of freedom in conversion by fermentation and chemical conversion. It is a polymer. In addition, bioplastics obtained from this often have hydrolyzability and biodegradability, and in addition, generally have strength, toughness, heat resistance, and deterioration resistance compared to resins derived from fossil resources. Since it is often inferior, there is a problem that it is difficult to apply to mechanical parts that require reliability.

本発明に使用可能なバイオプラスチックスとしての高分子母材は、その原料の一部または全部がバイオマス由来の原料から構成された、ポリ乳酸(PLA)、ポリ3−ヒドロキシブタン酸[P(3HB)]、ポリアミド11(以下、PA11ともいう)、ポリアミド6−10(以下、PA6−10ともいう)、ポリアミド66(以下、PA66ともいう)などの一部のポリアミド類、ポリブチレンサクシネート(以下、PBSともいう)、ポリトリメチレンテレフタレート(以下、PTTともいう)、ポリブチレンテレフタレート(以下、PBTともいう)などのポリエステル類、酢酸セルロース(以下、CAともいう)、酢酸プロピオン酸セルロース(以下、CAPともいう)、酢酸酪酸セルロース(以下、CABともいう)などのセルロース誘導体類などが挙げられ、使用するモノマー成分の一部または全部にバイオマス原料を利用したものであればどのようなものでも使用できる。
例えば、上記に挙げたもの以外にも、3−ヒドロキシブタン酸と3−ヒドロキシ吉草酸の共重合体P[(3HB)−co−(3HV)]や、PBSに共重合成分としてアジピン酸のモノマーを加えた共重合体(PBSA)、PBSに乳酸モノマーを加えた共重合体(PBSL)、ε−カプロラクトンを加えた共重合体(PBSCL)、カーボネートを加えた共重合体(PBSC)、バイオマスであるポリフェノールやリグニン等から得られるフェノール類を用いたフェノール樹脂や、バイオマス由来のポリオールや有機酸を用いたエポキシ樹脂なども利用できる。さらには靭性向上などの目的で複数のバイオプラスチックス同士や、化石資源由来の高分子とのアロイ化技術も利用できる。
上記のうち、バイオマス由来原料から比較的経済的に合成・重合し易くて、バイオカーボン度も高く、かつ耐生分解性もしくは耐加水分解性に優れ信頼性を確保しやすいことから、PA11、PA6−10、PA66、PTT、またはCA、CAP、CABなどのセルロース誘導体類が好ましい。
The polymer base material as bioplastics that can be used in the present invention is composed of polylactic acid (PLA), poly-3-hydroxybutanoic acid [P (3HB), part or all of which is composed of biomass-derived raw materials. )], Polyamide 11 (hereinafter also referred to as PA11), polyamide 6-10 (hereinafter also referred to as PA6-10), polyamide 66 (hereinafter also referred to as PA66), some polyamides, and polybutylene succinate (hereinafter referred to as PA). , PBS), polytrimethylene terephthalate (hereinafter also referred to as PTT), polyesters such as polybutylene terephthalate (hereinafter also referred to as PBT), cellulose acetate (hereinafter also referred to as CA), cellulose acetate propionate (hereinafter referred to as Cellulose inducers such as cellulose acetate butyrate (hereinafter also referred to as CAB) Like body such are exemplified, it can be used any one as long as it utilizes biomass material to a part or the whole of the monomer components to be used.
For example, in addition to those listed above, 3-hydroxybutanoic acid and 3-hydroxyvaleric acid copolymer P [(3HB) -co- (3HV)], or adipic acid monomer as a copolymerization component in PBS (PBSA), lactic acid monomer added to PBS (PBSL), ε-caprolactone added copolymer (PBSCL), carbonate added copolymer (PBSC), biomass A phenol resin using a phenol obtained from a certain polyphenol, lignin, or the like, an epoxy resin using a biomass-derived polyol or organic acid, and the like can also be used. Furthermore, for the purpose of improving toughness, an alloying technique between a plurality of bioplastics or a polymer derived from fossil resources can be used.
Among the above, PA11, PA6, because it is relatively easy to synthesize and polymerize from biomass-derived raw materials, has a high degree of biocarbon, and is excellent in biodegradation resistance or hydrolysis resistance, making it easy to ensure reliability. -10, PA66, PTT, or cellulose derivatives such as CA, CAP, CAB are preferred.

本発明に使用可能な高分子弾性体としての高分子母材は、天然ゴム、ヒマシ油由来の11−アミノウンデカン酸などから合成されるアミド系熱可塑性エラストマーなどがあり、またはこれらと、化石資源由来の合成ゴムや例えばポリ塩化ビニルなどの合成樹脂とのブレンド品が挙げられる。天然ゴムは、通常耐油性や耐候性に劣るため必要に応じて、15%以上のバイオカーボン度が得られるように化石資源由来の合成ゴムや合成樹脂とブレンドされる。   Examples of the polymer base material as a polymer elastic body usable in the present invention include natural rubber, amide-based thermoplastic elastomer synthesized from castor oil-derived 11-aminoundecanoic acid, and the like, and these and fossil resources Examples include synthetic rubbers derived from natural rubber and blends with synthetic resins such as polyvinyl chloride. Since natural rubber is usually inferior in oil resistance and weather resistance, it is blended with a synthetic rubber or synthetic resin derived from fossil resources so that a biocarbon degree of 15% or more is obtained as necessary.

これら上述のバイオマス由来原料を用いた14Cを含む高分子母材に、転がり軸受の用途に応じて、粒状物、板状物、繊維状物等の補強材、熱、紫外線、酸化や加水分解等による劣化を抑制する劣化抑制剤や劣化防止剤、成形性や成形体の柔軟性を向上する為の可塑剤、柔軟剤、帯電防止剤や導電材等の添加剤、分散剤や顔料等を添加することもできる。
また、成形体の耐衝撃を向上するための、例えばゴム変性等の耐衝撃向上手法や、ラジカル発生剤、架橋剤、放射線や電子線等による架橋構造の導入による耐熱性向上手法を用いることもできる。
Depending on the use of rolling bearings, polymer materials containing 14 C using the above biomass-derived raw materials, reinforcing materials such as granular materials, plate-like materials, fibrous materials, heat, ultraviolet rays, oxidation and hydrolysis Degradation inhibitors and degradation inhibitors that suppress degradation due to, etc., plasticizers to improve moldability and flexibility of molded products, softeners, additives such as antistatic agents and conductive materials, dispersants, pigments, etc. It can also be added.
It is also possible to use a method for improving impact resistance such as rubber modification, or a method for improving heat resistance by introducing a crosslinking structure by a radical generator, a crosslinking agent, radiation or an electron beam, etc. it can.

上記成形体は、この成形体表面のうち転がり軸受用部材が使用される雰囲気に曝される表面に雰囲気成分の透過を抑えるバリア層を有する。バリア層は、上記成形体を構成する合成樹脂組成物とは異なる材質であって、かつ雰囲気成分の透過率が上記合成樹脂組成物よりも小さい材質の表面層である。
本発明において、バイオプラスチックを劣化させる雰囲気成分の透過を抑えることが必要であり、耐久性に関与する雰囲気成分としては、酸素ガス、オゾンガス、水蒸気、潤滑油および/またはグリースを構成する有機物成分が挙げられる。
バイオプラスチックはアミド結合およびエステル結合を含むものが多く、これらアミド結合およびエステル結合は、水蒸気による加水分解を受けて劣化しやすい。また、酸素ガスおよびオゾンガスはバイオプラスチックを酸化劣化させやすい。酸素ガス、オゾンガス、水蒸気は、それぞれ単独で、または複合してバイオプラスチックの耐久性を低下させる。このため、ガス成分としてバイオプラスチックの耐久性を低下させることが多い酸素ガス、オゾンガス、水蒸気に対するバリア層を設けることが好ましい。
気体バリア層となる表面層は、高分子化合物層、セラミックス層および金属層から選ばれた少なくとも1つの表面層が挙げられる。
The said molded object has a barrier layer which suppresses permeation | transmission of an atmospheric component on the surface exposed to the atmosphere where the member for rolling bearings is used among the surfaces of this molded object. The barrier layer is a surface layer made of a material different from the synthetic resin composition constituting the molded body and having a lower atmospheric component transmittance than the synthetic resin composition.
In the present invention, it is necessary to suppress the permeation of atmospheric components that degrade the bioplastic, and the atmospheric components involved in durability include oxygen gas, ozone gas, water vapor, lubricating oil, and / or organic components constituting grease. Can be mentioned.
Many bioplastics contain amide bonds and ester bonds, and these amide bonds and ester bonds are susceptible to degradation due to hydrolysis by water vapor. In addition, oxygen gas and ozone gas tend to oxidize and degrade bioplastics. Oxygen gas, ozone gas, and water vapor are used alone or in combination to reduce the durability of the bioplastic. For this reason, it is preferable to provide a barrier layer against oxygen gas, ozone gas, and water vapor, which often lowers the durability of bioplastics as gas components.
Examples of the surface layer serving as the gas barrier layer include at least one surface layer selected from a polymer compound layer, a ceramic layer, and a metal layer.

高分子化合物層としては、気体バリア性が本体の成形体より優れている高分子母材を用いることができる。本体の成形体より優れているバイオマス由来原料を用いた高分子母材、または化石原料由来の高分子母材を用いることができる。好ましい高分子母材は化石原料由来の高分子母材である。
本発明において、表面層として使用可能な高分子母材として、化石資源由来の高分子材料としては、熱硬化性樹脂または熱可塑性樹脂のいずれであってもよく、具体例を列挙すれば以下の通りである。すなわち、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、ポリテトラフルオロエチレン樹脂、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン樹脂、エチレン・テトラフルオロエチレン共重合体、ポリ塩化ビニル、ポリビニルアルコール、低密度ポリエチレン樹脂、高密度または超分子量ポリエチレン樹脂、水架橋ポリオレフィン樹脂、芳香族ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリアリルスルホン樹脂、ポリシアノアリールエーテル樹脂、ポリアリールエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、芳香族ポリエステル樹脂、ポリエチレンテレフタレート樹脂、脂肪族ポリケトン樹脂、ポリオキサゾリン樹脂、または上記合成樹脂から選ばれた2種以上の樹脂材料が混合されて、ポリマーブレンドやポリマーアロイと称される重合体が挙げられる。
As the polymer compound layer, a polymer base material having a gas barrier property superior to that of the molded body of the main body can be used. A polymer base material using a biomass-derived raw material that is superior to the molded body of the main body, or a polymer base material derived from a fossil raw material can be used. A preferred polymer base material is a polymer base material derived from a fossil raw material.
In the present invention, as a polymer base material that can be used as a surface layer, the fossil resource-derived polymer material may be either a thermosetting resin or a thermoplastic resin. Specific examples are listed below. Street. That is, phenol resin, epoxy resin, urethane resin, polytetrafluoroethylene resin, chlorotrifluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, vinylidene fluoride resin , Ethylene / tetrafluoroethylene copolymer, polyvinyl chloride, polyvinyl alcohol, low density polyethylene resin, high density or ultra-molecular weight polyethylene resin, water-crosslinked polyolefin resin, aromatic polyamide resin, polyacetal resin, polycarbonate resin, polystyrene resin, polyimide Resin, polyetherimide resin, polyamideimide resin, polyphenylene oxide resin, polyallylsulfone resin, polycyanoaryl ether resin, polyester Two or more kinds of resin materials selected from aryl ether ketone resin, polyphenylene sulfide resin, aromatic polyester resin, polyethylene terephthalate resin, aliphatic polyketone resin, polyoxazoline resin, or the above synthetic resin are mixed to form a polymer blend or polymer. A polymer called an alloy is mentioned.

本発明において、表面層として使用可能な高分子母材として、バイオマス由来の高分子材料としては、上述したバイオマス由来の高分子母材の中で本体と表面層の組合せた場合に気体バリア性に優れた高分子母材を表面層に使用できる。   In the present invention, as a polymer matrix that can be used as a surface layer, as a biomass-derived polymer material, when the main body and the surface layer are combined in the biomass-derived polymer matrix described above, gas barrier properties are achieved. An excellent polymer matrix can be used for the surface layer.

セラミックス層としては、シリカ、アルミナなどの酸化物系セラミックス膜、窒化ケイ素などの非酸化物系セラミックス膜、またはダイヤモンドライクカーボン(DLC)が挙げられる。   Examples of the ceramic layer include oxide ceramic films such as silica and alumina, non-oxide ceramic films such as silicon nitride, and diamond-like carbon (DLC).

本発明において、表面層として使用可能な金属層としては、金属箔とすることができる金属材料、プラスチックス表面に無電解メッキ可能な金属材料、蒸着被膜を形成できる金属材料が挙げられる。   In the present invention, examples of the metal layer that can be used as the surface layer include a metal material that can be used as a metal foil, a metal material that can be electrolessly plated on the surface of plastics, and a metal material that can form a deposited film.

表面層の形成方法としては、薄膜を貼り付けまたは圧着する方法、物理的または化学的蒸着による方法、溶射による方法、塗膜を形成する方法、無電解メッキによる方法、2色成形を用いた異種材接合方法等が挙げられる。   As a method for forming the surface layer, a method for attaching or pressure bonding a thin film, a method for physical or chemical vapor deposition, a method for thermal spraying, a method for forming a coating film, a method for electroless plating, or a different type using two-color molding. Examples include a material joining method.

本発明は、製造原料の少なくとも一部が生物由来の高分子から得られる合成樹脂組成物の成形体、または高分子弾性体を母材として製造される軸受用部材の耐久性を向上できる。生物由来の高分子材料は、原料の種類が限られ、また醗酵による変換や化学変換を行なう際の自由度は、化石資源由来の高分子材料よりも小さい場合が多いことから、その多くはエステル系またアミド系高分子となり、化石資源由来の高分子材料よりも一層、加水分解や熱による高分子母材の劣化を防ぐ必要がある。   INDUSTRIAL APPLICABILITY The present invention can improve the durability of a molded member of a synthetic resin composition obtained from at least a part of a production raw material from a biological polymer, or a bearing member manufactured using a polymer elastic body as a base material. Biologically derived polymer materials are limited in the types of raw materials, and the degree of freedom when performing conversion by fermentation or chemical conversion is often smaller than that of polymer materials derived from fossil resources. It is necessary to prevent degradation of the polymer base material due to hydrolysis or heat more than the polymer material derived from fossil resources.

高分子母材の劣化が主としてその化学的変化に起因すると考えて、これを反応速度論的に取り扱うことで、材料の特性変化と温度との関係、すなわち耐熱寿命式を求めることが、例えばIEC規格、JIS規格、ASTM規格、UL規格などで採用されている。
この耐熱寿命式は、材料の特性変化の活性化エネルギーが材料を構成する化学物質の化学変化の活性化エネルギーに等しくなるとの考え方に基づくものであり、温度Tにおける寿命をtとすれば、以下の式(2)で表される。aは定数、ΔEは活性化エネルギー、Rはガス定数をそれぞれ表す。

log t =a+ΔE/RT・・・・・・(2)

縦軸(Y軸)を寿命tの対数目盛と、横軸(X軸)を(1/T)目盛とするグラフに上記式を描くと、上記寿命式は、直線関係が得られ、その直線の傾きは(ΔE/R)になる。
なお、材料が寿命となる特性は、転がり軸受用部材に必要とされる特性の中で、任意に定めることができ、その定められた寿命特性値により具体的な耐久温度が定まる。
Considering that the deterioration of the polymer base material is mainly caused by its chemical change, and treating this in terms of reaction kinetics, it is possible to obtain the relationship between the property change of the material and the temperature, that is, the heat resistant life formula, for example, IEC It is adopted in standards, JIS standards, ASTM standards, UL standards and the like.
This heat-resistant life formula is based on the idea that the activation energy of the material characteristic change is equal to the activation energy of the chemical change of the chemical substance constituting the material. (2) a represents a constant, ΔE represents activation energy, and R represents a gas constant.

log t = a + ΔE / RT (2)

If the above equation is drawn on a graph with the logarithmic scale of life t on the vertical axis (Y-axis) and the (1 / T) scale on the horizontal axis (X-axis), the above-mentioned life formula has a linear relationship. The slope of is (ΔE / R).
The characteristic that the material has a lifetime can be arbitrarily determined among the characteristics required for the rolling bearing member, and the specific durability temperature is determined by the determined lifetime characteristic value.

本発明の表面層が設けられた転がり軸受用部材(A部材)と、表面層のない転がり軸受用部材(B部材)との耐熱寿命直線を比較すると、その直線の傾きが略同一となると共に、該直線が略平行移動して、所定の寿命特性値における耐久温度はA部材がB部材よりも高い温度となる。
本発明の表面層は、上記目的のために設けられるものであり、バイオプラスチックスであるB部材の連続使用温度を高めるために設けられる。
When the heat-resistant life straight line of the rolling bearing member (A member) provided with the surface layer of the present invention and the rolling bearing member (B member) without the surface layer are compared, the inclination of the straight line is substantially the same. The straight line moves substantially in parallel, and the durability temperature at a predetermined life characteristic value is higher in the A member than in the B member.
The surface layer of this invention is provided for the said objective, and is provided in order to raise the continuous use temperature of B member which is bioplastics.

表面層の厚さは表面層の材質および種類によって異なるが、表面層の厚さが厚くなりすぎると、バイオプラスチックス以外の構成成分が増加することになり、上記耐熱寿命直線の傾きが略同一とならなくなる場合がある。また、表面層の部材は環境負荷を増大させるため好ましくない。表面層の厚さが薄すぎると、上記耐熱寿命直線の傾きが略同一であるが耐久温度が向上しない。
表面層の厚さは、耐熱寿命直線が上記関係になるように定められるものであるが、具体的には、表面層が高分子層である場合0.1〜2000μm、好ましくは1〜1000μm、セラミックス層である場合0.01〜500μm、好ましくは0.1〜200μm、金属層である場合0.1〜500μm、好ましくは0.5〜200μmである。
The thickness of the surface layer varies depending on the material and type of the surface layer, but if the surface layer becomes too thick, the components other than bioplastics will increase, and the slope of the heat-resistant life straight line will be approximately the same. It may not be. Further, the surface layer member is not preferable because it increases the environmental load. If the thickness of the surface layer is too thin, the endurance temperature is not improved although the slope of the heat-resistant life straight line is substantially the same.
The thickness of the surface layer is determined so that the heat-resistant lifetime straight line is in the above relationship. Specifically, when the surface layer is a polymer layer, 0.1 to 2000 μm, preferably 1 to 1000 μm, When it is a ceramic layer, it is 0.01-500 micrometers, Preferably it is 0.1-200 micrometers, and when it is a metal layer, it is 0.1-500 micrometers, Preferably it is 0.5-200 micrometers.

本発明の転がり軸受の一例を図1により説明する。図1はグリース封入深溝玉軸受の断面図である。深溝玉軸受1は、外周面に内輪転走面2aを有する内輪2と内周面に外輪転走面3aを有する外輪3とが同心に配置され、内輪転走面2aと外輪転走面3aとの間に複数個の転動体4が配置される。この複数個の転動体4を保持する保持器5が設けられている。また、外輪3等に固定されるシール部材6が内輪2および外輪3の軸方向両端開口部8a、8bにそれぞれ設けられている。少なくとも転動体4の周囲にグリース7が封入される。
図1においては、特に保持器5をバイオマス由来の原料を用いて得られる高分子母材の合成樹脂組成物の成形体5aとし、その成形体表面が上述した表面層5bで覆われている。内輪2、外輪3、転動体4は鋼またはセラミックから構成することが好ましい。
An example of the rolling bearing of the present invention will be described with reference to FIG. FIG. 1 is a sectional view of a grease-filled deep groove ball bearing. In the deep groove ball bearing 1, an inner ring 2 having an inner ring rolling surface 2a on the outer peripheral surface and an outer ring 3 having an outer ring rolling surface 3a on the inner peripheral surface are arranged concentrically, and the inner ring rolling surface 2a and the outer ring rolling surface 3a. A plurality of rolling elements 4 are arranged between the two. A cage 5 that holds the plurality of rolling elements 4 is provided. In addition, seal members 6 fixed to the outer ring 3 and the like are provided in the axially opposite end openings 8a and 8b of the inner ring 2 and the outer ring 3, respectively. Grease 7 is sealed at least around the rolling element 4.
In FIG. 1, the cage 5 is a molded body 5a of a synthetic resin composition of a polymer base material obtained using a biomass-derived raw material, and the surface of the molded body is covered with the surface layer 5b described above. The inner ring 2, the outer ring 3, and the rolling element 4 are preferably made of steel or ceramic.

また、図2に示すように、シール部材6は、上述のバイオマス由来の高分子弾性体もしくは合成樹脂組成物の成形体6aとし、その成形体表面が上述した表面層6bで覆われている構成とすることができる。なお、シール部材6は、金属板、プラスチック板、セラミック板等との複合体としてもよい。   As shown in FIG. 2, the seal member 6 is a molded body 6a of the above-described biomass-derived polymer elastic body or synthetic resin composition, and the surface of the molded body is covered with the surface layer 6b described above. It can be. The seal member 6 may be a composite with a metal plate, a plastic plate, a ceramic plate, or the like.

また、本発明の転がり軸受の潤滑方式は、既知の、例えばグリース潤滑、油潤滑、エアオイル潤滑、固体潤滑等、どのような方法を採用してもよい。またグリース潤滑や油を使った潤滑の場合、それらには、従来から用いられている鉱油等の化石資源由来材だけでなく、生分解性を付与したものやバイオマス由来材を適用したものを用いることもできる。   In addition, the rolling bearing lubrication method of the present invention may employ any known method such as grease lubrication, oil lubrication, air-oil lubrication, and solid lubrication. In addition, in the case of grease lubrication or lubrication using oil, in addition to conventional fossil resource derived materials such as mineral oil, those using biodegradable or biomass derived materials are used. You can also.

なお、転がり軸受として深溝玉軸受を例示して説明したが、本発明の転がり軸受は、他の種々の転がり軸受やこれらを組込んだ軸受ユニット部品に対して適用できる。例えば、アンギュラ玉軸受、自動調心玉軸受、円筒ころ軸受、円すいころ軸受、針状ころ軸受、自動調心ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受、スラストころ軸受等のスラスト形の転がり軸受に適用できる。   In addition, although the deep groove ball bearing was illustrated and demonstrated as a rolling bearing, the rolling bearing of this invention is applicable with respect to other various rolling bearings and the bearing unit components incorporating these. For example, radial rolling bearings such as angular contact ball bearings, self-aligning ball bearings, cylindrical roller bearings, tapered roller bearings, needle roller bearings, and self-aligning roller bearings, and thrust types such as thrust ball bearings and thrust roller bearings It can be applied to rolling bearings.

以下の各実施例に示す高分子部材を保持器およびシール部材に使用して、図1に示す構成の転がり軸受をそれぞれ製造した。   Rolling bearings having the configuration shown in FIG. 1 were produced using the polymer members shown in the following examples as cages and seal members.

実施例
バイオマス由来原料で変性処理したセルロース類、セルロース類の糖化過程で得られるフルフラールからアジポニトリル等を経由して得られるヘキサメチレンジアミンとアジピン酸を重合して得られるポリアミド66は、バイオマス由来材(14Cを含むバイオマスプラスチックス)となることができる。
ポリアミド66にガラス繊維を25重量%配合した市販品のウルトラミッドA3HG5(BASF社製)材料を用いて、射出成形機で保持器および評価用フィルム(厚さ約80μm)を作製した。
Example Polyamide 66 obtained by polymerizing hexamethylene diamine and adipic acid obtained by adiponitrile and the like from cellulose modified with biomass-derived raw materials, furfural obtained in the saccharification process of cellulose, and the like is a biomass-derived material ( 14 C-containing biomass plastics).
Using a commercially available Ultramid A3HG5 (manufactured by BASF) material containing 25% by weight of glass fiber in polyamide 66, a cage and a film for evaluation (thickness: about 80 μm) were prepared with an injection molding machine.

保持器および評価用フィルムの表面にプラズマイオン注入法でダイヤモンドライクカーボン(DLC)の薄膜を成膜した。DLC膜の厚さは5nmと20nmとの2種類を準備した。
得られた評価用フィルムを用いて、水蒸気透過度(g/(m2・day))を測定した。水蒸気透過度はJIS K7129に規定の方法で測定した。その結果、DLC膜が形成されていない評価用フィルムの水蒸気透過度を100%として表した水蒸気透過率(%)は、DLC膜の厚さ5nmでは41.9%、同20nmでは19.4%であった。
A diamond-like carbon (DLC) thin film was formed on the surface of the cage and the film for evaluation by plasma ion implantation. Two types of DLC film thicknesses of 5 nm and 20 nm were prepared.
The water vapor permeability (g / (m 2 · day)) was measured using the obtained film for evaluation. The water vapor transmission rate was measured by a method defined in JIS K7129. As a result, the water vapor transmission rate (%) expressed as 100% of the water vapor transmission rate of the evaluation film in which the DLC film is not formed is 41.9% when the DLC film thickness is 5 nm, and 19.4% when the DLC film thickness is 20 nm. Met.

引張強さが初期値の半分となる時間を寿命時間の値として、室温より高い複数の温度で寿命時間を測定した。測定はASTM1号ダンベルの上記評価用フィルム試験片を用いて測定した。なお、DLC膜はフィルムの両面に形成した。
測定温度を(1/K)目盛りで横軸に、寿命時間を対数目盛りで縦軸にしてプロットすることにより直線関係が得られた。
直線関係の傾きより得られた劣化の活性化エネルギーは、それぞれ、DLC膜を形成しないポリアミド66が16.5kcal/モル、DLC膜の厚さ5nmのポリアミド66が17.8kcal/モル、DLC膜の厚さ20nmのポリアミド66が15.8kcal/モルであり、略同一の活性化エネルギーを示した。
上記寿命直線より、10万時間連続使用温度(℃)を求めたところ、それぞれ、DLC膜を形成しないポリアミド66が106℃、DLC膜の厚さ5nmのポリアミド66が109℃、DLC膜の厚さ20nmのポリアミド66が122℃であった。
The lifetime was measured at a plurality of temperatures higher than room temperature, with the time when the tensile strength was half the initial value as the lifetime value. The measurement was performed using the above film test piece for evaluation of ASTM No. 1 dumbbell. The DLC film was formed on both sides of the film.
A linear relationship was obtained by plotting the measured temperature on the horizontal axis on the (1 / K) scale and the life time on the vertical axis on the logarithmic scale.
The degradation activation energies obtained from the slope of the linear relationship are respectively 16.5 kcal / mol for polyamide 66 that does not form a DLC film, 17.8 kcal / mol for polyamide 66 with a DLC film thickness of 5 nm, Polyamide 66 with a thickness of 20 nm was 15.8 kcal / mol, and showed almost the same activation energy.
When the continuous use temperature (° C.) was obtained from the above-mentioned life straight line, the polyamide 66 not forming the DLC film was 106 ° C., the DLC film 5 nm thick polyamide 66 was 109 ° C., and the DLC film thickness was 10 ° C. The 20 nm polyamide 66 was 122 ° C.

以上の結果から、同一の母材であっても気体バリア性を持つ皮膜を処理することで、連続使用温度を向上させることができた。気体バリア性を持つ皮膜の膜厚と性能向上率の関係から、母材に浸透する気体を抑えることで樹脂の分解の進行が遅くなり、結果的に物性低下が抑えられたと考える。   From the above results, it was possible to improve the continuous use temperature by treating a film having gas barrier properties even with the same base material. From the relationship between the film thickness of the film having the gas barrier property and the performance improvement rate, it is considered that the progress of the decomposition of the resin is slowed by suppressing the gas penetrating the base material, and as a result, the deterioration of the physical properties is suppressed.

本発明のバイオマス由来の原料を用いた転がり軸受用部材およびこの部材を用いた転がり軸受は、転がり軸受の廃棄・リサイクルの過程で、これら部材から実質的に炭酸ガスを排出しない、または炭酸ガスの排出量を抑制でき、環境負荷の低い転がり軸受を提供できる。また、気体バリア性を持つ皮膜を用いた転がり軸受用部材およびこの部材を用いた転がり軸受は、従来使用されてきた樹脂材料の物性低下を大幅に抑え連続使用温度を向上させることができるので、今後の地球温暖化を抑制できる機械、装置に広く応用できる。   The rolling bearing member using the biomass-derived raw material of the present invention and the rolling bearing using this member are substantially free of carbon dioxide gas from these members during the disposal / recycling process of the rolling bearing. The amount of discharge can be suppressed, and a rolling bearing with a low environmental load can be provided. In addition, a rolling bearing member using a film having a gas barrier property and a rolling bearing using this member can greatly reduce the deterioration of physical properties of conventionally used resin materials and improve the continuous use temperature. It can be widely applied to machines and devices that can suppress future global warming.

グリース封入深溝玉軸受(シール部材の芯金なし)の断面図である。FIG. 3 is a cross-sectional view of a grease-filled deep groove ball bearing (without a metal core of a seal member). グリース封入深溝玉軸受(シール部材の芯金あり)の断面図である。It is sectional drawing of a grease enclosure deep groove ball bearing (with a metal core of a sealing member).

符号の説明Explanation of symbols

1 深溝玉軸受
2 内輪
3 外輪
4 転動体
5 保持器
6 シール部材
7 グリース
8a、8b 軸方向開口部
DESCRIPTION OF SYMBOLS 1 Deep groove ball bearing 2 Inner ring 3 Outer ring 4 Rolling element 5 Cage 6 Seal member 7 Grease 8a, 8b Axial opening

Claims (11)

外周面に転走面を有する内輪と、内周面に転走面を有する外輪と、前記両転走面間に介在する複数の転動体と、該複数の転動体を保持する保持器とを備えた転がり軸受に用いられる合成樹脂組成物の成形体からなる転がり軸受用部材であって、
該転がり軸受用部材は、前記内輪、前記外輪、前記転動体、および前記保持器から選ばれた少なくとも1つの部材であり、
前記合成樹脂組成物を構成する高分子母材は、その製造原料の少なくとも一部がバイオマス由来の原料を用いており、
前記成形体は、前記合成樹脂組成物を成形して得られる成形体の表面であって、前記転がり軸受用部材が使用される雰囲気に曝される表面に、該合成樹脂組成物とは異なる材質であって、かつ前記雰囲気成分の透過率が前記合成樹脂組成物の透過率よりも小さい材質の表面層が設けられていることを特徴とする転がり軸受用部材。
An inner ring having a rolling surface on the outer peripheral surface, an outer ring having a rolling surface on the inner peripheral surface, a plurality of rolling elements interposed between the both rolling surfaces, and a cage for holding the plurality of rolling elements. A rolling bearing member comprising a molded product of a synthetic resin composition used for a provided rolling bearing,
The rolling bearing member is at least one member selected from the inner ring, the outer ring, the rolling element, and the cage.
The polymer base material constituting the synthetic resin composition uses a raw material derived from biomass at least a part of the production raw material,
The molded body is a material different from the synthetic resin composition on the surface of the molded body obtained by molding the synthetic resin composition and exposed to the atmosphere in which the rolling bearing member is used. A rolling bearing member, wherein a surface layer made of a material having a transmittance of the atmosphere component smaller than that of the synthetic resin composition is provided.
前記転がり軸受用部材が保持器であることを特徴とする請求項1記載の転がり軸受用部材。   The rolling bearing member according to claim 1, wherein the rolling bearing member is a cage. 外周面に転走面を有する内輪と、内周面に転走面を有する外輪と、前記両転走面間に介在する複数の転動体と、該複数の転動体を保持する保持器と、シール部材とを備えた転がり軸受に用いられる高分子弾性体または合成樹脂組成物からなる転がり軸受用部材であって、
該転がり軸受用部材は、前記シール部材であり、前記高分子弾性体または合成樹脂組成物を構成する高分子母材は、その製造原料の少なくとも一部がバイオマス由来の原料を用いており、
前記シール部材は、前記高分子弾性体または合成樹脂組成物を成形して得られる成形体の表面であって、前記転がり軸受用部材が使用される雰囲気に曝される表面に、該高分子弾性体または合成樹脂組成物とは異なる材質であって、かつ前記雰囲気成分の透過率が前記高分子弾性体または合成樹脂組成物の透過率よりも小さい材質の表面層が設けられていることを特徴とする転がり軸受用部材。
An inner ring having a rolling surface on the outer peripheral surface, an outer ring having a rolling surface on the inner peripheral surface, a plurality of rolling elements interposed between the both rolling surfaces, and a cage for holding the plurality of rolling elements, A rolling bearing member comprising a polymer elastic body or a synthetic resin composition used in a rolling bearing provided with a seal member,
The rolling bearing member is the seal member, and the polymer base material constituting the polymer elastic body or the synthetic resin composition uses a raw material derived from biomass at least a part of the production raw material.
The seal member is a surface of a molded body obtained by molding the polymer elastic body or the synthetic resin composition, and the surface exposed to the atmosphere in which the rolling bearing member is used. A surface layer made of a material that is different from the body or the synthetic resin composition and has a transmittance of the atmosphere component smaller than that of the polymer elastic body or the synthetic resin composition is provided. A rolling bearing member.
前記高分子母材は、少なくとも放射性炭素14(14C)が含まれていることを特徴とする請求項1または請求項3記載の転がり軸受用部材。 The member for a rolling bearing according to claim 1, wherein the polymer base material contains at least radioactive carbon 14 ( 14 C). 前記高分子母材は、ポリアミド類、ポリエステル類、セルロース誘導体類から選ばれた少なくとも1つであることを特徴とする請求項4記載の転がり軸受用部材。   5. The rolling bearing member according to claim 4, wherein the polymer base material is at least one selected from polyamides, polyesters, and cellulose derivatives. 前記高分子母材は、ポリアミド11、ポリアミド6−10、ポリアミド66、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、酢酸セルロース、酢酸プロピオン酸セルロース、酢酸酪酸セルロースから選ばれた少なくとも1つであることを特徴とする請求項5記載の転がり軸受用部材。   The polymer base material is at least one selected from polyamide 11, polyamide 6-10, polyamide 66, polytrimethylene terephthalate, polybutylene terephthalate, cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate. The rolling bearing member according to claim 5. 前記雰囲気成分が酸素、オゾンおよび水蒸気から選ばれた少なくとも1つの成分を含むことを特徴とする請求項1ないし請求項6のいずれか1項記載の転がり軸受用部材。   The rolling bearing member according to any one of claims 1 to 6, wherein the atmospheric component includes at least one component selected from oxygen, ozone, and water vapor. 前記表面層は、高分子化合物層、セラミックス層および金属層から選ばれた少なくとも1つの表面層であることを特徴とする請求項1ないし請求項7のいずれか1項記載の転がり軸受用部材。   The rolling bearing member according to any one of claims 1 to 7, wherein the surface layer is at least one surface layer selected from a polymer compound layer, a ceramic layer, and a metal layer. 前記表面層が設けられた転がり軸受用部材(A部材)の劣化の活性化エネルギーが表面層のない転がり軸受用部材(B部材)の劣化の活性化エネルギーと略同一であり、所定の寿命特性値における耐久温度はA部材がB部材よりも高い温度であることを特徴とする請求項8記載の転がり軸受用部材。   The activation energy for deterioration of the rolling bearing member (A member) provided with the surface layer is substantially the same as the activation energy for deterioration of the rolling bearing member (B member) without the surface layer, and has a predetermined life characteristic. 9. The rolling bearing member according to claim 8, wherein the endurance temperature in the value is higher for the A member than for the B member. 外周面に転走面を有する内輪と、内周面に転走面を有する外輪と、前記両転走面間に介在する複数の転動体と、該複数の転動体を保持する保持器とを備えた転がり軸受であって、
前記内輪、前記外輪、前記転動体、および前記保持器から選ばれた少なくとも1つの部材が請求項9記載の部材であることを特徴とする転がり軸受。
An inner ring having a rolling surface on the outer peripheral surface, an outer ring having a rolling surface on the inner peripheral surface, a plurality of rolling elements interposed between the both rolling surfaces, and a cage for holding the plurality of rolling elements. A rolling bearing provided,
The rolling bearing according to claim 9, wherein at least one member selected from the inner ring, the outer ring, the rolling element, and the cage is the member according to claim 9.
外周面に転走面を有する内輪と、内周面に転走面を有する外輪と、前記両転走面間に介在する複数の転動体と、該複数の転動体を保持する保持器と、シール部材とを備えた転がり軸受であって、
前記シール部材が請求項9記載の部材であることを特徴とする転がり軸受。
An inner ring having a rolling surface on the outer peripheral surface, an outer ring having a rolling surface on the inner peripheral surface, a plurality of rolling elements interposed between the both rolling surfaces, and a cage for holding the plurality of rolling elements, A rolling bearing comprising a seal member,
The rolling bearing according to claim 9, wherein the seal member is a member according to claim 9.
JP2008187020A 2008-02-22 2008-07-18 Member for rolling bearing and rolling bearing Pending JP2010025221A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008187020A JP2010025221A (en) 2008-07-18 2008-07-18 Member for rolling bearing and rolling bearing
EP09713541.2A EP2249052B1 (en) 2008-02-22 2009-02-20 Member for rolling bearing and rolling bearing
US12/735,716 US8821024B2 (en) 2008-02-22 2009-02-20 Member for rolling bearing and rolling bearing
CN2009801058191A CN101946099A (en) 2008-02-22 2009-02-20 Rolling bearing is with parts and rolling bearing
PCT/JP2009/053047 WO2009104743A1 (en) 2008-02-22 2009-02-20 Member for rolling bearing and rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187020A JP2010025221A (en) 2008-07-18 2008-07-18 Member for rolling bearing and rolling bearing

Publications (1)

Publication Number Publication Date
JP2010025221A true JP2010025221A (en) 2010-02-04

Family

ID=41731251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187020A Pending JP2010025221A (en) 2008-02-22 2008-07-18 Member for rolling bearing and rolling bearing

Country Status (1)

Country Link
JP (1) JP2010025221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206645A (en) * 2010-03-29 2011-10-20 Yamaho Kogyo Kk Spray plate
CN102979813A (en) * 2012-11-22 2013-03-20 上海斐赛轴承科技有限公司 Insulating bearing with insulating ferrule and manufacturing method thereof
JP2017057956A (en) * 2015-09-17 2017-03-23 Ntn株式会社 Cage for rolling bearing and rolling bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206645A (en) * 2010-03-29 2011-10-20 Yamaho Kogyo Kk Spray plate
CN102979813A (en) * 2012-11-22 2013-03-20 上海斐赛轴承科技有限公司 Insulating bearing with insulating ferrule and manufacturing method thereof
JP2017057956A (en) * 2015-09-17 2017-03-23 Ntn株式会社 Cage for rolling bearing and rolling bearing

Similar Documents

Publication Publication Date Title
WO2009104743A1 (en) Member for rolling bearing and rolling bearing
Jadaun et al. Biodegradation of plastics for sustainable environment
Iram et al. Usage of potential micro-organisms for degradation of plastics
Pathak Review on the current status of polymer degradation: a microbial approach
Srikanth et al. Biodegradation of plastic polymers by fungi: a brief review
Zaaba et al. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation
Kotova et al. Microbial degradation of plastics and approaches to make it more efficient
Bher et al. Biodegradation of biodegradable polymers in mesophilic aerobic environments
JP2010090364A (en) Injection-molded body, resin slide bearing, resin gearwheel, crown-shaped resin holder, resin seal, and roller bearing
Tiwari et al. Recent development of biodegradation techniques of polymer
JP2010025221A (en) Member for rolling bearing and rolling bearing
JP2009204121A (en) Rolling bearing member and rolling bearing
Ahsan et al. Biodegradation of different types of bioplastics through composting—a recent trend in green recycling
Singh et al. Environmental hazards and biodegradation of plastic waste: Challenges and future prospects
JP2011153699A (en) Rolling bearing member and rolling bearing
Agostinho et al. Synthetic (bio) degradable polymers–when does recycling fail?
JP2002363391A (en) Biodegradable resin composition and roller bearing
JP2009197938A (en) Member for rolling bearing and rolling bearing
Mazumder et al. Biodegradation of plastics by microorganisms
Ahsan et al. Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts 2023, 13, 294
JP2003065342A (en) Mechanical parts
KR20220095901A (en) Biodegradable resin composition, its manufacturing method, and biodegradable fresh food storage bag manufactured therefrom
JP5321211B2 (en) Biodegradable plastic machine parts and rolling bearings
JP4244588B2 (en) Roller bearing cage and rolling bearing
Sukhendu et al. Functional interplay between plastic polymers and microbes: a comprehensive review