JP5646779B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5646779B2
JP5646779B2 JP2014076440A JP2014076440A JP5646779B2 JP 5646779 B2 JP5646779 B2 JP 5646779B2 JP 2014076440 A JP2014076440 A JP 2014076440A JP 2014076440 A JP2014076440 A JP 2014076440A JP 5646779 B2 JP5646779 B2 JP 5646779B2
Authority
JP
Japan
Prior art keywords
support substrate
air electrode
power generation
element portions
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014076440A
Other languages
Japanese (ja)
Other versions
JP2014225434A (en
Inventor
誠 大森
誠 大森
崇 龍
崇 龍
松田 和幸
和幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2014076440A priority Critical patent/JP5646779B2/en
Publication of JP2014225434A publication Critical patent/JP2014225434A/en
Application granted granted Critical
Publication of JP5646779B2 publication Critical patent/JP5646779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

従来より、「ガス流路が内部に形成された多孔質の支持基板」と、「前記支持基板の表裏の各主面における互いに離れた複数の箇所にそれぞれ設けられ、燃料極、固体電解質、及び空気極がこの順に積層されてなる複数の発電素子部」と、「前記支持基板の表裏の各主面において隣り合う前記発電素子部の間に設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部」と、「前記支持基板の表裏の各主面における前記発電素子部が設けられた領域を除いた部分、及び、前記支持基板の側端面を覆うように設けられ、前記ガス流路を経て前記燃料極に供給されるガス(燃料ガス)と、前記空気極に供給されるガス(空気)と、の混合を防止する、緻密質材料からなるシール膜」と、を備えた固体酸化物形燃料電池(SOFC)が知られている(例えば、特許文献1を参照)。このような構成は、「横縞型」とも呼ばれる。   Conventionally, “a porous support substrate having a gas flow path formed therein” and “provided at a plurality of locations separated from each other on each of the main surfaces of the support substrate, a fuel electrode, a solid electrolyte, and “A plurality of power generation element portions in which air electrodes are laminated in this order” and “a fuel of one of the adjacent power generation element portions provided between the power generation element portions adjacent to each other on the front and back main surfaces of the support substrate” An electrical connection portion for electrically connecting the electrode and the other air electrode ”,“ a portion excluding a region where the power generation element portion is provided on each of the front and back main surfaces of the support substrate, and the support substrate ” A dense end wall that prevents the mixing of the gas (fuel gas) supplied to the fuel electrode through the gas flow path and the gas (air) supplied to the air electrode. A solid acid provided with a sealing film made of a porous material Things fuel cells (SOFC) are known (e.g., see Patent Document 1). Such a configuration is also called a “horizontal stripe type”.

上記文献に記載された燃料電池では、前記支持基板の表裏に設けられた前記発電素子部同士が、前記支持基板の側端面と、前記シール膜における前記支持基板の側端面を覆う部分と、の間に設けられた接続部材によって電気的に接続されている。換言すれば、前記接続部材は、前記シール膜により区画・形成された「燃料ガスが流通する領域」及び「空気が流通する領域」のうち「燃料ガスが流通する領域」側に位置している。   In the fuel cell described in the above document, the power generation element portions provided on the front and back surfaces of the support substrate include a side end surface of the support substrate and a portion covering the side end surface of the support substrate in the seal film. They are electrically connected by a connecting member provided therebetween. In other words, the connecting member is positioned on the “region where the fuel gas flows” of the “region where the fuel gas flows” and the “region where the air flows” defined and formed by the seal film. .

前記「燃料ガスが流通する領域」は、燃料電池の稼働中は、還元雰囲気(具体的には、燃料ガス)に曝される。しかしながら、燃料電池の稼働の終了直後などの特異な状況下では、前記「燃料ガスが流通する領域」は、一時的に酸化雰囲気(具体的には、空気)に曝され得る。   The “region where fuel gas flows” is exposed to a reducing atmosphere (specifically, fuel gas) during operation of the fuel cell. However, under a specific situation such as immediately after the end of the operation of the fuel cell, the “region where the fuel gas flows” can be temporarily exposed to an oxidizing atmosphere (specifically, air).

他方、上記文献に記載された燃料電池の前記接続部材は、Niを含む導電材料で構成されている。従って、前記接続部材が曝される雰囲気が還元雰囲気と酸化雰囲気との間で変化する毎に、前記接続部材に含まれるNiについて酸化・還元反応が発生し得る。この酸化・還元反応に起因して、前記接続部材において膨張・収縮が発生し得る。この結果、前記「シール膜における前記支持基板の側端面を覆う部分」と前記接続部材との界面にて剥離が発生する、更には、前記接続部材そのものにクラックが発生する、という問題が発生し得た。換言すれば、支持基板の表裏に設けられた発電素子部同士を電気的に接続する部材の信頼性が低い、という問題があった。   On the other hand, the connecting member of the fuel cell described in the above document is made of a conductive material containing Ni. Therefore, every time the atmosphere to which the connecting member is exposed changes between a reducing atmosphere and an oxidizing atmosphere, an oxidation / reduction reaction may occur for Ni contained in the connecting member. Due to this oxidation / reduction reaction, expansion and contraction may occur in the connecting member. As a result, there arises a problem that peeling occurs at the interface between the “member of the sealing film covering the side end surface of the support substrate” and the connection member, and further, a crack occurs in the connection member itself. Obtained. In other words, there is a problem that the reliability of the member that electrically connects the power generating element portions provided on the front and back of the support substrate is low.

特開2008−59793号公報JP 2008-59793 A

本発明は、以上の問題に対処するためのものであり、「横縞型」の燃料電池であって、支持基板の表裏に設けられた発電素子部同士を電気的に接続する部材の信頼性が高いものを提供することを目的とする。   The present invention is to cope with the above problems, and is a “horizontal stripe type” fuel cell, in which the reliability of a member that electrically connects power generating element portions provided on the front and back of a support substrate is improved. The purpose is to provide something expensive.

本発明に係る燃料電池は、「背景技術」の欄で記載した燃料電池と同様に、前記支持基板と、前記複数の発電素子部と、前記電気的接続部と、前記シール膜と、を備えた「横縞型」の燃料電池である。前記電気的接続部は、前記空気極と接続するとともに多孔質材料で構成された第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成される。   The fuel cell according to the present invention includes the support substrate, the plurality of power generation element portions, the electrical connection portion, and the seal film, similarly to the fuel cell described in the “Background Art” section. It is a “horizontal stripe type” fuel cell. The electrical connection portion is connected to the air electrode and is made of a porous material, and the second portion is connected to the fuel electrode and is connected to the first portion and made of a dense material. Part.

本発明に係る燃料電池の特徴は、前記「シール膜における前記支持基板の側端面を覆う部分」を覆うように設けられ、前記支持基板の表裏の主面に設けられた前記発電素子部同士を電気的に接続する、導電性セラミックス材料で構成された表裏間接続部材を備えたことにある。   A feature of the fuel cell according to the present invention is that the power generating element portions provided on the main surfaces of the front and back surfaces of the support substrate are provided so as to cover the “portion that covers the side end surface of the support substrate in the seal film” It is provided with a front-back connection member made of a conductive ceramic material that is electrically connected.

上記構成によれば、前記表裏間接続部材は、前記シール膜により区画・形成された「空気が流通する領域」側に位置する。即ち、前記表裏間接続部材が曝される雰囲気は、安定して酸化雰囲気に維持され得る。換言すれば、前記表裏間接続部材が曝される雰囲気が還元雰囲気と酸化雰囲気との間で変化することに起因する上述した「クラックの発生」などの問題が発生しない。この結果、支持基板の表裏に設けられた発電素子部同士を電気的に接続する部材の信頼性が高くなる。   According to the said structure, the said front-back connection member is located in the "area | region through which air distribute | circulates" divided and formed by the said sealing film. That is, the atmosphere to which the front-back connection member is exposed can be stably maintained in an oxidizing atmosphere. In other words, the above-described problems such as “crack generation” caused by the change in the atmosphere to which the front-back connecting member is exposed between the reducing atmosphere and the oxidizing atmosphere do not occur. As a result, the reliability of the member that electrically connects the power generating element portions provided on the front and back of the support substrate is increased.

ところで、前記支持基板の表裏の主面に設けられた前記発電素子部間における「前記表裏間接続部材によって形成される電気の通り道(電気パス)」の距離は、隣り合う前記発電素子部間における「前記電気的接続部によって形成される電気の通り道(電気パス)」の距離よりも長くなる。従って、前記表裏間接続部材の電気抵抗が比較的大きくなり、通電時において前記表裏間接続部材から発生する熱(ジュール熱)が比較的大きくなり易い。このことに起因して、前記表裏間接続部材(における特に支持基板の側端面を覆う部分)に過大な熱応力が局所的に発生してクラックが発生し易い。以上より、前記表裏間接続部材の電気抵抗を小さくすることが望まれる。   By the way, the distance of the “electric path (electric path) formed by the front-back connection member” between the power generation element portions provided on the front and back main surfaces of the support substrate is between the adjacent power generation element portions. It becomes longer than the distance of “the electric path (electric path) formed by the electrical connection portion”. Accordingly, the electrical resistance of the front-back connection member becomes relatively large, and the heat (Joule heat) generated from the front-back connection member during energization tends to be relatively large. Due to this, excessive thermal stress is locally generated on the front-back connection member (particularly the portion covering the side end surface of the support substrate), and cracks are likely to occur. From the above, it is desired to reduce the electrical resistance of the front-back connection member.

このため、本発明に係る燃料電池の第1の態様の特徴は、前記表裏間接続部材の気孔率が、前記電気的接続部分の第1部分の気孔率より小さいことにある。これによれば、前記表裏間接続部材の気孔率を小さくすることができる。この結果、前記表裏間接続部材の内部における電気の通り道の断面積を大きくすることができて、前記表裏間接続部材の電気抵抗を小さくすることができる。   For this reason, the characteristic of the 1st aspect of the fuel cell which concerns on this invention exists in the porosity of the said front-back connection member being smaller than the porosity of the 1st part of the said electrical connection part. According to this, the porosity of the said front-back connection member can be made small. As a result, the cross-sectional area of the electrical path inside the front-back connection member can be increased, and the electrical resistance of the front-back connection member can be reduced.

本発明に係る燃料電池の第2の態様の特徴は、前記表裏間接続部材の厚さが、前記電気的接続部分の第1部分の厚さより大きいことにある。より具体的には、前記表裏間接続部材の厚さの最小値が、前記電気的接続部分の第1部分の厚さの最小値より大きい。これによれば、前記第1の態様と同様、前記表裏間接続部材の内部における電気の通り道の断面積を大きくすることができて、前記表裏間接続部材の電気抵抗を小さくすることができる。   A feature of the second aspect of the fuel cell according to the present invention resides in that the thickness of the front-back connection member is larger than the thickness of the first portion of the electrical connection portion. More specifically, the minimum value of the thickness of the front-back connection member is larger than the minimum value of the thickness of the first portion of the electrical connection portion. According to this, similarly to the first aspect, the cross-sectional area of the electric path inside the front-back connection member can be increased, and the electrical resistance of the front-back connection member can be reduced.

本発明に係る燃料電池の第3の態様の特徴は、前記表裏間接続部材の導電率が、前記電気的接続部分の第1部分の導電率より大きいことにある。これによれば、前記表裏間接続部材の導電率を大きくすることができる。この結果、前記表裏間接続部材の電気抵抗を小さくすることができる。   A feature of the third aspect of the fuel cell according to the present invention resides in that the conductivity of the front-back connection member is larger than the conductivity of the first portion of the electrical connection portion. According to this, the electrical conductivity of the front-back connection member can be increased. As a result, the electrical resistance of the front-back connection member can be reduced.

上記本発明に係る燃料電池において、前記シール膜は、ジルコニアを含む緻密質材料で構成され得、前記表裏間接続部材は、ストロンチウム又はランタンを含むペロブスカイト型の導電性セラミックス材料で構成され得る。前記表裏間接続部材は、緻密質膜であっても多孔質膜であってもよい。この場合、前記表裏間接続部材と前記シール膜とが向かい合う部分において、ジルコニア(ZrO)を含まない反応防止膜が介装されることが好適である。 In the fuel cell according to the present invention, the seal film may be made of a dense material containing zirconia, and the front-back connection member may be made of a perovskite-type conductive ceramic material containing strontium or lanthanum. The front-back connection member may be a dense film or a porous film. In this case, it is preferable that a reaction preventing film not containing zirconia (ZrO 2 ) is interposed in a portion where the front-back connection member and the seal film face each other.

前記表裏間接続部材は、La(Ni、Fe、Cu)O(銅が添加されたランタンニッケルフェライト)で構成され得る。或いは、(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)で構成され得る。 The front-back connection member may be made of La (Ni, Fe, Cu) O 3 (lanthanum nickel ferrite to which copper is added). Alternatively, it can be composed of (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite).

一般に、SrとZrOとが反応すると、SrZrOが形成されることが広く知られている。LaとZrOとが反応すると、LaZrが形成されることが広く知られている。従って、ジルコニアを含む緻密質材料で構成されたシール膜と、ストロンチウム又はランタンを含むペロブスカイト型の導電性セラミックス材料で構成された表裏間接続部材とが直接接触する構成では、シール膜と表裏間接続部材との界面にて、燃料電池作製時又は作動中などの高温時において、SrZrOやLaZrの反応層が形成される場合がある。前記界面にSrZrOやLaZrの反応層が形成されると、前記界面に剥離が発生し易いという問題が発生する。これは、「SrZrOやLaZr」と、「表裏間接続部材やシール膜」との間の熱膨張率差が大きいことに起因すると考えられる。以上より、前記界面にSrZrOやLaZrの反応層が形成される事態の発生を抑制する必要がある。 In general, it is widely known that SrZrO 3 is formed when Sr and ZrO 2 react. It is widely known that La 2 Zr 2 O 7 is formed when La and ZrO 2 react. Therefore, in a configuration in which the sealing film made of a dense material containing zirconia and the front-to-back connecting member made of a perovskite-type conductive ceramic material containing strontium or lanthanum are in direct contact, the sealing film is connected to the front and back. A reaction layer of SrZrO 3 or La 2 Zr 2 O 7 may be formed at the interface with the member at a high temperature such as during production or operation of the fuel cell. When a reaction layer of SrZrO 3 or La 2 Zr 2 O 7 is formed at the interface, there arises a problem that peeling is likely to occur at the interface. This is considered to be caused by a large difference in thermal expansion coefficient between “SrZrO 3 or La 2 Zr 2 O 7 ” and “front-back connection member or seal film”. From the above, it is necessary to suppress the occurrence of a situation in which a reaction layer of SrZrO 3 or La 2 Zr 2 O 7 is formed at the interface.

上記構成は、係る知見に基づく。上記構成によれば、表裏間接続部材(Sr又はLaを含む)とシール膜(ZrOを含む)との間に反応防止膜(ZrOを含まない)が介装される。従って、係る反応防止膜の介装によって、「Sr又はLa」とZrOとの反応の発生が抑制され得る。この結果、表裏間接続部材とシール膜との間におけるSrZrOやLaZrの反応層の形成が抑制されて、表裏間接続部材とシール膜とが向かい合う部分において剥離が発生する事態が抑制され得る。 The above configuration is based on such knowledge. According to the above configuration, the reaction preventing film (not including ZrO 2 ) is interposed between the front-back connection member (including Sr or La) and the seal film (including ZrO 2 ). Therefore, the occurrence of a reaction between “Sr or La” and ZrO 2 can be suppressed by interposing the reaction preventing film. As a result, the formation of a reaction layer of SrZrO 3 or La 2 Zr 2 O 7 between the front and back connection member and the seal film is suppressed, and peeling occurs at a portion where the front and back connection member and the seal film face each other. Can be suppressed.

上記本発明に係る燃料電池では、前記各シール膜は、対応する前記発電素子部の固体電解質膜から前記支持基板の主面及び側端面を覆うように延びる前記固体電解質と同じ組成又は異なる組成を有する材料からなる緻密質膜で構成され得る。   In the fuel cell according to the present invention, each of the sealing films has the same composition as or a different composition from the solid electrolyte extending from the corresponding solid electrolyte film of the power generation element portion so as to cover the main surface and side end surfaces of the support substrate. It can be composed of a dense film made of a material having the same.

また、前記電気的接続部は、前記第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成され、前記平板状の支持基板の主面における前記複数の箇所に、前記支持基板の材料からなる底壁と全周に亘って前記支持基板の材料からなる周方向に閉じた側壁とを有する第1凹部がそれぞれ形成され、前記各第1凹部に、対応する前記発電素子部の燃料極がそれぞれ埋設され、前記埋設された各燃料極の外側面に形成された第2凹部に、対応する前記電気的接続部の前記第2部分がそれぞれ埋設され得る。   The electrical connection portion includes the first portion and a second portion that is connected to the fuel electrode and connected to the first portion and is formed of a dense material. First recesses having a bottom wall made of the material of the support substrate and a side wall closed in the circumferential direction made of the material of the support substrate are formed at the plurality of locations on the main surface of the support substrate, respectively. The fuel electrode of the power generation element portion corresponding to each first recess is embedded, and the second recess formed on the outer surface of each embedded fuel electrode corresponds to the corresponding electrical connection portion. Each second part may be embedded.

また、対応する前記電気的接続部の第2部分が埋設された前記各第2凹部は、前記燃料極の材料からなる底壁と、全周に亘って前記燃料極の材料からなる周方向に閉じた側壁とを有し得る。   Each of the second recesses in which the corresponding second portion of the electrical connection portion is embedded includes a bottom wall made of the fuel electrode material and a circumferential direction made of the fuel electrode material over the entire circumference. And have closed sidewalls.

また、前記燃料極の前記第2凹部以外の外側面と、前記電気的接続部の第2部分の外側面と、前記支持基板の前記主面とにより、1つの平面が構成され得る。   Moreover, one flat surface may be constituted by the outer surface of the fuel electrode other than the second recess, the outer surface of the second portion of the electrical connection portion, and the main surface of the support substrate.

本発明に係る燃料電池を示す斜視図である。1 is a perspective view showing a fuel cell according to the present invention. 図1に示す燃料電池の2−2線に対応する断面図である。FIG. 2 is a cross-sectional view corresponding to line 2-2 of the fuel cell shown in FIG. 図1に示す燃料電池の3−3線に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to line 3-3 of the fuel cell shown in FIG. 図1に示す支持基板の凹部に埋設された燃料極及びインターコネクタの状態を示した平面図である。It is the top view which showed the state of the fuel electrode and interconnector which were embed | buried under the recessed part of the support substrate shown in FIG. 図1に示す燃料電池の5−5線に対応する断面図である。It is sectional drawing corresponding to line 5-5 of the fuel cell shown in FIG. 図1及び図5に示す燃料電池の6−6線に対応する断面図である。6 is a cross-sectional view corresponding to line 6-6 of the fuel cell shown in FIGS. 1 and 5. FIG. 図1に示す燃料電池の作動状態を説明するための図である。It is a figure for demonstrating the operation state of the fuel cell shown in FIG. 図1に示す燃料電池の作動状態における電流の流れを説明するための図である。It is a figure for demonstrating the flow of the electric current in the operating state of the fuel cell shown in FIG. 図1に示す支持基板を示す斜視図である。It is a perspective view which shows the support substrate shown in FIG. 図1に示す燃料電池の製造過程における第1段階における図2に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 in a first stage in the manufacturing process of the fuel cell shown in FIG. 1. 図1に示す燃料電池の製造過程における第2段階における図2に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 in a second stage in the manufacturing process of the fuel cell shown in FIG. 1. 図1に示す燃料電池の製造過程における第3段階における図2に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 in a third stage in the manufacturing process of the fuel cell shown in FIG. 1. 図1に示す燃料電池の製造過程における第4段階における図2に対応する断面図である。FIG. 4 is a cross-sectional view corresponding to FIG. 2 in a fourth stage in the manufacturing process of the fuel cell shown in FIG. 1. 図1に示す燃料電池の製造過程における第5段階における図2に対応する断面図である。FIG. 6 is a cross-sectional view corresponding to FIG. 2 in a fifth stage in the manufacturing process of the fuel cell shown in FIG. 1. 図1に示す燃料電池の製造過程における第6段階における図2に対応する断面図である。FIG. 7 is a cross-sectional view corresponding to FIG. 2 in a sixth stage in the manufacturing process of the fuel cell shown in FIG. 1. 図1に示す燃料電池の製造過程における第7段階における図2に対応する断面図である。FIG. 8 is a cross-sectional view corresponding to FIG. 2 in a seventh stage in the manufacturing process of the fuel cell shown in FIG. 1. 図1に示す燃料電池の製造過程における第8段階における図2に対応する断面図である。FIG. 7 is a cross-sectional view corresponding to FIG. 2 in an eighth stage in the manufacturing process of the fuel cell shown in FIG. 1. 本発明に係る燃料電池の第1変形例の図5に対応する断面図である。It is sectional drawing corresponding to FIG. 5 of the 1st modification of the fuel cell which concerns on this invention. 本発明に係る燃料電池の第1変形例の図6に対応する断面図である。It is sectional drawing corresponding to FIG. 6 of the 1st modification of the fuel cell which concerns on this invention.

(構成)
図1は、本発明の実施形態に係る固体酸化物形燃料電池(SOFC)を示す。このSOFCは、長手方向(x軸方向)を有する平板状の支持基板10の上下面(互いに平行な両側の主面(平面))のそれぞれに、電気的に直列に接続された複数(本例では、4つ)の同形の発電素子部Aが長手方向において所定の間隔をおいて配置された、所謂「横縞型」と呼ばれる構成を有する。
(Constitution)
FIG. 1 shows a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. This SOFC is electrically connected in series to each of the upper and lower surfaces (main surfaces (planes) on both sides parallel to each other) of the flat support substrate 10 having a longitudinal direction (x-axis direction) (this example). In this case, the four power generation element portions A having the same shape are arranged at predetermined intervals in the longitudinal direction, so-called “horizontal stripe type”.

このSOFCの全体を上方からみた形状は、例えば、長手方向の辺の長さが5〜50cmで長手方向に直交する幅方向(y軸方向)の長さが1〜10cmの長方形である。このSOFCの全体の厚さは、1〜5mmである。このSOFCの全体は、厚さ方向の中心を通り且つ支持基板10の主面に平行な面に対して上下対称の形状を有する。以下、図1〜図8を参照しながら、このSOFCの詳細について説明する。図2は、代表的な1組の隣り合う発電素子部A,Aのそれぞれの構成(の一部)、並びに、発電素子部A,A間の構成を示す部分断面図である。その他の組の隣り合う発電素子部A,A間の構成も、図2に示す構成と同様である。   The shape of the entire SOFC as viewed from above is, for example, a rectangle whose length in the longitudinal direction is 5 to 50 cm and whose length in the width direction (y-axis direction) perpendicular to the longitudinal direction is 1 to 10 cm. The total thickness of this SOFC is 1-5 mm. The entire SOFC has a vertically symmetrical shape with respect to a plane passing through the center in the thickness direction and parallel to the main surface of the support substrate 10. Details of the SOFC will be described below with reference to FIGS. FIG. 2 is a partial cross-sectional view showing a configuration (part of) each of a typical pair of adjacent power generation element portions A and A and a configuration between the power generation element portions A and A. The configuration between the other power generation element portions A and A in other sets is the same as the configuration shown in FIG.

支持基板10は、電子伝導性を有さない多孔質の材料からなる平板状の焼成体である。後述する図9に示すように、支持基板10の内部には、長手方向に延びる複数(本例では、6本)の燃料ガス流路11(貫通孔)が幅方向において所定の間隔をおいて形成されている。また、支持基板10の上下面(両主面)のそれぞれには、各発電素子部Aに対応する箇所に凹部12がそれぞれ形成されている。本例では、各凹部12は、支持基板10の材料からなる底壁と、全周に亘って支持基板10の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。   The support substrate 10 is a flat plate-like fired body made of a porous material having no electronic conductivity. As shown in FIG. 9 to be described later, a plurality of (six in this example) fuel gas passages 11 (through holes) extending in the longitudinal direction are provided in the support substrate 10 at predetermined intervals in the width direction. Is formed. In addition, in each of the upper and lower surfaces (both main surfaces) of the support substrate 10, recesses 12 are formed at locations corresponding to the respective power generation element portions A. In this example, each recess 12 includes a bottom wall made of the material of the support substrate 10 and side walls closed in the circumferential direction made of the material of the support substrate 10 over the entire circumference (two side walls along the longitudinal direction and the width direction). A rectangular parallelepiped depression defined by two side walls).

支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)から構成され得る。或いは、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成されてもよいし、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)とから構成されてもよい。 The support substrate 10 can be made of, for example, CSZ (calcia stabilized zirconia). Alternatively, it may be composed of NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia), NiO (nickel oxide) and Y 2 O 3 (yttria), or MgO. (Magnesium oxide) and MgAl 2 O 4 (magnesia alumina spinel) may be used.

支持基板10は、「遷移金属酸化物又は遷移金属」と、絶縁性セラミックスとを含んで構成され得る。「遷移金属酸化物又は遷移金属」としては、NiO(酸化ニッケル)又はNi(ニッケル)が好適である。遷移金属は、燃料ガスの改質反応を促す触媒(炭化水素系のガスの改質触媒)として機能し得る。   The support substrate 10 may be configured to include “transition metal oxide or transition metal” and insulating ceramics. As the “transition metal oxide or transition metal”, NiO (nickel oxide) or Ni (nickel) is suitable. The transition metal can function as a catalyst for promoting a reforming reaction of the fuel gas (hydrocarbon-based gas reforming catalyst).

また、絶縁性セラミックスとしては、MgO(酸化マグネシウム)、又は、「MgAl(マグネシアアルミナスピネル)とMgO(酸化マグネシウム)の混合物」が好適である。また、絶縁性セラミックスとして、CSZ(カルシア安定化ジルコニア)、YSZ(8YSZ)(イットリア安定化ジルコニア)、Y(イットリア)が使用されてもよい。 Further, as the insulating ceramic, MgO (magnesium oxide) or “mixture of MgAl 2 O 4 (magnesia alumina spinel) and MgO (magnesium oxide)” is preferable. Further, CSZ (calcia stabilized zirconia), YSZ (8YSZ) (yttria stabilized zirconia), Y 2 O 3 (yttria) may be used as the insulating ceramic.

このように、支持基板10が「遷移金属酸化物又は遷移金属」を含むことによって、改質前の残存ガス成分を含んだガスが多孔質の支持基板10の内部の多数の気孔を介して燃料ガス流路11から燃料極に供給される過程において、上記触媒作用によって改質前の残存ガス成分の改質を促すことができる。加えて、支持基板10が絶縁性セラミックスを含むことによって、支持基板10の絶縁性を確保することができる。この結果、隣り合う燃料極間における絶縁性が確保され得る。支持基板10の厚さは、1〜5mmである。   As described above, since the support substrate 10 contains “transition metal oxide or transition metal”, the gas containing the residual gas component before the reforming is supplied to the fuel through the numerous pores inside the porous support substrate 10. In the process of being supplied from the gas flow path 11 to the fuel electrode, the catalytic action can promote the reforming of the residual gas component before the reforming. In addition, the insulating property of the support substrate 10 can be ensured by the support substrate 10 containing insulating ceramics. As a result, insulation between adjacent fuel electrodes can be ensured. The thickness of the support substrate 10 is 1 to 5 mm.

図2〜図4に示すように、支持基板10の上下面(両主面)に形成された各凹部12には、燃料極集電部21の全体が埋設(充填)されている。従って、各燃料極集電部21は直方体状を呈している。図4に示すように、各燃料極集電部21の上面(外側面)には、凹部21aが形成されている。各凹部21aは、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。前記「周方向に閉じた側壁」は、全周に亘って燃料極集電部21の材料からなる。   As shown in FIGS. 2 to 4, the entire fuel electrode current collector 21 is embedded (filled) in each recess 12 formed on the upper and lower surfaces (both main surfaces) of the support substrate 10. Therefore, each fuel electrode current collector 21 has a rectangular parallelepiped shape. As shown in FIG. 4, a recess 21 a is formed on the upper surface (outer surface) of each fuel electrode current collector 21. Each recess 21a has a rectangular parallelepiped shape defined by a bottom wall made of the material of the fuel electrode current collector 21 and side walls closed in the circumferential direction (two side walls along the longitudinal direction and two side walls along the width direction). It is a depression. The “side wall closed in the circumferential direction” is made of the material of the fuel electrode current collector 21 over the entire circumference.

各凹部21aには、燃料極活性部22の全体が埋設(充填)されている。従って、各燃料極活性部22は直方体状を呈している。燃料極集電部21と燃料極活性部22とにより燃料極20が構成される。燃料極20(燃料極集電部21+燃料極活性部22)は、電子伝導性を有する多孔質の材料からなる焼成体である。各燃料極活性部22の前記「周方向に閉じた側壁」の全周と底面とは、凹部21a内で燃料極集電部21と接触している。   The entire anode active portion 22 is embedded (filled) in each recess 21a. Accordingly, each fuel electrode active portion 22 has a rectangular parallelepiped shape. A fuel electrode 20 is configured by the fuel electrode current collector 21 and the fuel electrode active unit 22. The fuel electrode 20 (fuel electrode current collector 21 + fuel electrode active part 22) is a fired body made of a porous material having electron conductivity. The entire circumference and bottom surface of the “side wall closed in the circumferential direction” of each anode active portion 22 are in contact with the anode current collecting portion 21 in the recess 21a.

図4に示すように、各燃料極集電部21の上面(外側面)における凹部21aを除いた部分には、凹部21bが形成されている。各凹部21bは、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。前記「周方向に閉じた側壁」は、全周に亘って燃料極集電部21の材料からなる。   As shown in FIG. 4, a recess 21 b is formed on the upper surface (outer surface) of each fuel electrode current collector 21 except for the recess 21 a. Each recess 21b has a rectangular parallelepiped shape defined by a bottom wall made of the material of the fuel electrode current collector 21 and side walls closed in the circumferential direction (two side walls along the longitudinal direction and two side walls along the width direction). It is a depression. The “side wall closed in the circumferential direction” is made of the material of the fuel electrode current collector 21 over the entire circumference.

各凹部21bには、インターコネクタ30が埋設(充填)されている。従って、各インターコネクタ30は直方体状を呈している。インターコネクタ30は、電子伝導性を有する緻密質材料からなる焼成体である。各インターコネクタ30の前記「周方向に閉じた側壁」の全周と底面とは、凹部21b内で燃料極集電部21と接触している。   An interconnector 30 is embedded (filled) in each recess 21b. Accordingly, each interconnector 30 has a rectangular parallelepiped shape. The interconnector 30 is a fired body made of a dense material having electronic conductivity. The entire circumference and bottom surface of the “circumferentially closed sidewall” of each interconnector 30 are in contact with the fuel electrode current collector 21 in the recess 21b.

燃料極20(燃料極集電部21及び燃料極活性部22)の上面(外側面)と、インターコネクタ30の上面(外側面)と、支持基板10の主面とにより、1つの平面(凹部12が形成されていない場合の支持基板10の主面と同じ平面)が構成されている。即ち、燃料極20の上面とインターコネクタ30の上面と支持基板10の主面との間で、段差が形成されていない。   The upper surface (outer surface) of the fuel electrode 20 (the fuel electrode current collector 21 and the fuel electrode active unit 22), the upper surface (outer surface) of the interconnector 30, and the main surface of the support substrate 10 form one plane (recessed portion). The same plane as the main surface of the support substrate 10 when 12 is not formed) is formed. That is, no step is formed between the upper surface of the fuel electrode 20, the upper surface of the interconnector 30, and the main surface of the support substrate 10.

燃料極活性部22は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極集電部21は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極活性部22の厚さは、5〜30μmであり、燃料極集電部21の厚さ(即ち、凹部12の深さ)は、50〜500μmである。 The fuel electrode active part 22 may be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia). Or you may comprise from NiO (nickel oxide) and GDC (gadolinium dope ceria). The fuel electrode current collector 21 can be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia). Alternatively, it may be composed of NiO (nickel oxide) and Y 2 O 3 (yttria), or may be composed of NiO (nickel oxide) and CSZ (calcia stabilized zirconia). The thickness of the anode active portion 22 is 5 to 30 μm, and the thickness of the anode current collecting portion 21 (that is, the depth of the recess 12) is 50 to 500 μm.

このように、燃料極集電部21は、電子伝導性を有する物質を含んで構成される。燃料極活性部22は、電子伝導性を有する物質と酸素イオン伝導性を有する物質とを含んで構成される。燃料極活性部22における「気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合」は、燃料極集電部21における「気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合」よりも大きい。   As described above, the fuel electrode current collector 21 includes a substance having electronic conductivity. The fuel electrode active part 22 includes a substance having electron conductivity and a substance having oxygen ion conductivity. The “volume ratio of the substance having oxygen ion conductivity with respect to the entire volume excluding the pore portion” in the anode active portion 22 is “having oxygen ion conductivity with respect to the entire volume excluding the pore portion” in the anode current collecting portion 21. It is larger than the “volume ratio of the substance”.

インターコネクタ30は、例えば、LaCrO(ランタンクロマイト)から構成され得る。或いは、(Sr,La)TiO(ストロンチウムチタネート)から構成されてもよい。インターコネクタ30の厚さは、10〜100μmである。 The interconnector 30 can be composed of, for example, LaCrO 3 (lanthanum chromite). Alternatively, it may be composed of (Sr, La) TiO 3 (strontium titanate). The thickness of the interconnector 30 is 10 to 100 μm.

燃料極20及びインターコネクタ30がそれぞれの凹部12に埋設された状態の支持基板10における長手方向に延びる外周面において複数のインターコネクタ30が形成されたそれぞれの部分の中央部を除いた全面は、固体電解質膜40により覆われている。即ち、固体電解質膜40は、発電素子部Aの内部から支持基板10の表面を覆うように発電素子部Aの外部へ延びている。換言すれば、固体電解質膜40は、支持基板10の表裏の各主面における発電素子部Aが設けられた領域を除いた部分、及び、支持基板10の側端面(幅方向(y軸方向)の両端面)を覆うように設けられている。   The entire surface excluding the central portion of each portion where the plurality of interconnectors 30 are formed on the outer peripheral surface extending in the longitudinal direction of the support substrate 10 in a state where the fuel electrode 20 and the interconnector 30 are embedded in the respective recesses 12, The solid electrolyte membrane 40 is covered. That is, the solid electrolyte membrane 40 extends from the inside of the power generation element portion A to the outside of the power generation element portion A so as to cover the surface of the support substrate 10. In other words, the solid electrolyte membrane 40 is a portion excluding the region where the power generating element part A is provided on each of the main surfaces on the front and back sides of the support substrate 10 and the side end surface (width direction (y-axis direction)) of the support substrate 10. Are provided so as to cover the both end faces of the head.

固体電解質膜40は、イオン伝導性を有し且つ電子伝導性を有さない緻密質材料からなる焼成体である。固体電解質膜40は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)から構成され得る。即ち、固体電解質膜40は、ジルコニア(ZrO)を含む。固体電解質膜40の厚さは、3〜50μmである。 The solid electrolyte membrane 40 is a fired body made of a dense material that has ionic conductivity and no electronic conductivity. The solid electrolyte membrane 40 can be made of, for example, YSZ (8YSZ) (yttria stabilized zirconia). That is, the solid electrolyte membrane 40 contains zirconia (ZrO 2 ). The thickness of the solid electrolyte membrane 40 is 3 to 50 μm.

即ち、支持基板10の表裏の各主面における発電素子部Aが設けられた領域を除いた部分、及び、支持基板10の側端面は、インターコネクタ30と固体電解質膜40とからなる緻密質膜により覆われている。この緻密質膜は、緻密質膜の内側の空間を流れる燃料ガスと緻密質膜の外側の空間を流れる空気との混合を防止するガスシール機能を発揮する。このガスシール機能を発揮するため、この緻密質膜(インターコネクタ30+固体電解質膜40)の気孔率は、10%以下である。この緻密質膜が前記「シール膜」に対応する。従って、「シール膜」における支持基板10の側端面を覆う部分は、固体電解質膜40と同じ組成を有する材料(即ち、ジルコニアを含む材料)からなる緻密質膜で構成されている。   That is, the portions other than the regions where the power generation element portions A are provided on the front and back main surfaces of the support substrate 10 and the side end surfaces of the support substrate 10 are dense films made of the interconnector 30 and the solid electrolyte film 40. Covered by. This dense membrane exhibits a gas seal function that prevents mixing of the fuel gas flowing in the space inside the dense membrane and the air flowing in the space outside the dense membrane. In order to exhibit this gas sealing function, the porosity of this dense membrane (interconnector 30 + solid electrolyte membrane 40) is 10% or less. This dense film corresponds to the “sealing film”. Accordingly, the portion of the “seal membrane” that covers the side end surface of the support substrate 10 is composed of a dense membrane made of a material having the same composition as the solid electrolyte membrane 40 (ie, a material containing zirconia).

なお、図2に示すように、本例では、固体電解質膜40が、燃料極20(集電部21+活性部22)の上面、インターコネクタ30の上面の中央部、及び支持基板10の主面を覆っている。ここで、上述したように、燃料極20の上面とインターコネクタ30の上面と支持基板10の主面との間で段差が形成されていない。従って、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。   As shown in FIG. 2, in this example, the solid electrolyte membrane 40 includes the upper surface of the fuel electrode 20 (current collector 21 + active portion 22), the central portion of the upper surface of the interconnector 30, and the main surface of the support substrate 10. Covering. Here, as described above, no step is formed between the upper surface of the fuel electrode 20, the upper surface of the interconnector 30, and the main surface of the support substrate 10. Therefore, the solid electrolyte membrane 40 is flattened. As a result, compared with the case where a step is formed in the solid electrolyte membrane 40, the generation of cracks in the solid electrolyte membrane 40 due to stress concentration can be suppressed, and the gas sealing function of the solid electrolyte membrane 40 is reduced. Can be suppressed.

固体電解質膜40における各燃料極活性部22と接している箇所の上面には、反応防止膜50を介して空気極60が形成されている。反応防止膜50は、緻密質材料からなる焼成体であり、空気極60は、電子伝導性を有する多孔質の材料からなる焼成体である。空気極60を上方からみた形状は、燃料極活性部22と略同一の長方形である。   An air electrode 60 is formed on the upper surface of a portion in contact with each fuel electrode active part 22 in the solid electrolyte membrane 40 via a reaction preventing film 50. The reaction preventing film 50 is a fired body made of a dense material, and the air electrode 60 is a fired body made of a porous material having electron conductivity. The shape of the air electrode 60 viewed from above is substantially the same rectangle as the fuel electrode active part 22.

反応防止膜50は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)、及び、SDC=(Ce,Sm)O(サマリウムドープセリア)等の希土類元素を含むセリアから構成され得る。即ち、反応防止膜50は、ジルコニア(ZrO)を含まない。ここで、「反応防止膜50がジルコニア(ZrO)を含まない」とは、反応防止膜50と前記シール膜との積層体について、反応防止膜50における前記シール膜との界面からの距離が2μm以内の領域内において、ジルコニウム(Zr)、イットリウム(Y)、セリウム(Ce)、ガドリニウム(Gd)、酸素(O)のうち、ジルコニウム濃度が、5at.%(原子分率、原子パーセント)以下(更に好ましくは、1at.%以下)であることを指す。反応防止膜50の厚さは、3〜50μmである。 The reaction preventing film 50 may be composed of ceria containing rare earth elements such as GDC = (Ce, Gd) O 2 (gadolinium doped ceria) and SDC = (Ce, Sm) O 2 (samarium doped ceria). . That is, the reaction preventing film 50 does not contain zirconia (ZrO 2 ). Here, “the reaction preventing film 50 does not contain zirconia (ZrO 2 )” means that the distance from the interface between the reaction preventing film 50 and the seal film is about the laminate of the reaction preventing film 50 and the seal film. In a region within 2 μm, among zirconium (Zr), yttrium (Y), cerium (Ce), gadolinium (Gd), and oxygen (O), the zirconium concentration is 5 at. % (Atomic fraction, atomic percent) or less (more preferably 1 at.% Or less). The thickness of the reaction preventing film 50 is 3 to 50 μm.

空気極60は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。また、空気極60は、LSCFからなる第1層(内側層)とLSCからなる第2層(外側層)との2層によって構成されてもよい。空気極60の厚さは、10〜100μmである。 The air electrode 60 can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, from LSF = (La, Sr) FeO 3 (lanthanum strontium ferrite), LNF = La (Ni, Fe) O 3 (lanthanum nickel ferrite), LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite), etc. It may be configured. Further, the air electrode 60 may be configured by two layers of a first layer (inner layer) made of LSCF and a second layer (outer layer) made of LSC. The thickness of the air electrode 60 is 10 to 100 μm.

なお、固体電解質膜40と空気極60との間に反応防止膜50が介装されるのは、SOFC作製時又は作動中のSOFC内において固体電解質膜40内のYSZと空気極60内のSrとが反応して固体電解質膜40と空気極60との界面に電気抵抗が大きい反応層(SrZrO)が形成される現象の発生を抑制するためである。 Note that the reaction preventing film 50 is interposed between the solid electrolyte membrane 40 and the air electrode 60 because the YSZ in the solid electrolyte membrane 40 and the Sr in the air electrode 60 in the SOFC being manufactured or in operation. This is to suppress the occurrence of a phenomenon in which a reaction layer (SrZrO 3 ) having a large electric resistance is formed at the interface between the solid electrolyte membrane 40 and the air electrode 60 due to the reaction.

ここで、燃料極20と、固体電解質膜40と、反応防止膜50と、空気極60とが積層されてなる積層体が、「発電素子部A」に対応する(図2を参照)。即ち、支持基板10の上下面のそれぞれには、複数(本例では、4つ)の発電素子部Aが、長手方向において所定の間隔をおいて配置されている。   Here, the laminated body formed by laminating the fuel electrode 20, the solid electrolyte membrane 40, the reaction preventing membrane 50, and the air electrode 60 corresponds to the “power generation element portion A” (see FIG. 2). That is, a plurality (four in this example) of power generation element portions A are arranged on the upper and lower surfaces of the support substrate 10 at predetermined intervals in the longitudinal direction.

隣り合う発電素子部A,Aについて、一方の(図2では、左側の)発電素子部Aの空気極60と、他方の(図2では、右側の)発電素子部Aのインターコネクタ30とを跨ぐように、空気極60、固体電解質膜40、及び、インターコネクタ30の上面に、空気極集電膜70が形成されている。空気極集電膜70は、電子伝導性を有する多孔質の材料からなる焼成体である。空気極集電膜70を上方からみた形状は、長方形である。   For the adjacent power generation element parts A and A, the air electrode 60 of one power generation element part A (on the left side in FIG. 2) and the interconnector 30 of the other power generation element part A (on the right side in FIG. 2) are connected. An air electrode current collecting film 70 is formed on the upper surfaces of the air electrode 60, the solid electrolyte film 40, and the interconnector 30 so as to straddle. The air electrode current collector film 70 is a fired body made of a porous material having electron conductivity. The shape of the air electrode current collector film 70 as viewed from above is a rectangle.

空気極集電膜70は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。或いは、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。或いは、La(Ni、Fe、Cu)Oで構成されてもよい。即ち、空気極集電膜70は、ストロンチウム(Sr)又はランタン(La)を含む。空気極集電膜70の厚さは、50〜500μmである。 The air electrode current collector film 70 can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite) may be used. Or you may comprise from Ag (silver) and Ag-Pd (silver palladium alloy). Alternatively, it may be composed of La (Ni, Fe, Cu) O 3 . That is, the air electrode current collector film 70 contains strontium (Sr) or lanthanum (La). The thickness of the air electrode current collector film 70 is 50 to 500 μm.

本明細書にて、La(Ni、Fe、Cu)Oは、具体的には、下記(1)式の化学式で表わされる酸化物を指す。ただし、(1)式において、m及びnは0.95以上1.05以下であり、xは0.03以上0.3以下であり、yは0.05以上0.5以下であり、δは0以上0.8以下である。
La(Ni1−x−yFeCu3−δ …(1)
In this specification, La (Ni, Fe, Cu) O 3 specifically refers to an oxide represented by a chemical formula of the following formula (1). However, in Formula (1), m and n are 0.95 or more and 1.05 or less, x is 0.03 or more and 0.3 or less, y is 0.05 or more and 0.5 or less, δ Is 0 or more and 0.8 or less.
La m (Ni 1-x- y Fe x Cu y) n O 3-δ ... (1)

このように各空気極集電膜70が形成されることにより、各組の隣り合う発電素子部A,Aについて、一方の(図2では、左側の)発電素子部Aの空気極60と、他方の(図2では、右側の)発電素子部Aの燃料極20(特に、燃料極集電部21)とが、電子伝導性を有する「空気極集電膜70及びインターコネクタ30」を介して電気的に接続される。この結果、支持基板10の上下面のそれぞれに配置されている複数(本例では、4つ)の発電素子部Aが電気的に直列に接続される。ここで、電子伝導性を有する「空気極集電膜70及びインターコネクタ30」が、前記「電気的接続部」に対応する。   By forming each air electrode current collecting film 70 in this way, for each pair of adjacent power generation element portions A and A, the air electrode 60 of one power generation element portion A (on the left side in FIG. 2), The other fuel electrode 20 (particularly, the fuel electrode current collector 21) of the power generating element part A (on the right side in FIG. 2) passes through the “air electrode current collector film 70 and interconnector 30” having electronic conductivity. Are electrically connected. As a result, a plurality (four in this example) of power generation element portions A disposed on the upper and lower surfaces of the support substrate 10 are electrically connected in series. Here, the “air electrode current collector film 70 and the interconnector 30” having electronic conductivity correspond to the “electrical connection part”.

なお、インターコネクタ30は、前記「電気的接続部」における前記「緻密質材料で構成された第2部分」に対応し、気孔率は10%以下である。空気極集電膜70は、前記「電気的接続部」における前記「多孔質の材料で構成された第1部分」に対応し、気孔率は20〜60%である。   The interconnector 30 corresponds to the “second portion made of a dense material” in the “electrical connection portion” and has a porosity of 10% or less. The air electrode current collector film 70 corresponds to the “first portion made of a porous material” in the “electrical connection portion”, and has a porosity of 20 to 60%.

図2に示す構成では、反応防止膜50が、発電素子部Aの内部(即ち、固体電解質膜40と空気極60との間の部分)から前記シール膜(=固体電解質膜40における発電素子部Aの外部に形成された部分)の表面を覆うように(表面に接触するように)発電素子部Aの外部へ延びている。空気極集電膜70が、反応防止膜50(より具体的には、反応防止膜50における発電素子部Aの外部に形成された部分)の表面を覆うように(表面に接触するように)形成されている。前記シール膜とが向かい合う全ての部分において、反応防止膜50(より具体的には、反応防止膜50における発電素子部Aの外部に形成された部分)が介装されている。   In the configuration shown in FIG. 2, the reaction preventing film 50 extends from the inside of the power generation element part A (that is, the part between the solid electrolyte film 40 and the air electrode 60) to the sealing film (= the power generation element part in the solid electrolyte film 40). A portion formed outside A) extends outside the power generation element portion A so as to cover the surface (so as to be in contact with the surface). The air electrode current collecting film 70 covers the surface of the reaction preventing film 50 (more specifically, the portion formed outside the power generating element part A in the reaction preventing film 50) (so as to be in contact with the surface). Is formed. The reaction preventing film 50 (more specifically, the part formed outside the power generating element portion A in the reaction preventing film 50) is interposed in all the portions facing the seal film.

図1、図5、及び図6に示すように、支持基板10の長手方向の一端部(x軸負方向の端部)には、支持基板10の表裏の主面における前記長手方向の最も一端側(x軸負方向側)にそれぞれ設けられた発電素子部A同士を電気的に接続する表裏間接続部材80が設けられている。   As shown in FIGS. 1, 5, and 6, one end portion in the longitudinal direction of the support substrate 10 (the end portion in the negative x-axis direction) is the one end in the longitudinal direction on the front and back main surfaces of the support substrate 10. A front-back connection member 80 that electrically connects the power generation element portions A provided on the side (x-axis negative direction side) is provided.

表裏間接続部材80は、例えば、空気極集電膜70と同じ材料、即ち、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)、或いは、La(Ni、Fe、Cu)O等で構成され得る。この場合、表裏間接続部材80は、ストロンチウム(Sr)又はランタン(La)を含むペロブスカイト型導電性セラミックスからなる焼成体である。表裏間接続部材80の気孔率は、空気極集電膜70の気孔率と同じであっても異なっていても良い。 The front-back connection member 80 is made of, for example, the same material as the air electrode current collector film 70, that is, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite), LSC = (La, Sr) CoO. 3 (lanthanum strontium cobaltite) or La (Ni, Fe, Cu) O 3 or the like. In this case, the front-back connection member 80 is a fired body made of a perovskite-type conductive ceramic containing strontium (Sr) or lanthanum (La). The porosity of the front / back connection member 80 may be the same as or different from the porosity of the air electrode current collector film 70.

図5の6−6線に対応する断面図である図6に示すように、この例では、表裏間接続部材80は、支持基板10の長手方向の一端部の周囲を周回するように設けられている。従って、表裏間接続部材80は、「シール膜」における「支持基板10の側端面を覆う部分」(即ち、固体電解質膜40)の表面を覆うように設けられている。   As shown in FIG. 6, which is a cross-sectional view corresponding to line 6-6 in FIG. 5, in this example, the front-back connection member 80 is provided so as to circulate around one end portion in the longitudinal direction of the support substrate 10. ing. Therefore, the front-back connection member 80 is provided so as to cover the surface of “the portion covering the side end surface of the support substrate 10” (that is, the solid electrolyte membrane 40) in the “seal membrane”.

この例では、表裏間接続部材80によって電気的に接続された発電素子部Aの反応防止膜50が、表裏間接続部材80と「シール膜」(即ち、固体電解質膜40)とが向かい合う全ての部分において介装されるように、発電素子部Aの外部へ延びている。換言すれば、支持基板10の長手方向の一端部では、支持基板10の主面及び側端面を覆うように形成された「シール膜」(固体電解質膜40)の表面を覆うように反応防止膜50が形成され、その反応防止膜50の表面を覆うように表裏間接続部材80が形成されている。   In this example, the reaction preventing film 50 of the power generation element part A electrically connected by the front-to-back connection member 80 has all of the front-back connection member 80 and the “seal film” (that is, the solid electrolyte film 40) facing each other. It extends to the outside of the power generation element portion A so as to be interposed in the portion. In other words, at one end portion in the longitudinal direction of the support substrate 10, the reaction preventing film is formed so as to cover the surface of the “seal film” (solid electrolyte film 40) formed so as to cover the main surface and side end surfaces of the support substrate 10. 50 is formed, and a front-back connection member 80 is formed so as to cover the surface of the reaction preventing film 50.

図5及び図6に示す例では、表裏間接続部材80は、支持基板10の上下面の一方(図5における上側の主面)に形成された発電素子部Aの空気極60と、支持基板10の上下面の他方(図5における下側の主面)に形成された発電素子部Aの燃料極20(より具体的には、その燃料極20に電気的に接続されたインターコネクタ30)と、を電気的に接続している。即ち、表裏間接続部材80は、支持基板10の上下面に設けられた発電素子部間を電気的に直列に接続している。   In the example shown in FIGS. 5 and 6, the front-back connection member 80 includes the air electrode 60 of the power generation element portion A formed on one of the upper and lower surfaces of the support substrate 10 (the upper main surface in FIG. 5), and the support substrate. The fuel electrode 20 (more specifically, the interconnector 30 electrically connected to the fuel electrode 20) of the power generation element portion A formed on the other of the upper and lower surfaces (lower main surface in FIG. 5) 10. And are electrically connected. That is, the front-back connection member 80 electrically connects the power generation element portions provided on the upper and lower surfaces of the support substrate 10 in series.

以上、説明した「横縞型」のSOFCに対して、図7に示すように、支持基板10の燃料ガス流路11内に燃料ガス(水素ガス等)を流すとともに、支持基板10の上下面(特に、各空気極集電膜70)を「酸素を含むガス」(空気等)に曝す(或いは、支持基板10の上下面に沿って酸素を含むガスを流す)ことにより、固体電解質膜40の両側面間に生じる酸素分圧差によって起電力が発生する。更に、この構造体を外部の負荷に接続すると、下記(2)、(3)式に示す化学反応が起こり、電流が流れる(発電状態)。
(1/2)・O+2e→O2− (於:空気極60) …(2)
+O2−→HO+2e (於:燃料極20) …(3)
As described above, as shown in FIG. 7, the fuel gas (hydrogen gas or the like) flows through the fuel gas flow path 11 of the support substrate 10 and the upper and lower surfaces of the support substrate 10 ( In particular, by exposing each air electrode current collector film 70) to “a gas containing oxygen” (air or the like) (or flowing a gas containing oxygen along the upper and lower surfaces of the support substrate 10), the solid electrolyte membrane 40 An electromotive force is generated by a difference in oxygen partial pressure generated between the two side surfaces. Furthermore, when this structure is connected to an external load, chemical reactions shown in the following formulas (2) and (3) occur, and current flows (power generation state).
(1/2) · O 2 + 2e → O 2− (where: air electrode 60) (2)
H 2 + O 2− → H 2 O + 2e (in the fuel electrode 20) (3)

発電状態においては、図8に示すように、各組の隣り合う発電素子部A,Aについて、電流が、矢印で示すように流れる。この結果、図7に示すように、このSOFC全体から(具体的には、図7において最も手前側の発電素子部Aのインターコネクタ30と最も奥側の発電素子部Aの空気極60とを介して)電力が取り出される。   In the power generation state, as shown in FIG. 8, current flows as indicated by an arrow in each pair of adjacent power generation element portions A and A. As a result, as shown in FIG. 7, the entire SOFC (specifically, the interconnector 30 of the power generating element portion A on the front side in FIG. 7 and the air electrode 60 of the power generating element portion A on the farthest side in FIG. Power).

(製造方法)
次に、図1に示した「横縞型」のSOFCの製造方法の一例について図9〜図17を参照しながら簡単に説明する。図9〜図17において、各部材の符号の末尾の「g」は、その部材が「焼成前」であることを表す。
(Production method)
Next, an example of a method for manufacturing the “horizontal stripe type” SOFC shown in FIG. 1 will be briefly described with reference to FIGS. 9 to 17, “g” at the end of the reference numeral of each member represents that the member is “before firing”.

先ず、図9に示す形状を有する支持基板の成形体10gが作製される。この支持基板の成形体10gは、例えば、支持基板10の材料(例えば、CSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、押し出し成形、切削等の手法を利用して作製され得る。以下、図9に示す10−10線に対応する部分断面を表す図10〜図17を参照しながら説明を続ける。   First, a support substrate molded body 10g having the shape shown in FIG. 9 is produced. The molded body 10g of the support substrate is manufactured by using a method such as extrusion molding or cutting using a slurry obtained by adding a binder or the like to the material of the support substrate 10 (for example, CSZ). obtain. Hereinafter, the description will be continued with reference to FIGS. 10 to 17 showing partial cross sections corresponding to line 10-10 shown in FIG. 9.

図10に示すように、支持基板の成形体10gが作製されると、次に、図11に示すように、支持基板の成形体10gの上下面に形成された各凹部に、燃料極集電部の成形体21gがそれぞれ埋設・形成される。次いで、図12に示すように、各燃料極集電部の成形体21gの外側面に形成された各凹部に、燃料極活性部の成形体22gがそれぞれ埋設・形成される。各燃料極集電部の成形体21g、及び各燃料極活性部22gは、例えば、燃料極20の材料(例えば、NiとYSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。   When the support substrate molded body 10g is manufactured as shown in FIG. 10, next, as shown in FIG. 11, fuel electrode current collectors are formed in the recesses formed on the upper and lower surfaces of the support substrate molded body 10g. Each of the molded parts 21g is embedded and formed. Next, as shown in FIG. 12, a molded body 22g of the fuel electrode active portion is embedded and formed in each recess formed in the outer surface of the molded body 21g of each fuel electrode current collector. The molded body 21g of each fuel electrode current collector and each of the fuel electrode active parts 22g use, for example, a slurry obtained by adding a binder or the like to the powder of the material of the fuel electrode 20 (for example, Ni and YSZ), It is embedded and formed using printing methods.

続いて、図13に示すように、各燃料極集電部の成形体21gの外側面における「燃料極活性部の成形体22gが埋設された部分を除いた部分」に形成された各凹部に、インターコネクタの成形体30gがそれぞれ埋設・形成される。各インターコネクタの成形体30gは、例えば、インターコネクタ30の材料(例えば、LaCrO)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。 Subsequently, as shown in FIG. 13, in each recess formed in “a portion excluding the portion where the molded body 22 g of the fuel electrode active portion is embedded” on the outer surface of the molded body 21 g of each fuel electrode current collector. The interconnector molded bodies 30g are respectively embedded and formed. The molded body 30g of each interconnector is embedded and formed by using a slurry obtained by adding a binder or the like to the material of the interconnector 30 (for example, LaCrO 3 ), using a printing method or the like. .

次に、図14に示すように、複数の燃料極の成形体(21g+22g)及び複数のインターコネクタの成形体30gがそれぞれ埋設・形成された状態の支持基板の成形体10gにおける長手方向に延びる外周面(即ち、上下の主面、及び、両側の側端面)において複数のインターコネクタの成形体30gが形成されたそれぞれの部分の中央部を除いた全面に、固体電解質膜の成形膜40gが形成される。固体電解質膜の成形膜40gは、例えば、固体電解質膜40の材料(例えば、YSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法、ディッピング法等を利用して形成される。   Next, as shown in FIG. 14, the outer periphery extending in the longitudinal direction of the molded body 10g of the support substrate in a state where the molded body (21g + 22g) of the plurality of fuel electrodes and the molded body 30g of the plurality of interconnectors are respectively embedded and formed. A solid electrolyte membrane molding film 40g is formed on the entire surface excluding the central portion of each portion where the plurality of interconnector moldings 30g are formed on the surfaces (ie, the upper and lower main surfaces and the side end surfaces on both sides). Is done. The molded membrane 40g of the solid electrolyte membrane is formed using, for example, a printing method, a dipping method, etc., using a slurry obtained by adding a binder or the like to the powder of the material of the solid electrolyte membrane 40 (for example, YSZ). The

次に、図15に示すように、固体電解質膜の成形体40gの外側面の全域に、反応防止膜の成形膜50gが形成される。各反応防止膜の成形膜50gは、例えば、反応防止膜50の材料(例えば、GDC)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。   Next, as shown in FIG. 15, a reaction preventing film forming film 50 g is formed on the entire outer surface of the solid electrolyte film forming body 40 g. The molded film 50g of each reaction preventing film is formed using a slurry obtained by adding a binder or the like to the powder of the material (for example, GDC) of the reaction preventing film 50, using a printing method or the like.

そして、このように種々の成形膜が形成された状態の支持基板の成形体10gが、空気中にて1500℃で3時間焼成される。これにより、図1に示したSOFCにおいて空気極60及び空気極集電膜70が形成されていない状態の構造体が得られる。   Then, 10 g of the support substrate molded body in which various molded films are thus formed is fired in air at 1500 ° C. for 3 hours. As a result, a structure in which the air electrode 60 and the air electrode current collector film 70 are not formed in the SOFC shown in FIG. 1 is obtained.

次に、図16に示すように、各反応防止膜50の外側面に、空気極の成形膜60gが形成される。各空気極の成形膜60gは、例えば、空気極60の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。   Next, as shown in FIG. 16, an air electrode forming film 60 g is formed on the outer surface of each reaction preventing film 50. The molded film 60g of each air electrode is formed using a slurry obtained by adding a binder or the like to the powder of the material of the air electrode 60 (for example, LSCF), using a printing method or the like.

次に、図17に示すように、各組の隣り合う発電素子部について、一方の発電素子部の空気極の成形膜60gと、他方の発電素子部のインターコネクタ30とを跨ぐように、空気極の成形膜60g、固体電解質膜40、及び、インターコネクタ30の外側面に、空気極集電膜の成形膜70gが形成される。各空気極集電膜の成形膜70gは、例えば、空気極集電膜70の材料(例えば、LSCF、La(Ni、Fe、Cu)O)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。 Next, as shown in FIG. 17, for each pair of adjacent power generation element portions, air is formed so as to straddle the air electrode forming film 60 g of one power generation element portion and the interconnector 30 of the other power generation element portion. On the outer surface of the electrode forming film 60 g, the solid electrolyte film 40, and the interconnector 30, the air electrode current collecting film forming film 70 g is formed. The molded film 70g of each air electrode current collector film is, for example, a slurry obtained by adding a binder or the like to the powder of the material of the air electrode current collector film 70 (for example, LSCF, La (Ni, Fe, Cu) O 3 ). Is formed using a printing method or the like.

また、支持基板10の長手方向の一端部においてその周囲を周回するように、表裏間接続部材の成形膜が形成される(図5、及び、図6を参照)。表裏間接続部材の成形膜は、例えば、空気極集電膜70の材料(例えば、LSCF、La(Ni、Fe、Cu)O)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。 In addition, a molded film of the front-back connection member is formed so as to go around the periphery of one end of the support substrate 10 in the longitudinal direction (see FIGS. 5 and 6). For example, the molded film of the front-back connection member is made of a slurry obtained by adding a binder or the like to the powder of the material of the air electrode current collector film 70 (for example, LSCF, La (Ni, Fe, Cu) O 3 ). It is formed using a printing method or the like.

そして、このように成形膜60g、70g、並びに、表裏間接続部材の成形膜が形成された状態の支持基板10が、空気中にて1050℃で3時間焼成される。これにより、図1に示したSOFCが得られる。以上、図1に示したSOFCの製造方法の一例について説明した。   And the support substrate 10 in the state in which the molded films 60g and 70g and the molded film of the front-back connection member are thus formed is baked in air at 1050 ° C. for 3 hours. Thereby, the SOFC shown in FIG. 1 is obtained. In the above, an example of the manufacturing method of SOFC shown in FIG. 1 was demonstrated.

なお、この時点では、酸素含有雰囲気での焼成により、支持基板10、及び燃料極20中のNi成分が、NiOとなっている。従って、燃料極20の導電性を獲得するため、その後、支持基板10側から還元性の燃料ガスが流され、NiOが800〜1000℃で1〜10時間に亘って還元処理される。なお、この還元処理は発電時に行われてもよい。   At this time, the Ni component in the support substrate 10 and the fuel electrode 20 is NiO by firing in an oxygen-containing atmosphere. Therefore, in order to acquire the conductivity of the fuel electrode 20, thereafter, reducing fuel gas is flowed from the support substrate 10 side, and NiO is reduced at 800 to 1000 ° C. for 1 to 10 hours. This reduction process may be performed during power generation.

(作用・効果)
以上、説明したように、上記本発明の実施形態に係る「横縞型」のSOFCでは、支持基板10の長手方向の一端部にて、支持基板10の主面及び側端面を覆うように「シール膜」(固体電解質膜40)が形成され、その「シール膜」の表面を覆うように反応防止膜50が形成され、その反応防止膜50の表面を覆うように表裏間接続部材80が形成されている。従って、表裏間接続部材80は、「シール膜」により区画・形成された「空気が流通する領域」側に位置する。即ち、表裏間接続部材80が曝される雰囲気は、安定して酸化雰囲気に維持され得る。従って、「背景技術」の欄で述べたような、「表裏間接続部材80が曝される雰囲気が還元雰囲気と酸化雰囲気との間で変化することに起因するクラックの発生」などの問題が発生しない。この結果、支持基板10の表裏に設けられた発電素子部A同士を電気的に接続する部材の信頼性が高くなる。
(Action / Effect)
As described above, in the “horizontal stripe type” SOFC according to the embodiment of the present invention, the “sealing” is performed so as to cover the main surface and the side end surface of the support substrate 10 at one end portion in the longitudinal direction of the support substrate 10. The membrane ”(solid electrolyte membrane 40) is formed, the reaction preventing film 50 is formed so as to cover the surface of the“ seal membrane ”, and the front-back connection member 80 is formed so as to cover the surface of the reaction preventing film 50. ing. Therefore, the front-back connection member 80 is located on the “area where air flows” defined and formed by the “seal film”. That is, the atmosphere to which the front-back connection member 80 is exposed can be stably maintained in an oxidizing atmosphere. Therefore, problems such as “the occurrence of cracks caused by the change in the atmosphere to which the front-to-back connecting member 80 is exposed between the reducing atmosphere and the oxidizing atmosphere” as described in the section “Background Art” occur. do not do. As a result, the reliability of the member that electrically connects the power generation element portions A provided on the front and back of the support substrate 10 is increased.

<表裏間接続部材におけるジュール熱に起因するクラックの発生の頻度の抑制>
支持基板10の表裏の主面に設けられた発電素子部A間における「表裏間接続部材80によって形成される電気の通り道(電気パス)」の距離は、隣り合う発電素子部A間における「空気極集電膜70によって形成される電気の通り道(電気パス)」の距離よりも長くなる。従って、表裏間接続部材80の電気抵抗が比較的大きくなり、通電時において表裏間接続部材80から発生する熱(ジュール熱)が比較的大きくなり易い。このことに起因して、表裏間接続部材80(における特に支持基板10の側端面を覆う部分)に過大な熱応力が局所的に発生してクラックが発生し易い。
<Suppression of the frequency of occurrence of cracks due to Joule heat in the connecting member between the front and back>
The distance of the “electric path (electric path) formed by the front-back connection member 80” between the power generation element portions A provided on the front and back main surfaces of the support substrate 10 is “air” between the adjacent power generation element portions A. It becomes longer than the distance of the “electric path (electric path)” formed by the pole current collecting film 70. Therefore, the electrical resistance of the front-to-back connection member 80 is relatively large, and the heat (Joule heat) generated from the front-back connection member 80 during energization tends to be relatively large. As a result, excessive thermal stress is locally generated in the front-back connection member 80 (particularly the portion covering the side end surface of the support substrate 10), and cracks are likely to occur.

《第1の態様》
このため、上記実施形態の第1の態様では、表裏間接続部材80の気孔率が、空気極集電膜70の気孔率より小さい。この第1の態様によれば、表裏間接続部材80の気孔率を小さくすることができる(典型的には、表裏間接続部材80が緻密質材料で構成され得る)。この結果、表裏間接続部材80の内部における電気の通り道の断面積を大きくすることができて、表裏間接続部材80の電気抵抗を小さくすることができる。
<< First Aspect >>
For this reason, in the 1st aspect of the said embodiment, the porosity of the front-back connection member 80 is smaller than the porosity of the air electrode current collection film | membrane 70. FIG. According to the first aspect, the porosity of the front-back connection member 80 can be reduced (typically, the front-back connection member 80 can be formed of a dense material). As a result, the cross-sectional area of the electrical path inside the front-to-back connection member 80 can be increased, and the electrical resistance of the front-back connection member 80 can be reduced.

この第1の態様では、具体的には、例えば、空気極集電膜70の気孔率が30〜45%に調整され、表裏間接続部材80の気孔率が10〜30%に調整され得る。なお、気孔率の調整は、例えば、スラリー内に含まれる造孔剤の粒径及び量を調整すること等によって達成され得る。   Specifically, in the first aspect, for example, the porosity of the air electrode current collector film 70 can be adjusted to 30 to 45%, and the porosity of the front-back connection member 80 can be adjusted to 10 to 30%. The porosity can be adjusted, for example, by adjusting the particle size and amount of the pore-forming agent contained in the slurry.

《第2の態様》
或いは、上記実施形態の第2の態様では、表裏間接続部材80の厚さが、空気極集電膜70の厚さより大きい。より具体的には、表裏間接続部材80の厚さの最小値(図5及び、後述する図18におけるT2を参照)が、空気極集電膜70の厚さの最小値(図5及び、後述する図18におけるT1を参照)より大きい。この第2の態様によれば、前記第1の態様と同様、表裏間接続部材80の内部における電気の通り道の断面積を大きくすることができて、表裏間接続部材80の電気抵抗を小さくすることができる。
<< Second aspect >>
Alternatively, in the second aspect of the above embodiment, the thickness of the front-back connection member 80 is greater than the thickness of the air electrode current collector film 70. More specifically, the minimum value of the thickness of the front-back connection member 80 (see T2 in FIG. 5 and FIG. 18 described later) is the minimum value of the thickness of the air electrode current collector film 70 (FIGS. 5 and 5). (See T1 in FIG. 18 described later). According to the second aspect, similarly to the first aspect, the cross-sectional area of the electrical path inside the front-to-back connection member 80 can be increased, and the electrical resistance of the front-back connection member 80 is reduced. be able to.

この第2の態様では、具体的には、例えば、空気極集電膜70の厚さ(の最小値)が30〜80μmに設定され、表裏間接続部材80の厚さ(の最小値)が80〜200μmに設定され得る。なお、厚さの調整は、成形膜の厚さを調整することによって達成され得る。   Specifically, in the second aspect, for example, the thickness (the minimum value) of the air electrode current collector film 70 is set to 30 to 80 μm, and the thickness (the minimum value) of the front-back connection member 80 is set to be 30 μm. It can be set to 80-200 micrometers. The thickness adjustment can be achieved by adjusting the thickness of the molded film.

《第3の態様》
或いは、上記実施形態の第3の態様では、表裏間接続部材80の導電率が、空気極集電膜70の導電率より大きい。この第3の態様によれば、表裏間接続部材80の導電率を大きくすることができる。この結果、表裏間接続部材80の電気抵抗を小さくすることができる。
<< Third aspect >>
Alternatively, in the third aspect of the above embodiment, the conductivity of the front-back connection member 80 is greater than the conductivity of the air electrode current collector film 70. According to the third aspect, the conductivity of the front-back connection member 80 can be increased. As a result, the electrical resistance of the front-back connection member 80 can be reduced.

この第3の態様では、具体的には、例えば、空気極集電膜70の導電率が200〜500S/cm(750℃)に設定され、表裏間接続部材80の導電率が500〜800S/cm(750℃)に設定され得る。例えば、表裏間接続部材80、及び、空気極集電膜70が共に、La(Ni、Fe、Cu)Oで構成される場合(上記(1)式の化学式で表わされる場合)、導電率の調整は、Cuの含有率を調整すること等によって達成され得る(Cuの含有率が高いほど、導電率が高くなる)。 In the third aspect, specifically, for example, the conductivity of the air electrode current collector film 70 is set to 200 to 500 S / cm (750 ° C.), and the conductivity of the front-back connection member 80 is set to 500 to 800 S / cm. cm (750 ° C.). For example, when both the front and back connecting member 80 and the air electrode current collector film 70 are made of La (Ni, Fe, Cu) O 3 (when expressed by the chemical formula of the above formula (1)), the conductivity This adjustment can be achieved by adjusting the Cu content, etc. (the higher the Cu content, the higher the conductivity).

なお、上記実施形態では、上記第1〜第3の態様のうち、何れか一つのみが備えられていてもよいし、何れか2つが備えられていてもよいし、3つ全てが備えられていてもよい。   In the embodiment, only one of the first to third aspects may be provided, or any two may be provided, or all three may be provided. It may be.

また、上記実施形態では、表裏間接続部材80と「シール膜」とが向かい合う全ての部分において、反応防止膜50が介装されている。加えて、空気極集電膜70と「シール膜」とが向かい合う全ての部分においても、反応防止膜50が介装されている。   Further, in the above-described embodiment, the reaction preventing film 50 is interposed in all the portions where the front-back connection member 80 and the “seal film” face each other. In addition, the reaction preventing film 50 is interposed in all the portions where the air electrode current collecting film 70 and the “seal film” face each other.

上記構成によれば、空気極集電膜70(Sr又はLaを含む)とシール膜(ZrOを含む)との間、並びに、表裏間接続部材80(Sr又はLaを含む)とシール膜(ZrOを含む)との間に反応防止膜50(ZrOを含まない)が介装される。従って、係る反応防止膜50の介装によって、空気極集電膜70とシール膜との間、並びに、表裏間接続部材80とシール膜との間において、「Sr又はLa」とZrOとの反応の発生が抑制され得る。この結果、空気極集電膜70とシール膜との間、並びに、表裏間接続部材80とシール膜との間におけるSrZrOやLaZrの反応層の形成が抑制されて、空気極集電膜70とシール膜とが向かい合う部分、並びに、表裏間接続部材80とシール膜とが向かい合う部分において剥離が発生する事態が抑制され得る。 According to the above configuration, the air current collector film 70 (including Sr or La) and the seal film (including ZrO 2 ), and the front-back connection member 80 (including Sr or La) and the seal film ( (Including ZrO 2 ) is interposed a reaction preventing film 50 (not including ZrO 2 ). Accordingly, the interposition of the reaction preventing film 50 causes “Sr or La” and ZrO 2 between the air electrode current collecting film 70 and the seal film and between the front and back connecting member 80 and the seal film. The occurrence of reaction can be suppressed. As a result, formation of a reaction layer of SrZrO 3 or La 2 Zr 2 O 7 between the air electrode current collector film 70 and the seal film and between the front-back connection member 80 and the seal film is suppressed, and the air It is possible to suppress a situation in which peeling occurs at a portion where the electrode current collecting film 70 and the seal film face each other and a portion where the front-back connection member 80 and the seal film face each other.

また、支持基板10の上下面に形成されている、燃料極20(集電部21)を埋設するための複数の凹部12のそれぞれが、全周に亘って支持基板10の材料からなる周方向に閉じた側壁を有している。換言すれば、支持基板10において各凹部12を囲む枠体がそれぞれ形成されている。従って、この構造体は、支持基板10が外力を受けた場合に変形し難い。   Further, the circumferential direction in which each of the plurality of recesses 12 embedded in the upper and lower surfaces of the support substrate 10 for embedding the fuel electrode 20 (current collector 21) is made of the material of the support substrate 10 over the entire circumference. Have closed side walls. In other words, the support body 10 is formed with a frame surrounding each recess 12. Therefore, this structure is not easily deformed when the support substrate 10 receives an external force.

また、支持基板10の各凹部12内に燃料極20(集電部21+活性部22)及びインターコネクタ30等の部材が隙間なく充填・埋設された状態で、支持基板10と前記埋設された部材とが共焼結される。従って、部材間の接合性が高く且つ信頼性の高い焼結体が得られる。   In addition, the support substrate 10 and the embedded member are filled in the recesses 12 of the support substrate 10 such as the fuel electrode 20 (current collector 21 + active portion 22) and the interconnector 30 without any gaps. And are co-sintered. Therefore, a sintered body having high bondability between members and high reliability can be obtained.

また、インターコネクタ30が、燃料極集電部21の外側面に形成された凹部21bに埋設され、この結果、直方体状のインターコネクタ30の4つの側面と底面とが凹部21b内で燃料極集電部21と接触している。従って、燃料極集電部21の外側平面上に直方体状のインターコネクタ30が積層される(接触する)構成が採用される場合に比べて、燃料極20(集電部21)とインターコネクタ30との界面の面積を大きくできる。従って、燃料極20とインターコネクタ30との間における電子伝導性を高めることができ、この結果、燃料電池の発電出力を高めることができる。   Further, the interconnector 30 is embedded in a recess 21b formed on the outer surface of the fuel electrode current collector 21, and as a result, the four side surfaces and the bottom surface of the rectangular parallelepiped interconnector 30 are connected to the fuel electrode in the recess 21b. It is in contact with the electric part 21. Therefore, the fuel electrode 20 (the current collector 21) and the interconnector 30 are compared to the case where a configuration in which the rectangular parallelepiped interconnector 30 is laminated (contacted) on the outer plane of the fuel electrode current collector 21 is employed. The area of the interface with can be increased. Therefore, the electronic conductivity between the fuel electrode 20 and the interconnector 30 can be increased, and as a result, the power generation output of the fuel cell can be increased.

また、上記実施形態では、平板状の支持基板10の上下面のそれぞれに、複数の発電素子部Aが設けられている。これにより、支持基板の片側面のみに複数の発電素子部が設けられる場合に比して、構造体中における発電素子部の数を多くでき、燃料電池の発電出力を高めることができる。   Further, in the above-described embodiment, a plurality of power generation element portions A are provided on each of the upper and lower surfaces of the flat support substrate 10. Thereby, compared with the case where a plurality of power generation element portions are provided only on one side surface of the support substrate, the number of power generation element portions in the structure can be increased, and the power generation output of the fuel cell can be increased.

また、上記実施形態では、固体電解質膜40が、燃料極20(集電部21+活性部22)の外側面、インターコネクタ30の外側面における長手方向の両側端部、及び支持基板10の主面を覆っている。ここで、燃料極20の外側面とインターコネクタ30の外側面と支持基板10の主面との間で段差が形成されていない。従って、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。   Further, in the above embodiment, the solid electrolyte membrane 40 includes the outer surface of the fuel electrode 20 (current collector 21 + active portion 22), both end portions in the longitudinal direction of the outer surface of the interconnector 30, and the main surface of the support substrate 10. Covering. Here, no step is formed between the outer surface of the fuel electrode 20, the outer surface of the interconnector 30, and the main surface of the support substrate 10. Therefore, the solid electrolyte membrane 40 is flattened. As a result, compared with the case where a step is formed in the solid electrolyte membrane 40, the generation of cracks in the solid electrolyte membrane 40 due to stress concentration can be suppressed, and the gas sealing function of the solid electrolyte membrane 40 is reduced. Can be suppressed.

なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、表裏間接続部材80は、支持基板10の長手方向の一端部に形成されているが、支持基板10の長手方向の中央部に形成されてもよい。また、表裏間接続部材80は、支持基板10の長手方向の一端部にて支持基板10の周囲を周回するように設けられているが、支持基板10の上下面に設けられた発電素子部間の電気的な接続が確保される限りにおいて、表裏間接続部材80が、支持基板10の周囲を周回しなくてもよい。   In addition, this invention is not limited to the said embodiment, A various modification can be employ | adopted within the scope of the present invention. For example, in the above-described embodiment, the front-back connection member 80 is formed at one end in the longitudinal direction of the support substrate 10, but may be formed at the center in the longitudinal direction of the support substrate 10. The front-back connection member 80 is provided so as to circulate around the support substrate 10 at one end in the longitudinal direction of the support substrate 10, but between the power generating element portions provided on the upper and lower surfaces of the support substrate 10. As long as the electrical connection is secured, the front-back connection member 80 does not have to go around the support substrate 10.

また、上記実施形態では、図5及び図6から理解できるように、表裏間接続部材80が、支持基板10の上下面の一方(図5における上側の主面)に形成された発電素子部Aの空気極60と、支持基板10の上下面の他方(図5における下側の主面)に形成された発電素子部Aの燃料極20と、を電気的に直列に接続する構成が採用されている。   Moreover, in the said embodiment, as can be understood from FIG.5 and FIG.6, the power generating element part A in which the front-back connection member 80 was formed in one of the upper and lower surfaces of the support substrate 10 (upper main surface in FIG. 5). The air electrode 60 and the fuel electrode 20 of the power generating element part A formed on the other of the upper and lower surfaces of the support substrate 10 (the lower main surface in FIG. 5) are electrically connected in series. ing.

これに対し、図5及び図6にそれぞれ対応する図18及び図19に示すように、表裏間接続部材80が、支持基板10の上下面の一方(図18における上側の主面)に形成された発電素子部Aの空気極60と、支持基板10の上下面の他方(図18における下側の主面)に形成された発電素子部Aの空気極60と、を電気的に並列に接続する構成が採用されてもよい。   On the other hand, as shown in FIGS. 18 and 19 corresponding to FIGS. 5 and 6, the front-back connection member 80 is formed on one of the upper and lower surfaces of the support substrate 10 (upper main surface in FIG. 18). The air electrode 60 of the power generating element part A and the air electrode 60 of the power generating element part A formed on the other of the upper and lower surfaces of the support substrate 10 (the lower main surface in FIG. 18) are electrically connected in parallel. The structure to do may be employ | adopted.

また、上記実施形態では、図9等に示すように、支持基板10に形成された凹部12の平面形状(支持基板10の主面に垂直の方向からみた場合の形状)が、長方形になっているが、例えば、正方形、円形、楕円形、長穴形状等であってもよい。   Moreover, in the said embodiment, as shown in FIG. 9 etc., the planar shape (shape when it sees from the direction perpendicular | vertical to the main surface of the support substrate 10) of the recessed part 12 formed in the support substrate 10 becomes a rectangle. However, it may be, for example, a square, a circle, an ellipse, or a long hole shape.

また、上記実施形態においては、各凹部12にはインターコネクタ30の全体が埋設されているが、インターコネクタ30の一部のみが各凹部12に埋設され、インターコネクタ30の残りの部分が凹部12の外に突出(即ち、支持基板10の主面から突出)していてもよい。   In the above embodiment, the entire interconnector 30 is embedded in each recess 12, but only a part of the interconnector 30 is embedded in each recess 12, and the remaining portion of the interconnector 30 is recessed 12. May protrude outside (that is, protrude from the main surface of the support substrate 10).

また、上記実施形態においては、燃料極20が燃料極集電部21と燃料極活性部22との2層で構成されているが、燃料極20が燃料極活性部22に相当する1層で構成されてもよい。   Further, in the above embodiment, the fuel electrode 20 is composed of two layers of the fuel electrode current collector 21 and the fuel electrode active portion 22, but the fuel electrode 20 is a single layer corresponding to the fuel electrode active portion 22. It may be configured.

また、上記実施形態においては、固体電解質膜40における「発電素子部Aの内側の部分」(燃料極活性部22と反応防止膜50との間の部分)と「発電素子部Aの外側の部分」とが同じ組成で構成されているが、異なる組成で構成されてもよい。同様に、反応防止膜50における「発電素子部Aの内側の部分」(固体電解質膜40と空気極60との間の部分)と「発電素子部Aの外側の部分」とが同じ組成で構成されているが、異なる組成で構成されてもよい。   Further, in the above-described embodiment, “a part inside the power generation element part A” (a part between the fuel electrode active part 22 and the reaction preventing film 50) and “a part outside the power generation element part A” in the solid electrolyte membrane 40. Are composed of the same composition, but may be composed of different compositions. Similarly, the “part on the inner side of the power generation element part A” (the part between the solid electrolyte film 40 and the air electrode 60) and the “part on the outer side of the power generation element part A” in the reaction preventing film 50 are configured with the same composition. However, it may be composed of different compositions.

10…支持基板、11…燃料ガス流路、12…凹部、20…燃料極、21…燃料極集電部、21a、21b…凹部、22…燃料極活性部、30…インターコネクタ、40…固体電解質膜、50…反応防止膜、60…空気極、70…空気極集電膜、80…表裏間接続部材、A…発電素子部   DESCRIPTION OF SYMBOLS 10 ... Support substrate, 11 ... Fuel gas flow path, 12 ... Recessed part, 20 ... Fuel electrode, 21 ... Fuel electrode current collecting part, 21a, 21b ... Recessed part, 22 ... Fuel electrode active part, 30 ... Interconnector, 40 ... Solid Electrolyte membrane, 50 ... Reaction prevention membrane, 60 ... Air electrode, 70 ... Air electrode current collector membrane, 80 ... Front-back connecting member, A ... Power generation element part

Claims (8)

ガス流路が内部に形成された平板状の電子伝導性を有さない多孔質の支持基板と、
前記支持基板の表裏の各主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質膜、及び空気極がこの順で積層されてなる複数の発電素子部と、
前記支持基板の表裏の各主面において隣り合う前記発電素子部の間に設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部と、
前記支持基板の表裏の各主面における前記発電素子部が設けられた領域を除いた部分、及び、前記支持基板の側端面を覆うように設けられ、前記ガス流路を経て前記燃料極に供給されるガスと、前記空気極に供給されるガスと、の混合を防止する、緻密質材料からなるシール膜と、
を備えた燃料電池であって、
前記シール膜における前記支持基板の側端面を覆う部分を覆うように設けられ、前記支持基板の表裏の主面に設けられた前記発電素子部同士を電気的に接続する、導電性セラミックス材料で構成された表裏間接続部材を備え、
前記電気的接続部は、前記空気極と接続するとともに多孔質材料で構成された第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成され、
前記表裏間接続部材の気孔率が、前記電気的接続の第1部分の気孔率より小さく、前記表裏間接続部材の気孔率が10〜30%であり、前記電気的接続の第1部分の気孔率が30〜45%である、燃料電池。
A porous support substrate having a flat plate-like electron conductivity, in which a gas flow path is formed;
A plurality of power generating element portions each provided at a plurality of positions separated from each other on the main surfaces of the front and back surfaces of the support substrate, wherein at least a fuel electrode, a solid electrolyte membrane, and an air electrode are laminated in this order;
An electrical connecting portion that is provided between the adjacent power generation element portions on each of the main surfaces of the support substrate, and electrically connects one fuel electrode and the other air electrode of the adjacent power generation element portions; ,
Provided to cover the main surface on the front and back surfaces of the support substrate excluding the region where the power generation element portion is provided and the side end surface of the support substrate, and supply the fuel electrode via the gas flow path A sealing film made of a dense material that prevents mixing of the gas to be supplied and the gas supplied to the air electrode;
A fuel cell comprising:
Constructed of a conductive ceramic material that is provided so as to cover a portion of the seal film that covers the side end surface of the support substrate, and that electrically connects the power generating element portions provided on the main surfaces of the front and back surfaces of the support substrate. Provided with a connected member between the front and back,
The electrical connection portion is connected to the air electrode and is made of a porous material, and the second portion is connected to the fuel electrode and is connected to the first portion and made of a dense material. Part, and
Porosity of the front and rear between the connecting member is smaller than the porosity of the first portion of the electrical connections, the porosity of the front and rear between the connecting member is 10-30%, the first portion of the electrical connection section A fuel cell having a porosity of 30 to 45%.
ガス流路が内部に形成された平板状の電子伝導性を有さない多孔質の支持基板と、
前記支持基板の表裏の各主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質膜、及び空気極がこの順で積層されてなる複数の発電素子部と、
前記支持基板の表裏の各主面において隣り合う前記発電素子部の間に設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部と、
前記支持基板の表裏の各主面における前記発電素子部が設けられた領域を除いた部分、及び、前記支持基板の側端面を覆うように設けられ、前記ガス流路を経て前記燃料極に供給されるガスと、前記空気極に供給されるガスと、の混合を防止する、緻密質材料からなるシール膜と、
を備えた燃料電池であって、
前記シール膜における前記支持基板の側端面を覆う部分を覆うように設けられ、前記支持基板の表裏の主面に設けられた前記発電素子部同士を電気的に接続する、導電性セラミックス材料で構成された表裏間接続部材を備え、
前記電気的接続部は、前記空気極と接続するとともに多孔質材料で構成された第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成され、
前記表裏間接続部材の導電率が、前記電気的接続の第1部分の導電率より大きく、
前記表裏間接続部材の導電率が750℃にて500〜800S/cmであり、前記電気的接続の第1部分の導電率が750℃にて200〜500S/cmである、燃料電池。
A porous support substrate having a flat plate-like electron conductivity, in which a gas flow path is formed;
A plurality of power generating element portions each provided at a plurality of positions separated from each other on the main surfaces of the front and back surfaces of the support substrate, wherein at least a fuel electrode, a solid electrolyte membrane, and an air electrode are laminated in this order;
An electrical connecting portion that is provided between the adjacent power generation element portions on each of the main surfaces of the support substrate, and electrically connects one fuel electrode and the other air electrode of the adjacent power generation element portions; ,
Provided to cover the main surface on the front and back surfaces of the support substrate excluding the region where the power generation element portion is provided and the side end surface of the support substrate, and supply the fuel electrode via the gas flow path A sealing film made of a dense material that prevents mixing of the gas to be supplied and the gas supplied to the air electrode;
A fuel cell comprising:
Constructed of a conductive ceramic material that is provided so as to cover a portion of the seal film that covers the side end surface of the support substrate, and that electrically connects the power generating element portions provided on the main surfaces of the front and back surfaces of the support substrate. Provided with a connected member between the front and back,
The electrical connection portion is connected to the air electrode and is made of a porous material, and the second portion is connected to the fuel electrode and is connected to the first portion and made of a dense material. Part, and
The conductivity of the front-back connection member is greater than the conductivity of the first portion of the electrical connection portion ,
The fuel cell in which the conductivity of the connecting member between the front and back surfaces is 500 to 800 S / cm at 750 ° C., and the conductivity of the first portion of the electrical connection portion is 200 to 500 S / cm at 750 ° C.
ガス流路が内部に形成された平板状の電子伝導性を有さない多孔質の支持基板と、
前記支持基板の表裏の各主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質膜、及び空気極がこの順で積層されてなる複数の発電素子部と、
前記支持基板の表裏の各主面において隣り合う前記発電素子部の間に設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部と、
前記支持基板の表裏の各主面における前記発電素子部が設けられた領域を除いた部分、及び、前記支持基板の側端面を覆うように設けられ、前記ガス流路を経て前記燃料極に供給されるガスと、前記空気極に供給されるガスと、の混合を防止する、緻密質材料からなるシール膜と、
を備えた燃料電池であって、
前記シール膜における前記支持基板の側端面を覆う部分を覆うように設けられ、前記支持基板の表裏の主面に設けられた前記発電素子部同士を電気的に接続する、導電性セラミックス材料で構成された表裏間接続部材を備え、
前記電気的接続部は、前記空気極と接続するとともに多孔質材料で構成された第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成され、
前記表裏間接続部材の気孔率が、前記電気的接続の第1部分の気孔率より小さく、前記表裏間接続部材の気孔率が10〜30%であり、前記電気的接続の第1部分の気孔率が30〜45%であり、
前記表裏間接続部材の厚さが、前記電気的接続の第1部分の厚さより大きい、燃料電池。
A porous support substrate having a flat plate-like electron conductivity, in which a gas flow path is formed;
A plurality of power generating element portions each provided at a plurality of positions separated from each other on the main surfaces of the front and back surfaces of the support substrate, wherein at least a fuel electrode, a solid electrolyte membrane, and an air electrode are laminated in this order;
An electrical connecting portion that is provided between the adjacent power generation element portions on each of the main surfaces of the support substrate, and electrically connects one fuel electrode and the other air electrode of the adjacent power generation element portions; ,
Provided to cover the main surface on the front and back surfaces of the support substrate excluding the region where the power generation element portion is provided and the side end surface of the support substrate, and supply the fuel electrode via the gas flow path A sealing film made of a dense material that prevents mixing of the gas to be supplied and the gas supplied to the air electrode;
A fuel cell comprising:
Constructed of a conductive ceramic material that is provided so as to cover a portion of the seal film that covers the side end surface of the support substrate, and that electrically connects the power generating element portions provided on the main surfaces of the front and back surfaces of the support substrate. Provided with a connected member between the front and back,
The electrical connection portion is connected to the air electrode and is made of a porous material, and the second portion is connected to the fuel electrode and is connected to the first portion and made of a dense material. Part, and
Porosity of the front and rear between the connecting member is smaller than the porosity of the first portion of the electrical connections, the porosity of the front and rear between the connecting member is 10-30%, the first portion of the electrical connection section Has a porosity of 30-45%,
The fuel cell, wherein a thickness of the front-back connection member is larger than a thickness of the first portion of the electrical connection portion .
ガス流路が内部に形成された平板状の電子伝導性を有さない多孔質の支持基板と、
前記支持基板の表裏の各主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質膜、及び空気極がこの順で積層されてなる複数の発電素子部と、
前記支持基板の表裏の各主面において隣り合う前記発電素子部の間に設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部と、
前記支持基板の表裏の各主面における前記発電素子部が設けられた領域を除いた部分、及び、前記支持基板の側端面を覆うように設けられ、前記ガス流路を経て前記燃料極に供給されるガスと、前記空気極に供給されるガスと、の混合を防止する、緻密質材料からなるシール膜と、
を備えた燃料電池であって、
前記シール膜における前記支持基板の側端面を覆う部分を覆うように設けられ、前記支持基板の表裏の主面に設けられた前記発電素子部同士を電気的に接続する、導電性セラミックス材料で構成された表裏間接続部材を備え、
前記電気的接続部は、前記空気極と接続するとともに多孔質材料で構成された第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成され、
前記表裏間接続部材の気孔率が、前記電気的接続の第1部分の気孔率より小さく、前記表裏間接続部材の気孔率が10〜30%であり、前記電気的接続の第1部分の気孔率が30〜45%であり、
前記表裏間接続部材の導電率が、前記電気的接続の第1部分の導電率より大きく、前記表裏間接続部材の導電率が750℃にて500〜800S/cmであり、前記電気的接続の第1部分の導電率が750℃にて200〜500S/cmである、燃料電池。
A porous support substrate having a flat plate-like electron conductivity, in which a gas flow path is formed;
A plurality of power generating element portions each provided at a plurality of positions separated from each other on the main surfaces of the front and back surfaces of the support substrate, wherein at least a fuel electrode, a solid electrolyte membrane, and an air electrode are laminated in this order;
An electrical connecting portion that is provided between the adjacent power generation element portions on each of the main surfaces of the support substrate, and electrically connects one fuel electrode and the other air electrode of the adjacent power generation element portions; ,
Provided to cover the main surface on the front and back surfaces of the support substrate excluding the region where the power generation element portion is provided and the side end surface of the support substrate, and supply the fuel electrode via the gas flow path A sealing film made of a dense material that prevents mixing of the gas to be supplied and the gas supplied to the air electrode;
A fuel cell comprising:
Constructed of a conductive ceramic material that is provided so as to cover a portion of the seal film that covers the side end surface of the support substrate, and that electrically connects the power generating element portions provided on the main surfaces of the front and back surfaces of the support substrate. Provided with a connected member between the front and back,
The electrical connection portion is connected to the air electrode and is made of a porous material, and the second portion is connected to the fuel electrode and is connected to the first portion and made of a dense material. Part, and
Porosity of the front and rear between the connecting member is smaller than the porosity of the first portion of the electrical connections, the porosity of the front and rear between the connecting member is 10-30%, the first portion of the electrical connection section Has a porosity of 30-45%,
The electrical conductivity of the front-back connection member is greater than the electrical conductivity of the first portion of the electrical connection portion , and the electrical conductivity of the front-back connection member is 500-800 S / cm at 750 ° C., and the electrical connection The fuel cell whose electrical conductivity of the 1st part of a part is 200-500 S / cm at 750 degreeC.
ガス流路が内部に形成された平板状の電子伝導性を有さない多孔質の支持基板と、
前記支持基板の表裏の各主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質膜、及び空気極がこの順で積層されてなる複数の発電素子部と、
前記支持基板の表裏の各主面において隣り合う前記発電素子部の間に設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部と、
前記支持基板の表裏の各主面における前記発電素子部が設けられた領域を除いた部分、及び、前記支持基板の側端面を覆うように設けられ、前記ガス流路を経て前記燃料極に供給されるガスと、前記空気極に供給されるガスと、の混合を防止する、緻密質材料からなるシール膜と、
を備えた燃料電池であって、
前記シール膜における前記支持基板の側端面を覆う部分を覆うように設けられ、前記支持基板の表裏の主面に設けられた前記発電素子部同士を電気的に接続する、導電性セラミックス材料で構成された表裏間接続部材を備え、
前記電気的接続部は、前記空気極と接続するとともに多孔質材料で構成された第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成され、
前記表裏間接続部材の厚さが、前記電気的接続の第1部分の厚さより大きく、
前記表裏間接続部材の導電率が、前記電気的接続の第1部分の導電率より大きく、前記表裏間接続部材の導電率が750℃にて500〜800S/cmであり、前記電気的接続の第1部分の導電率が750℃にて200〜500S/cmである、燃料電池。
A porous support substrate having a flat plate-like electron conductivity, in which a gas flow path is formed;
A plurality of power generating element portions each provided at a plurality of positions separated from each other on the main surfaces of the front and back surfaces of the support substrate, wherein at least a fuel electrode, a solid electrolyte membrane, and an air electrode are laminated in this order;
An electrical connecting portion that is provided between the adjacent power generation element portions on each of the main surfaces of the support substrate, and electrically connects one fuel electrode and the other air electrode of the adjacent power generation element portions; ,
Provided to cover the main surface on the front and back surfaces of the support substrate excluding the region where the power generation element portion is provided and the side end surface of the support substrate, and supply the fuel electrode via the gas flow path A sealing film made of a dense material that prevents mixing of the gas to be supplied and the gas supplied to the air electrode;
A fuel cell comprising:
Constructed of a conductive ceramic material that is provided so as to cover a portion of the seal film that covers the side end surface of the support substrate, and that electrically connects the power generating element portions provided on the main surfaces of the front and back surfaces of the support substrate. Provided with a connected member between the front and back,
The electrical connection portion is connected to the air electrode and is made of a porous material, and the second portion is connected to the fuel electrode and is connected to the first portion and made of a dense material. Part, and
The thickness of the front-back connection member is greater than the thickness of the first portion of the electrical connection portion ,
The electrical conductivity of the front-back connection member is greater than the electrical conductivity of the first portion of the electrical connection portion , and the electrical conductivity of the front-back connection member is 500-800 S / cm at 750 ° C., and the electrical connection The fuel cell whose electrical conductivity of the 1st part of a part is 200-500 S / cm at 750 degreeC.
ガス流路が内部に形成された平板状の電子伝導性を有さない多孔質の支持基板と、
前記支持基板の表裏の各主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質膜、及び空気極がこの順で積層されてなる複数の発電素子部と、
前記支持基板の表裏の各主面において隣り合う前記発電素子部の間に設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部と、
前記支持基板の表裏の各主面における前記発電素子部が設けられた領域を除いた部分、及び、前記支持基板の側端面を覆うように設けられ、前記ガス流路を経て前記燃料極に供給されるガスと、前記空気極に供給されるガスと、の混合を防止する、緻密質材料からなるシール膜と、
を備えた燃料電池であって、
前記シール膜における前記支持基板の側端面を覆う部分を覆うように設けられ、前記支持基板の表裏の主面に設けられた前記発電素子部同士を電気的に接続する、導電性セラミックス材料で構成された表裏間接続部材を備え、
前記電気的接続部は、前記空気極と接続するとともに多孔質材料で構成された第1部分と、前記燃料極と接続するとともに前記第1部分と接続し且つ緻密質材料で構成された第2部分と、で構成され、
前記表裏間接続部材の気孔率が、前記電気的接続の第1部分の気孔率より小さく、前記表裏間接続部材の気孔率が10〜30%であり、前記電気的接続の第1部分の気孔率が30〜45%であり、
前記表裏間接続部材の厚さが、前記電気的接続の第1部分の厚さより大きく、
前記表裏間接続部材の導電率が、前記電気的接続の第1部分の導電率より大きく、前記表裏間接続部材の導電率が750℃にて500〜800S/cmであり、前記電気的接続の第1部分の導電率が750℃にて200〜500S/cmである、燃料電池。
A porous support substrate having a flat plate-like electron conductivity, in which a gas flow path is formed;
A plurality of power generating element portions each provided at a plurality of positions separated from each other on the main surfaces of the front and back surfaces of the support substrate, wherein at least a fuel electrode, a solid electrolyte membrane, and an air electrode are laminated in this order;
An electrical connecting portion that is provided between the adjacent power generation element portions on each of the main surfaces of the support substrate, and electrically connects one fuel electrode and the other air electrode of the adjacent power generation element portions; ,
Provided to cover the main surface on the front and back surfaces of the support substrate excluding the region where the power generation element portion is provided and the side end surface of the support substrate, and supply the fuel electrode via the gas flow path A sealing film made of a dense material that prevents mixing of the gas to be supplied and the gas supplied to the air electrode;
A fuel cell comprising:
Constructed of a conductive ceramic material that is provided so as to cover a portion of the seal film that covers the side end surface of the support substrate, and that electrically connects the power generating element portions provided on the main surfaces of the front and back surfaces of the support substrate. Provided with a connected member between the front and back,
The electrical connection portion is connected to the air electrode and is made of a porous material, and the second portion is connected to the fuel electrode and is connected to the first portion and made of a dense material. Part, and
Porosity of the front and rear between the connecting member is smaller than the porosity of the first portion of the electrical connections, the porosity of the front and rear between the connecting member is 10-30%, the first portion of the electrical connection section Has a porosity of 30-45%,
The thickness of the front-back connection member is greater than the thickness of the first portion of the electrical connection portion ,
The electrical conductivity of the front-back connection member is greater than the electrical conductivity of the first portion of the electrical connection portion , and the electrical conductivity of the front-back connection member is 500-800 S / cm at 750 ° C., and the electrical connection The fuel cell whose electrical conductivity of the 1st part of a part is 200-500 S / cm at 750 degreeC.
請求項1乃至請求項6の何れか一項に記載の燃料電池において、
前記シール膜は、ジルコニアを含む材料で構成され、
前記表裏間接続部材は、ストロンチウム又はランタンを含むペロブスカイト型導電性セラミックス材料で構成され、
前記表裏間接続部材と前記シール膜とが向かい合う部分において、ジルコニアを含まない反応防止膜が介装された、燃料電池。
The fuel cell according to any one of claims 1 to 6, wherein
The sealing film is made of a material containing zirconia,
The connection member between the front and back is made of a perovskite type conductive ceramic material containing strontium or lanthanum,
A fuel cell in which a reaction preventing film not containing zirconia is interposed in a portion where the front-back connecting member and the seal film face each other.
請求項1乃至請求項7の何れか一項に記載の燃料電池において、
前記表裏間接続部材は、化学式La(Ni1−x−yFeCu3−δ(ただし、m及びnは0.95以上1.05以下、xは0.03以上0.3以下、yは0.05以上0.5以下、δは0以上0.8以下)で表わされる酸化物で構成された、燃料電池。
The fuel cell according to any one of claims 1 to 7,
The front and rear inter-connecting member, the formula La m (Ni 1-x- y Fe x Cu y) n O 3-δ ( However, m and n are 0.95 to 1.05, x is 0.03 or more 0 .3 or less, y is 0.05 or more and 0.5 or less, and δ is 0 or more and 0.8 or less.
JP2014076440A 2013-04-19 2014-04-02 Fuel cell Active JP5646779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076440A JP5646779B2 (en) 2013-04-19 2014-04-02 Fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013088029 2013-04-19
JP2013088029 2013-04-19
JP2014076440A JP5646779B2 (en) 2013-04-19 2014-04-02 Fuel cell

Publications (2)

Publication Number Publication Date
JP2014225434A JP2014225434A (en) 2014-12-04
JP5646779B2 true JP5646779B2 (en) 2014-12-24

Family

ID=52123956

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014076442A Active JP5646780B2 (en) 2013-04-19 2014-04-02 Fuel cell
JP2014076440A Active JP5646779B2 (en) 2013-04-19 2014-04-02 Fuel cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014076442A Active JP5646780B2 (en) 2013-04-19 2014-04-02 Fuel cell

Country Status (1)

Country Link
JP (2) JP5646780B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169930B2 (en) * 2013-09-25 2017-07-26 京セラ株式会社 Solid oxide fuel cell
JP5727062B1 (en) * 2014-02-24 2015-06-03 日本碍子株式会社 Fuel cell
JP5883536B1 (en) * 2014-12-25 2016-03-15 日本碍子株式会社 Fuel cell
JP2016162630A (en) * 2015-03-03 2016-09-05 日本碍子株式会社 Fuel battery
WO2016147720A1 (en) * 2015-03-13 2016-09-22 日本碍子株式会社 Air electrode, water electrolysis anode, metal air cell, and water electrolysis device
EP3340351B1 (en) * 2015-08-22 2020-03-25 Kyocera Corporation Cell, cell stack device, module, and module accommodation device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874678A (en) * 1987-12-10 1989-10-17 Westinghouse Electric Corp. Elongated solid electrolyte cell configurations and flexible connections therefor
JP4028809B2 (en) * 2003-02-20 2007-12-26 京セラ株式会社 Fuel cell and fuel cell
JP5257826B2 (en) * 2007-06-22 2013-08-07 Toto株式会社 Fuel cell stack, fuel cell stack unit and fuel cell
JP5214227B2 (en) * 2007-11-29 2013-06-19 東京瓦斯株式会社 Horizontally-striped solid oxide fuel cell stack and manufacturing method thereof
JP5301865B2 (en) * 2007-12-26 2013-09-25 東京瓦斯株式会社 Horizontally striped solid oxide fuel cell
JP2011113830A (en) * 2009-11-27 2011-06-09 Kyocera Corp Fuel cell and cell stack device using it, fuel cell module, and fuel cell device
JP4995327B1 (en) * 2010-03-25 2012-08-08 日本碍子株式会社 Electrode material, fuel battery cell including the same, and method for manufacturing the same
JP4995328B1 (en) * 2010-03-25 2012-08-08 日本碍子株式会社 Electrode material and fuel cell including the same
JP4853979B2 (en) * 2010-03-26 2012-01-11 日本碍子株式会社 Fuel cell
JP5775682B2 (en) * 2010-10-26 2015-09-09 日本碍子株式会社 Fuel cell
JP5377599B2 (en) * 2011-08-26 2013-12-25 京セラ株式会社 FUEL BATTERY CELL, CELL STACK DEVICE USING THE SAME, FUEL CELL MODULE, AND FUEL CELL DEVICE

Also Published As

Publication number Publication date
JP2014225434A (en) 2014-12-04
JP2014225435A (en) 2014-12-04
JP5646780B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP4850980B1 (en) Fuel cell structure
JP5646779B2 (en) Fuel cell
JP6169930B2 (en) Solid oxide fuel cell
JP2013110092A (en) Fuel cell structure
JP5752287B1 (en) Fuel cell
JP6158659B2 (en) Solid oxide fuel cell
JP5443648B1 (en) Fuel cell structure
JP5642855B1 (en) Fuel cell
JP6039459B2 (en) Solid oxide fuel cell
JP5116182B1 (en) Fuel cell structure
JP2012138338A (en) Fuel battery cell
JP6169932B2 (en) Solid oxide fuel cell
JP5613808B1 (en) Fuel cell
JP2013026013A (en) Structure of fuel cell
JP2016058359A (en) Horizontal stripe type solid oxide fuel battery cell
JP7270703B2 (en) cell
JP5062786B1 (en) Fuel cell structure
JP5417551B2 (en) Fuel cell structure
JP5752340B1 (en) Fuel cell
JP5587479B1 (en) Fuel cell
JP6021126B2 (en) Fuel cell
JP5621029B1 (en) Fuel cell
JP6039461B2 (en) Solid oxide fuel cell
JP6039463B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150