JP5650885B2 - Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body - Google Patents

Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body Download PDF

Info

Publication number
JP5650885B2
JP5650885B2 JP2008335578A JP2008335578A JP5650885B2 JP 5650885 B2 JP5650885 B2 JP 5650885B2 JP 2008335578 A JP2008335578 A JP 2008335578A JP 2008335578 A JP2008335578 A JP 2008335578A JP 5650885 B2 JP5650885 B2 JP 5650885B2
Authority
JP
Japan
Prior art keywords
light
sintered body
light emitting
wavelength conversion
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008335578A
Other languages
Japanese (ja)
Other versions
JP2010157637A (en
Inventor
佐野 雅彦
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2008335578A priority Critical patent/JP5650885B2/en
Publication of JP2010157637A publication Critical patent/JP2010157637A/en
Application granted granted Critical
Publication of JP5650885B2 publication Critical patent/JP5650885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光領域の略全域にわたって色ムラの低減された光を発光可能な波長変換焼結体及びこれを備えた発光装置、並びに波長変換焼結体の製造方法に関する。   The present invention relates to a wavelength conversion sintered body capable of emitting light with reduced color unevenness over substantially the entire light emitting region, a light emitting device including the same, and a method for manufacturing the wavelength conversion sintered body.

従来、光源から放出される出射光と、この出射光に励起されて光源色と異なる色相の光を放出できる波長変換部材とを組み合わせることで、光の混色の原理により、多様な発光色を放出可能な発光装置が開発されている。さらに光源として発光ダイオード(Light Emitting Diode:LED)やレーザーダイオード(Laser Diode:LD)等の半導体発光素子を利用した発光装置では、照明として注目を集め、さらなる出力の向上や光分布域における均一な発光色が要求される。特に上記照明を車のヘッドライトなどの投光器や投光照明として採用する場合、ムラの無い配光が重要となる。   Conventionally, by combining the emitted light emitted from the light source and the wavelength conversion member that can emit light of a hue different from the light source color when excited by this emitted light, various emission colors are emitted by the principle of light color mixing Possible light emitting devices have been developed. Furthermore, light-emitting devices using semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) as light sources have attracted attention as illumination, and further improved output and uniform light distribution An emission color is required. In particular, when adopting the above-mentioned illumination as a projector such as a headlight of a car or a floodlight, a uniform light distribution is important.

このため、波長変換部材を用いる場合の色ムラの問題について、その部材表面に凹凸加工を施すことで、観察角度による光の色合いの変化を抑制した技術が特許文献1に記載されている。例えば図15の断面図に示す半導体発光装置801は、第1の光Lを発光するLED805と、この第1の光Lの一部を第1の光よりも長波長の第2の光に変換する蛍光板807とを備える。また蛍光板807は、第1の光Lを受ける光入射面802、及び第2の光及び第1の光Lを出射する光出射面803を備えており、この蛍光板807の光入射面802及び光出射面803が凹凸形状に形成されている。そしてLED805から出射された第1の光Lは、蛍光板807に設けられた該凹凸形状での屈折により、蛍光板807から拡散して出射される。この結果、観察角度の全域にわたって第1の光の強度の割合を均等に分布させ、発光部位における光の色合いの変化を抑えることができる。さらに特許文献2では、波長変換用の板部材における光出射面側のみに凹凸を設けた発光装置が開示されている。
特開2005−268323号公報 特開2007−109946号公報 特開2002−305328号公報
For this reason, Patent Document 1 discloses a technique that suppresses a change in light shade depending on an observation angle by performing uneven processing on the surface of the member when the wavelength conversion member is used. For example, the semiconductor light emitting device 801 shown in the cross-sectional view of FIG. 15 converts an LED 805 that emits the first light L and a part of the first light L into second light having a longer wavelength than the first light. A fluorescent plate 807. The fluorescent plate 807 includes a light incident surface 802 for receiving the first light L and a light emitting surface 803 for emitting the second light and the first light L. The light incident surface 802 and the light of the fluorescent plate 807 are provided. The emission surface 803 is formed in an uneven shape. Then, the first light L emitted from the LED 805 is diffused and emitted from the fluorescent plate 807 due to refraction in the uneven shape provided on the fluorescent plate 807. As a result, the ratio of the intensity of the first light can be evenly distributed over the entire observation angle, and the change in the light shade at the light emitting portion can be suppressed. Further, Patent Document 2 discloses a light emitting device in which irregularities are provided only on the light emitting surface side of a plate member for wavelength conversion.
JP 2005-268323 A JP 2007-109946 A JP 2002-305328 A

しかしながら、これら波長変換部材の凹凸加工は、加工表面に変質層やひずみを生む虞があり加工信頼性が低く、また複雑な形状の加工面を得ることが困難であった。   However, the concavo-convex processing of these wavelength conversion members has a risk of producing a deteriorated layer or strain on the processed surface, has low processing reliability, and has a difficulty in obtaining a processed surface having a complicated shape.

そこで本発明者らは鋭意検討を重ねた結果、光の分布領域における輝度ムラあるいは色ムラを低減するため、波長変換焼結体の表面でもって光を有効に分散可能な凹凸面を容易に形成できることを新規に見出した。さらに、この拡散性を高めた凹凸面を有する波長変換焼結体内において、蛍光体粒子を特定の配置状態とすることにより、凹凸面上における光を一層分散させ、この結果光成分の混色率を略均等とできる。このように本発明の目的は、光の分布領域で色ムラを低減し高輝度な光を発光可能な波長変換焼結体及びこれを用いた発光装置、並びに波長変換焼結体の製造方法を提供することにある。   Therefore, as a result of intensive studies, the present inventors easily formed an uneven surface that can effectively disperse light with the surface of the wavelength conversion sintered body in order to reduce luminance unevenness or color unevenness in the light distribution region. I found new things I can do. Furthermore, in the wavelength conversion sintered body having the uneven surface with enhanced diffusibility, the phosphor particles are placed in a specific arrangement state to further disperse the light on the uneven surface, and as a result, the color mixing ratio of the light component is increased. It can be approximately equal. As described above, an object of the present invention is to provide a wavelength conversion sintered body capable of reducing color unevenness in a light distribution region and emitting high-luminance light, a light emitting device using the same, and a method for manufacturing the wavelength conversion sintered body. It is to provide.

上記の目的を達成するために、本発明の第1の波長変換焼結体の製造方法は、無機物粉末と蛍光体粉末とを混合し焼結させて焼結体を得る第1の工程と、前記焼結体をエッチングして、前記焼結体の表面に複数の凹部を形成する第2の工程とを含み、前記第2の工程において、前記焼結体を260℃以上でエッチングして、前記焼結体中の蛍光体粒子を、前記焼結体中の無機物粒子よりも優先的に溶解させると共に、前記焼結体の表面の無機物が粒状化されるようにエッチングすることができる。
In order to achieve the above object, a first method of manufacturing a wavelength conversion sintered body according to the present invention includes a first step of obtaining a sintered body by mixing and sintering inorganic powder and phosphor powder, Etching the sintered body to form a plurality of recesses on the surface of the sintered body, and in the second step, etching the sintered body at 260 ° C. or higher, the phosphor particles in the sintered body, causes preferentially soluble than inorganic particles in the sintered body, the inorganic material of the surface of the sintered body can be etched so as to be granulated.

また本発明の第2の波長変換焼結体の製造方法によれば、前記エッチング、ウエットエッチングとできる。
According to the manufacturing method of the second wavelength conversion sintered body of the present invention, the etching can and wet etching.

さらに本発明の第3の波長変換焼結体の製造方法によれば、前記無機物がAl23 できる。
Further, according to the manufacturing method of the third wavelength converting sintered body of the present invention, the inorganic material can be a Al 2 O 3.

さらにまた本発明の第4の波長変換焼結体の製造方法によれば、前記第2の工程前に、前記焼結体を研磨する第3の工程を含むことができる。   Furthermore, according to the fourth method for producing a wavelength conversion sintered body of the present invention, it is possible to include a third step of polishing the sintered body before the second step.

さらにまた本発明の第5の波長変換焼結体の製造方法によれば、前記凹部を不規則な形状を有するようにできる。   Furthermore, according to the fifth method for producing a wavelength conversion sintered body of the present invention, the concave portion can have an irregular shape.

さらにまた本発明の第6の波長変換焼結体の製造方法によれば、前記凹部を、前記焼結体中の蛍光体粒子が溶解した形状を有するようにできる。   Furthermore, according to the sixth method for producing a wavelength conversion sintered body of the present invention, the concave portion can have a shape in which phosphor particles in the sintered body are dissolved.

さらにまた本発明の第7の波長変換焼結体によれば、無機物と蛍光体との焼結体であり、かつ第1及び第2の主面を備えた板状の形状を有する波長変換焼結体であって、前記波長変換焼結体は、少なくとも前記第1の主面に複数の凹部が設けられた表層と、前記表層より内側の中央層と、を有し、前記波長変換焼結体中に含まれる蛍光体粒子を、前記表層より前記中央層に多く分布させており、前記表層に粒状化された無機物を有することができる。 Furthermore, according to the seventh wavelength conversion sintered body of the present invention, the wavelength conversion sintered body is a sintered body of an inorganic substance and a phosphor and has a plate-like shape having the first and second main surfaces. The wavelength conversion sintered body includes a surface layer in which a plurality of recesses are provided on at least the first main surface, and a central layer inside the surface layer, and the wavelength conversion sintered body. The phosphor particles contained in the body are distributed more in the central layer than in the surface layer, and the surface layer can have a granular inorganic substance.

さらにまた本発明の第8の発光装置によれば、上記の波長変換焼結体と、発光素子とを備える発光装置であって、前記第1の主面を、前記発光素子から出射された光を受光する受光面、又は該受光した光を放出する発光面とすることができる。   Furthermore, according to an eighth light-emitting device of the present invention, the light-emitting device includes the above-described wavelength conversion sintered body and a light-emitting element, and the light emitted from the light-emitting element on the first main surface. Can be a light-receiving surface that receives light or a light-emitting surface that emits the received light.

さらにまた本発明の第9の発光装置によれば、前記第2の主面は前記中央層が露出された平滑面であって、前記第2の主面側に前記発光素子を配置させており、前記第1の主面を前記発光面とすることができる。   Furthermore, according to the ninth light emitting device of the present invention, the second main surface is a smooth surface from which the central layer is exposed, and the light emitting element is disposed on the second main surface side. The first main surface can be the light emitting surface.

また、本発明の第10の発光装置によれば、一の波長変換焼結体の第2の主面側に複数の発光素子を配置させ、前記第1の主面を前記発光面とすることができる。   According to the tenth light emitting device of the present invention, a plurality of light emitting elements are arranged on the second main surface side of one wavelength conversion sintered body, and the first main surface is used as the light emitting surface. Can do.

本発明の波長変換焼結体は表層が多孔質状であって、表面は不規則な凹凸形状に加工されている。これにより波長変換した二次光を、該加工面にて有効に反射あるいは屈折させて不規則方向に散乱させることができ、光の指向性が緩和される。すなわち発光面上での光分布の偏在を低減させて、輝度ムラ及び色ムラを解消できる。特に無機物粒子を露出させる構造、つまり蛍光体粒子を加工面から離間して配置させることで、蛍光体粒子による波長変換光が発光面上で際立って発光するのを回避できる。すなわち、該波長変換光を加工面で十分に拡散させることができるため、発光面の略全域で混色率を実質上均等とした発光を得られる。この結果、従来であれば色ムラにより削減される虞のあった発光域においても、有効に利用できるため光取り出し効率を高められる。また、蛍光体粒子を表面に露出させないことにより、蛍光体粒子の劣化を抑制することができる。   In the wavelength conversion sintered body of the present invention, the surface layer is porous, and the surface is processed into irregular irregular shapes. As a result, the wavelength-converted secondary light can be effectively reflected or refracted on the processed surface and scattered in an irregular direction, and the directivity of the light is relaxed. That is, uneven distribution of light distribution on the light emitting surface can be reduced, and unevenness in luminance and color can be eliminated. In particular, the structure in which the inorganic particles are exposed, that is, the phosphor particles are arranged apart from the processing surface, so that the wavelength-converted light from the phosphor particles can be prevented from being emitted noticeably on the light emitting surface. That is, since the wavelength-converted light can be sufficiently diffused on the processed surface, light emission with substantially uniform color mixing ratio can be obtained over substantially the entire light emitting surface. As a result, the light extraction efficiency can be increased because it can be used effectively even in a light emission region that may have been reduced by color unevenness. Moreover, deterioration of the phosphor particles can be suppressed by not exposing the phosphor particles to the surface.

また、本発明の波長変換焼結体の製造方法によれば、ウエットエッチングによって化学的に波長変換焼結体の一部を溶解させる。つまり材料成分の溶解レート差により、波長変換焼結体の浸食領域を選択して、空隙の形成と蛍光体粒子の配置位置を容易に制御できる。さらに、応力を加えることなく焼結体における粒子の結合領域を切断させることができ、実質的に無歪加工で粒子の外面形状を露出させることができる。この結果複雑な形状の空隙を形成でき、光、特に二次光の散乱性を一層高めることができる。つまり波長変換焼結体の表面に不規則な凹凸部を形成することと、蛍光体粒子を所定の配置とすることの双方を略同時にかつ容易に満足できる。   Moreover, according to the manufacturing method of the wavelength conversion sintered compact of this invention, a part of wavelength conversion sintered compact is melt | dissolved chemically by wet etching. That is, the erosion region of the wavelength conversion sintered body can be selected based on the difference in the dissolution rate of the material components, and the formation of voids and the arrangement positions of the phosphor particles can be easily controlled. Furthermore, the bonded region of the particles in the sintered body can be cut without applying stress, and the outer surface shape of the particles can be exposed by substantially no strain processing. As a result, a void having a complicated shape can be formed, and the scattering property of light, particularly secondary light can be further enhanced. That is, it is possible to satisfy both the formation of irregular irregularities on the surface of the wavelength conversion sintered body and the arrangement of the phosphor particles in a predetermined manner at substantially the same time.

以下、本発明の実施例を図面に基づいて説明する。但し、以下に示す実施例は、本発明の技術思想を具体化するための波長変換焼結体及びこれを用いた発光装置、並びに波長変換焼結体の製造方法を例示するものであって、本発明は、波長変換焼結体及びこれを用いた発光装置、並びに波長変換焼結体の製造方法を以下のものに特定しない。特に実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify a wavelength conversion sintered body for embodying the technical idea of the present invention, a light emitting device using the same, and a method for manufacturing the wavelength conversion sintered body, This invention does not specify the wavelength conversion sintered compact, the light-emitting device using the same, and the manufacturing method of a wavelength conversion sintered compact to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the examples are not intended to limit the scope of the present invention only unless otherwise specified, but are merely illustrative examples. Only.

なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。また、本明細書において、層上などでいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。尚、本明細書において、被覆部材を封止部材として記載している場合もある。   Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments. Further, in this specification, the term “upper” as used on a layer or the like is not necessarily limited to the case where the upper surface is formed in contact with the upper surface, but includes the case where the upper surface is separated from the upper surface. It is used to include the case where there is an intervening layer between them. In the present specification, the covering member may be described as a sealing member.

(実施の形態1)
図1は、実施の形態1に係る波長変換焼結体500の概略断面図である。波長変換焼結体500は、無機物粒子504と、光の波長を変換可能な蛍光体粒子12とを含有する。図1の波長変換焼結体500の例では、無機物粒子504の原料としての無機物粉末と、蛍光体粒子12の原料としての蛍光体粉末を混合して焼結させ、焼結体とした。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a wavelength conversion sintered body 500 according to the first embodiment. The wavelength conversion sintered body 500 contains inorganic particles 504 and phosphor particles 12 that can convert the wavelength of light. In the example of the wavelength conversion sintered body 500 in FIG. 1, an inorganic powder as a raw material for the inorganic particles 504 and a phosphor powder as a raw material for the phosphor particles 12 are mixed and sintered to obtain a sintered body.

波長変換焼結体500において、外部に露出する表層近傍は凹凸状に形成されている。この凹凸を構成する凹部503は、深さや内面の形状が一様ではなく、すなわち不規則とする。また表層における凹凸形成領域では、無機物粒子504の粒子間に空隙を生じるように積層されており、つまり多孔質状に加工された表層505を構成する。そして表層505の最表面では、この空隙の少なくとも一部が外部に連通しており、すなわち開口した凹みを形成して上記波長変換焼結体500の凹部503を構成している。   In the wavelength conversion sintered body 500, the vicinity of the surface layer exposed to the outside is formed in an uneven shape. The recesses 503 constituting the unevenness are not uniform in depth and inner surface shape, that is, irregular. In the unevenness formation region in the surface layer, the surface layer 505 is formed so as to have a void between the inorganic particles 504, that is, a surface layer 505 processed into a porous shape. On the outermost surface of the surface layer 505, at least a part of the void communicates with the outside, that is, an open recess is formed to constitute the recess 503 of the wavelength conversion sintered body 500.

凹部503は、焼結体の材料成分の粒子、特に蛍光体粒子が抜脱したような形状であって、つまり凹部503の内面形状の少なくとも一部が、焼結体の材料成分における粒子の表面形状に略沿うか、あるいは焼結体の材料成分の粒子の表面形状と相似関係を満たす。具体的に、表層505の凹部503の内面は少なくとも一部が丸みを帯びており、さらに、この凹みと蛍光体12の球状粒子の外面の少なくとも一部とが嵌着可能であるか、あるいは凹みの内面形状の少なくとも一部が蛍光体粒子12の表面形状を拡大または縮小した形状に略一致可能としている。   The concave portion 503 has such a shape that particles of the material component of the sintered body, in particular, the phosphor particles are removed, that is, at least part of the inner surface shape of the concave portion 503 is the surface of the particle in the material component of the sintered body. It substantially conforms to the shape, or satisfies the similar relationship with the surface shape of the particles of the material component of the sintered body. Specifically, at least a part of the inner surface of the concave portion 503 of the surface layer 505 is rounded. Further, the concave portion and at least a part of the outer surface of the spherical particle of the phosphor 12 can be fitted or the concave portion. At least a part of the inner surface shape of the phosphor particle 12 can substantially coincide with a shape obtained by enlarging or reducing the surface shape of the phosphor particles 12.

さらに波長変換焼結体500の表層では、蛍光体粒子12の分布域上を無機物粒子504が被覆しており、この無機物粒子504の被覆領域が表層505を構成して外部に露出している。また表層505は複数の細孔を備えており、したがって表層505から離間した中央層506では蛍光体粒子が表層505よりも多く分布している。言い換えると、中央層506では表層505よりも空隙率が低い。図1の例では、波長変換焼結体500における蛍光体粒子12の含有率を5重量%以上として、波長変換光の光量を好適な範囲に調節している。また蛍光体粒子12は、表層505において中央層506よりも少なくなる状態に分布され、中央層では略均等に拡散した状態に配置される。また、本明細書において「空隙率」とは、波長変換焼結体の全容積に対する、その中に含まれるすきまの容積の割合を意味する。尚、成型時に空隙を有する焼結体の場合には、主に観察断面における蛍光体粒子の密度が、表層側が中央層側に比べて低くし、例えば0.1倍以下、好ましくは0.01倍以下に低くした透過領域を設け、更には表層に密度がほぼ0の蛍光体非含有の透過領域を設ける。   Further, in the surface layer of the wavelength conversion sintered body 500, the inorganic particles 504 cover the distribution region of the phosphor particles 12, and the covered region of the inorganic particles 504 constitutes the surface layer 505 and is exposed to the outside. In addition, the surface layer 505 has a plurality of pores. Therefore, more phosphor particles are distributed in the central layer 506 spaced from the surface layer 505 than in the surface layer 505. In other words, the central layer 506 has a lower porosity than the surface layer 505. In the example of FIG. 1, the content of the phosphor particles 12 in the wavelength conversion sintered body 500 is set to 5% by weight or more, and the light amount of the wavelength conversion light is adjusted to a suitable range. Further, the phosphor particles 12 are distributed in a state of being smaller than the central layer 506 in the surface layer 505, and are disposed in a substantially uniformly diffused state in the central layer. In the present specification, the “porosity” means the ratio of the volume of the gap contained in the total volume of the wavelength conversion sintered body. In the case of a sintered body having voids at the time of molding, the density of the phosphor particles mainly in the observation cross section is lower on the surface layer side than on the central layer side, for example, 0.1 times or less, preferably 0.01. A transmissive region lowered to a double or less is provided, and a phosphor-free transmissive region having a density of approximately 0 is provided on the surface layer.

また波長変換焼結体500は、光を受光あるいは放出可能な第1の主面501と、この第1の主面501と対向する第2の主面502とを備え、形状として好ましくは板状とする。図1の例では便宜上、第1の主面501と第2の主面502とを、それぞれ発光面及び受光面と区別した。   The wavelength conversion sintered body 500 includes a first main surface 501 that can receive or emit light, and a second main surface 502 that faces the first main surface 501, and preferably has a plate shape. And In the example of FIG. 1, for the sake of convenience, the first main surface 501 and the second main surface 502 are distinguished from the light emitting surface and the light receiving surface, respectively.

また図2は、波長変換焼結体500の概略断面図であって、これを透過する光の進行具合を模式的に図示した説明図である。図1と同様の機能を有する部材には同一の符号を付して詳細な説明を省略する。具体的に図2(a)は表面研磨、又は加工された波長変換焼結体600を示し、また図2(b)は実施の形態1の波長変換焼結体500を示し、それぞれ蛍光体粒子12が略均等に分散して配置されている。ただ、図2(a)の例では表層505に蛍光体粒子を含有しており、さらに蛍光体粒子の一部は発光面601に露出される。一方、図2(b)の例では、表層505における蛍光体粒子12の分布が制限されており、つまり無機物粒子504が蛍光体粒子12上を被覆して、この被覆領域でもって発光面501を構成する。したがって、好ましくは、蛍光体粒子12は発光面501から離間して配置されて外部に露出されない。すなわち、それぞれの発光面601、501から、蛍光体粒子12の分布領域の上端までの深さをd1、d2とすれば、d1<d2の関係を満たし、研磨粗さが小さくなるほどd1≒0となり、図2(b)の波長変換焼結体500では蛍光体が発光観測面から奥まって配置される。このように、蛍光体粒子の分布が低い、すなわち無機物粒子が多く分布する透過領域でもって、離間、被覆領域を形成するもので、その透過領域中の蛍光体を少なくするほど、その離間、被覆効果を高められる。   FIG. 2 is a schematic cross-sectional view of the wavelength conversion sintered body 500, and is an explanatory view schematically illustrating how light passes through the wavelength conversion sintered body 500. Members having the same functions as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. Specifically, FIG. 2 (a) shows a wavelength-converted sintered body 600 that has been surface-polished or processed, and FIG. 2 (b) shows the wavelength-converted sintered body 500 of the first embodiment. 12 are arranged in a substantially uniform manner. However, in the example of FIG. 2A, the surface layer 505 contains phosphor particles, and a part of the phosphor particles is exposed to the light emitting surface 601. On the other hand, in the example of FIG. 2B, the distribution of the phosphor particles 12 in the surface layer 505 is limited. That is, the inorganic particles 504 cover the phosphor particles 12, and the light emitting surface 501 is covered with this coating region. Configure. Therefore, preferably, the phosphor particles 12 are arranged apart from the light emitting surface 501 and are not exposed to the outside. That is, if the depths from the respective light emitting surfaces 601 and 501 to the upper end of the distribution region of the phosphor particles 12 are d1 and d2, the relationship d1 <d2 is satisfied, and d1≈0 as the polishing roughness decreases. In the wavelength conversion sintered body 500 of FIG. 2B, the phosphor is disposed behind the emission observation surface. In this way, the distribution of the phosphor particles is low, that is, the separation region and the coating region are formed in the transmission region where the inorganic particles are largely distributed. As the phosphor in the transmission region decreases, the separation and the coating region are formed. The effect can be enhanced.

そして発光面501、601と対向する受光面502、602側より入光した一次光の一部は、蛍光体粒子12へと進行して波長変換され二次光となる。ここで図2(a)の例では、蛍光体粒子12が波長変換焼結体600の発光面601あるいはその近傍に配置されるため、二次光が発光面601の凹凸部に進行しないこと、また露出された蛍光体粒子から直接的に外部へと放出されることから、十分に散乱、拡散されない。この結果、二次光が発光面上で集中して発光され、つまり発光観測面である発光面601上で一次光と二次光とが十分に混色されず、色ムラが発生しやすい傾向にある。   A part of the primary light incident from the light receiving surfaces 502 and 602 facing the light emitting surfaces 501 and 601 proceeds to the phosphor particles 12 to be converted into secondary light. Here, in the example of FIG. 2A, since the phosphor particles 12 are disposed on the light emitting surface 601 of the wavelength conversion sintered body 600 or in the vicinity thereof, the secondary light does not travel to the uneven portion of the light emitting surface 601. In addition, since the exposed phosphor particles are directly emitted to the outside, they are not sufficiently scattered and diffused. As a result, the secondary light is concentrated and emitted on the light emitting surface, that is, the primary light and the secondary light are not sufficiently mixed on the light emitting surface 601 that is the light emission observation surface, and color unevenness tends to occur. is there.

一方、実施の形態1の波長変換焼結体500では、蛍光体12が発光面501から深さd2分だけ下方に位置しており、したがって二次光が発光面501に到達するまでの光路を稼ぐことができ、二次光が発光面での凹凸形状、更には透過領域によって十分に散乱、拡散される。これにより二次光の色相が発光面501上で際立つことなく、略一様な混色光を得られる。特に、発光面501から、蛍光体粒子12の分布領域の上端までの深さd2を、波長変換焼結体500の総膜厚の5%ないし40%とすることで、上記、凹凸面による、更には透過領域による波長変換光の光拡散性を有効に高められる。深さd2が5%よりも小さければ、散乱性が弱く、つまり図2(a)の波長変換焼結体600に近似する。一方、40%よりも大きければ、混色光における二次光の比率が微小となって所望の混色光を得られない。また、表層505に蛍光体粒子12を実質的に含有していないため、蛍光体粒子12の最上分布領域までの深さd2は、発光面501から最も離間された位置に形成された空隙までの深さに略相当する。尚、凹凸領域は、透過領域の一部として図示しているが、全部で有っても良く、例えば透過領域の20〜80%とする。   On the other hand, in the wavelength conversion sintered body 500 of the first embodiment, the phosphor 12 is positioned below the light emitting surface 501 by the depth d2, and therefore the optical path until the secondary light reaches the light emitting surface 501 is reached. The secondary light is sufficiently scattered and diffused by the uneven shape on the light emitting surface and further by the transmission region. Thereby, the hue of the secondary light does not stand out on the light emitting surface 501, and substantially uniform color mixing light can be obtained. In particular, by setting the depth d2 from the light emitting surface 501 to the upper end of the distribution region of the phosphor particles 12 to 5% to 40% of the total film thickness of the wavelength conversion sintered body 500, the above uneven surface, Furthermore, the light diffusibility of the wavelength converted light by the transmission region can be effectively enhanced. If the depth d2 is smaller than 5%, the scattering property is weak, that is, approximate to the wavelength conversion sintered body 600 of FIG. On the other hand, if it is larger than 40%, the ratio of the secondary light in the mixed color light becomes minute, and the desired mixed color light cannot be obtained. Further, since the surface layer 505 does not substantially contain the phosphor particles 12, the depth d2 to the uppermost distribution region of the phosphor particles 12 is the distance from the light emitting surface 501 to the gap formed at the most distance. Approximately equivalent to depth. In addition, although the uneven | corrugated | grooved area | region is illustrated as a part of transmissive area | region, you may have all, for example, set it as 20 to 80% of a transmissive area | region.

(波長変換焼結体の製造方法)
波長変換焼結体は、蛍光体粉末と無機物粉末との混合物を、放電プラズマ焼結法(SPS法)を用いて無機物粉末を溶融し、その後、冷却することにより製造することができる。SPS法は、蛍光体粉末と無機物粉末との粉体混合物に対して低電圧でパルス状大電流を投入し、火花放電現象により瞬時に発生する放電プラズマの高エネルギーにより無機物粉末を溶融させるものである。実施の形態1では無機物としての酸化アルミニウム(Al23)と、蛍光体としてのYAGの各粉末を混練して、SPS法により焼結体を作製する。この焼結方法と空隙が少なく、発光装置の光変換部材に優れた特性のものが得られるが、その他の焼結方法でもよい。
(Method for producing wavelength conversion sintered body)
The wavelength conversion sintered body can be produced by melting an inorganic powder using a discharge plasma sintering method (SPS method) and then cooling a mixture of phosphor powder and inorganic powder. In the SPS method, a pulsed large current is applied to a powder mixture of phosphor powder and inorganic powder at a low voltage, and the inorganic powder is melted by the high energy of discharge plasma generated instantaneously by a spark discharge phenomenon. is there. In the first embodiment, aluminum oxide (Al 2 O 3 ) as an inorganic substance and YAG powder as a phosphor are kneaded and a sintered body is produced by the SPS method. Although there are few gaps with this sintering method and the light conversion member of the light emitting device has excellent characteristics, other sintering methods may be used.

SPS法の焼結体の断面は、例えばSEM像の図4に示すようなものが得られる。図中、白みを帯びた粒状部がYAG相であり、このYAG相を被覆する母材部がアルミナ相(Al23)である。図より、アルミナ相にYAG相が略一様に分散されて配置されていることがわかる。製造時の条件により、図に観るような母相中(無機物粒子)に蛍光体の相(蛍光体粒子)が二相構造の形態の他に、各粒子が凝集したような粒状の形態など、種々の形態とすることができ、好ましくは空隙の少ない相構造とする。 For example, an SEM image having a cross section as shown in FIG. 4 can be obtained. In the figure, the whitened granular portion is the YAG phase, and the base material portion covering the YAG phase is the alumina phase (Al 2 O 3 ). From the figure, it can be seen that the YAG phase is substantially uniformly dispersed in the alumina phase. Depending on the conditions at the time of manufacture, in addition to the two-phase structure of the phosphor phase (phosphor particles) in the matrix (inorganic particles) as seen in the figure, the granular form in which each particle aggregates, etc. It can be in various forms, and preferably has a phase structure with few voids.

この焼結体を所定の厚みでスライスし、さらに表面を適宜研磨した後、ウエットエッチング処理でもって凹凸加工を施す。ここで、本明細書において、「研磨」とは研削も同等とし、それにより平滑面化される場合も粗面化される場合も含む広義の意味で用いるが、特に特定的な記載がない限りは、平滑面化する研磨を指す。実施の形態1では研磨条件を以下とする。♯800のダイヤモンド砥石で、砥石回転数80rpm、ワーク回転数80rpm、圧力1.7MPaとして研磨を行い、最終的な波長変換焼結体の厚みを150μmとする。また、エッチングは、燐酸と硫酸(36:74)の混合液を300℃に加熱して、その液中で5分間エッチングを行い、その後水洗する。これにより、焼結体における粉体粒子間の結合域が優先的に溶解し再び粒状化される。同時に、材料成分のエッチングレートの差によって、材料成分を選択的に溶解させ、残存する基体側の表面に空隙を形成する。具体的には、YAGは200℃の燐酸硫酸(36:74)の混合液にも溶解され、一方Al23は約260℃から溶解が始まる。好ましくは、上記エッチング溶液の温度を280℃〜305℃の範囲に設定する。Al23よりYAGのエッチングレートが早いので、YAGが優先的に溶解するとともに、表面にAl23が露出する。また表層ではYAGの粒子の欠損によって空隙が生じ、その一部は外部に連通した凹部を構成する。 This sintered body is sliced with a predetermined thickness, the surface is further polished as appropriate, and then unevenness processing is performed by wet etching. Here, in this specification, “polishing” is equivalent to grinding, and is used in a broad sense including cases where the surface is smoothed or roughened, but unless otherwise specified. Indicates polishing for smoothening. In the first embodiment, the polishing conditions are as follows. Polishing is performed with a # 800 diamond grindstone at a grindstone rotation speed of 80 rpm, a workpiece rotation speed of 80 rpm, and a pressure of 1.7 MPa, so that the final wavelength conversion sintered body has a thickness of 150 μm. In the etching, a mixed solution of phosphoric acid and sulfuric acid (36:74) is heated to 300 ° C., etched in the solution for 5 minutes, and then washed with water. Thereby, the bonding area between the powder particles in the sintered body is preferentially dissolved and granulated again. At the same time, the material component is selectively dissolved by the difference in the etching rate of the material component, and a void is formed on the remaining surface on the substrate side. Specifically, YAG is also dissolved in a mixture of phosphoric sulfuric acid (36:74) at 200 ° C., while Al 2 O 3 begins to dissolve at about 260 ° C. Preferably, the temperature of the etching solution is set in a range of 280 ° C to 305 ° C. Since the etching rate of YAG is faster than that of Al 2 O 3 , YAG is preferentially dissolved and Al 2 O 3 is exposed on the surface. In the surface layer, voids are generated due to the loss of the YAG particles, and a part thereof constitutes a recess that communicates with the outside.

上記加工は焼結体のいずれの面に施してもよく、例えば第1の主面または第2の主面のいずれか片面加工、あるいは両面加工とできる。つまり、一方の主面に凹凸加工が施され、他方の主面が研磨面、平滑面である片面加工でもよい。この結果、後述する波長変換焼結体を光源と組み合わせた発光装置において、上述の図2で説明したように、発光面側に加工を施すことで配光色度ムラを低減できる。また、波長変換焼結体の加工面を光源と隣接する側、つまり受光面側とすることで、光透過部材中を伝搬する光を発光面側へ好適に散乱して反射させるため発光装置の出射光における輝度ムラを低減できる。また、受光面側に凹凸領域、無機物領域が設けられることで、発光素子との結合などにおいて、その入射口付近に、光散乱、変換光の発光源となる波長変換部材の粒子が少なく、さらには不存在であることで、それによる発光素子への戻り光の量、受光面側に向かう光の量が減少し、光透過部材への入射効率を高め、ひいては発光面からの出射効率を高めることができる。また凹凸領域により、発光素子との接着部材、封止部材との密着性が向上する。一方、受光面側の凹凸領域、無機物領域は上述したように光取り出し効率を高めるため、発光素子側、封止部材への光の漏れ出し量が多くなる場合がある。さらに波長変換焼結体の受光面及び発光面の両面を加工面とすることで、上記各加工面で配光色度ムラ及び色度ムラを低減できる。一方で、凹凸部を両面に設けると、その加工の組み合わせにより、光変換焼結体中への光閉じ込め率、受光面側からの光出射率が高くなる場合があり、所望の特性に応じて、適宜、片面に加工及びその無機物・凹凸領域の調整、又は両面に略同じ、異なる凹凸部の加工及びその各領域の調整を施す。   The above processing may be performed on any surface of the sintered body. For example, either the first main surface or the second main surface may be processed on one side or on both sides. That is, one-side processing in which one main surface is subjected to uneven processing and the other main surface is a polished surface or a smooth surface may be used. As a result, in the light emitting device in which the wavelength conversion sintered body described later is combined with the light source, the light distribution chromaticity unevenness can be reduced by processing the light emitting surface side as described above with reference to FIG. Further, by setting the processed surface of the wavelength conversion sintered body to the side adjacent to the light source, that is, the light receiving surface side, the light propagating through the light transmitting member is preferably scattered and reflected to the light emitting surface side, so that the light emitting device Luminance unevenness in the emitted light can be reduced. In addition, by providing an uneven region and an inorganic region on the light receiving surface side, there are few particles of the wavelength conversion member that serves as a light-emitting source of light scattering and converted light in the vicinity of the entrance for coupling with a light-emitting element, etc. Is not present, thereby reducing the amount of light returning to the light emitting element and the amount of light traveling toward the light receiving surface, thereby increasing the efficiency of incidence on the light transmitting member and thus increasing the efficiency of light emission from the light emitting surface. be able to. In addition, the unevenness region improves the adhesion between the light-emitting element and the sealing member. On the other hand, since the uneven area and the inorganic area on the light receiving surface side increase the light extraction efficiency as described above, the amount of light leaking to the light emitting element side and the sealing member may increase. Furthermore, by using both the light receiving surface and the light emitting surface of the wavelength conversion sintered body as processed surfaces, it is possible to reduce light distribution chromaticity unevenness and chromaticity unevenness on each processed surface. On the other hand, if the concave and convex portions are provided on both sides, the light confinement rate in the light conversion sintered body and the light emission rate from the light receiving surface side may increase depending on the combination of processing, depending on the desired characteristics As appropriate, processing is performed on one side and adjustment of the inorganic and uneven regions, or processing of different uneven portions on both sides and adjustment of each region are performed.

また、SPS法のYAG粒子(粒径)等の条件とエッチング処理後の空隙との相関性について、エッチング後の表面状態は、エッチングの処理時間や焼結後の結晶状態、結晶の大きさ、粒径に依存する。例えば粒径を小さくすれば配光色度を一層改善でき好ましい。以下に、凹凸の加工条件を種々とした例を比較検討した比較例及び実施例を示す。該比較例及び実施例において特に製造方法を記載していない場合は、上記記載の製造方法と同様とする。   In addition, regarding the correlation between the conditions such as YAG particles (particle size) of the SPS method and the voids after the etching treatment, the surface state after the etching is the etching treatment time, the crystalline state after sintering, the size of the crystal, Depends on particle size. For example, it is preferable to reduce the particle size because the light distribution chromaticity can be further improved. Below, the comparative example and the Example which compared and examined the example which made the uneven | corrugated processing conditions various are shown. In the comparative examples and examples, when the production method is not particularly described, the production method is the same as described above.

(実施例1、実施例2、実施例3)
以下に示す実施例1ないし3において、本発明における波長変換焼結体の表面加工方法と加工表面状態及び断面状態との相関性を調査する。すなわちエッチング前の前処理条件(A〜C)の違いによって実施例1、2、3とし、さらに各実施例に対して種々のエッチング処理条件(a〜e)を施した際のエッチング面及びその断面の状態を比較検討する。
(Example 1, Example 2, Example 3)
In Examples 1 to 3 shown below, the correlation between the surface processing method of the wavelength conversion sintered body in the present invention, the processed surface state, and the cross-sectional state is investigated. That is, it is set as Example 1, 2, 3 by the difference in the pre-processing conditions (A-C) before an etching, Furthermore, the etching surface at the time of giving various etching processing conditions (ae) with respect to each Example, and its Compare and examine the cross-sectional state.

まず、Al23とYAG(10重量%)をSPS法により焼結した後、この焼結体をスライスして、1400℃でカーボン焼き処理を施す。以降、この板状のYAG−Al23焼結体を「YAG焼結板」と称する。そして、このYAG焼結板に対し、エッチングの前に施される前処理を、研磨(A)−実施例1、ブラスト(B)−実施例2、前処理なし(C)−実施例3の3種類とする。またエッチング溶液は燐酸(36%)/硫酸(74%)の混酸溶液とし、各エッチング条件を、260℃−1分(a)、300℃−1.5分(b)、300℃−3分(c)、300℃−6分(d)、300℃−12分(e)とする。なお、YAG焼結板の割れを防止する目的で、実際は上記条件の前後に200℃−1minのエッチング処理を入れているが、記述は省略している。 First, Al 2 O 3 and YAG (10 wt%) are sintered by the SPS method, and then the sintered body is sliced and subjected to carbon baking treatment at 1400 ° C. Hereinafter, this plate-like YAG-Al 2 O 3 sintered body is referred to as “YAG sintered plate”. Then, the pretreatment applied to the YAG sintered plate before etching is as follows: Polishing (A) —Example 1, Blasting (B) —Example 2, No pretreatment (C) —Example 3 There are three types. The etching solution is a mixed acid solution of phosphoric acid (36%) / sulfuric acid (74%), and the etching conditions are 260 ° C.-1 min (a), 300 ° C.-1.5 min (b), 300 ° C.-3 min. (C), 300 ° C. for 6 minutes (d), and 300 ° C. for 12 minutes (e). In order to prevent the YAG sintered plate from cracking, an etching process of 200 ° C.-1 min is actually performed before and after the above conditions, but the description is omitted.

これらエッチング前処理(A〜C)とエッチング処理(a〜e)の組合せによる表面状態をSEM観察し、その結果を図3に示す。図3より研磨の有無で、エッチングが短時間であれば凹部の深さに違いがでるが、エッチングが長時間であれば、エッチング処理時間と加工表面状態との間に相関性がないと考えられる。このことから、エッチング時間を3分以上とすることが、エッチング前の面状態の依存がなくなるので好ましいと言える。さらに見方を変えれば、焼結体表面が平滑面であるより粗面である、あるいは微細な空隙や孔を有しているほうが、エッチング溶液が焼結体内に浸透しやすく、同じ加工表面状態になるまでのエッチング処理時間を短くすることができる。   The surface state by the combination of these etching pretreatments (A to C) and etching treatments (a to e) was observed by SEM, and the results are shown in FIG. From FIG. 3, the depth of the concave portion is different if the etching is performed for a short time with or without polishing, but if the etching is performed for a long time, there is no correlation between the etching processing time and the processed surface state. It is done. From this, it can be said that it is preferable to set the etching time to 3 minutes or more because the dependence of the surface state before etching is eliminated. From a different perspective, it is easier for the etching solution to penetrate into the sintered body when the surface of the sintered body is rougher than the smooth surface or has fine voids and holes, so that the same processed surface state is obtained. It is possible to shorten the etching processing time until it becomes.

さらに、実施例1の前処理−研磨(A)におけるエッチング無し、上記(a)、(c)、(e)の条件での加工、並びに無加工(実施例3の前処理なし(C)におけるエッチング無し)のYAG焼結板について、断面状態をSEM観察し、その結果を、加工表面状態の拡大像とともに図4に示す。図4に観るように、ウエットエッチング処理により、YAG焼結板の表層において、YAG粒子が優先的に溶解され、Al23無機物母材が残って不規則な凹凸が形成されていることが理解できる。 Further, in the pretreatment of Example 1-polishing (A), no etching, processing under the conditions (a), (c), and (e) above, and no processing (without pretreatment of Example 3 (C)) For the YAG sintered plate without etching), the cross-sectional state was observed by SEM, and the result is shown in FIG. 4 together with the enlarged image of the processed surface state. As shown in FIG. 4, the wet etching process preferentially dissolves the YAG particles in the surface layer of the YAG sintered plate, leaving the Al 2 O 3 inorganic base material to form irregular irregularities. Understandable.

(実施の形態2)
また、実施の形態1の波長変換焼結体500を光源と組み合わせて、所望の波長光を出射可能な発光装置を実施の形態2として、以下にこれを詳述する。図5は、実施の形態2に係る発光装置1の概略断面図であり、この発光装置1は、発光素子10と、この発光素子10より出射される光を透過する光透過部材15と、光透過部材15の一部を被覆する被覆部材26とから主に構成される。発光素子10は、配線基板9上に導電部材24を介して搭載され、さらに発光素子10の上方には光透過部材15が光学的に接続されている。図5の例では電極面4が配線基板9と対向させて、配線(不図示)と電気的に接続し、すなわち成長基板5側が光透過部材15に近接するようフェイスダウン実装されており、矢印に示すように、成長基板5側から光透過部材15に接合して主に光が取り出される。
(Embodiment 2)
A light emitting device capable of emitting light having a desired wavelength by combining the wavelength conversion sintered body 500 of the first embodiment with a light source will be described in detail below as a second embodiment. FIG. 5 is a schematic cross-sectional view of the light emitting device 1 according to the second embodiment. The light emitting device 1 includes a light emitting element 10, a light transmitting member 15 that transmits light emitted from the light emitting element 10, and a light It is mainly composed of a covering member 26 that covers a part of the transmitting member 15. The light emitting element 10 is mounted on the wiring board 9 via the conductive member 24, and the light transmitting member 15 is optically connected above the light emitting element 10. In the example of FIG. 5, the electrode surface 4 faces the wiring board 9 and is electrically connected to the wiring (not shown), that is, face-down mounted so that the growth substrate 5 side is close to the light transmitting member 15. As shown in FIG. 3, light is mainly extracted from the growth substrate 5 side by joining to the light transmission member 15.

また光透過部材15は、発光素子10より出射される光の少なくとも一部を波長変換可能な波長変換部材によって構成されており、具体的には実施の形態1の波長変換焼結体500とする。これにより、発光素子10からの出射光が、その一部を波長変換部材でもって波長変換された二次光と加色混合されて、発光装置より所望の波長光を放出できる。さらに、表面に上記凹凸加工と蛍光体粒子の配置位置を備えた波長変換焼結体500を介すれば、発光面15a上で一次光と二次光とを十分に拡散できるため、略均等な混色率を実現して色ムラの低減された放出光とできる。特に、一の光透過部材15に複数の光源を光学的に接続する場合、光透過部材15を波長変換焼結体500とすることで、光の拡散性がより高まるため、光源間の色ムラが緩和され均一な発光が得られ、また指向性の高い光源であっても発光面上で有効に拡散させることができ、拡散フィルター等別個の部材の設置を省略でき好ましい。したがって、以下の説明中における「光透過部材」は、「波長変換焼結体」に適用できる。   Further, the light transmission member 15 is configured by a wavelength conversion member capable of converting the wavelength of at least a part of the light emitted from the light emitting element 10, and specifically, the wavelength conversion sintered body 500 of the first embodiment. . Thereby, a part of the emitted light from the light emitting element 10 is additively mixed with the secondary light whose wavelength is converted by the wavelength conversion member, and light having a desired wavelength can be emitted from the light emitting device. Furthermore, since the primary light and the secondary light can be sufficiently diffused on the light emitting surface 15a through the wavelength conversion sintered body 500 provided with the unevenness processing and the arrangement position of the phosphor particles on the surface, the substantially uniform By realizing a color mixing ratio, emitted light with reduced color unevenness can be obtained. In particular, when a plurality of light sources are optically connected to one light transmissive member 15, the light diffusibility is further increased by using the light transmissive member 15 as the wavelength conversion sintered body 500. It is preferable that even light sources with high directivity can be diffused effectively on the light emitting surface, and the installation of a separate member such as a diffusion filter can be omitted. Therefore, the “light transmitting member” in the following description can be applied to the “wavelength conversion sintered body”.

光透過部材15は、発光素子10からの光を受光する受光面15bと、受光した光を放出する面であって発光装置1の外面を構成する発光面15aとを有し、さらにこの発光面15aと略直交する面であって厚さ方向と平行な側面15cを備える。また、光透過部材15は、その一部を被覆部材26でもって被覆され、外部へ光を放出する発光面15aを被覆部材26から露出させている。好適には、被覆部材26の表出面を、発光面15aに対して略同一面、あるいは発光面15aから受光面15b側に後退した外表面とすることで、窓部である光透過部材15の発光面15aから出射される光が、被覆部材26により遮光されることを回避できる。   The light transmitting member 15 includes a light receiving surface 15b that receives light from the light emitting element 10, and a light emitting surface 15a that emits the received light and that constitutes the outer surface of the light emitting device 1. A side surface 15c that is substantially perpendicular to 15a and parallel to the thickness direction is provided. Further, a part of the light transmitting member 15 is covered with the covering member 26, and the light emitting surface 15 a that emits light to the outside is exposed from the covering member 26. Preferably, the exposed surface of the covering member 26 is substantially the same surface as the light emitting surface 15a or an outer surface that recedes from the light emitting surface 15a toward the light receiving surface 15b, so that the light transmitting member 15 that is a window portion is exposed. The light emitted from the light emitting surface 15a can be prevented from being blocked by the covering member 26.

また、被覆部材26は、光を反射可能な光反射性部材2を含有しており、かつ少なくとも光透過部材の側面15cを被覆している。これにより、以下の作用、効果を得られる。第一に、側面15c領域から光が漏れ出すのを回避できる。第二に、発光面15aからの発光と比較して、無視できないほどの色味差を有する光が、側面15c側より外方へ放出するのを抑止して、全体の発光色における色ムラの発生を低減できる。第三に、側面15c方向へと進行した光を光取り出し方向側へと反射して、さらに外部への発光領域を制限することで、放出される光の指向性を高めるとともに、発光面15aにおける輝度を高められる。   The covering member 26 includes the light reflecting member 2 capable of reflecting light, and covers at least the side surface 15c of the light transmitting member. Thereby, the following operations and effects can be obtained. First, light can be prevented from leaking from the side surface 15c region. Second, in comparison with the light emission from the light emitting surface 15a, light having a color difference that cannot be ignored is prevented from being emitted outward from the side surface 15c, and color unevenness in the entire emission color is prevented. Generation can be reduced. Third, by reflecting the light traveling in the direction of the side surface 15c toward the light extraction direction and further restricting the light emitting region to the outside, the directivity of the emitted light is enhanced and the light emitting surface 15a Brightness can be increased.

また、被覆部材26は、光透過部材15における側面15cに加えて、受光面15bの一部をも被覆する。具体的には、図5に示すように、光透過部材15と配線基板9との間に被覆部材26を充填させ、発光素子10の周囲、すなわち受光面15bにおける発光素子10との対向域を除く領域が被覆部材26でもって封止される形態となる。この構成により、光透過部材の受光面15bにおいて、発光素子10と光透過部材15との光学的な接続領域と、被覆部材26の被覆領域とが設けられ、この光学的接続領域に限定して発光素子10の一次光を光透過部材15側へと高効率に導光できる。また、被覆領域の被覆部材26でもって、光透過部材の受光面15b側へと進行した光を光取り出し側へと反射させることができる。また、光透過部材15の受光面15b側に上記表層505を有する場合、該表層505における凹部503に被覆部材26を含浸させることが好ましい。これにより光透過部材15と発光素子10とを安定して光結合できるとともに、受光面15bの界面を構成する両域の屈折率差を低減して、光透過部材15への入光率を高められる。ひいては光取り出し効率を向上させて、全体の放出光の出力向上を図れる。   Further, the covering member 26 covers a part of the light receiving surface 15 b in addition to the side surface 15 c of the light transmitting member 15. Specifically, as shown in FIG. 5, a covering member 26 is filled between the light transmitting member 15 and the wiring substrate 9, so that the area around the light emitting element 10, that is, the area facing the light emitting element 10 on the light receiving surface 15 b is formed. The removed region is sealed with the covering member 26. With this configuration, an optical connection region between the light emitting element 10 and the light transmission member 15 and a coating region of the covering member 26 are provided on the light receiving surface 15b of the light transmitting member, and the optical connection region is limited to this optical connection region. The primary light of the light emitting element 10 can be guided to the light transmitting member 15 side with high efficiency. Further, the light that has traveled to the light receiving surface 15b side of the light transmitting member can be reflected to the light extraction side by the covering member 26 in the covering region. Further, when the surface layer 505 is provided on the light receiving surface 15 b side of the light transmitting member 15, it is preferable to impregnate the covering member 26 in the concave portion 503 in the surface layer 505. As a result, the light transmitting member 15 and the light emitting element 10 can be optically coupled stably, and the difference in refractive index between the two regions constituting the interface of the light receiving surface 15b is reduced to increase the light incident rate to the light transmitting member 15. It is done. As a result, the light extraction efficiency can be improved, and the output of the entire emitted light can be improved.

以下に、本発明における光変換部材及び焼結体、発光装置1の各部材及び構造について説明する。   Below, each member and structure of the light conversion member and sintered body in the present invention, and the light emitting device 1 will be described.

(発光素子)
発光素子10は公知のもの、具体的には半導体発光素子を利用でき、LEDやLD等が挙げられる。GaN系半導体は、蛍光物質を効率良く励起できる短波長が発光可能であるため好ましい。以下ではGaN系半導体の発光素子を用いて説明する。また、それに限定されずに、ZnSe系、InGaAs系、AlInGaP系などの半導体でも良い。
(Light emitting element)
As the light emitting element 10, a known one, specifically, a semiconductor light emitting element can be used, and examples thereof include an LED and an LD. A GaN-based semiconductor is preferable because it can emit light at a short wavelength that can efficiently excite a fluorescent substance. The following description will be made using a GaN-based semiconductor light emitting element. Further, the semiconductor is not limited thereto, and may be a semiconductor such as ZnSe, InGaAs, or AlInGaP.

図6は、発光素子10の一例を示す概略断面図であり、発光素子10の構造について説明する。発光素子10は、対向する一対の主面のうち、一の主面側である成長基板5上に、半導体構造11として、一般式がInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)からなる窒化物半導体層を積層して形成されている。半導体構造11は、下層側から順に、第1の窒化物半導体層6(n型層)、活性層8、第2の窒化物半導体層7(p型層)を積層する。井戸層の組成はInGaNが可視光・近紫外域に好適に用いられる。また、井戸層にAlを含ませることで、GaNのバンドギャップエネルギーである波長365nmより短い波長を得ることができる。活性層から放出する光の波長は、発光素子の目的、用途等に応じて360nm〜650nm付近、好ましくは380nm〜560nmの波長とできる。また、第1の窒化物半導体層6及び第2の窒化物半導体層7には、電気的に接続される第1の電極3A及び第2の電極3Bを各々備える。なお、各電極(特に、第2の電極3B)は透光性導電層13を介して形成してもよい。そして、各電極の所定の表面のみを露出し、他の部分は絶縁性の保護膜14で被覆される。 FIG. 6 is a schematic cross-sectional view illustrating an example of the light-emitting element 10, and the structure of the light-emitting element 10 will be described. Light emitting element 10, a pair of opposed major surfaces, on a growth substrate 5 as one main surface side, a semiconductor structure 11, the general formula In x Al y Ga 1-xy N (0 ≦ x, 0 A nitride semiconductor layer composed of ≦ y and x + y ≦ 1) is laminated. In the semiconductor structure 11, a first nitride semiconductor layer 6 (n-type layer), an active layer 8, and a second nitride semiconductor layer 7 (p-type layer) are stacked in order from the lower layer side. As the composition of the well layer, InGaN is preferably used in the visible light / near ultraviolet region. In addition, by including Al in the well layer, a wavelength shorter than the wavelength 365 nm which is the band gap energy of GaN can be obtained. The wavelength of light emitted from the active layer can be a wavelength of about 360 nm to 650 nm, preferably 380 nm to 560 nm, depending on the purpose and application of the light emitting element. The first nitride semiconductor layer 6 and the second nitride semiconductor layer 7 are each provided with a first electrode 3A and a second electrode 3B that are electrically connected. Each electrode (particularly, the second electrode 3B) may be formed with the light-transmitting conductive layer 13 interposed therebetween. Then, only a predetermined surface of each electrode is exposed, and the other part is covered with an insulating protective film 14.

ここで、半導体層に設けられる電極は、一方の主面側に正負一対の電極が設けられる構造が好ましいが、それに限定されず半導体層の各主面に対向して各々電極が設けられる構造でも良い。さらに、発光素子の実装形態についても、例えば同一面側に正負電極を有する素子構造では、その電極形成面側を主光取出し面とするフェイスアップ実装とできる他、電極形成面と対向する成長基板側を主光取出し面とするフリップチップ実装も採用できる。以下に半導体発光素子10の各構成要素を具体的に説明する。   Here, the electrode provided in the semiconductor layer preferably has a structure in which a pair of positive and negative electrodes is provided on one main surface side, but is not limited thereto, and may be a structure in which each electrode is provided to face each main surface of the semiconductor layer. good. Further, regarding the mounting form of the light emitting element, for example, in an element structure having positive and negative electrodes on the same surface side, it can be face-up mounted with the electrode forming surface side as a main light extraction surface, and a growth substrate facing the electrode forming surface Flip chip mounting with the main light extraction surface as the side can also be adopted. Hereinafter, each component of the semiconductor light emitting element 10 will be specifically described.

(成長基板)
成長基板5は、半導体層11をエピタキシャル成長させる基板で、窒化物半導体においては、C面、R面、及びA面のいずれかを主面とするサファイアやスピネルが好ましい。GaNやAlN等の窒化物半導体基板も好適である。また、成長基板5を半導体層11形成後に除去してもよい。透光性基板であっても基板を除去することで、光取り出し効率、出力を向上させることができる。さらに、成長基板5を除去後、露出した半導体層に別の導電性基板や透光性基板を形成、接着することもでき、それが光透過部材15であってもよい。
(Growth substrate)
The growth substrate 5 is a substrate on which the semiconductor layer 11 is epitaxially grown. In the nitride semiconductor, sapphire or spinel whose main surface is any one of the C-plane, R-plane, and A-plane is preferable. A nitride semiconductor substrate such as GaN or AlN is also suitable. Further, the growth substrate 5 may be removed after the semiconductor layer 11 is formed. Even if it is a translucent board | substrate, light extraction efficiency and an output can be improved by removing a board | substrate. Further, after removing the growth substrate 5, another conductive substrate or a light-transmitting substrate can be formed and bonded to the exposed semiconductor layer, which may be the light-transmitting member 15.

(透光性導電層及び電極)
透光性導電層13は、好ましくはZn、In、Snよりなる群から選択された少なくとも一種の元素を含む酸化物とする。具体的には、ITO、ZnO、In23、SnO2等、Zn、In、Snの酸化物を含む透光性導電層13、好ましくはITOを使用する。露出したp型半導体層7のほぼ全面に導電層が形成されることにより、電流をp型半導体層7全体に均一に広げることができる。また、パッド電極から透光性導電層13を露出させてそこから光を取り出す構造とすることもできる。電極3A、3Bは、透光性導電層上かそれを設けずに、半導体構造上に接して形成される。例えばAu、Pt、Pd、Rh、Ni、W、Mo、Cr、Ti、Ag、Alのいずれかの金属またはこれらの合金やそれらの組み合わせから成る。また、発光素子10と外部電極とを電気的に接続させるパッド電極として機能させても良い。例えば、金属電極層表面にAuバンプのような導電部材24、あるいは共晶金属層を配置し、導電部材を介して対向する外部電極と電気的に接続させる。また電極層を形成した後、外部領域との接続領域を除いて半導体発光素子10のほぼ全面に絶縁性の保護膜14を形成でき、各電極における露出領域を得る。保護膜14にはSiO2、TiO2、Al23、ポリイミド等が利用できる。さらに、透光性導電層13の上に誘電体多層膜、金属反射膜等の光反射構造を設けることで電極形成面側を光反射側とできる。また、透光性導電層を介さずにAgやAl等の光反射性電極を半導体層に設けた電極構造とすることもできる。
(Translucent conductive layer and electrode)
The translucent conductive layer 13 is preferably an oxide containing at least one element selected from the group consisting of Zn, In, and Sn. Specifically, a light-transmitting conductive layer 13 containing an oxide of Zn, In, Sn, such as ITO, ZnO, In 2 O 3 , SnO 2 , preferably ITO is used. By forming the conductive layer on almost the entire surface of the exposed p-type semiconductor layer 7, the current can be spread uniformly over the entire p-type semiconductor layer 7. Alternatively, the light-transmitting conductive layer 13 may be exposed from the pad electrode and light may be extracted therefrom. The electrodes 3A and 3B are formed on or in contact with the semiconductor structure without providing the light-transmitting conductive layer. For example, it is made of any metal of Au, Pt, Pd, Rh, Ni, W, Mo, Cr, Ti, Ag, Al, alloys thereof, or combinations thereof. Moreover, you may make it function as a pad electrode which electrically connects the light emitting element 10 and an external electrode. For example, a conductive member 24 such as an Au bump or a eutectic metal layer is disposed on the surface of the metal electrode layer, and is electrically connected to the opposing external electrode via the conductive member. In addition, after forming the electrode layer, the insulating protective film 14 can be formed on almost the entire surface of the semiconductor light emitting device 10 except for the connection region with the external region, and an exposed region in each electrode is obtained. For the protective film 14, SiO 2 , TiO 2 , Al 2 O 3 , polyimide, or the like can be used. Furthermore, by providing a light reflecting structure such as a dielectric multilayer film or a metal reflecting film on the translucent conductive layer 13, the electrode forming surface side can be made the light reflecting side. Moreover, it can also be set as the electrode structure which provided the light-reflective electrode, such as Ag and Al, in the semiconductor layer not through a translucent conductive layer.

(配線基板)
一方、図5の発光装置1において、上記の発光素子10が実装される配線基板9は、少なくとも表面が素子の電極と接続される配線を形成したものが利用できる。基板の材料は、AlNの単結晶、多結晶などの結晶性基板、さらに焼結基板、他の材料としてアルミナ等のセラミック、ガラス、Si等の半金属あるいは金属基板、またそれらの表面にAlN薄膜層が形成された基板等、積層体、複合体が使用できる。金属基板、金属性基板、セラミック基板は放熱性が高いため、好ましい。また、配線基板に限らず、例えば、電極形成面側を主な発光側とする発光素子において、配線のない基板にフェイスアップ実装して素子の電極を装置の電極にワイヤ接続する形態でも良い。
(Wiring board)
On the other hand, in the light-emitting device 1 of FIG. 5, the wiring board 9 on which the light-emitting element 10 is mounted can use a wiring board on which at least the surface is connected to the electrode of the element. The material of the substrate is a crystalline substrate such as single crystal or polycrystal of AlN, a sintered substrate, ceramic such as alumina, glass, a semi-metal or metal substrate such as Si, and an AlN thin film on the surface thereof. A laminate or a composite such as a substrate on which a layer is formed can be used. A metal substrate, a metallic substrate, and a ceramic substrate are preferable because of high heat dissipation. In addition to the wiring board, for example, in a light emitting element whose main light emitting side is the electrode formation surface side, a form in which the electrode of the element is wire-connected to the electrode of the device by face-up mounting on a board without wiring may be used.

(光透過部材、波長変換焼結体)
図5の光透過部材15は、発光面15aからの平面視において発光素子10を内包するように構成される。言い換えると、図5に示すように、光透過部材15の側面15cが、発光素子10の側面を構成する端面33よりも外方に突出している。これにより、光学的に接続された発光素子10からの出射光を、発光素子10の上面より幅広な受光面15bでもって直接的に受光できるため光束の損失が少ない。
(Light transmissive member, wavelength conversion sintered body)
The light transmitting member 15 in FIG. 5 is configured to include the light emitting element 10 in a plan view from the light emitting surface 15a. In other words, as illustrated in FIG. 5, the side surface 15 c of the light transmitting member 15 protrudes outward from the end surface 33 that forms the side surface of the light emitting element 10. As a result, light emitted from the optically connected light emitting element 10 can be directly received by the light receiving surface 15b wider than the upper surface of the light emitting element 10, so that there is little loss of light flux.

光透過部材15は、通過する光の少なくとも一部を波長変換可能な波長変換部材を有する透光性部材からなることが好ましい。具体的には、上記蛍光体と透光性の無機物の焼結体の他に、ガラス板に光変換部材を備えたもの、あるいは光変換部材の蛍光体結晶若しくはその相を有する単結晶体、多結晶体、アモルファス体、セラミック体、あるいは蛍光体結晶粒子による、それと適宜付加された透光性部材との凝集体、多孔質性材料がある。また、付加的にそれらに透光性部材、例えば透光性樹脂を混入、含浸したもの、あるいは蛍光体粒子を含有する透光性部材、例えば透光性樹脂の成形体等から構成される。   The light transmissive member 15 is preferably made of a light transmissive member having a wavelength conversion member capable of converting the wavelength of at least part of the light passing therethrough. Specifically, in addition to the phosphor and the light-transmitting inorganic sintered body, a glass plate provided with a light conversion member, or a phosphor crystal of the light conversion member or a single crystal having a phase thereof, There are aggregates and porous materials of a polycrystalline body, an amorphous body, a ceramic body, or phosphor crystal particles and an appropriately added translucent member. In addition, a translucent member such as a translucent resin mixed and impregnated therein, or a translucent member containing phosphor particles, such as a molded body of a translucent resin, is used.

また、光透過部材15の形状は特に限定されないが、板状とすることで、面状に構成される発光素子10の出射面との結合効率が良く、光透過部材15の主面とが略平行になるよう容易に位置合わせできる。加えて、光透過部材15の厚みを略一定とすることで、構成される波長変換部材の偏在を抑止でき、この結果、通過する光の波長変換量を略均一として混色の割合を安定させ、発光面15aの部位における色ムラを抑止できる。一方で、光透過部材15の発光面、受光面は、平坦面に限らず、全体、一部に曲面を有する形態の他、凹凸面などの面状の形態、さらには光を集光、分散するための形状、例えばレンズ状、などのような光学的な形状、とすることもでき、該光透過部材上に結合してそのような光学部材を設けることもでき、光の配向性を制御した発光装置とすることもできる。   In addition, the shape of the light transmitting member 15 is not particularly limited. However, when the light transmitting member 15 is formed in a plate shape, the coupling efficiency with the emission surface of the light emitting element 10 configured to be planar is good, and the main surface of the light transmitting member 15 is substantially the same. Can be easily aligned to be parallel. In addition, by making the thickness of the light transmitting member 15 substantially constant, it is possible to suppress the uneven distribution of the configured wavelength conversion member, and as a result, the wavelength conversion amount of light passing therethrough is made substantially uniform, and the ratio of color mixing is stabilized, Color unevenness at the light emitting surface 15a can be suppressed. On the other hand, the light-emitting surface and the light-receiving surface of the light transmitting member 15 are not limited to flat surfaces, but have a surface shape such as a concavo-convex surface as well as a shape having a curved surface as a whole, and condensing and dispersing light. For example, an optical shape such as a lens shape can be used, and such an optical member can be provided on the light transmitting member, and the light orientation can be controlled. It can also be set as the light-emitting device.

発光装置1において、波長変換部材若しくはその機能を備えた光透過部材は、複数備えても良く、例えば、上記光変換部材が2種類以上の蛍光体を混合させたものがある。その他に、互いに異なる波長の波長変換部材を複数有する光透過部材、あるいはその機能を備えた光透過部材を複数有してもよく、例えば複数の光透過部材の積層体が挙げられる。更に、一の波長変換部材若しくはその機能を備えた光透過部材と、それとは別に、発光装置の光取り出し窓部上、あるいはそこから光源までの装置内における光路上、例えば光透過部材と発光素子との間、その結合部材中、発光素子と被覆部材との間に、光変換部材を有する光変換部を設けることもできる。   In the light emitting device 1, a plurality of wavelength converting members or light transmitting members having the function thereof may be provided. For example, the light converting member may be a mixture of two or more kinds of phosphors. In addition, a plurality of light transmissive members having a plurality of wavelength conversion members having different wavelengths or a plurality of light transmissive members having the function may be provided, for example, a laminate of a plurality of light transmissive members. Further, one wavelength converting member or a light transmitting member having the function thereof, and separately, on the light extraction window of the light emitting device or on the light path in the device from the light source to the light source, for example, the light transmitting member and the light emitting element The light conversion part which has a light conversion member can also be provided between a light emitting element and a coating | coated member in the coupling member.

無機物粒子と蛍光体粒子とは、上述したように、エッチング処理により、レート差を利用して、優先的、選択的に蛍光体粒子を除去して、表層側に無機物領域、凹凸領域を設けるものであるため、両者をそのような関係のものを選択することが好ましい。また、光透過部材中での光の拡散においても、両者の屈折率差に応じて、その特性が変化するため、所望の関係の材料を選択することが好ましい。具体的には、同一材料系であれば、各組成比、原料比の調製等で、それらを適宜調製できるため好ましく、例えば、YAG(LAG)のアルミン酸塩の蛍光体であればアルミニウム酸化物、珪酸塩、ケイ素化合物の蛍光体であれば珪酸塩蛍光体の他、窒化ケイ素蛍光体などを選択できる。また、焼結体においても成形体の結晶が発光装置に優れたものとなり好ましい。以下に、波長変換部材、蛍光体及び無機物の粉末、粒子について説明する。   As described above, the inorganic particles and the phosphor particles are preferentially and selectively removed by utilizing the rate difference by the etching process, and the inorganic region and the uneven region are provided on the surface layer side. Therefore, it is preferable to select those having such a relationship. Also, in the light diffusion in the light transmitting member, since the characteristics change according to the difference in refractive index between them, it is preferable to select a material having a desired relationship. Specifically, the same material system is preferable because each composition ratio, raw material ratio, and the like can be appropriately adjusted. For example, a YAG (LAG) aluminate phosphor is preferably an aluminum oxide. In addition to silicate phosphors, silicon nitride phosphors can be selected as long as they are phosphors of silicate and silicon compounds. Also, in the sintered body, the crystal of the molded body is preferable because it is excellent for a light emitting device. Hereinafter, the wavelength conversion member, the phosphor and the inorganic powder and particles will be described.

波長変換部材は、青色発光素子と好適に組み合わせて白色発光とでき、波長変換部材に用いられる代表的な蛍光体としては、ガーネット構造のセリウムで付括されたYAG系蛍光体(イットリウム・アルミニウム・ガーネット)及びLAG系蛍光体(ルテチウム・アルミニウム・ガーネット)が挙げられ、特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好ましい。またYAG、LAG、BAM、BAM:Mn、(Zn、Cd)Zn:Cu、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Euからなる群から選択される少なくとも1種を含む蛍光体が使用できる。波長変換部材は、光透過部材の他に、例えば光透過部材と発光素子との間、その結合部材中、発光素子と被覆部材との間、にも設けることもできる。光透過部材、波長変換部材及び焼結体も同様に発光装置中に配置できる。黄〜赤色発光を有する窒化物系蛍光体等を用いて赤味成分を増し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的には、発光素子の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。その他に、近紫外〜可視光を黄色〜赤色域に変換する窒化物蛍光体、酸窒化物蛍光体、珪酸塩蛍光体を用いることができる。例えば、L2SiO4:Eu(Lはアルカリ土類金属)、特に(SrxMae1-x2SiO4:Eu(MaeはCa、Baなどのアルカリ土類金属)などが挙げられる。窒化物系蛍光体、オキシナイトライド(酸窒化物)蛍光体としては、Sr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Euなどがあり、アルカリ土類窒化ケイ素蛍光体としては、一般式LSi222:Eu、一般式LxSiy(2/3x+4/3y):Eu若しくはLxSiyz(2/3x+4/3y-2/3z):Eu(Lは、Sr、Ca、SrとCaのいずれか)で表される。 The wavelength conversion member can be suitably combined with a blue light emitting element to emit white light. As a typical phosphor used for the wavelength conversion member, a YAG phosphor (yttrium, aluminum, Garnet) and LAG-based phosphors (lutetium, aluminum, garnet). In particular, (Re 1-x Sm x ) 3 (Al 1-y Ga y ) 5 O 12 in high brightness and long time use. : Ce (0 ≦ x <1, 0 ≦ y ≦ 1, where Re is at least one element selected from the group consisting of Y, Gd, La, and Lu). Further, a phosphor containing at least one selected from the group consisting of YAG, LAG, BAM, BAM: Mn, (Zn, Cd) Zn: Cu, CCA, SCA, SCESN, SESN, CESN, CASBN, and CaAlSiN 3 : Eu. Can be used. In addition to the light transmissive member, the wavelength conversion member can also be provided, for example, between the light transmissive member and the light emitting element, and between the light emitting element and the covering member in the coupling member. Similarly, the light transmitting member, the wavelength converting member, and the sintered body can be disposed in the light emitting device. It is also possible to increase the reddish component using a nitride-based phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the light emission wavelength of the light emitting device, the phosphors are connected with each other on the chromaticity diagram. Any point can be made to emit light. In addition, nitride phosphors, oxynitride phosphors, and silicate phosphors that convert near-ultraviolet to visible light into a yellow to red region can be used. For example, L 2 SiO 4 : Eu (L is an alkaline earth metal), particularly (Sr x Mae 1-x ) 2 SiO 4 : Eu (Mae is an alkaline earth metal such as Ca and Ba) and the like. Examples of nitride phosphors and oxynitride (oxynitride) phosphors include Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, Sr—Si—N: Eu, and Sr—Ca—Si. —O—N: Eu, Ca—Si—O—N: Eu, Sr—Si—O—N: Eu, and the like. As the alkaline earth silicon nitride phosphor, the general formula LSi 2 O 2 N 2 : Eu , general formula L x Si y N (2 / 3x + 4 / 3y): Eu or L x Si y O z N ( 2 / 3x + 4 / 3y-2 / 3z): Eu (L is, Sr, Ca, One of Sr and Ca).

(無機物材料及び粉末)
上述した焼結体、光透過部材及び波長変換部材の成形体は、無機物粒子を含有し、明細書において「無機物粉末」は成形体として複合化される前の原料として使用される状態を意味し、「無機物」及び「無機物粒子」は蛍光物質成形体として複合化された後の状態を意味し、蛍光体、光変換部材も同様である。無機物粉末は蛍光体粉末を保持するために用いられ、上述の通り、多相状態の焼結体では母材として機能しうる。また、発光素子から出射された光の一部又は蛍光体から放出された光の一部が透過するものであれば特に限定されない。具体的には、無機物粉末・粒子はガラス、セラミックスなどである。また、無機部材粉末は、軟化点が比較的低く、安価であることからガラスが好ましい。
(Inorganic material and powder)
The above-mentioned sintered body, light-transmitting member and wavelength conversion member molded body contain inorganic particles, and in the specification, “inorganic powder” means a state used as a raw material before being compounded as a molded body. , “Inorganic substance” and “inorganic substance particle” mean a state after being combined as a fluorescent substance molded body, and the same applies to the phosphor and the light conversion member. The inorganic powder is used to hold the phosphor powder, and can function as a base material in the multiphase sintered body as described above. Further, there is no particular limitation as long as a part of the light emitted from the light emitting element or a part of the light emitted from the phosphor is transmitted. Specifically, the inorganic powder / particle is glass, ceramics or the like. The inorganic member powder is preferably glass because it has a relatively low softening point and is inexpensive.

無機物粉末として、一般的な透明誘電体無機材料を用いることができる。具体的には、ホウケイ酸ガラス、酸化アルミニウム、酸化チタン、酸化ニオビウム、酸化ジルコニウム、酸化イットリウム、酸化ケイ素、フッ化マグネシウムなどがあげられるが、放熱性および光取り出し効率を考慮すると、酸化アルミニウムを用いることが好ましい。また、焼結体原料の無機物粉末は、混合する蛍光体の少なくとも1種の蛍光体組成、前記蛍光体の結晶系とほぼ同一の組成、または前記蛍光体の結晶系のうち、少なくとも1つを有していることが好ましい。これにより、放電プラズマ焼結過程における蛍光体と無機物との溶融拡散もしくは熱拡散により蛍光体の変換効率が低下することを抑制することができる。また、蛍光体と無機物との界面を、組成的、結晶的にほぼ連続とすることができることから、蛍光体と無機物との接合界面における光の損失を低減させることができる。無機物粉末としてガラス粉末を用いることができる。ガラス粉末31は成形体にしたとき、発光素子からの光を透過するとともに、蛍光体を保持するものであれば良い。ガラス粉末の大きさは特に限定されず数nm〜数mmのものを使用することができる。   A general transparent dielectric inorganic material can be used as the inorganic powder. Specific examples include borosilicate glass, aluminum oxide, titanium oxide, niobium oxide, zirconium oxide, yttrium oxide, silicon oxide, and magnesium fluoride. In consideration of heat dissipation and light extraction efficiency, aluminum oxide is used. It is preferable. Further, the inorganic powder of the sintered body raw material has at least one of a phosphor composition to be mixed, a composition substantially the same as the crystal system of the phosphor, or a crystal system of the phosphor. It is preferable to have. Thereby, it can suppress that the conversion efficiency of fluorescent substance falls by the melt diffusion or thermal diffusion of fluorescent substance and an inorganic substance in a discharge plasma sintering process. In addition, since the interface between the phosphor and the inorganic substance can be substantially continuous in terms of composition and crystal, the loss of light at the junction interface between the phosphor and the inorganic substance can be reduced. Glass powder can be used as the inorganic powder. The glass powder 31 may be any material that transmits the light from the light emitting element and holds the phosphor when formed into a molded body. The magnitude | size of glass powder is not specifically limited, The thing of several nm-several mm can be used.

また、光透過部材の波長変換機能として、発光素子の光とその変換光の混色光による発光装置の他に、例えば発光素子の紫外光による変換光、若しくは複数の変換光による混色光のように、発光素子の一次光から変換された二次光を出射する発光装置とすることもできる。   Further, as the wavelength conversion function of the light transmitting member, in addition to the light emitting device using the light of the light emitting element and the mixed color light of the converted light, for example, the converted light by the ultraviolet light of the light emitting element or the mixed color light by the plurality of converted lights In addition, a light-emitting device that emits secondary light converted from primary light of the light-emitting element can be provided.

(被覆部材・封止部材)
封止部材26の基材となる樹脂の材料は透光性であれば特に限定されず、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることができる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた封止部材も利用できる。さらに、ガラス、シリカゲル等の耐光性に優れた無機物を用いることもできる。さらにまた、封止部材の発光面側を所望の形状にすることによってレンズ効果を持たせることができ、発光素子チップからの発光を集束させることができる。
(Coating member / sealing member)
The material of the resin used as the base material of the sealing member 26 is not particularly limited as long as it is translucent, and it is preferable to use a silicone resin composition, a modified silicone resin composition, etc., but an epoxy resin composition, a modified epoxy A translucent insulating resin composition such as a resin composition or an acrylic resin composition can be used. Moreover, sealing members excellent in weather resistance, such as hybrid resins containing at least one of these resins, can also be used. Furthermore, inorganic materials having excellent light resistance such as glass and silica gel can be used. Furthermore, a lens effect can be provided by making the light emitting surface side of the sealing member have a desired shape, and light emitted from the light emitting element chip can be focused.

また、実施の形態2において封止部材26は、上記樹脂中に光反射性部材2を含有してなる。光反射性部材を含有することで、封止部材26の反射率が高まり、更に好適には透光性の粒子による反射のため、光吸収、損失が低くした被覆部材とできる。すなわち発光素子10からの出射光は、発光素子10の周囲近傍を被覆する被覆部材26でもって反射されて、発光素子10側あるいは光透過部材15側へと導光される。   Moreover, in Embodiment 2, the sealing member 26 contains the light reflective member 2 in the resin. By containing the light reflective member, the reflectance of the sealing member 26 is increased, and more preferably, the light is absorbed and the loss is reduced due to reflection by the light transmissive particles. That is, the emitted light from the light emitting element 10 is reflected by the covering member 26 covering the vicinity of the light emitting element 10 and guided to the light emitting element 10 side or the light transmitting member 15 side.

封止部材、被覆部材26中に含有される光反射性部材2は、Ti、Zr、Nb、Al、Siからなる群から選択される1種の酸化物、若しくはAlN、MgFの少なくとも1種であり、具体的にはTiO2、ZrO2、Nb25、Al23、MgF、AlN、SiO2よりなる群から選択される少なくとも1種であり、上記被覆部材26中、特に透光性樹脂中に含有される光反射性部材、特にその透光性の粒子としては、Ti、Zr、Nb、Alからなる群から選択される1種の酸化物であることで、材料の透光性及び反射性、基材との屈折率差を高められ、好ましい。光反射率、漏れ出し距離は、光反射性部材の含有率、充てん率により調節し、例えば、20重量%以上、肉厚20μm以上とするのが好適である。このような透光性樹脂中に透光性粒子を混入した被覆部材の他、光反射部材の焼結体、凝集体などの多孔質性材料の成形体でも良く、ゾル・ゲル法による成形体でも良く、それらに樹脂を含浸させたものでも良い。 The light reflecting member 2 contained in the sealing member and the covering member 26 is one oxide selected from the group consisting of Ti, Zr, Nb, Al, and Si, or at least one of AlN and MgF. Specifically, it is at least one selected from the group consisting of TiO 2 , ZrO 2 , Nb 2 O 5 , Al 2 O 3 , MgF, AlN, and SiO 2. The light-reflecting member contained in the conductive resin, in particular, the light-transmitting particles, is one kind of oxide selected from the group consisting of Ti, Zr, Nb, and Al. And reflectivity, and the difference in refractive index from the substrate is increased, which is preferable. The light reflectance and leakage distance are adjusted by the content and filling rate of the light reflective member, and are preferably 20% by weight or more and a wall thickness of 20 μm or more, for example. In addition to a covering member in which translucent particles are mixed in such a translucent resin, a molded body of a porous material such as a sintered body or an aggregate of a light reflecting member may be used. However, they may be impregnated with resin.

(添加部材)
また、被覆・封止部材26、光透過部材15には、光反射性部材2、光変換部材の他、粘度増量剤等、使用用途に応じて適切な部材を添加することができ、これによって所望の発光色、それら部材若しくは装置表面の色、例えば外光に対するコントラストを高めるために被覆部材の外表面を黒色に着色するなど、指向特性を有する発光装置が得られる。同様に外来光や発光素子からの不要な波長をカットするフィルター効果を持たせたフィルター材として各種着色剤を添加させることもできる。
(Additive components)
In addition to the light-reflective member 2 and the light conversion member, an appropriate member such as a viscosity extender can be added to the covering / sealing member 26 and the light transmitting member 15 depending on the intended use. A light emitting device having a directional characteristic can be obtained, for example, coloring the outer surface of the covering member to black in order to increase the desired emission color, the color of those members or the surface of the device, for example, the contrast with external light. Similarly, various colorants can be added as a filter material having a filter effect of cutting unnecessary wavelengths from extraneous light and light emitting elements.

(接着材)
発光素子10と光透過部材15との界面には接着材17が介在されており、これにより双方の部材を固着する。この接着材17は、発光素子10からの出射光を光透過部材15側へと有効に導光でき、双方の部材を光学的に連結できる材質が好ましい。その材料としては上記各部材に用いられる樹脂材料が挙げられ、一例としてシリコーン樹脂などの透光性接着材料を用いる。また、発光素子10と光透過部材15との固着には、熱圧着による結晶接合等も採用できる。
(Adhesive)
An adhesive 17 is interposed at the interface between the light emitting element 10 and the light transmitting member 15, thereby fixing both members. The adhesive 17 is preferably made of a material that can effectively guide the light emitted from the light emitting element 10 toward the light transmitting member 15 and optically connect both members. Examples of the material include resin materials used for the above-described members. As an example, a translucent adhesive material such as a silicone resin is used. Further, for bonding between the light emitting element 10 and the light transmitting member 15, crystal bonding by thermocompression bonding or the like can be employed.

(発光装置の製造方法)
図5に示される発光装置1の製造方法の一例を以下に説明する。まず、配線基板9上、又は発光素子10に、フリップチップ実装するパターンに従い、導電部材24であるバンプを形成する。次にこの導電部材24を介して発光素子10をフリップチップ実装する。この例ではサブマウント基板9上で、一の発光装置に対応する領域に、各々1個のLEDチップを並べて実装しているが、チップの搭載個数は発光面、光透過部材の大きさに応じて適宜変更できる。発光素子10を複数とすることで、総光束量を増やし、出射光の輝度が高められる。また、キャビティ構造を有する実装基板を用いて、このキャビティ内に発光素子10を実装する形態でもよい。
(Method for manufacturing light emitting device)
An example of a method for manufacturing the light emitting device 1 shown in FIG. 5 will be described below. First, bumps that are conductive members 24 are formed on the wiring board 9 or on the light emitting element 10 according to a flip chip mounting pattern. Next, the light emitting element 10 is flip-chip mounted through the conductive member 24. In this example, one LED chip is mounted side by side on the submount substrate 9 in an area corresponding to one light emitting device. The number of chips mounted depends on the size of the light emitting surface and the light transmitting member. Can be changed as appropriate. By using a plurality of light emitting elements 10, the total light flux is increased, and the luminance of the emitted light is increased. Moreover, the form which mounts the light emitting element 10 in this cavity using the mounting board | substrate which has a cavity structure may be sufficient.

次に、発光素子10の裏面側(サファイア基板裏面あるいはLLOで基板除去した場合であれば窒化物半導体露出面)に、接着材17であるシリコーン樹脂を塗布して、光透過部材15を積層する。その後シリコーン樹脂17を熱硬化して、発光素子10と光透過部材15とを接着する。   Next, a silicone resin as the adhesive 17 is applied to the back surface side of the light emitting element 10 (the back surface of the sapphire substrate or the nitride semiconductor exposed surface if the substrate is removed by LLO), and the light transmitting member 15 is laminated. . Thereafter, the silicone resin 17 is thermally cured to bond the light emitting element 10 and the light transmitting member 15 together.

さらに発光素子10の周辺に所定の大きさ、形状の枠体を立設させる。ここで枠体やキャビティの高さを光透過部材15より低くして設けてもよい。そして、発光素子10の周囲に立設された枠体内、又はキャビティ内に、光透過部材15の側面を被覆するように封止部材26を構成する樹脂をポッティング(滴下)する。この際、封止部材26の表面が、光透過部材15の表面に沿うように、すなわち双方の表面が略同一面状に位置する、あるいは光透過部材15の表面より低位置に後退するようにする。そして樹脂である封止部材26を硬化後、枠体を外して所定の位置における破線部)でもってダイシングを行い、サブマウント基板サイズに切り出して発光装置を得る。なお、発光装置の機械的強度に配慮し、枠体が設けられた状態で発光装置としてもよい。   Further, a frame body having a predetermined size and shape is erected around the light emitting element 10. Here, the height of the frame and the cavity may be set lower than that of the light transmitting member 15. Then, a resin constituting the sealing member 26 is potted (dropped) so as to cover the side surface of the light transmitting member 15 in a frame body or a cavity standing around the light emitting element 10. At this time, the surface of the sealing member 26 is along the surface of the light transmitting member 15, that is, both surfaces are positioned substantially on the same plane, or are retracted to a lower position than the surface of the light transmitting member 15. To do. Then, after the sealing member 26, which is a resin, is cured, the frame body is removed, and dicing is performed with a broken line portion at a predetermined position, and the substrate is cut into a submount substrate size to obtain a light emitting device. In consideration of the mechanical strength of the light-emitting device, the light-emitting device may be provided with a frame.

ただ、発光素子10の周囲を被覆する封止部材26の配置方法は特に限定されない。例えば、スクリーン印刷やトランスファーモールドにより設けることもできる。また、発光素子は発光装置の所定の載置部に直接実装される形態、すなわちサブマウントを備えなくても良い。また、上記個々に切り出されたサブマウント基板、若しくは、それにレンズ等を接着、封止されたものを、発光装置とすることもできる。   However, the arrangement method of the sealing member 26 that covers the periphery of the light emitting element 10 is not particularly limited. For example, it can also be provided by screen printing or transfer molding. Further, the light emitting element may not be provided with a form that is directly mounted on a predetermined mounting portion of the light emitting device, that is, a submount. Further, the submount substrate cut out individually, or a substrate to which a lens or the like is bonded and sealed can be used as a light emitting device.

以下に、光透過部材と発光素子との配置、重ね合わせの形態について、その他の形態を説明する。光透過部材15の発光素子10に対する位置合わせにおいて、光透過部材15の側面15cが、発光素子10の端面33と略同一面上に位置しており、すなわち双方の側面が略面一に構成されてもよい。これにより、上記図6の形態における光透過部材の素子外方に突出した部分、すなわちその外縁部で、発光素子からの光量が不足してその部分において色ムラが発生しやすくなるのを防止できる。ただし、本明細書でいう「略同一面」とは、上述した機能上で実質的に同一面であれば良い。さらに、光透過部材15が発光素子10の一部のみを積層し、すなわち光透過部材15の側面15cが、発光素子10の端面33よりも内側に位置してもよい。発光領域を絞り、発光素子に比して発光面を小さくすることで、より一層、混色の割合を略一定とできるため、さらに色ムラの低減された放出光とできる。また、発光領域を低減することで相対的な輝度を高められる。このような光源の大きさを発光素子及びその実装領域に比して小さくする形態として、その他に、光透過部材上に、その一部が開口する開口部材を設ける構造、例えば上記封止部材を発光面の一部が覆うように設けた構造、とすることもできる。   Hereinafter, other forms of the arrangement and superposition of the light transmitting member and the light emitting element will be described. In the alignment of the light transmissive member 15 with respect to the light emitting element 10, the side surface 15c of the light transmissive member 15 is positioned substantially on the same plane as the end surface 33 of the light emitting element 10, that is, both side surfaces are configured to be substantially flush. May be. Accordingly, it is possible to prevent the portion of the light transmitting member protruding outward from the element in the form of FIG. 6, that is, the outer edge thereof, from causing insufficient light quantity from the light emitting element to easily cause color unevenness in the portion. . However, “substantially the same plane” in the present specification may be substantially the same plane in terms of the functions described above. Further, the light transmission member 15 may be formed by stacking only a part of the light emitting element 10, that is, the side surface 15 c of the light transmission member 15 may be positioned on the inner side of the end surface 33 of the light emitting element 10. By narrowing the light emitting region and making the light emitting surface smaller than that of the light emitting element, the color mixture ratio can be made substantially constant, so that the emitted light can be further reduced in color unevenness. Further, the relative luminance can be increased by reducing the light emitting area. As a form in which the size of such a light source is reduced as compared with the light emitting element and its mounting region, in addition, a structure in which an opening member having a part of the light transmitting member is provided, for example, the sealing member is provided. It can also be set as the structure provided so that a part of light emission surface might cover.

(実施の形態3)
図7は実施の形態3に係る発光装置20の概略断面図である。実施の形態3では、実施の形態2と比較して、封止部材26bが発光素子10の端面33側の外方のみを被覆しており、然るに発光素子表面において上記光透過部材と光学的に接続する接続部と、基板との電気的、物理的な接続部と、から露出された露出部が被覆されずに離間され、複数載置された発光素子10の互いの離間領域に充填されず空隙が形成される。具体的に、発光素子10の端面33側には、この端面33と略平行かつ離間されて封止部材26bが位置し、すなわち発光素子10は、上下方向を光透過部材15と配線基板9によって、また左右方向を封止部材26bによって周囲を取り囲まれて構成される。この時、受光面、発光素子の一部が封止部材で被覆されて、残部で離間される形態でも良い。そして各包囲部材を境界とする内部空間が形成され、発光素子10の周辺近傍は、空洞が設けられる。このように被覆部材が光透過部材の受光面側の領域、発光素子を包囲する包囲体として形成される形態であること、包囲体内部に発光素子から離間されることにより形成される内部領域を備えることが好ましい。この時、包囲体は、図示するように、包囲体の窓部として光透過部材、その発光面を備えた外筐体、更には発光面が出射方向の前面に設けられる外筐体として形成されることが好ましい。これにより、光透過部材(受光面)、発光素子と内部空間の空洞との界面で光反射がなされ、封止部材の光吸収による損失を低減できる。この時、好適には、その界面の屈折率差を高くするように、内部空間が気密封止などで、素子と空気・気体との露出部を形成することが好ましい。また、複数の発光素子が一の光透過部材に光学的に接続する場合には、その素子間についても同様に空隙を有することが好ましい。これは、光透過部材の受光面において、素子との光学的接続領域と、内部空間に充填された光透過部材に接続する充填部材接続領域とを備え、素子からの発光が、直接、光学的接続領域に入光される経路に加えて、上記充填部材に取り出され、その充填部材接続領域から入光されることで、素子より大きな発光面が形成できる。加えて、封止部材26bの形状が簡易であるため、封止部材26bを別個に製作し、これを光透過部材15側に接続して発光装置20を得ることもできる。また、離間領域を有する発光装置では、その領域内の光を反射するように、離間領域を囲むように上記光反射性部材を付加的に設けて、その表面で反射させる構造とでき、例えば、配線基板上に被覆層として設けることもできる。
(Embodiment 3)
FIG. 7 is a schematic cross-sectional view of the light emitting device 20 according to the third embodiment. In the third embodiment, as compared with the second embodiment, the sealing member 26b covers only the outer side on the end face 33 side of the light emitting element 10, and on the surface of the light emitting element, the sealing member 26b is optically connected to the light transmitting member. The exposed portions exposed from the connecting portions to be connected and the electrical and physical connecting portions to the substrate are separated without being covered and are not filled in the mutually separated regions of the plurality of light-emitting elements 10 mounted thereon. A void is formed. Specifically, the sealing member 26b is positioned on the end face 33 side of the light emitting element 10 so as to be substantially parallel to and spaced from the end face 33. That is, the light emitting element 10 is vertically moved by the light transmitting member 15 and the wiring substrate 9. The left and right directions are surrounded by a sealing member 26b. At this time, the light receiving surface and a part of the light emitting element may be covered with the sealing member and separated from the remaining part. An internal space with each surrounding member as a boundary is formed, and a cavity is provided in the vicinity of the periphery of the light emitting element 10. In this way, the covering member is formed as an area on the light receiving surface side of the light transmitting member, an enclosure surrounding the light emitting element, and an internal area formed by being separated from the light emitting element inside the enclosure. It is preferable to provide. At this time, as shown in the figure, the enclosure is formed as a light transmissive member as the window portion of the enclosure, an outer casing provided with the light emitting surface, and an outer casing provided with the light emitting surface on the front surface in the emission direction. It is preferable. Thereby, light is reflected at the interface between the light transmitting member (light receiving surface), the light emitting element and the cavity of the internal space, and the loss due to light absorption of the sealing member can be reduced. At this time, it is preferable to form the exposed portion of the element and the air / gas by airtight sealing or the like so as to increase the difference in refractive index at the interface. In addition, when a plurality of light emitting elements are optically connected to one light transmitting member, it is preferable that gaps are similarly formed between the elements. This includes an optical connection region with the element and a filling member connection region connected to the light transmission member filled in the internal space on the light receiving surface of the light transmission member, and the light emission from the element is directly optical. In addition to the path of light entering the connection area, the light is taken out by the filling member and incident from the filling member connection area, whereby a light emitting surface larger than the element can be formed. In addition, since the shape of the sealing member 26b is simple, the light emitting device 20 can be obtained by separately manufacturing the sealing member 26b and connecting it to the light transmitting member 15 side. Further, in the light emitting device having the separation region, the light reflecting member is additionally provided so as to surround the separation region so as to reflect the light in the region, and can be configured to reflect on the surface, for example, It can also be provided as a coating layer on the wiring board.

(実施の形態4)
実施の形態1の波長変換焼結体500を光透過部材15として適用することができる。図8は、実施の形態4に係る発光装置30の概略断面図である。この発光装置30は、発光素子10と、この発光素子10を収容する凹部(キャビティ)302を備え、且つリード電極303a、303bが設けられた実装基体301と、実装基体301の凹部302上方に嵌め込まれて固定された光透過部材15と、を備えている。そして、実装基体301の凹部302底面には接合部材304を用いて発光素子10がフェイスアップ実装されており、さらに発光素子10の正負電極(不図示)とリード電極303a、303bとは電気的接続部材を用いてワイヤ接続されている。発光装置30において、発光素子10及び光透過部材15は、実施の形態1ないし3に記載したものと同様のものを用いることができるので、詳述は省略する。以下に、本発明における発光装置30の他の各部材及び構造について説明する。
(Embodiment 4)
The wavelength conversion sintered body 500 of the first embodiment can be applied as the light transmitting member 15. FIG. 8 is a schematic cross-sectional view of the light emitting device 30 according to the fourth embodiment. The light emitting device 30 includes a light emitting element 10, a mounting base 301 provided with a recess (cavity) 302 that accommodates the light emitting element 10, and provided with lead electrodes 303 a and 303 b, and is fitted above the concave part 302 of the mounting base 301. And a light transmitting member 15 fixed in place. The light emitting element 10 is mounted face-up on the bottom surface of the recess 302 of the mounting substrate 301 using a bonding member 304, and the positive and negative electrodes (not shown) of the light emitting element 10 and the lead electrodes 303a and 303b are electrically connected. Wire connection is made using members. In the light emitting device 30, since the light emitting element 10 and the light transmitting member 15 can be the same as those described in the first to third embodiments, detailed description thereof is omitted. Below, each other member and structure of the light-emitting device 30 in this invention are demonstrated.

(実装基体)
実装基体301は、発光素子10を凹部302内に載置されるとともに外部との電気的接続が可能なリード電極303a、303bを有する支持体である。絶縁性を有し、熱伝導性に優れ、熱膨張率の小さいもの、さらに半導体発光素子からの光や、外光などが透過しにくい部材が好ましい。なお、発光素子10の数や大きさに合わせて複数の凹部、開口部を有するものでもよい。接合部材304は、実装基体301やリード電極303a、303bに発光素子10を載置させるための接着剤であり、載置する発光素子10の基板によって導電性又は絶縁性を選択することができる。例えば、絶縁性基板の場合、接合部材304は絶縁性でも導電性でも用いることができ、n型GaN基板などの導電性基板の場合は、導電性部材を用いてリード電極上に実装して導通させることができる。さらに、接合部材304が透光性の場合は、その中に波長変換部材を含有させ、光変換させる構造をとることもできる。
(Mounting substrate)
The mounting substrate 301 is a support having lead electrodes 303a and 303b on which the light emitting element 10 is placed in the recess 302 and can be electrically connected to the outside. A member having insulating properties, excellent thermal conductivity, a low thermal expansion coefficient, and a member that hardly transmits light from a semiconductor light emitting element or external light is preferable. In addition, you may have a some recessed part and opening part according to the number and magnitude | size of the light emitting element 10. FIG. The bonding member 304 is an adhesive for mounting the light emitting element 10 on the mounting substrate 301 or the lead electrodes 303a and 303b, and can be selected to be conductive or insulating depending on the substrate of the light emitting element 10 to be mounted. For example, in the case of an insulating substrate, the bonding member 304 can be either insulating or conductive. In the case of a conductive substrate such as an n-type GaN substrate, the conductive member is mounted on the lead electrode using a conductive member to conduct. Can be made. Furthermore, when the joining member 304 is translucent, a wavelength conversion member can be included in the bonding member 304 and light can be converted.

凹部302は、底面と底面の外周縁から上方の開口まで立ち上げられるとともに該開口側ほど外拡がりとなる平坦なテーパー面(傾斜面)を有する側面とからなり、発光素子10からの光を効率よく反射させる構造になっている。また、凹部302の内面にAgやAlなどの金属膜の反射層を設けてもよい。凹部302の内部空間は、実施の形態3のように、気密封止などで空気や気体が存在してもよく、一方凹部302底面に発光素子10を実装した後、凹部302内に樹脂などの被覆部材(封止部材)を充填してもよい。また所望に応じてその被覆部材に着色剤、光拡散剤、フィラー、波長変換部材などを含有させることもできる。リード電極303a、303bは、実施の形態2,3の配線基板の配線構造と同様であり、実装基体301外部から発光素子10に電力を供給させるために用いられる。そのため実装基体301上に設けられた導電性を有するパターンやリードフレームを利用したものなど種々のものが挙げられる。   The concave portion 302 includes a bottom surface and a side surface having a flat tapered surface (inclined surface) that rises from the outer peripheral edge of the bottom surface to the upper opening and expands outward toward the opening side, and efficiently uses the light from the light emitting element 10. It has a structure that reflects well. Further, a reflective layer of a metal film such as Ag or Al may be provided on the inner surface of the recess 302. As in the third embodiment, air or gas may exist in the inner space of the recess 302 by airtight sealing or the like. On the other hand, after the light emitting element 10 is mounted on the bottom surface of the recess 302, a resin or the like is placed in the recess 302. A covering member (sealing member) may be filled. Moreover, a coloring agent, a light diffusing agent, a filler, a wavelength conversion member, etc. can also be contained in the coating member as desired. The lead electrodes 303a and 303b are the same as the wiring structure of the wiring board of the second and third embodiments, and are used to supply power to the light emitting element 10 from the outside of the mounting substrate 301. For this reason, various types such as a conductive pattern provided on the mounting substrate 301 and a lead frame are used.

本実施の形態のように、光透過部材15、すなわち波長変換焼結体500と発光素子10との光学的に接続されれば、両者を物理的に離間させて配置してもよい。例えば、上記実装基体が導電性を有し、その実装基体と上記リード電極が一体にされたリードフレームやステムであってもよく、そして発光素子10をLDとし、キャップの窓部等に波長変換焼結体500を配置してレーザ光を照射し、該波長変換焼結体500で混色光を散乱させて外部に取り出す発光装置とすることもできる。   As in the present embodiment, as long as the light transmitting member 15, that is, the wavelength conversion sintered body 500 and the light emitting element 10 are optically connected, they may be physically separated from each other. For example, the mounting substrate may be a lead frame or a stem in which the mounting substrate and the lead electrode are integrated, and the light emitting element 10 is an LD, and wavelength conversion is performed on a cap window or the like. It is also possible to provide a light emitting device in which the sintered body 500 is arranged and irradiated with laser light, and the mixed color light is scattered by the wavelength conversion sintered body 500 and extracted outside.

(比較例1ないし比較例3、実施例4)
実施の形態2における発光装置について、実施の形態1の光変換焼結体を光透過部材に用いて、以下の比較例及び実施例の各発光装置を作製し、配光及び輝度に係る配光特性の優位性を確認する。比較例1〜3、実施例4は光透過部材のみが相違しており、他の構造については同一である。具体的に比較例1の光透過部材には、表面に凹凸加工が施されておらず、一方実施例4では対向する両面に上記凹凸加工が施された表層を備える波長変換焼結体500を採用した。また比較例2、比較例3の光透過部材は、材料成分の焼結体ではなく、印刷法にて蛍光体層を形成した。
(Comparative Examples 1 to 3 and Example 4)
About the light-emitting device in Embodiment 2, using the light-conversion sintered body of Embodiment 1 for a light transmissive member, each light-emitting device of the following comparative examples and examples is produced, and the light distribution relating to light distribution and luminance Confirm the superiority of the characteristics. Comparative Examples 1 to 3 and Example 4 differ only in the light transmitting member, and the other structures are the same. Specifically, the light-transmitting member of Comparative Example 1 is not subjected to uneven processing on the surface, whereas in Example 4, the wavelength conversion sintered body 500 provided with the surface layer subjected to the uneven processing on both opposing surfaces. Adopted. Moreover, the light transmission member of Comparative Example 2 and Comparative Example 3 was not a sintered body of material components, but formed a phosphor layer by a printing method.

さらに詳細には、実施例4の発光装置は、図5に示すように一の光透過部材15と、約1mm×1mmの略正方形のLEDチップ(発光波長455nm)を2個搭載しており、封止部材26でもって光透過部材15および発光素子10の一部を被覆している。光透過部材15は、YAG(中心波長577nm)濃度20%の焼結体からスライスして板状のYAG焼結板とし、このYAG焼結板の両面を研磨後、この両面に対して燐酸硫酸溶液による300℃で5分間エッチング処理する。そのYAG焼結板をダイシングで切り出し、波長変換焼結体の発光面15a、およびこの発光面15aと対向する受光面15bは約1.1mm×2.2mmより構成される矩形状であり、さらに厚みは116μmとする。また、封止部材26は、TiO2粒子を含有するシリコーン樹脂であって、図5に示すように、発光装置1の光取り出し側における平面視において、発光面15aの周辺領域、具体的には光透過部材15の側面15cを被覆し、かつ発光面15aの面状に沿うように成形されている。すなわち、発光装置1は、発光面15aを主発光面とし、その周囲を封止部材26で被覆することにより、この被覆領域からの外方への発光を抑止している。さらに光透過部材15は、受光面15bにおいて、発光素子10との光学的接続領域を被覆しており、さらに配線基板9と光透過部材15との間を充填することで、発光素子10の側面および実装側をも被覆している。 More specifically, the light-emitting device of Example 4 has one light transmitting member 15 and two approximately square LED chips (emission wavelength 455 nm) of about 1 mm × 1 mm as shown in FIG. The light transmissive member 15 and a part of the light emitting element 10 are covered with the sealing member 26. The light transmitting member 15 is sliced from a sintered body having a YAG (center wavelength of 577 nm) concentration of 20% to form a plate-like YAG sintered plate, and both surfaces of the YAG sintered plate are polished, and phosphoric acid sulfate is applied to both surfaces. Etch with the solution at 300 ° C. for 5 minutes. The YAG sintered plate is cut out by dicing, and the light-emitting surface 15a of the wavelength conversion sintered body and the light-receiving surface 15b facing the light-emitting surface 15a have a rectangular shape composed of about 1.1 mm × 2.2 mm. The thickness is 116 μm. Further, the sealing member 26 is a silicone resin containing TiO 2 particles, and as shown in FIG. 5, in a plan view on the light extraction side of the light emitting device 1, a peripheral region of the light emitting surface 15a, specifically, The light transmitting member 15 is formed so as to cover the side surface 15c and to follow the surface shape of the light emitting surface 15a. That is, the light-emitting device 1 uses the light-emitting surface 15a as the main light-emitting surface and covers the periphery thereof with the sealing member 26, thereby suppressing light emission from the covered region to the outside. Further, the light transmitting member 15 covers the optical connection region with the light emitting element 10 on the light receiving surface 15b, and further fills the space between the wiring board 9 and the light transmitting member 15 to thereby form the side surface of the light emitting element 10. And the mounting side is also covered.

一方、比較例1の光透過部材は、実施例4と同様の焼結体をスライスしたYAG焼結板であるが、研磨後のエッチング処理を省略して、厚みは120μmとして、他は同じ寸法の光透過部材とする。また、比較例2及び比較例3の発光装置は、フェイスダウン実装したLEDの周囲(上面及び側面)に、印刷法でYAG蛍光体層を形成し、比較例2は平均粒径が約11μmのYAGを、また比較例3は平均粒径が5μmのYAGを使用する。これら比較例1ないし比較例3、実施例4の各発光装置において、発光面15aの中心を通り直交する2方向、つまり水平面側及び垂直面側から放出される配光特性を比較検討する。具体的には図9(a)に示すように発光面の長手方向を90°とし、これに直交する方向を0°として、各配光特性のグラフを図9(b)、図9(c)にそれぞれ示す。   On the other hand, the light transmissive member of Comparative Example 1 is a YAG sintered plate obtained by slicing the same sintered body as in Example 4. However, the etching process after polishing is omitted, the thickness is 120 μm, and the other dimensions are the same. The light transmissive member. Further, in the light emitting devices of Comparative Example 2 and Comparative Example 3, a YAG phosphor layer is formed by a printing method around the LED (face and surface) mounted face down, and Comparative Example 2 has an average particle size of about 11 μm. YAG is used, and Comparative Example 3 uses YAG having an average particle diameter of 5 μm. In each of the light emitting devices of Comparative Examples 1 to 3 and Example 4, the light distribution characteristics emitted from two directions orthogonal to the center of the light emitting surface 15a, that is, from the horizontal plane side and the vertical plane side will be compared. Specifically, as shown in FIG. 9A, the longitudinal direction of the light emitting surface is 90 °, the direction orthogonal to this is 0 °, and the graphs of the respective light distribution characteristics are shown in FIGS. 9B and 9C. ) Respectively.

図9(b)、(c)より、実施例4における両面加工のYAG焼結板を具備する発光装置が、2方向からの配光において最も色度ムラが少なく、発光面の中央部から端部にかけて色度が略一定となっている。凹凸加工を施していない比較例1ないし比較例3の発光装置では、高角度ほど蛍光体色が強くなる傾向が強調されており、さらに印刷法による光透過部材では、観測方向により色ムラの程度が著しく相違する。つまり、比較例では高角度域で集光した二次光が、発光面の周辺域に分布して中央域との色ムラを誘発するため、この高角度に相当する発光領域を除去するか、あるいは拡散シートなど別部材の搭載により全体光の色ムラを回避する必要性があり、出力の低減あるいは装置の複雑化を招く。一方、実施例4の発光装置であれば、凹凸面による光の分散効果が顕著に表れており、発光面のほぼ全域にわたって良好な配光特性を備える。したがって発光面の一部除去による光損出を回避して相対的に高出力、高輝度とできる。   9 (b) and 9 (c), the light emitting device having the double-sided YAG sintered plate in Example 4 has the least chromaticity unevenness in the light distribution from two directions, and the end from the center of the light emitting surface. The chromaticity is substantially constant over the part. In the light emitting devices of Comparative Examples 1 to 3 that are not subjected to uneven processing, the tendency that the phosphor color becomes stronger as the angle is higher is emphasized. Further, in the light transmitting member by the printing method, the degree of color unevenness depending on the observation direction. Is significantly different. That is, in the comparative example, the secondary light condensed in the high angle region is distributed in the peripheral region of the light emitting surface and induces color unevenness with the central region, so the light emitting region corresponding to this high angle is removed, Alternatively, there is a need to avoid color unevenness of the entire light by mounting another member such as a diffusion sheet, leading to a reduction in output or a complicated apparatus. On the other hand, in the light emitting device of Example 4, the light dispersion effect due to the uneven surface is remarkably exhibited, and good light distribution characteristics are provided over almost the entire light emitting surface. Therefore, light loss due to partial removal of the light emitting surface can be avoided and relatively high output and high luminance can be achieved.

また比較例1(加工無し)及び実施例4(両面加工)に係る発光面の輝度、及び国際照明委員会(CIE)のxyz表色系に準拠した色度(x値、y値)の観測結果を図10(比較例1を図10(a)、実施例4を図10(b))に示す。図10より、実施例4ではコントラストが低く表示されており、すなわち両面加工によって発光面の略全域に輝度ムラが低減された発光が実現されていることを示す。特に、比較例1では発光面の中央域に並列されたそれぞれのLEDの直上に集光しており、LEDからの光軸から離間した領域では輝度が低く、かつ色ムラが顕著である。一方、実施例4ではこれを回避して、光源の配置域が認識できないほど十分に光が拡散されており、発光面の略全域にわたって輝度および色相が一定している。つまり加工面が優れた拡散性を発揮して、別個の拡散部材を具備せずとも配光内を輝度ムラ及び色ムラを低減できる。   In addition, the luminance of the light emitting surface according to Comparative Example 1 (no processing) and Example 4 (double-side processing), and observation of chromaticity (x value, y value) in accordance with the International Lighting Commission (CIE) xyz color system. The results are shown in FIG. 10 (Comparative Example 1 is FIG. 10A and Example 4 is FIG. 10B). FIG. 10 shows that the contrast is displayed low in Example 4, that is, light emission with reduced luminance unevenness is realized over substantially the entire light emitting surface by double-sided processing. In particular, in Comparative Example 1, the light is condensed immediately above each LED arranged in parallel in the central area of the light emitting surface, and the luminance is low and the color unevenness is remarkable in a region separated from the optical axis from the LED. On the other hand, in the fourth embodiment, this is avoided, and the light is sufficiently diffused so that the arrangement area of the light source cannot be recognized, and the luminance and hue are constant over substantially the entire area of the light emitting surface. That is, the processed surface exhibits excellent diffusibility, and brightness unevenness and color unevenness can be reduced in the light distribution without having a separate diffusion member.

(実施例A−aないし実施例C−d)
次に、YAG焼結板の加工状態の相違による出射光の光束を比較する。具体的には、上記実施例1ないし実施例3に記載の各条件の波長変換焼結体(図3参照)をそれぞれ搭載する他は実施例4と同様の発光装置を作製し、出力光の光束を測定する。また、エッチング前処理(A〜C)とエッチング処理(a〜e)の各条件における組合せと実施例の名称を表すように、実施例の名称を「実施例+エッチング前の処理方法(A〜C)+エッチング処理条件(a〜e)」として示す。例えば、YAG板を研磨(A)するのみでエッチング無しのものを実施例Aとし、また別の例では、YAG板を研磨(A)した後、260℃−1分(a)の条件でエッチングのものを実施例A−aと表記する。また焼結体形成後にブラスト(B)した後、300℃−1.5分(b)条件でエッチングした場合は、実施例B−bと表記する。図11は各比較例、実施例の光束を示す。
(Example Aa to Example Cd)
Next, the luminous flux of the emitted light by the difference in the processing state of a YAG sintered plate is compared. Specifically, a light-emitting device similar to that in Example 4 was prepared except that each wavelength-converted sintered body (see FIG. 3) of each condition described in Examples 1 to 3 was mounted. Measure the luminous flux. In addition, the name of the example is expressed as “Example + Pre-etching treatment method (A to C)” in order to represent the combination of each condition of the pre-etching process (A to C) and the etching process (a to e) and the name of the example. C) + etching treatment conditions (ae) ”. For example, only the YAG plate is polished (A) and no etching is performed as Example A. In another example, the YAG plate is polished (A) and then etched at 260 ° C. for 1 minute (a). Is referred to as Example Aa. Moreover, after blasting (B) after forming the sintered body, etching is performed at 300 ° C. for 1.5 minutes (b). FIG. 11 shows the luminous fluxes of the comparative examples and examples.

さらに上記各実施例の発光装置における一次光の変換効率を評価した。具体的には、光源であるLEDをパッケージにフェイスダウン実装してそのLEDの出力(mW)を測定し、次に各条件のYAG焼結板を搭載して上記実施例4と同様に発光装置を作製し、その放出光の光束(lm)を測定する。これらの測定値に基づいて、放出光の光束(lm)をLEDの出力(mW)で割り、一次光から全体光への変換効率を算出する。各条件により得られる結果を図12に示す。図11、図12に示すように、表面加工の有無による出力低下を略回避できる。つまり上述のように、発光面の略全域で均一な輝度及び色度を備えた発光とできるため、後の二次利用性での光損出をなくして全放出光を余すところなく利用でき、相対的に高輝度な単位光とできる。汎用性が高まる。   Furthermore, the conversion efficiency of the primary light in the light emitting device of each of the above examples was evaluated. Specifically, an LED as a light source is mounted face-down on a package, the output (mW) of the LED is measured, and then a YAG sintered plate of each condition is mounted, and a light emitting device as in Example 4 above And the luminous flux (lm) of the emitted light is measured. Based on these measured values, the luminous flux (lm) of the emitted light is divided by the output (mW) of the LED, and the conversion efficiency from primary light to total light is calculated. The results obtained under each condition are shown in FIG. As shown in FIGS. 11 and 12, a decrease in output due to the presence or absence of surface processing can be substantially avoided. In other words, as described above, since it is possible to emit light with uniform brightness and chromaticity over almost the entire light emitting surface, it is possible to use all the emitted light without any loss of light loss in the subsequent secondary usage, Relatively high brightness unit light can be obtained. Increased versatility.

また、波長変換焼結体500のエッチング前処理を研磨(A)に限定し、エッチング条件を上記a〜eとした実施例A−aないし実施例A−fの各発光装置において、配光色度(y値)を比較した。結果を図13のグラフに示す。さらにエッチング前処理を前処理なし(C)とした場合の、エッチング条件の変化による配光色度yを検討し、この結果を図14に示す。図13、図14に示すように、研磨のみあるいは前処理なしでエッチング無しの条件では高角領域(グラフの横軸の両端部)でy値の上昇が著しい。つまり発光面での周囲と中央域での色ムラの発生を意味する。一方、エッチング時間が長いほど高角領域における上昇が抑制され、高角領域から低角領域にわたる発光面全域で配光色度yの値が略一様であり、安定していることが理解できる。   Further, in the light emitting devices of Examples Aa to Af in which the pre-etching treatment of the wavelength conversion sintered body 500 is limited to polishing (A) and the etching conditions are a to e, the light distribution color The degree (y value) was compared. The results are shown in the graph of FIG. Further, the light distribution chromaticity y due to the change in the etching conditions when the pre-etching treatment is not performed (C) is examined, and the result is shown in FIG. As shown in FIGS. 13 and 14, the increase in the y value is significant in the high-angle region (both ends on the horizontal axis of the graph) under conditions of only polishing or no pretreatment and no etching. That is, it means the occurrence of color unevenness in the periphery and the center area on the light emitting surface. On the other hand, it can be understood that as the etching time is longer, the increase in the high angle region is suppressed, and the value of the light distribution chromaticity y is substantially uniform and stable over the entire light emitting surface from the high angle region to the low angle region.

本発明の発光装置及びその製造方法は、照明用光源、LEDディスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The light emitting device and the manufacturing method thereof of the present invention can be suitably used for illumination light sources, LED displays, backlight light sources, traffic lights, illumination switches, various sensors, various indicators, and the like.

実施の形態1に係る波長変換焼結体の概略断面図である。2 is a schematic cross-sectional view of a wavelength conversion sintered body according to Embodiment 1. FIG. 図2(a)は従来の波長変換焼結体に係る概略断面図を、また図2(b)は実施の形態1の波長変換焼結体に係る概略断面図をそれぞれ示す。2A is a schematic cross-sectional view related to a conventional wavelength conversion sintered body, and FIG. 2B is a schematic cross-sectional view related to the wavelength conversion sintered body of the first embodiment. 実施例1ないし実施例3の各波長変換焼結体に係る表面状態の比較表である。It is a comparison table of the surface state concerning each wavelength conversion sintered compact of Example 1 thru / or Example 3. 加工条件による波長変換焼結体の表面状態及び断面状態の相違を示す比較表である。It is a comparative table | surface which shows the difference in the surface state and cross-sectional state of the wavelength conversion sintered compact by processing conditions. 実施の形態2に係る発光装置の概略断面図である。5 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. FIG. 実施の形態2に係る発光素子の概略断面図である。4 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. FIG. 実施の形態3に係る発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 3. FIG. 実施の形態4に係る発光装置の概略図である。6 is a schematic diagram of a light emitting device according to Embodiment 4. FIG. 比較例及び実施例の配光特性を示す。The light distribution characteristic of a comparative example and an Example is shown. 比較例及び実施例の輝度特性を示す。The brightness | luminance characteristic of a comparative example and an Example is shown. 実施例の光束を示すグラフである。It is a graph which shows the light beam of an Example. 実施例の変換効率を示す。The conversion efficiency of an Example is shown. 実施例の配光色度yを示す。The light distribution chromaticity y of an Example is shown. 実施例の配光色度yを示す。The light distribution chromaticity y of an Example is shown. 従来の半導体発光装置を示す断面図である。It is sectional drawing which shows the conventional semiconductor light-emitting device.

符号の説明Explanation of symbols

1、20、30…発光装置
2…光反射性部材
3A…第1の電極(n型パッド電極)
3B…第2の電極(p型パッド電極)
4…電極面
5…成長基板(サファイア基板)
6…第1の窒化物半導体層(n型半導体層)
7…第2の窒化物半導体層(p型半導体層)
8…発光層(活性層)
9…配線基板(サブマウント)
10…発光素子
11…半導体構造
12…蛍光体粒子
13…透光性導電層(透光性電極、ITO)
14…保護膜
15…光透過部材
15a…発光面
15b…受光面
15c…側面
17…接着材(シリコーン樹脂)
24…導電部材
26、26b…被覆部材(封止部材、樹脂)
33…端面
301…実装基体
302…凹部(キャビティ)
303a、303b…リード電極
304…接合部材
500、600…波長変換焼結体
501、601…第1の主面(発光面)
502、602…第2の主面(受光面)
503…凹部
504…無機物粒子
505…表層
506…中央層
801…発光装置
802…入射面
803…光出射面
805…LED
807…蛍光板
d1、d2…深さ
L…第1の光
DESCRIPTION OF SYMBOLS 1, 20, 30 ... Light-emitting device 2 ... Light reflective member 3A ... 1st electrode (n-type pad electrode)
3B ... Second electrode (p-type pad electrode)
4 ... Electrode surface 5 ... Growth substrate (sapphire substrate)
6: First nitride semiconductor layer (n-type semiconductor layer)
7: Second nitride semiconductor layer (p-type semiconductor layer)
8 ... Light emitting layer (active layer)
9 ... Wiring board (submount)
DESCRIPTION OF SYMBOLS 10 ... Light emitting element 11 ... Semiconductor structure 12 ... Phosphor particle 13 ... Translucent conductive layer (Translucent electrode, ITO)
DESCRIPTION OF SYMBOLS 14 ... Protective film 15 ... Light transmissive member 15a ... Light-emitting surface 15b ... Light-receiving surface 15c ... Side surface 17 ... Adhesive (silicone resin)
24 ... Conductive member 26, 26b ... Cover member (sealing member, resin)
33 ... End face 301 ... Mounting substrate 302 ... Recess (cavity)
303a, 303b ... lead electrode 304 ... bonding member 500, 600 ... wavelength conversion sintered body 501, 601 ... first main surface (light emitting surface)
502, 602... Second main surface (light receiving surface)
DESCRIPTION OF SYMBOLS 503 ... Recessed part 504 ... Inorganic particle 505 ... Surface layer 506 ... Center layer 801 ... Light-emitting device 802 ... Incident surface 803 ... Light emitting surface 805 ... LED
807 ... Fluorescent screen d1, d2 ... Depth L ... First light

Claims (10)

無機物粉末と蛍光体粉末とを混合し焼結させて焼結体を得る第1の工程と、
前記焼結体をエッチングして、前記焼結体の表面に複数の凹部を形成する第2の工程と、
を含み、
前記第2の工程において、前記焼結体を260℃以上でエッチングして、前記焼結体中の蛍光体粒子を、前記焼結体中の無機物粒子よりも優先的に溶解させると共に、前記焼結体の表面の無機物が粒状化されるようにエッチングすることを特徴とする波長変換焼結体の製造方法。
A first step of mixing and sintering inorganic powder and phosphor powder to obtain a sintered body;
Etching the sintered body to form a plurality of recesses on the surface of the sintered body;
Including
In the second step, the sintered body is etched at 260 ° C. or higher so that the phosphor particles in the sintered body are preferentially dissolved over the inorganic particles in the sintered body, and the sintering is performed. Etching so that the inorganic substance on the surface of a bonded body is granulated , The manufacturing method of the wavelength conversion sintered compact characterized by the above-mentioned.
前記エッチングが、ウエットエッチングであることを特徴とする請求項1に記載の波長変換焼結体の製造方法。   The method for producing a wavelength conversion sintered body according to claim 1, wherein the etching is wet etching. 前記無機物がAl23ることを特徴とする請求項2に記載の波長変換焼結体の製造方法。 Method of manufacturing a wavelength converter sintered body according to claim 2 wherein the inorganic material is characterized by Oh Rukoto in Al 2 O 3. 前記第2の工程の前に、前記焼結体を研磨する第3の工程を含むことを特徴とする請求項1乃至3のいずれか1項に記載の波長変換焼結体の製造方法。   The method for producing a wavelength conversion sintered body according to any one of claims 1 to 3, further comprising a third step of polishing the sintered body before the second step. 前記凹部が不規則な形状を有することを特徴とする請求項1乃至4のいずれか1項に記載の波長変換焼結体の製造方法。   The method for producing a wavelength conversion sintered body according to any one of claims 1 to 4, wherein the concave portion has an irregular shape. 前記凹部は、前記焼結体中の蛍光体粒子が溶解した形状を有することを特徴とする請求項3に記載の波長変換焼結体の製造方法。   The method for producing a wavelength conversion sintered body according to claim 3, wherein the recess has a shape in which phosphor particles in the sintered body are dissolved. 無機物と蛍光体との焼結体であり、かつ第1及び第2の主面を備えた板状の形状を有する波長変換焼結体であって、
前記波長変換焼結体は、
少なくとも前記第1の主面に複数の凹部が設けられた表層と、
前記表層より内側の中央層と、
を有し、
前記波長変換焼結体中に含まれる蛍光体粒子を、前記表層より前記中央層に多く分布させており、
前記表層に粒状化された無機物を有することを特徴とする波長変換焼結体。
A wavelength conversion sintered body which is a sintered body of an inorganic substance and a phosphor and has a plate-like shape having first and second main surfaces,
The wavelength conversion sintered body is:
A surface layer provided with a plurality of recesses on at least the first main surface;
A central layer inside the surface layer;
Have
The phosphor particles contained in the wavelength conversion sintered body are distributed more in the central layer than in the surface layer,
A wavelength conversion sintered body having an inorganic material granulated on the surface layer.
請求項7に記載の波長変換焼結体と、
発光素子と、
を備える発光装置であって、
前記第1の主面を、前記発光素子から出射された光を受光する受光面、又は該受光した光を放出する発光面とすることを特徴とする発光装置。
The wavelength conversion sintered body according to claim 7,
A light emitting element;
A light emitting device comprising:
The light-emitting device, wherein the first main surface is a light-receiving surface that receives light emitted from the light-emitting element or a light-emitting surface that emits the received light.
前記第2の主面は前記中央層が露出された平滑面であって、
前記第2の主面側に前記発光素子が配置されており、
前記第1の主面を前記発光面とすることを特徴とする請求項8に記載の発光装置。
The second main surface is a smooth surface with the central layer exposed,
The light emitting element is disposed on the second main surface side,
The light emitting device according to claim 8, wherein the first main surface is the light emitting surface.
一の波長変換焼結体の第2の主面側に複数の発光素子が配置されており、
前記第1の主面を前記発光面とすることを特徴とする請求項8又は9に記載の発光装置。
A plurality of light emitting elements are arranged on the second main surface side of one wavelength conversion sintered body,
The light emitting device according to claim 8, wherein the first main surface is the light emitting surface.
JP2008335578A 2008-12-27 2008-12-27 Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body Active JP5650885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335578A JP5650885B2 (en) 2008-12-27 2008-12-27 Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335578A JP5650885B2 (en) 2008-12-27 2008-12-27 Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body

Publications (2)

Publication Number Publication Date
JP2010157637A JP2010157637A (en) 2010-07-15
JP5650885B2 true JP5650885B2 (en) 2015-01-07

Family

ID=42575324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335578A Active JP5650885B2 (en) 2008-12-27 2008-12-27 Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body

Country Status (1)

Country Link
JP (1) JP5650885B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358381A4 (en) * 2015-09-29 2018-10-03 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion element and light emitting device
KR20190047078A (en) 2016-10-28 2019-05-07 니뽄 도쿠슈 도교 가부시키가이샤 METHOD FOR MANUFACTURING OPTICAL WAVELENGTH CONVERSION MEMBER, OPTICAL WAVELENGTH CONVERSION MEMBER
US10665761B2 (en) 2016-10-28 2020-05-26 Ngk Spark Plug Co., Ltd. Light wavelength conversion member and light emission device
US10727378B2 (en) 2016-10-28 2020-07-28 Ngk Spark Plug Co., Ltd. Optical wavelength conversion member and light-emitting device
US10766820B2 (en) 2016-06-27 2020-09-08 Ngk Spark Plug Co., Ltd. Ceramic sintered body
US10910524B2 (en) 2016-10-28 2021-02-02 Ngk Spark Plug Co.. Ltd. Light wavelength conversion member and light emitting device
US11214731B2 (en) 2017-02-27 2022-01-04 Ngk Spark Plug Co., Ltd. Light wavelength conversion member and light emitting device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI446590B (en) 2010-09-30 2014-07-21 Everlight Electronics Co Ltd Light emitting diode package structure and manufacturing method thereof
JP5746553B2 (en) 2011-04-28 2015-07-08 株式会社東芝 Substrate processing system and substrate processing program
JP5730680B2 (en) * 2011-06-17 2015-06-10 シチズン電子株式会社 LED light emitting device and manufacturing method thereof
JP2013069960A (en) 2011-09-26 2013-04-18 Toyoda Gosei Co Ltd Light emitting device and manufacturing method of the same
JP2013084889A (en) 2011-09-30 2013-05-09 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
CN103503182A (en) 2012-01-23 2014-01-08 松下电器产业株式会社 Nitride semiconductor light-emitting device
WO2013137356A1 (en) * 2012-03-13 2013-09-19 シチズンホールディングス株式会社 Semiconductor light emitting device and method for manufacturing same
JP2014093148A (en) * 2012-11-01 2014-05-19 Ichikoh Ind Ltd Semiconductor type light source of vehicle lamp fitting and vehicle lamp fitting
JP6146735B2 (en) * 2013-03-27 2017-06-14 スタンレー電気株式会社 Semiconductor light emitting device
JP2014225636A (en) * 2013-04-16 2014-12-04 株式会社ディスコ Light-emitting device
EP3010051B1 (en) * 2013-06-12 2020-01-08 NGK Insulators, Ltd. Window material for ultraviolet-ray-emitting element and method for producing same
JP2015053361A (en) * 2013-09-06 2015-03-19 株式会社東芝 Semiconductor light-emitting device and method of manufacturing the same
CN106030837B (en) * 2014-02-27 2020-05-05 亮锐控股有限公司 Method of forming wavelength-converted light emitting device
MY177277A (en) 2014-03-03 2020-09-10 Covalent Mat Corporation Wavelength converting member
JP6269214B2 (en) * 2014-03-19 2018-01-31 日亜化学工業株式会社 Phosphor plate, light emitting device, method for manufacturing phosphor plate, and method for manufacturing light emitting device
CN105322433B (en) 2014-05-28 2020-02-04 深圳光峰科技股份有限公司 Wavelength conversion device and related light emitting device
KR102203690B1 (en) 2014-08-21 2021-01-15 엘지이노텍 주식회사 Phosphor plate and manufacturing method thereof
JP2015128188A (en) * 2015-03-27 2015-07-09 日東電工株式会社 Kit
WO2016161557A1 (en) * 2015-04-07 2016-10-13 Materion Corporation Optically enhanced solid-state light converters
JP2017027019A (en) * 2015-07-22 2017-02-02 パナソニックIpマネジメント株式会社 Light source device
DE102017117438A1 (en) 2017-08-01 2019-02-07 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component
JP6768093B2 (en) * 2019-01-11 2020-10-14 エルジー ディスプレイ カンパニー リミテッド LED package, backlight unit and liquid crystal display device
JP7260776B2 (en) * 2019-05-29 2023-04-19 日亜化学工業株式会社 Method for manufacturing optical component and method for manufacturing light-emitting device
US11362243B2 (en) * 2019-10-09 2022-06-14 Lumileds Llc Optical coupling layer to improve output flux in LEDs
JP7335506B2 (en) 2019-11-29 2023-08-30 日亜化学工業株式会社 Manufacturing method of ceramic composite
US11920068B2 (en) * 2020-07-13 2024-03-05 Nichia Corporation Method of manufacturing wavelength conversion member and wavelength conversion member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020092B2 (en) * 2004-03-16 2007-12-12 住友電気工業株式会社 Semiconductor light emitting device
WO2006072849A2 (en) * 2005-01-04 2006-07-13 Philips Intellectual Property & Standards Gmbh Wavelength conversion layers with embedded crystallites
CN101129095B (en) * 2005-02-17 2014-07-09 皇家飞利浦电子股份有限公司 Illumination system comprising a green-emitting ceramic luminescence converter
JP5083211B2 (en) * 2006-06-22 2012-11-28 宇部興産株式会社 Composite for light conversion, light emitting device using the same, and color tone control method
JP5190680B2 (en) * 2008-05-26 2013-04-24 日本電気硝子株式会社 Luminescent color conversion member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358381A4 (en) * 2015-09-29 2018-10-03 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion element and light emitting device
US10766820B2 (en) 2016-06-27 2020-09-08 Ngk Spark Plug Co., Ltd. Ceramic sintered body
KR20190047078A (en) 2016-10-28 2019-05-07 니뽄 도쿠슈 도교 가부시키가이샤 METHOD FOR MANUFACTURING OPTICAL WAVELENGTH CONVERSION MEMBER, OPTICAL WAVELENGTH CONVERSION MEMBER
US10665761B2 (en) 2016-10-28 2020-05-26 Ngk Spark Plug Co., Ltd. Light wavelength conversion member and light emission device
US10727378B2 (en) 2016-10-28 2020-07-28 Ngk Spark Plug Co., Ltd. Optical wavelength conversion member and light-emitting device
US10910524B2 (en) 2016-10-28 2021-02-02 Ngk Spark Plug Co.. Ltd. Light wavelength conversion member and light emitting device
US11063186B2 (en) 2016-10-28 2021-07-13 Ngk Spark Plug Co., Ltd. Method for producing light wavelength conversion member, light wavelength conversion member, light wavelength conversion component and light emitting device
US11214731B2 (en) 2017-02-27 2022-01-04 Ngk Spark Plug Co., Ltd. Light wavelength conversion member and light emitting device

Also Published As

Publication number Publication date
JP2010157637A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5650885B2 (en) Wavelength conversion sintered body, light emitting device using the same, and method for producing wavelength conversion sintered body
JP5521325B2 (en) Light emitting device and manufacturing method thereof
JP5463901B2 (en) Light emitting device
JP5326837B2 (en) Light emitting device
JP5526782B2 (en) Light emitting device and manufacturing method thereof
JP5326705B2 (en) Light emitting device
JP5799988B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP7174216B2 (en) Light-emitting modules and integrated light-emitting modules
JP5967269B2 (en) Light emitting device
JP6020657B2 (en) Light emitting device
JP6015734B2 (en) Light emitting device
JP5610036B2 (en) Light emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP2015099940A (en) Light-emitting device
JP5761391B2 (en) Light emitting device
JP6222325B2 (en) Light emitting device
JP2018019091A (en) Manufacturing method of light-emitting device
JP2024083405A (en) Light-emitting device
JP6680302B2 (en) Light emitting device
JP5678462B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP6825636B2 (en) Light emitting device
JP2016189488A (en) Light emitting device
JP6274240B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5650885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250