JP5651244B2 - Carbon fiber bundle manufacturing method - Google Patents

Carbon fiber bundle manufacturing method Download PDF

Info

Publication number
JP5651244B2
JP5651244B2 JP2013522648A JP2013522648A JP5651244B2 JP 5651244 B2 JP5651244 B2 JP 5651244B2 JP 2013522648 A JP2013522648 A JP 2013522648A JP 2013522648 A JP2013522648 A JP 2013522648A JP 5651244 B2 JP5651244 B2 JP 5651244B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundle
solution
acrylic resin
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013522648A
Other languages
Japanese (ja)
Other versions
JPWO2013005310A1 (en
Inventor
勝俊 近藤
勝俊 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YONEZU BRUSH KABUSHIKI KAISHA
Original Assignee
YONEZU BRUSH KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YONEZU BRUSH KABUSHIKI KAISHA filed Critical YONEZU BRUSH KABUSHIKI KAISHA
Application granted granted Critical
Publication of JP5651244B2 publication Critical patent/JP5651244B2/en
Publication of JPWO2013005310A1 publication Critical patent/JPWO2013005310A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • D04H3/077Stick, rod or solid cylinder shaped
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/153Mixed yarns or filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Brushes (AREA)

Description

本発明は、炭素繊維束の製造方法に関し、更に詳しくは、炭素繊維束の屈強性の向上、加工時の粉塵防止、耐熱性・耐火性の向上、メッキ皮膜の剥離防止、表面外観の改善に関するものである。   The present invention relates to a method for producing a carbon fiber bundle, and more particularly, to an improvement in the strength of the carbon fiber bundle, prevention of dust during processing, improvement in heat resistance and fire resistance, prevention of peeling of the plating film, and improvement in surface appearance. Is.

炭素繊維は耐熱性が高いため、これに関する多くの技術が提案されている。
例えば、特許文献1には、レーザーや火花が当たる付近のブラシ毛が焦げ・溶け・磨り減るという問題を解決すべく、ブラシ毛を耐熱温度が高い炭素繊維によって構成したブラシテーブルを設けた複合加工装置が開示されている。
また、特許文献2及び3には、耐熱性を向上させるとともに、炭素繊維の切れを防止することを目的として、炭素繊維束にナイロン繊維を溶着させて銅メッキ及びニッケルメッキを施す炭素繊維束の製造方法が開示されている。
Since carbon fiber has high heat resistance, many techniques relating to this have been proposed.
For example, Patent Document 1 discloses a composite process provided with a brush table in which brush hairs are made of carbon fiber having a high heat-resistant temperature in order to solve the problem that brush hairs near a laser or spark are burned, melted, or worn down. An apparatus is disclosed.
Further, Patent Documents 2 and 3 describe a carbon fiber bundle in which a nylon fiber is welded to a carbon fiber bundle and subjected to copper plating and nickel plating for the purpose of improving heat resistance and preventing the carbon fiber from being cut. A manufacturing method is disclosed.

特開平9−327786号公報Japanese Patent Laid-Open No. 9-327786 特許第4135968号公報Japanese Patent No. 4135968 特許第4521881号公報Japanese Patent No. 4521818

しかしながら、特許文献1〜3に開示された炭素繊維束は、炭素繊維束の屈強性の向上、加工時の粉塵防止、耐熱性・耐火性の向上、メッキ皮膜の剥離防止、及び、表面外観の改善といった観点で改良する余地がある。そして、これらを全て解決した従来技術は未だ知られていない。   However, the carbon fiber bundles disclosed in Patent Documents 1 to 3 improve the toughness of the carbon fiber bundle, prevent dust during processing, improve heat resistance and fire resistance, prevent peeling of the plating film, and have a surface appearance. There is room for improvement in terms of improvement. And the prior art which solved all of these is not yet known.

本発明は、上記事情に鑑みてなされたものであり、その目的は、炭素繊維束の屈強性の向上、加工時の粉塵防止、耐熱性・耐火性の向上、メッキ皮膜の剥離防止、表面外観の改善を図ることができる炭素繊維束の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to improve the flexibility of the carbon fiber bundle, to prevent dust during processing, to improve heat resistance and fire resistance, to prevent the peeling of the plating film, and to the surface appearance. An object of the present invention is to provide a method of manufacturing a carbon fiber bundle that can improve the above.

上記課題を解決するために、本発明に係る炭素繊維束の製造方法は、
複数の炭素繊維を束ねた炭素繊維束を束ごと撚る撚り工程と、
前記撚り工程を経た炭素繊維束Aに第一及び第二のナイロン製糸を巻き付ける巻付工程と、
前記巻付工程を経た炭素繊維束Bを複数束取り出して、それらの間に第三のナイロン製糸を挟んで捻った状態で前記第一〜第三のナイロン製糸のうち少なくとも一を溶着させる熱処理工程と、
前記熱処理工程を経た炭素繊維束Cに銅メッキをかける銅メッキ工程と、
前記銅メッキ工程を経た炭素繊維束Dにニッケルメッキをかけるニッケルメッキ工程と、
前記ニッケルメッキ工程を経た炭素繊維束Eにアクリル系樹脂を含浸させるアクリル系樹脂含浸工程とを備えたことを要旨とする。
In order to solve the above problems, a method for producing a carbon fiber bundle according to the present invention includes:
A twisting process of twisting a carbon fiber bundle in which a plurality of carbon fibers are bundled together;
A winding step of winding the first and second nylon yarns around the carbon fiber bundle A that has undergone the twisting step;
A heat treatment step of taking out a plurality of bundles of carbon fiber bundles B that have undergone the winding step and welding at least one of the first to third nylon yarns in a state of being twisted with a third nylon yarn sandwiched between them. When,
A copper plating step of applying copper plating to the carbon fiber bundle C that has undergone the heat treatment step;
A nickel plating step of applying nickel plating to the carbon fiber bundle D that has undergone the copper plating step;
The gist of the present invention is to provide an acrylic resin impregnation step of impregnating the carbon fiber bundle E that has undergone the nickel plating step with an acrylic resin.

この場合に、前記アクリル系樹脂は、ポリメタクリル酸メチル樹脂又はこれに更に難燃材を添加したものであることが好ましい。   In this case, the acrylic resin is preferably a polymethyl methacrylate resin or a resin obtained by further adding a flame retardant.

この場合に、前記アクリル系樹脂含浸工程は、前記炭素繊維束Eを前記アクリル系樹脂に温度80〜100℃、8〜12時間含浸させた後、温度50〜80℃で乾燥させる工程であることが好ましい。   In this case, the acrylic resin impregnation step is a step of impregnating the carbon fiber bundle E into the acrylic resin at a temperature of 80 to 100 ° C. for 8 to 12 hours and then drying at a temperature of 50 to 80 ° C. Is preferred.

この場合に、前記銅メッキ工程は、
前記炭素繊維束CをPdとSnのコロイド溶液に浸漬し、PdとSnを当該炭素繊維束Cの表面に吸着させる触媒付与工程と、
前記触媒付与工程において当該炭素繊維束Cに吸着させたPd及びSnのうち、Snを溶かし、Pdのみを吸着させた状態とするアクセレーター処理工程と、
硫酸銅水溶液と酒石酸カリウムナトリウムとを混合した液と、カセイソーダ水溶液と安定剤水溶液とを混合した液と、を混合した液に還元剤を添加した銅メッキ液に当該炭素繊維束Cを浸漬する銅メッキ液浸漬工程とからなることが好ましい。
In this case, the copper plating step is
Immersing the carbon fiber bundle C in a colloidal solution of Pd and Sn, and applying a catalyst to adsorb Pd and Sn on the surface of the carbon fiber bundle C;
Among the Pd and Sn adsorbed on the carbon fiber bundle C in the catalyst application step, an accelerator treatment step in which Sn is dissolved and only Pd is adsorbed;
Copper that immerses the carbon fiber bundle C in a copper plating solution in which a reducing agent is added to a mixed solution of a mixed solution of a copper sulfate aqueous solution and potassium sodium tartrate, a mixed solution of a caustic soda aqueous solution and a stabilizer aqueous solution. It preferably comprises a plating solution immersion step.

この場合に、前記ニッケルメッキ工程は、
前記炭素繊維束DをPdとSnのコロイド溶液に浸漬し、PdとSnを当該炭素繊維束Dの表面に吸着させる触媒付与工程と、
前記触媒付与工程において当該炭素繊維束Dに吸着させたPd及びSnのうち、Snを溶かし、Pdのみを吸着させた状態とするアクセレーター処理工程と、
硫酸ニッケル水溶液とクエン酸ナトリウム水溶液とを混合してpH調整した液に次亜リン酸ソーダを添加したニッケルメッキ液に当該炭素繊維束Dを浸漬するニッケルメッキ液浸漬工程とからなることが好ましい。
In this case, the nickel plating step is
Dipping the carbon fiber bundle D in a colloidal solution of Pd and Sn, and applying a catalyst to adsorb Pd and Sn on the surface of the carbon fiber bundle D;
Among the Pd and Sn adsorbed on the carbon fiber bundle D in the catalyst application step, an accelerator treatment step in which Sn is dissolved and only Pd is adsorbed;
It is preferable to comprise a nickel plating solution immersing step of immersing the carbon fiber bundle D in a nickel plating solution obtained by adding sodium hypophosphite to a solution prepared by mixing a nickel sulfate aqueous solution and a sodium citrate aqueous solution and adjusting the pH.

本発明に係る炭素繊維束の製造方法は、所定の工程を行った後、更に、ニッケルメッキ工程を経た炭素繊維束Eにアクリル系樹脂を含浸させるアクリル系樹脂含浸工程を備えたものであるから、炭素繊維束の屈強性の向上、加工時の粉塵防止、耐熱性・耐火性の向上、メッキ皮膜の剥離防止、表面外観の改善を図ることができるという効果がある。   The carbon fiber bundle manufacturing method according to the present invention includes an acrylic resin impregnation step of impregnating an acrylic resin into the carbon fiber bundle E that has undergone a nickel plating step after performing a predetermined step. It has the effects of improving the flexibility of the carbon fiber bundle, preventing dust during processing, improving heat resistance and fire resistance, preventing peeling of the plating film, and improving the surface appearance.

本発明の第一の実施形態に係る炭素繊維束10の断面図である。It is sectional drawing of the carbon fiber bundle 10 which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る炭素繊維束20の断面図である。It is sectional drawing of the carbon fiber bundle 20 which concerns on 2nd embodiment of this invention. 銅メッキ工程及びニッケルメッキ工程を説明するためのフローチャートである。It is a flowchart for demonstrating a copper plating process and a nickel plating process. 表面摩擦抵抗の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of surface frictional resistance.

1 炭素繊維
2 ナイロン樹脂
3 銅メッキ皮膜
4 ニッケルメッキ皮膜
5 アクリル系樹脂皮膜
10,20 炭素繊維束
1 Carbon fiber 2 Nylon resin 3 Copper plating film 4 Nickel plating film 5 Acrylic resin film 10, 20 Carbon fiber bundle

以下に、図面を参照して、本発明の一実施形態について説明する。
(第一の実施形態)
図1は炭素繊維束10の断面図である。同図において炭素繊維束10は、複数の炭素繊維を束ねたものからなる。ここで用いる炭素繊維は、特に限定されるものではなく、市販のものであればよい。炭素繊維束10を構成する炭素繊維の直径及び本数は、特に限定されるものではないが、0.001〜0.030mmの炭素繊維を1000〜6000本束ねた炭素繊維束が好ましく、特に0.007mmの炭素繊維を1000〜5000本、特に3000本束ねた炭素繊維束が好ましい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view of the carbon fiber bundle 10. In the figure, a carbon fiber bundle 10 is formed by bundling a plurality of carbon fibers. The carbon fiber used here is not particularly limited and may be a commercially available one. The diameter and the number of carbon fibers constituting the carbon fiber bundle 10 are not particularly limited, but a carbon fiber bundle in which 1000 to 6000 carbon fibers of 0.001 to 0.030 mm are bundled is preferable. A carbon fiber bundle obtained by bundling 1000 to 5000, particularly 3000, carbon fibers of 007 mm is preferable.

ナイロン樹脂2は、炭素繊維束10を構成する各炭素繊維の少なくとも一を互いに接着するものであればよい。ここで用いるナイロン樹脂2は、特に限定されるものではなく、市販の融着糸を熱により溶かしたもの、及び/又は、6,6−ナイロンを熱により溶かしたものであればよい。ナイロン樹脂2は、炭素繊維束10を構成する各炭素繊維どうしの間に入り込んで各炭素繊維どうしを接着する。ナイロン樹脂2の入り込み具合は、各炭素繊維の表面の少なくとも一部にからむものであればよい。   The nylon resin 2 only needs to adhere at least one of the carbon fibers constituting the carbon fiber bundle 10 to each other. The nylon resin 2 used here is not particularly limited as long as a commercially available fused yarn is melted by heat and / or 6,6-nylon is melted by heat. The nylon resin 2 enters between the carbon fibers constituting the carbon fiber bundle 10 and bonds the carbon fibers together. The degree of penetration of the nylon resin 2 may be anything that entangles at least part of the surface of each carbon fiber.

銅メッキ皮膜3は、ナイロン樹脂2によって各炭素繊維の少なくとも一が互いに接着された炭素繊維束10を被覆するものである。銅メッキ皮膜3の膜厚は、特に限定されるものではない。銅メッキ皮膜3の組成は、特に限定されるものではないが、99.5wt%以上のCuと不可避的不純物からなるものが好ましい。   The copper plating film 3 covers the carbon fiber bundle 10 in which at least one of the carbon fibers is bonded to each other with the nylon resin 2. The film thickness of the copper plating film 3 is not particularly limited. The composition of the copper plating film 3 is not particularly limited, but is preferably composed of 99.5 wt% or more of Cu and inevitable impurities.

ニッケルメッキ皮膜4は、銅メッキ皮膜3がなされた炭素繊維束10を被覆するものである。ニッケルメッキ皮膜4の膜厚は、特に限定されるものではない。ニッケルメッキ皮膜4の組成は、特に限定されるものではないが、約90〜97wt%のNiと約3〜10wt%のPと不可避的不純物(ほとんど無視できる程度)からなるものが好ましい。   The nickel plating film 4 covers the carbon fiber bundle 10 on which the copper plating film 3 is formed. The film thickness of the nickel plating film 4 is not particularly limited. The composition of the nickel plating film 4 is not particularly limited, but is preferably composed of about 90 to 97 wt% Ni, about 3 to 10 wt% P and unavoidable impurities (almost negligible).

アクリル系樹脂皮膜5は、ニッケルメッキ皮膜4がなされた炭素繊維束10を被覆するものである。アクリル系樹脂皮膜5の膜厚は、特に限定されるものではないが、0.001〜0.010mmが好ましい。アクリル系樹脂皮膜5の組成は、特に限定されるものではないが、ポリメタクリル酸メチル樹脂からなるもの又はこれに更に難燃材が添加されたものが好ましい。   The acrylic resin film 5 covers the carbon fiber bundle 10 on which the nickel plating film 4 is formed. The film thickness of the acrylic resin film 5 is not particularly limited, but is preferably 0.001 to 0.010 mm. The composition of the acrylic resin film 5 is not particularly limited, but is preferably made of a polymethyl methacrylate resin or further added with a flame retardant.

(第二の実施形態)
図2は炭素繊維束20の断面図である。同図に示すように、炭素繊維束20は、これを構成する各炭素繊維1の表面全体がナイロン樹脂2で被覆され、更に、そのナイロン樹脂2で被覆された表面全体が銅メッキ皮膜3で被覆され、更に、その銅メッキ皮膜3が被覆された表面全体がニッケルメッキ皮膜4で被覆され、更に、そのニッケルメッキ皮膜4で被覆された表面全体がアクリル系樹脂皮膜5で被覆されたものである。図示を省略するが、アクリル系樹脂皮膜5を形成するときに、ニッケルメッキ皮膜4が形成された炭素繊維を束状にしたものでもよい。
(Second embodiment)
FIG. 2 is a cross-sectional view of the carbon fiber bundle 20. As shown in the figure, the carbon fiber bundle 20 is coated with a nylon resin 2 on the entire surface of each carbon fiber 1 constituting the carbon fiber bundle 20, and the entire surface coated with the nylon resin 2 is a copper plating film 3. Further, the entire surface coated with the copper plating film 3 is coated with a nickel plating film 4, and the entire surface coated with the nickel plating film 4 is further coated with an acrylic resin film 5. is there. Although illustration is omitted, when the acrylic resin film 5 is formed, the carbon fiber on which the nickel plating film 4 is formed may be bundled.

炭素繊維束10、20は、ブラシ毛に適用すると従来のアクリル系樹脂皮膜5が形成されていないものに比べて、屈強性の向上、加工時の粉塵防止、耐熱性・耐火性の向上、メッキ皮膜の剥離防止、表面外観の改善を図ることができる。   Carbon fiber bundles 10 and 20 have improved resilience, dust prevention during processing, improved heat resistance and fire resistance, and plating when applied to brush bristles, compared to the case where conventional acrylic resin film 5 is not formed. It is possible to prevent peeling of the film and improve the surface appearance.

(第一の実施形態に係る炭素繊維束の製造方法)
次に、図1に示す炭素繊維束10の製造方法について説明する。
本発明の一実施形態に係る炭素繊維束10の製造方法は、撚り工程と、巻付工程と、熱処理工程と、銅メッキ工程と、ニッケルメッキ工程と、アクリル系樹脂含浸工程とを備える。
(Method for producing carbon fiber bundle according to the first embodiment)
Next, a method for manufacturing the carbon fiber bundle 10 shown in FIG. 1 will be described.
The manufacturing method of the carbon fiber bundle 10 which concerns on one Embodiment of this invention is equipped with a twist process, a winding process, a heat treatment process, a copper plating process, a nickel plating process, and an acrylic resin impregnation process.

(1)撚り工程
複数の炭素繊維を束ねた炭素繊維束を束ごと撚る。例えば、直径0.007mmの炭素繊維を約3000本束ね、その単位長さ1mの間に、ほぼ均等の間隔で180±10回の撚りができるように、その炭素繊維束を撚る。炭素繊維の本数や撚り回数は、特に限定されるものではない。撚り工程を経た炭素繊維束を「炭素繊維束A」とする。
(1) Twisting process A carbon fiber bundle obtained by bundling a plurality of carbon fibers is twisted together. For example, about 3000 carbon fibers having a diameter of 0.007 mm are bundled, and the carbon fiber bundle is twisted so that the carbon fiber bundle can be twisted 180 ± 10 times at almost equal intervals within a unit length of 1 m. The number of carbon fibers and the number of twists are not particularly limited. The carbon fiber bundle that has undergone the twisting process is referred to as “carbon fiber bundle A”.

(2)巻付工程
炭素繊維束Aに第一及び第二のナイロン製糸を巻き付ける。第一のナイロン製糸として6,6−ナイロン製糸を用いることができ、第二のナイロン製糸として6,6−ナイロン製糸を用いることができるが、これに限定されるものではない。炭素繊維束Aの単位長さ1mの間に、第一及び第二のナイロン製糸(合計2本のナイロン製糸)を、ほぼ均等の間隔で、それぞれ600±10回巻き付ける。巻付工程を経た炭素繊維束を「炭素繊維束B」とする。
(2) Winding step The first and second nylon yarns are wound around the carbon fiber bundle A. 6,6-nylon yarn can be used as the first nylon yarn, and 6,6-nylon yarn can be used as the second nylon yarn, but is not limited thereto. Between the unit length of 1 m of the carbon fiber bundle A, the first and second nylon yarns (two nylon yarns in total) are wound 600 ± 10 times at almost equal intervals. Let the carbon fiber bundle which passed through the winding process be "carbon fiber bundle B".

(3)熱処理工程
炭素繊維束Bを二束取り出して、それらの間に第三のナイロン製糸を挟み、捻る。第三のナイロン製糸として6,6−ナイロン製糸を用いることができる。そして、その捻った二束からなる炭素繊維束Bを約200℃の雰囲気下に約10秒間置く。これにより、第一〜第三のナイロン製糸(ナイロン樹脂)が溶け出して、炭素繊維束を構成する各炭素繊維を互いに接着する。これにより、炭素繊維束の強度が高められ、炭素繊維束に腰が出る。熱処理工程を経た炭素繊維束を「炭素繊維束C」とする。
(3) Heat treatment step Two bundles of carbon fiber bundles B are taken out, a third nylon thread is sandwiched between them and twisted. 6,6-nylon yarn can be used as the third nylon yarn. Then, the twisted carbon fiber bundle B is placed in an atmosphere of about 200 ° C. for about 10 seconds. Thereby, the first to third nylon yarns (nylon resin) are melted and the carbon fibers constituting the carbon fiber bundle are bonded to each other. Thereby, the intensity | strength of a carbon fiber bundle is raised and a carbon fiber bundle stands out. The carbon fiber bundle that has undergone the heat treatment step is referred to as “carbon fiber bundle C”.

(4)銅メッキ工程
図3を参照して炭素繊維束Cに銅メッキをかける手順について説明する。なお、炭素繊維束Cに対して行う各処理は、液透過性の巻き筒にソフト巻き(メッキ液が入り込みやすい程度の巻き方をいう。以下同じ。)にした炭素繊維束Cを各処理槽に浸漬、又は、これに各処理液を噴射することによって行う。
(銅メッキ工程の前処理)
前処理として図3に示す(i)〜(vi)の処理を行う。同図(i)の脱脂処理においては、炭素繊維束Cの表面の残存油脂を除去する。そして、同図(ii)の水洗処理を行う。
同図(iii)の触媒付与処理においては、炭素繊維束CをPdとSnのコロイド溶液に浸漬し、PdとSnを炭素繊維束Cの表面に吸着させる。そして、同図(iv)の水洗処理を行う。
同図(v)のアクセレーター処理においては、吸着させたPd及びSnのうち、Snを溶かし、Pdのみを吸着させた状態とする。そして、同図(vi)の水洗処理を行う。
(4) Copper Plating Step A procedure for applying copper plating to the carbon fiber bundle C will be described with reference to FIG. In addition, each process performed with respect to the carbon fiber bundle C is the carbon fiber bundle C made into soft winding (referring to the method of winding to the extent that a plating solution enters easily. Or by injecting each treatment liquid onto the substrate.
(Pretreatment of copper plating process)
As pre-processing, the processes (i) to (vi) shown in FIG. 3 are performed. In the degreasing process of FIG. 1 (i), residual oil on the surface of the carbon fiber bundle C is removed. And the water washing process of the figure (ii) is performed.
In the catalyst application process of FIG. 3 (iii), the carbon fiber bundle C is immersed in a colloidal solution of Pd and Sn, and Pd and Sn are adsorbed on the surface of the carbon fiber bundle C. And the water washing process of the same figure (iv) is performed.
In the accelerator process of FIG. 5 (v), Sn is dissolved out of the adsorbed Pd and Sn, and only Pd is adsorbed. And the water washing process of the figure (vi) is performed.

(銅メッキ工程の本処理)
以上が終わると、本処理として図3に示す(vii-1)の銅メッキ処理を行う(無電解銅メッキ)。本処理の手順は次の通りである。
(A)銅メッキ液の調整
銅メッキ液を以下の(a)〜(f)の手順に従って調整する。
(a)硫酸銅3グラムを水300ccに溶かす(A液)。
(b)酒石酸カリウムナトリウム30グラムを水300ccに溶かす(B液)。
(c)A液とB液とを混合する(C液)
(d)カセイソーダ10グラムを水100ccに溶かしたものと、安定剤(例えば、チオ尿素)0.1グラムを水100ccに溶かしたものとを混合する(D液)。
(e)C液と、D液とを混合する(E液)。
(f)ホルムアルデヒド(還元剤)10グラムをE液に溶かし、水を加えて、全体で1リットルとする(F液:銅メッキ液)。
(B)銅メッキ液(F液)に浸漬
次に、(A)の前処理が済んだ炭素繊維Cを30℃のF液に30分間浸漬する。すると、炭素繊維Cの表面に純Cu(純度95wt%以上)が析出し、銅メッキが完了する。銅メッキ工程を経た炭素繊維束を「炭素繊維束D」とする。
(Main treatment of copper plating process)
When the above is completed, the copper plating process (vii-1) shown in FIG. 3 is performed as the main process (electroless copper plating). The procedure of this process is as follows.
(A) Adjustment of copper plating solution The copper plating solution is adjusted according to the following procedures (a) to (f).
(A) 3 grams of copper sulfate is dissolved in 300 cc of water (solution A).
(B) Dissolve 30 grams of potassium sodium tartrate in 300 cc of water (Liquid B).
(C) Mix liquid A and liquid B (liquid C)
(D) A solution obtained by dissolving 10 grams of caustic soda in 100 cc of water and a solution obtained by dissolving 0.1 gram of a stabilizer (for example, thiourea) in 100 cc of water are mixed (liquid D).
(E) C liquid and D liquid are mixed (E liquid).
(F) Dissolve 10 grams of formaldehyde (reducing agent) in E solution and add water to make a total of 1 liter (F solution: copper plating solution).
(B) Immersion in copper plating solution (F solution) Next, the carbon fiber C subjected to the pretreatment of (A) is immersed in an F solution at 30 ° C. for 30 minutes. Then, pure Cu (purity 95 wt% or more) is deposited on the surface of the carbon fiber C, and copper plating is completed. The carbon fiber bundle that has undergone the copper plating step is referred to as “carbon fiber bundle D”.

(5)ニッケルメッキ工程
図3を参照して炭素繊維束Dにニッケルメッキをかける手順について説明する。なお、炭素繊維束Dに対して行う各処理は、液透過性の巻き筒にソフト巻きにした炭素繊維束Dを各処理槽に浸漬、又は、これに各処理液を噴射することによって行う。
(5) Nickel plating step The procedure for applying nickel plating to the carbon fiber bundle D will be described with reference to FIG. In addition, each process performed with respect to the carbon fiber bundle D is performed by immersing the carbon fiber bundle D softly wound in a liquid-permeable winding tube in each treatment tank, or spraying each treatment liquid on this.

(ニッケルメッキ工程の前処理)
前処理として図3に示す(viii)の処理及び(iii)〜(vi)の処理を行う。まず、銅メッキ後であるため同図(viii)の水洗処理を行う。
同図(iii)の触媒付与処理においては、炭素繊維束DをPdとSnのコロイド溶液に浸漬し、PdとSnを炭素繊維束Dの表面に吸着させる。そして、同図(iv)の水洗処理を行う。
同図(v)のアクセレーター処理においては、吸着させたPd及びSnのうち、Snを溶かし、Pdのみを吸着させた状態とする。そして、同図(vi)の水洗処理を行う。
(Pretreatment of nickel plating process)
As pre-processing, processing (viii) and processing (iii) to (vi) shown in FIG. 3 are performed. First, since it is after copper plating, the water washing process of FIG.
In the catalyst application process in FIG. 3 (iii), the carbon fiber bundle D is immersed in a colloidal solution of Pd and Sn, and Pd and Sn are adsorbed on the surface of the carbon fiber bundle D. And the water washing process of the same figure (iv) is performed.
In the accelerator process of FIG. 5 (v), Sn is dissolved out of the adsorbed Pd and Sn, and only Pd is adsorbed. And the water washing process of the figure (vi) is performed.

(ニッケルメッキ工程の本処理)
以上が終わると、本処理として図3に示す(vii-2)のニッケルメッキ処理を行う(無電解ニッケルメッキ)。本処理の手順は次の通りである。
(A)ニッケルメッキ液の調整
ニッケルメッキ液を以下の(a)〜(f)の手順に従って調整する。
(a)硫酸ニッケル20グラムを水300ccに溶かす(a液)。
(b)クエン酸ナトリウム40グラムを水300ccに溶かす(b液)。
(c)a液とb液とを混合する(c液)
(d)c液にアンモニアを入れてpHを9にあわせる(d液)。
(e)d液に次亜リン酸ソーダ15グラムを溶かす(e液)。
(f)e液に水を加えて全体で1リットルとする(f液:ニッケルメッキ液)。
(B)ニッケルメッキ液(f液)に浸漬
次に、(A)の前処理が済んだ炭素繊維Dを30℃のf液に30分浸漬する。すると、炭素繊維Dの表面にNiとPの合金(Niが95wt%、Pが5wt%)が析出し、ニッケルメッキが完了する。ニッケルメッキ工程を経た炭素繊維束を「炭素繊維束E」とする。
(Nickel plating process)
When the above is completed, the nickel plating process (vii-2) shown in FIG. 3 is performed as the main process (electroless nickel plating). The procedure of this process is as follows.
(A) Adjustment of nickel plating solution The nickel plating solution is adjusted according to the following procedures (a) to (f).
(A) Dissolve 20 grams of nickel sulfate in 300 cc of water (liquid a).
(B) 40 grams of sodium citrate is dissolved in 300 cc of water (liquid b).
(C) Mix liquid a and liquid b (liquid c)
(D) Ammonia is added to the liquid c to adjust the pH to 9 (liquid d).
(E) Dissolve 15 grams of sodium hypophosphite in d solution (e solution).
(F) Water is added to the solution e to make 1 liter as a whole (solution f: nickel plating solution).
(B) Immersion in nickel plating solution (f solution) Next, the carbon fiber D that has been subjected to the pretreatment of (A) is immersed in an f solution at 30 ° C. for 30 minutes. Then, an alloy of Ni and P (Ni is 95 wt%, P is 5 wt%) is deposited on the surface of the carbon fiber D, and nickel plating is completed. The carbon fiber bundle that has undergone the nickel plating step is referred to as “carbon fiber bundle E”.

(6)アクリル系樹脂含浸工程
得られた炭素繊維束Eの屈強性の向上、加工時の粉塵防止、耐熱性・耐火性の向上、メッキ皮膜の剥離防止、表面外観の改善を図るため、アクリル系樹脂含有溶液に浸漬する工程(バインダー加工工程)を行う。本工程の手順は次の通りである。
(A)ポリメタクリル酸メチル樹脂(PMMA)を含み難燃材を含まないアクリル系樹脂含有溶液(α液)を作製する。また、ポリメタクリル酸メチル樹脂及び難燃材を含有するもの(β液)も作製する。
(B)アクリル系樹脂含有溶液(α液又はβ液)を90℃に設定する。これに炭素繊維束Eを10時間浸漬する。
(C)10時間浸漬後、50℃〜80℃に温度調整された乾燥炉で炭素繊維束Eを12時間乾燥させる。これにより、アクリル系樹脂皮膜5が形成された「炭素繊維束F」が得られる。
(6) Acrylic resin impregnation step To improve the toughness of the obtained carbon fiber bundle E, to prevent dust during processing, to improve heat resistance and fire resistance, to prevent peeling of the plating film, and to improve the surface appearance, acrylic A step (binder processing step) of immersing in a system resin-containing solution is performed. The procedure of this process is as follows.
(A) An acrylic resin-containing solution (α liquid) containing polymethyl methacrylate resin (PMMA) and no flame retardant is prepared. Moreover, what contains polymethyl methacrylate resin and a flame retardant (beta liquid) is also produced.
(B) The acrylic resin-containing solution (α solution or β solution) is set to 90 ° C. The carbon fiber bundle E is immersed in this for 10 hours.
(C) After dipping for 10 hours, the carbon fiber bundle E is dried for 12 hours in a drying furnace whose temperature is adjusted to 50 ° C. to 80 ° C. Thereby, the “carbon fiber bundle F” in which the acrylic resin film 5 is formed is obtained.

(実施例1及び2)
アクリル系樹脂含有溶液として、ポリメタクリル酸メチル樹脂を含有し難燃材を含有しないもの(上記α液)と、ポリメタクリル酸メチル樹脂及び難燃材を含有するもの(上記β液)を準備した。そして、上記した(1)撚り工程、(2)巻付工程、(3)熱処理工程、(4)銅メッキ工程、(5)ニッケルメッキ工程、(6)アクリル系樹脂含浸工程を実施した。実施例1はα液を用いたものであり、発明品1は実施例1で得られた炭素繊維束Fである。実施例2はβ液を用いたものであり、発明品2は実施例2で得られた炭素繊維束Fである。
尚、アクリル系樹脂含浸工程の条件等は表1に示す。
(Examples 1 and 2)
As the acrylic resin-containing solution, a solution containing a polymethyl methacrylate resin and containing no flame retardant (the above α solution) and a solution containing a polymethyl methacrylate resin and a flame retardant (the above β solution) were prepared. . Then, the above-described (1) twisting step, (2) winding step, (3) heat treatment step, (4) copper plating step, (5) nickel plating step, and (6) acrylic resin impregnation step were performed. Example 1 uses the α liquid, and Invention 1 is the carbon fiber bundle F obtained in Example 1. Example 2 uses a β solution, and invention product 2 is the carbon fiber bundle F obtained in Example 2.
The conditions for the acrylic resin impregnation step are shown in Table 1.

(比較例1)
上記した(1)撚り工程、(2)巻付工程、(3)熱処理工程、(4)銅メッキ工程、(5)ニッケルメッキ工程を実施し(比較例1)、これにより得られた炭素繊維束Eが比較品1である。
(Comparative Example 1)
(1) Twisting step, (2) Winding step, (3) Heat treatment step, (4) Copper plating step, (5) Nickel plating step (Comparative Example 1), and carbon fiber obtained thereby The bundle E is the comparative product 1.

次に、発明品1、2及び比較品1について各種測定や各種試験を実施したのでそれについて説明する。これらの結果は表1に示す。
(皮膜厚さ測定)
形成されたアクリル系樹脂の皮膜厚さは、発明品1、2を輪切りにし、顕微鏡にて拡大して測定した。
Next, since various measurements and various tests were carried out on Invention Products 1 and 2 and Comparative Product 1, it will be described. These results are shown in Table 1.
(Film thickness measurement)
The film thickness of the formed acrylic resin was measured by cutting Invention Products 1 and 2 and enlarging them with a microscope.

(屈強性測定)
屈強性は、発明品1、2及び比較品1をそれぞれ1本1000mmの長さとし、両端を支持して、中央に荷重1gを掛けた時のたわみ値(長さ)を測定することにより判定した。
(Flexibility measurement)
The resilience was determined by measuring the deflection value (length) when the invention products 1, 2 and the comparative product 1 were each 1000 mm in length, supported at both ends, and a load of 1 g was applied to the center. .

(切断加工時の粉塵飛散試験)
粉塵飛散度合いは、発明品1、2及び比較品1を白いウエスで拭き取り、ウエスの汚れ具合を目視で観察することにより確認した。これにより、メッキ皮膜の剥離についても確認した。
(Dust scattering test during cutting)
The degree of dust scattering was confirmed by wiping the inventive products 1 and 2 and the comparative product 1 with a white waste and visually observing the degree of dirt on the waste. This confirmed also about peeling of a plating film.

(耐熱性−炎の広がり具合)
炎の広がり具合は、発明品1、2及び比較品1にバーナーの炎を10秒間当てて、その炎の状態を観察することにより確認した。
(Heat resistance-flame spread)
The extent of the flame was confirmed by applying the flame of the burner to Inventions 1 and 2 and Comparative Product 1 for 10 seconds and observing the state of the flame.

(耐熱性−消火性)
消火性は、上記の炎の広がり具合を観察するために10秒間当てた後、発明品1、2及び比較品1からバーナーの炎を遠ざけたときの消火時間を測定することにより確認した。
(Heat resistance-Fire extinguishing)
The fire extinguishing property was confirmed by measuring the fire extinguishing time when the flame of the burner was moved away from the inventive products 1 and 2 and the comparative product 1 after applying for 10 seconds to observe the above-mentioned flame spread.

(耐火性(難燃性))
耐火性(難燃性)は、発明品1、2及び比較品1にバーナーの炎を10秒間当てて、発明品1、2及び比較品1の状態を観察することにより確認した。
(Fire resistance (flame retardant))
The fire resistance (flame resistance) was confirmed by observing the states of the inventive products 1, 2 and the comparative product 1 by applying a flame of the burner to the inventive products 1, 2 and the comparative product 1 for 10 seconds.

(表面摩擦抵抗)
発明品1、2及び比較品1を水に1分間浸漬した後、図4に示すようにこれら(試験片)を自動車用塗料を塗布したアルミ板に載せ、その上に300gの重りを載せた。この状態で各試験片を水平に引っ張った。そして、その試験片が動き始めたときの力をプッシュ・プル計((株)イマダ製、型番:DPSH100)を用いて測定し、表面摩擦抵抗とした。
(Surface friction resistance)
After the invention products 1 and 2 and the comparative product 1 were immersed in water for 1 minute, as shown in FIG. 4, these (test pieces) were placed on an aluminum plate coated with an automotive paint, and a 300 g weight was placed thereon. . In this state, each test piece was pulled horizontally. Then, the force when the test piece started to move was measured using a push-pull meter (manufactured by Imada Co., Ltd., model number: DPSH100) to obtain surface friction resistance.

(外観)
外観は、発明品1、2及び比較品1に光を当てて観察することにより光沢感を確認した。
(appearance)
The appearance was confirmed by shining light on the invention products 1 and 2 and the comparative product 1 to observe the gloss.

Figure 0005651244
Figure 0005651244

以上から、アクリル樹脂含有溶液に浸漬することにより、アクリル系樹脂で皮膜を形成させた炭素繊維束は、アクリル系樹脂の皮膜がない炭素繊維束に比べて、屈強性の向上(たわみが少ない)、加工時の粉塵防止(切断加工時にウエスで拭き取って汚れが付着しない)、耐熱性・耐火性の向上(炎が燃え広がりにくい、消火時間が短い、溶けない)、メッキ皮膜の剥離防止(切断加工時にウエスで拭き取って汚れが付着しない)、表面外観の改善(光沢感がある)が図られることがわかった。   From the above, carbon fiber bundles that have been formed into a film with an acrylic resin by immersing them in an acrylic resin-containing solution have improved flexibility (less deflection) than carbon fiber bundles that do not have an acrylic resin film. , Dust prevention during processing (wipe away with waste during cutting), heat resistance and fire resistance improved (flame does not spread easily, fire extinguishing time is short, does not melt), prevention of plating film peeling (cutting processing) It was found that the surface appearance was improved (glossy), and sometimes the surface was wiped off with a waste cloth so that no dirt adhered.

以上本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、種々の改変が可能である。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made.

本発明に係る炭素繊維束の製造方法は、炭素繊維束の屈強性の向上、加工時の粉塵防止、耐熱性・耐火性の向上、メッキ皮膜の剥離防止、表面外観の改善に寄与するものであるから、産業上利用価値が極めて高い。   The method for producing a carbon fiber bundle according to the present invention contributes to improvement of the resilience of the carbon fiber bundle, prevention of dust during processing, improvement of heat resistance and fire resistance, prevention of peeling of the plating film, and improvement of the surface appearance. Therefore, the industrial utility value is extremely high.

Claims (5)

複数の炭素繊維を束ねた炭素繊維束を束ごと撚る撚り工程と、
前記撚り工程を経た炭素繊維束Aに第一及び第二のナイロン製糸を巻き付ける巻付工程と、
前記巻付工程を経た炭素繊維束Bを複数束取り出して、それらの間に第三のナイロン製糸を挟んで捻った状態で前記第一〜第三のナイロン製糸のうち少なくとも一を溶着させる熱処理工程と、
前記熱処理工程を経た炭素繊維束Cに銅メッキをかける銅メッキ工程と、
前記銅メッキ工程を経た炭素繊維束Dにニッケルメッキをかけるニッケルメッキ工程と、
前記ニッケルメッキ工程を経た炭素繊維束Eにアクリル系樹脂を含浸させるアクリル系樹脂含浸工程と、を備えたことを特徴とする炭素繊維束の製造方法。
A twisting process of twisting a carbon fiber bundle in which a plurality of carbon fibers are bundled together;
A winding step of winding the first and second nylon yarns around the carbon fiber bundle A that has undergone the twisting step;
A heat treatment step of taking out a plurality of bundles of carbon fiber bundles B that have undergone the winding step and welding at least one of the first to third nylon yarns in a state of being twisted with a third nylon yarn sandwiched between them. When,
A copper plating step of applying copper plating to the carbon fiber bundle C that has undergone the heat treatment step;
A nickel plating step of applying nickel plating to the carbon fiber bundle D that has undergone the copper plating step;
A method for producing a carbon fiber bundle, comprising: an acrylic resin impregnation step of impregnating an acrylic resin into the carbon fiber bundle E that has undergone the nickel plating step.
前記アクリル系樹脂は、ポリメタクリル酸メチル樹脂又はこれに更に難燃材を添加したものであることを特徴とする請求項1に記載の炭素繊維束の製造方法。   The method for producing a carbon fiber bundle according to claim 1, wherein the acrylic resin is a polymethyl methacrylate resin or a resin obtained by further adding a flame retardant. 前記アクリル系樹脂含浸工程は、前記炭素繊維束Eを前記アクリル系樹脂に温度80〜100℃、8〜12時間含浸させた後、温度50〜80℃で乾燥させる工程であることを特徴とする請求項2に記載の炭素繊維束の製造方法。   The acrylic resin impregnation step is a step of impregnating the carbon fiber bundle E into the acrylic resin at a temperature of 80 to 100 ° C. for 8 to 12 hours and then drying at a temperature of 50 to 80 ° C. The manufacturing method of the carbon fiber bundle of Claim 2. 前記銅メッキ工程は、
前記炭素繊維束CをPdとSnのコロイド溶液に浸漬し、PdとSnを当該炭素繊維束Cの表面に吸着させる触媒付与工程と、
前記触媒付与工程において当該炭素繊維束Cに吸着させたPd及びSnのうち、Snを溶かし、Pdのみを吸着させた状態とするアクセレーター処理工程と、
硫酸銅水溶液と酒石酸カリウムナトリウムとを混合した液と、カセイソーダ水溶液と安定剤水溶液とを混合した液と、を混合した液に還元剤を添加した銅メッキ液に当該炭素繊維束Cを浸漬する銅メッキ液浸漬工程と、を備えたことを特徴とする請求項1から3のいずれかに記載の炭素繊維束の製造方法。
The copper plating step is
Immersing the carbon fiber bundle C in a colloidal solution of Pd and Sn, and applying a catalyst to adsorb Pd and Sn on the surface of the carbon fiber bundle C;
Among the Pd and Sn adsorbed on the carbon fiber bundle C in the catalyst application step, an accelerator treatment step in which Sn is dissolved and only Pd is adsorbed;
Copper that immerses the carbon fiber bundle C in a copper plating solution in which a reducing agent is added to a mixed solution of a mixed solution of a copper sulfate aqueous solution and potassium sodium tartrate, a mixed solution of a caustic soda aqueous solution and a stabilizer aqueous solution. A method for producing a carbon fiber bundle according to any one of claims 1 to 3, further comprising a plating solution immersion step.
前記ニッケルメッキ工程は、
前記炭素繊維束DをPdとSnのコロイド溶液に浸漬し、PdとSnを当該炭素繊維束Dの表面に吸着させる触媒付与工程と、
前記触媒付与工程において当該炭素繊維束Dに吸着させたPd及びSnのうち、Snを溶かし、Pdのみを吸着させた状態とするアクセレーター処理工程と、
硫酸ニッケル水溶液とクエン酸ナトリウム水溶液とを混合してpH調整した液に次亜リン酸ソーダを添加したニッケルメッキ液に当該炭素繊維束Dを浸漬するニッケルメッキ液浸漬工程とからなることを特徴とする請求項1から4のいずれかに記載の炭素繊維束の製造方法。
The nickel plating step is
Dipping the carbon fiber bundle D in a colloidal solution of Pd and Sn, and applying a catalyst to adsorb Pd and Sn on the surface of the carbon fiber bundle D;
Among the Pd and Sn adsorbed on the carbon fiber bundle D in the catalyst application step, an accelerator treatment step in which Sn is dissolved and only Pd is adsorbed;
A nickel plating solution dipping step of immersing the carbon fiber bundle D in a nickel plating solution obtained by adding sodium hypophosphite to a solution adjusted to pH by mixing a nickel sulfate aqueous solution and a sodium citrate aqueous solution. The method for producing a carbon fiber bundle according to any one of claims 1 to 4.
JP2013522648A 2011-07-06 2011-07-06 Carbon fiber bundle manufacturing method Active JP5651244B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065437 WO2013005310A1 (en) 2011-07-06 2011-07-06 Method for producing carbon fiber bundle

Publications (2)

Publication Number Publication Date
JP5651244B2 true JP5651244B2 (en) 2015-01-07
JPWO2013005310A1 JPWO2013005310A1 (en) 2015-02-23

Family

ID=47436683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522648A Active JP5651244B2 (en) 2011-07-06 2011-07-06 Carbon fiber bundle manufacturing method

Country Status (3)

Country Link
JP (1) JP5651244B2 (en)
CN (1) CN103619212B (en)
WO (1) WO2013005310A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576865B2 (en) * 2016-03-28 2019-09-18 小松マテーレ株式会社 Non-combustible carbon fiber composite material
CN112708980B (en) * 2020-12-31 2022-02-25 福建经纬新纤科技实业有限公司 Flame-retardant and anti-dripping medium-high density fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429708C1 (en) * 1984-08-11 1986-01-02 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Brush seal
EP0260941A3 (en) * 1986-09-16 1989-11-08 Teijin Limited Anti-fungus, deodorant fiber material
JPH09327786A (en) * 1996-06-12 1997-12-22 Amada Eng Center:Kk Thermal machining equipment
JP2003033227A (en) * 2001-07-26 2003-02-04 Kanai Hiroaki Wire for interdental brush and interdental brush
JP4521881B2 (en) * 2006-08-07 2010-08-11 米津ブラシ株式会社 Brush and manufacturing method thereof
JP4135968B1 (en) * 2008-03-18 2008-08-20 米津ブラシ株式会社 Carbon fiber bundle manufacturing method and brush manufacturing method

Also Published As

Publication number Publication date
JPWO2013005310A1 (en) 2015-02-23
CN103619212A (en) 2014-03-05
CN103619212B (en) 2015-08-26
WO2013005310A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP4521881B2 (en) Brush and manufacturing method thereof
US8722186B2 (en) Electrical shielding material composed of metallized stainless steel monofilament yarn
LU101209B1 (en) Metal wires, manufacturing methods therefor, and tires
JP5651244B2 (en) Carbon fiber bundle manufacturing method
JP2007100148A (en) Whisker-suppressive surface treating method
WO2017010098A1 (en) Rubber reinforcement cord and rubber product using same
JP2012509998A (en) New metal fiber yarn with improved strength and workability
JP2012511411A (en) Method for forming a joint between a titanium alloy member and a steel alloy member and a medical device comprising said joint
JP6454135B2 (en) Quartz glass fiber sizing agent, quartz glass fiber, quartz glass yarn, and quartz glass cloth
JP6185419B2 (en) Aluminum plated stainless steel wire
JPH03218948A (en) Production of glass cloth
JP2009235647A (en) Method for producing high-strength nylon 66 fiber for reinforcing rubber
JP4135968B1 (en) Carbon fiber bundle manufacturing method and brush manufacturing method
US2387335A (en) Rubber adherent wire
JP4744224B2 (en) Pretreatment method for preventing thermal embrittlement of cellulose-containing fabric
JP5653679B2 (en) Manufacturing method of steel wire for rubber reinforcement and steel wire for rubber reinforcement
TWI438316B (en) Microfiber duster
JP2804163B2 (en) Manufacturing method of optical fiber material
JP2019183178A (en) Plating fiber and electric wire
JP5362534B2 (en) Metal-plated fishing line and method for manufacturing the same
JP2005187737A (en) Roving for long fiber-reinforced polyolefin resin and resin molding material using the same
JP6746842B2 (en) Method for producing cycloolefin yarn with metal coating
BR0318164B1 (en) Nickel-zinc coated wire mesh and mesh manufacturing method.
JP2012028121A (en) Aromatic polyamide fiber wire cord
JPH07150476A (en) Alumina fiber coated with sizing agent

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5651244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250