JP5646279B2 - Production method of light olefin - Google Patents

Production method of light olefin Download PDF

Info

Publication number
JP5646279B2
JP5646279B2 JP2010241661A JP2010241661A JP5646279B2 JP 5646279 B2 JP5646279 B2 JP 5646279B2 JP 2010241661 A JP2010241661 A JP 2010241661A JP 2010241661 A JP2010241661 A JP 2010241661A JP 5646279 B2 JP5646279 B2 JP 5646279B2
Authority
JP
Japan
Prior art keywords
mcm
catalyst
metal
aluminosilicate
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010241661A
Other languages
Japanese (ja)
Other versions
JP2012092063A (en
Inventor
窪田 好浩
好浩 窪田
怜史 稲垣
怜史 稲垣
恵大 渡部
恵大 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2010241661A priority Critical patent/JP5646279B2/en
Publication of JP2012092063A publication Critical patent/JP2012092063A/en
Application granted granted Critical
Publication of JP5646279B2 publication Critical patent/JP5646279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

この発明は、ゼオライト触媒MCM−68を使用して、メタノールやジメチルエーテル(以下「DME」という。)を転換してオレフィンを製造する方法に関する。   The present invention relates to a method for producing olefins by converting methanol or dimethyl ether (hereinafter referred to as “DME”) using a zeolite catalyst MCM-68.

プロピレンなどの軽質オレフィンは産業上重要な原料であるので、石油その他の原料から軽質オレフィンを製造するための検討は従来から盛んに行われている(特許文献1など)。またゼオライト触媒を用いて天然ガス等から得たメタノールをオレフィンに転換することも行われており、この転換はDMEを中間体として経由することが知られている(非特許文献1等)。メタノールを原料とするよりもDMEを原料とした方が副生する水が少なく、ゼオライト触媒の脱アルミニウムによる永久失活を抑制できる。また、ゼオライト触媒の評価にはDMEが原料としてよく用いられる。
メタノールを原料として軽質オレフィンを製造するプロセスにおいては、SAPO−34等の小細孔のゼオライトが良い結果を出すことが知られている(特許文献2,3等)。しかし、小細孔のゼオライトは炭素析出とそれに伴う細孔閉塞による失活が顕著なので、MFI型のゼオライトZSM−5などのような中細孔のゼオライトがよく用いられている(非特許文献1〜3、特許文献4、5等)。
また、本発明者らは、ゼオライト触媒MCM−68を用いて、パラフィンを接触分解し、高収率で軽質オレフィンを製造する方法を開示している(特許文献6)。
Since light olefins such as propylene are industrially important raw materials, studies for producing light olefins from petroleum and other raw materials have been actively conducted (Patent Document 1, etc.). It is also known that methanol obtained from natural gas or the like is converted to olefin using a zeolite catalyst, and this conversion is known to pass through DME as an intermediate (Non-patent Document 1, etc.). The use of DME as a raw material is less by-produced than methanol as a raw material, and permanent deactivation due to dealumination of the zeolite catalyst can be suppressed. In addition, DME is often used as a raw material for evaluating zeolite catalysts.
In a process for producing light olefins using methanol as a raw material, it is known that zeolite with small pores such as SAPO-34 gives good results (Patent Documents 2, 3 and the like). However, since zeolite with small pores is markedly deactivated due to carbon deposition and accompanying pore blockage, medium pore zeolites such as MFI type zeolite ZSM-5 are often used (Non-patent Document 1). -3, patent documents 4, 5 etc.).
The present inventors have also disclosed a method for producing light olefins in high yield by catalytic cracking of paraffin using zeolite catalyst MCM-68 (Patent Document 6).

US2003/0181777US2003 / 0181777 特表2002-542929Special Table 2002-542929 特表2003-500189Special table 2003-500189 特開2006-8655JP2006-8655 特開2008-56593JP2008-56593 特開2010-202613JP2010-202613

Petroleum Science and Technology 17 (3&4), 273-289, 1999Petroleum Science and Technology 17 (3 & 4), 273-289, 1999 Energy Sources, 27: 489-500, 2005Energy Sources, 27: 489-500, 2005 Petroleum Chemistry, vol.48, No. 1, 15-21, 2008Petroleum Chemistry, vol.48, No. 1, 15-21, 2008

軽質オレフィンにはエチレンやプロピレンの他C4以上のオレフィンが含まれるが、利用分野によっては、エチレンよりもC3以上のオレフィンの需要が高い場合があり、このような分野では、メタノールやDMEをC3以上のオレフィンに選択的に転換する触媒が求められている。
そこで、本願発明は、メタノールやDMEを原料として、エチレンの収率を低く抑えて、C3以上のオレフィンの収率が高くなるような、オレフィン転換用のゼオライト触媒を提供することを目的とする。
Light olefins include ethylene and propylene as well as C4 or higher olefins, but depending on the field of use, there are cases where demand for C3 or higher olefins is higher than ethylene. In such fields, methanol and DME are more than C3 and higher. There is a need for a catalyst that selectively converts to any olefin.
Accordingly, an object of the present invention is to provide a zeolite catalyst for olefin conversion that uses methanol or DME as a raw material and suppresses the yield of ethylene to a low level and increases the yield of C3 or higher olefins.

本発明者らは、鋭意検討した結果、ゼオライト触媒MCM−68を用いて、そのSi/Al比を適正化することにより、メタノールやDMEをオレフィンに転換する際に、エチレンの収率を低く抑えて、C3以上のオレフィンの収率を高くすることができることを見出し、本願発明を完成させるに至った。
即ち、本願発明は、メタノール又はDMEを転換してC3以上のオレフィンを選択的に製造する方法であって、Si/Al比(モル比)が100〜200のアルミノシリケートMCM−68を触媒として用いる方法である。



As a result of intensive investigations, the inventors of the present invention used a zeolite catalyst MCM-68 to optimize the Si / Al ratio, thereby suppressing the yield of ethylene when converting methanol or DME into olefins. Thus, the inventors have found that the yield of C3 or higher olefin can be increased, and have completed the present invention.
That is, the present invention is a method for selectively producing C3 or higher olefins by converting methanol or DME, and using aluminosilicate MCM-68 having a Si / Al ratio (molar ratio) of 100 to 200 as a catalyst. Is the method.



本発明のアルミノシリケートは、MCM−68の基本骨格を有し、Si/Al比を100〜200としたものである。Si/Al比がこれよりも小さい領域では、反応初期の瞬間的な活性は高いが、炭素析出による活性劣化が激しく、結果的に活性の低い触媒となってしまう。一方、Si/Al比が高すぎると酸触媒としての活性が低下する。   The aluminosilicate of the present invention has a basic skeleton of MCM-68 and has a Si / Al ratio of 100 to 200. In a region where the Si / Al ratio is smaller than this, the instantaneous activity at the initial stage of the reaction is high, but the activity deterioration due to carbon deposition is severe, resulting in a catalyst with low activity. On the other hand, if the Si / Al ratio is too high, the activity as an acid catalyst decreases.

なお、本発明に於て、Si/Al比(モル比)は、誘導結合プラズマ原子発光分光(ICP-AES)分析を用いて定量した値をいう。即ち、ICP-AES測定により得られるAlの重さ(mg/L)からSiのモル数と金属のモル数を計算し、これらから算出されるSi/Alモル比をいう。
通常は、処理時間や温度などの条件に対するSi/Alモル比について予め検量線を作成しておき、その条件を管理することにより所望のSi/Alモル比のシリケートを得ることができる。
In the present invention, the Si / Al ratio (molar ratio) is a value quantified using inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis. That is, the Si / Al molar ratio calculated from the number of moles of Si and the number of moles of metal calculated from the weight (mg / L) of Al obtained by ICP-AES measurement.
Usually, a silicate having a desired Si / Al molar ratio can be obtained by preparing a calibration curve in advance for the Si / Al molar ratio with respect to conditions such as processing time and temperature and managing the conditions.

本発明のアルミノシリケートは、(1)Si/Alが約8.3〜15であるMCM−68を製造する工程、及び(2)このMCM−68を、Si/Alが100〜200となるように酸処理を行う工程(脱アルミニウム処理工程)から成る製法により得ることができる。
以下、本発明のアルミノシリケートの製法を順に説明する。
(1)まず、Si/Alが約8.3〜15であるMCM−68(以下「Al−MCM−68」とも表す。)を製造する。
MCM-68は、12員環及び10員環のチャンネルが三次元的に交わった構造をもつアルミノシリケートである。ユニットセル(単位胞)は空間座標の定まっている原子で表した場合,T112O224(T = Si or Al)という組成の正方晶系である。MCM-68構造についてはInternational Zeolite Association Structure Commission (IZA-SC)の三文字コードはMSEで、表1に示す原子座標で一義的に決まる骨格トポロジーをもつ。c軸方向にまっすぐな12員環チャンネル(直径0.67nm)、a軸及びb軸方向に2つのうねった10員環チャンネル(直径0.50-0.55nm)が存在する。また、10員環を通ることによってのみアクセス可能な空洞(ケージ)(0.65×1.73nm)を有する(J. Phys. Chem. B, 2006, 110, 2045-2050)。
The aluminosilicate of the present invention comprises (1) a step of producing MCM-68 having a Si / Al of about 8.3-15, and (2) the MCM-68 having a Si / Al of 100-200. Can be obtained by a production method comprising a step of performing an acid treatment (dealuminization step).
Hereafter, the manufacturing method of the aluminosilicate of this invention is demonstrated in order.
(1) First, MCM-68 (hereinafter also referred to as “Al-MCM-68”) having Si / Al of about 8.3 to 15 is manufactured.
MCM-68 is an aluminosilicate with a structure in which 12-membered and 10-membered channels intersect three-dimensionally. A unit cell (unit cell) is a tetragonal system with a composition of T 112 O 224 (T = Si or Al) when expressed by atoms with a fixed spatial coordinate. For the MCM-68 structure, the three-letter code of the International Zeolite Association Structure Commission (IZA-SC) is MSE, and has a skeletal topology that is uniquely determined by the atomic coordinates shown in Table 1. There is a straight 12-membered ring channel (diameter 0.67 nm) in the c-axis direction, and two wavy 10-membered ring channels (diameter 0.50-0.55 nm) in the a-axis and b-axis directions. Moreover, it has a cavity (cage) (0.65 × 1.73 nm) accessible only through a 10-membered ring (J. Phys. Chem. B, 2006, 110, 2045-2050).

Figure 0005646279
注)空間群 P42/mnm (International Union of Crystallography (IUCr)の定めるNo. 136の空間群)格子定数 a (=b) = 18.286(1) Å, c = 20.208(2) Å、T = Si or Al
Figure 0005646279
Note) Space group P4 2 / mnm (No. 136 space group defined by International Union of Crystallography (IUCr)) Lattice constant a (= b) = 18.286 (1) Å, c = 20.208 (2) Å, T = Si or Al

アルミノシリケートMCM−68は、以下の組成式で表される。
n'Aln'Si112−n'224
(式中、n'は7〜12を表す。)
Si/Alは約8.3〜15である。
本願で用いるアルミノシリケートMCM−68において、本願発明の性能を損なわない範囲で、上記成分以外の金属成分もMCM-68の骨格内外に入りうる。この場合、MCM−68は下式で表される。
M'x'n'+(4−y)m[MAln'Si112−n'−m224
式中、MはSiやAlと同様にゼオライト骨格を構成する金属である。Mは四配位構造の金属であって、GaやFeが挙げられる。Mは通常ゼオライト骨格を構成するSiやAlを置換することにより導入される。これら金属は通常ゼオライト骨格に入ることにより、本願の触媒としての機能を発揮する。これら金属がゼオライト骨格にあるかどうかは通常NMRなどにより確認することができる。
M'はゼオライト骨格を構成する金属ではなく、ゼオライトのミクロ孔や外表面に存在する。M'は主として六配位構造の金属であって、上記Alや金属M(Ga又はFe)であってもよく、またアルカリ土類金属、希土類、チタン族金属、バナジウム族金属若しくは鉄族金属であってもよい。M'としては、例えば、Ca、Mg、Zr、Ti、La、Ce、Co、Zr、Ti、V、Al、Ga、Feなどが挙げられる。
ゼオライト製造時に、これらの金属(MやM')の前駆体を原料中に混入させておけば、一部はゼオライト骨格に入り(すなわち、Mとして表される。)、ゼオライト骨格に入らないものはゼオライト骨格を構成せずにミクロ孔や外表面に存在する(すなわち、M'として表される。)。
mは0以上であり、n'+mは12以下である。
yはMの価数(2、3、4等)を表す。
x'は、触媒中のM'の含量が30重量%を越えないような数字を表す。
M'はイオンとしてHと交換した形、(M'Oz/2)という酸化物の形のいずれかまたは両方で存在する。zはM'の価数(1、2、3、4等)を表す。
Aluminosilicate MCM-68 is represented by the following composition formula.
H n ′ Al n ′ Si 112-n ′ O 224
(In the formula, n ′ represents 7 to 12.)
Si / Al is about 8.3-15.
In the aluminosilicate MCM-68 used in the present application, metal components other than the above components can enter and leave the skeleton of MCM-68 as long as the performance of the present invention is not impaired. In this case, MCM-68 is represented by the following formula.
M 'x' H n '+ (4-y) m [M m Al n' Si 112-n'-m O 224]
In the formula, M is a metal constituting the zeolite skeleton similarly to Si and Al. M is a metal having a tetracoordinate structure, and examples thereof include Ga and Fe. M is usually introduced by substituting Si or Al constituting the zeolite framework. These metals usually function as a catalyst of the present application by entering the zeolite framework. Whether or not these metals are in the zeolite framework can usually be confirmed by NMR or the like.
M ′ is not a metal constituting the zeolite skeleton but is present in the micropores and the outer surface of the zeolite. M ′ is mainly a metal having a six-coordinate structure, and may be Al or metal M (Ga or Fe), and may be an alkaline earth metal, rare earth, titanium group metal, vanadium group metal, or iron group metal. There may be. Examples of M ′ include Ca, Mg, Zr, Ti, La, Ce, Co, Zr, Ti, V, Al, Ga, and Fe.
When the precursors of these metals (M and M ′) are mixed in the raw material during the production of the zeolite, a part thereof enters the zeolite skeleton (that is, expressed as M) and does not enter the zeolite skeleton. Exists in the micropores and on the outer surface without constituting a zeolite framework (ie, expressed as M ′).
m is 0 or more, and n ′ + m is 12 or less.
y represents the valence of M (2, 3, 4, etc.).
x ′ represents a number such that the content of M ′ in the catalyst does not exceed 30% by weight.
M ′ is present in either or both of the form exchanged with H as an ion and the oxide form (M′O z / 2 ). z represents the valence of M ′ (1, 2, 3, 4, etc.).

また、X線回折データは以下の値を含む。
2θ=6.56±0.10、6.88±0.10、8.16±0.10、8.80±0.10、9.70±0.10、19.50±0.10、21.76±0.10、22.56±0.10、23.10±0.10
The X-ray diffraction data includes the following values.
2θ = 6.56 ± 0.10, 6.88 ± 0.10, 8.16 ± 0.10, 8.80 ± 0.10, 9.70 ± 0.10, 19.50 ± 0.10 21.76 ± 0.10, 22.56 ± 0.10, 23.10 ± 0.10

このアルミノシリケートMCM-68は、例えば、次のようにして作製することができる。
1.MCM-68作成のための鋳型(構造規定剤:SDA)として、ビシクロ[2.2.2]オクト-7-エン-2,3:5,6-テトラカルボン酸二無水物から3工程でN,N,N',N'-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウム 二ヨウ化物を合成する。
2.上記ヨウ化物、コロイダルシリカ、水酸化カリウム、水酸化アルミニウム、水を混合して得たゲルを、オートクレーブ中160℃で16日間加熱する。この成分以外に適宜上記金属成分(MやM')の前駆体(通常金属塩)を含んでもよい。
3.ろ過して得られた結晶(as-synthesized sample)を600℃で10時間焼成する。
This aluminosilicate MCM-68 can be produced, for example, as follows.
1. As a template for making MCM-68 (structure directing agent: SDA), N, N in 3 steps from bicyclo [2.2.2] oct-7-ene-2,3: 5,6-tetracarboxylic dianhydride , N ′, N′-Tetraethylbicyclo [2.2.2] oct-7-ene-2,3: 5,6-dipyrrolidinium diiodide is synthesized.
2. The gel obtained by mixing the iodide, colloidal silica, potassium hydroxide, aluminum hydroxide, and water is heated at 160 ° C. for 16 days in an autoclave. In addition to this component, a precursor (usually a metal salt) of the metal component (M or M ′) may be included as appropriate.
3. The crystals (as-synthesized sample) obtained by filtration are fired at 600 ° C. for 10 hours.

また、以上のようにして一旦MCM-68を作成した後に、これを上記金属成分(M')の前駆体(通常金属塩)の溶液(溶媒はエタノール、水等)に浸し、溶媒を蒸発させる(蒸発乾固法)ことや、溶媒をろ過で除去する(平衡吸着法又はイオン交換法)ことなどにより、MCM-68にM'前駆体を担持させ、次いで空気中で焼成することにより、MCM-68中のM'の含量を増やすことができる。このようにして加えた金属成分(M')は、ゼオライト骨格を構成せずにミクロ孔や外表面に存在する。その含量はゼオライト担体に対して最大30重量%である。   In addition, once MCM-68 is prepared as described above, it is immersed in a solution of the above-mentioned metal component (M ′) precursor (usually metal salt) (solvent is ethanol, water, etc.) to evaporate the solvent. (Evaporation to dryness method) or removing the solvent by filtration (equilibrium adsorption method or ion exchange method). The content of M 'in -68 can be increased. The metal component (M ′) added in this way is present in the micropores and the outer surface without constituting a zeolite skeleton. Its content is up to 30% by weight with respect to the zeolite support.

(2)脱Al処理(酸処理)段階
この段階では、アルミノシリケートMCM−68を、Si/Al(モル比)が100〜200となるように酸処理を行う。
酸処理は以下の条件で行う。
酸としては、硝酸、塩酸及び硫酸が挙げられる。この酸を約1〜6Mの水溶液で用いることが好ましい。
この水溶液中でアルミノシリケートMCM−68を、オイルバス温度約80〜130℃で約2〜12時間、好ましくは約2〜24時間加熱する。
Si/Al(モル比)を所望の値とするには、酸の種類や濃度及び処理時間や温度などの条件に対する脱アルミの度合い(Si/Alモル比)について予め知見を得ておき、その条件を管理することにより制御する。
このようにして得られたアルミノシリケートをdeAl−MCM−68とも表す。
(2) De-Al treatment (acid treatment) stage In this stage, the aluminosilicate MCM-68 is acid-treated so that the Si / Al (molar ratio) is 100-200.
The acid treatment is performed under the following conditions.
Examples of the acid include nitric acid, hydrochloric acid, and sulfuric acid. The acid is preferably used in an aqueous solution of about 1-6M.
In this aqueous solution, the aluminosilicate MCM-68 is heated at an oil bath temperature of about 80-130 ° C. for about 2-12 hours, preferably about 2-24 hours.
In order to set Si / Al (molar ratio) to a desired value, knowledge is obtained in advance about the degree of dealumination (Si / Al molar ratio) with respect to conditions such as acid type, concentration, treatment time, and temperature. Control by managing conditions.
The aluminosilicate thus obtained is also referred to as deAl-MCM-68.

この段階で得られるdeAl−MCM−68は、以下の組成式で表される。
M'n+(4−y)m[MAlSi112−n−m224
nはSi/Al比(モル比)が100〜200となるような数字を表す。
M、M'、yは、上記と同様に定義される。
mは0以上であり、n+mは12以下であり、但し、n+mは脱Al処理した分だけn'+mより小さい。
xは、触媒中のM'の含量が30重量%を越えないような数字を表す。
MやM'は任意であり、これらが含まれない場合(即ち、x=0、m=0)には、deAl−MCM−68は、以下の組成式で表される。
AlSi112−n224
また、このdeAl−MCM−68のX線回折データは以下の値を含む。
2θ=6.56±0.10、6.86±0.10、8.16±0.10、8.80±0.10、9.68±0.10、19.48±0.10、21.76±0.10、22.66±0.10、23.18±0.10
The deAl-MCM-68 obtained at this stage is represented by the following composition formula.
M 'x H n + (4 -y) m [M m Al n Si 112-n-m O 224]
n represents a number such that the Si / Al ratio (molar ratio) is 100 to 200.
M, M ′, and y are defined in the same manner as described above.
m is 0 or more and n + m is 12 or less, provided that n + m is smaller than n ′ + m by the amount of Al removal treatment.
x represents a number such that the content of M ′ in the catalyst does not exceed 30% by weight.
M and M ′ are arbitrary, and when these are not included (that is, x = 0, m = 0), deAl-MCM-68 is represented by the following composition formula.
H n Al n Si 112-n O 224
Further, the X-ray diffraction data of this deAl-MCM-68 includes the following values.
2θ = 6.56 ± 0.10, 6.86 ± 0.10, 8.16 ± 0.10, 8.80 ± 0.10, 9.68 ± 0.10, 19.48 ± 0.10 21.76 ± 0.10, 22.66 ± 0.10, 23.18 ± 0.10

DME又はメタノールから軽質オレフィンを製造する工業プロセスは通常以下のように行われる。
反応管(内径4mm〜400mm、長さ100mm〜10m)に保持した触媒層(0.1g〜10kg)を300〜500℃に加熱し、これにDME又はメタノールを不活性ガスとともに気相で流通させる。触媒反応時の接触時間(W/F)は通常1〜100g-catalyst h mol-1の範囲となるように調節される。
The industrial process for producing light olefins from DME or methanol is usually carried out as follows.
A catalyst layer (0.1 g to 10 kg) held in a reaction tube (inner diameter: 4 mm to 400 mm, length: 100 mm to 10 m) is heated to 300 to 500 ° C., and DME or methanol is circulated in the gas phase together with an inert gas. The contact time (W / F) during the catalytic reaction is usually adjusted to be in the range of 1 to 100 g-catalyst h mol −1 .

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
本実施例において、Si/Alは誘導結合プラズマ原子発光分光分析計(島津製作所製 ICPE-9000)を用いて検量線法(水溶液モード)により決定した。
The following examples illustrate the invention but are not intended to limit the invention.
In this example, Si / Al was determined by a calibration curve method (aqueous solution mode) using an inductively coupled plasma atomic emission spectrometer (ICPE-9000 manufactured by Shimadzu Corporation).

(1)アルミノシリケートの合成
アルミノシリケートの合成に先立ち、Al-MCM-68を結晶化するための構造規定剤(structure-directing agent, SDA)であるN,N,N',N'-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium diiodide (TEBOP2+(I-)2)を既報(特表2002-535227)に従って調製した。
次にこのSDAを用いてAl-MCM-68の水熱合成を行った。具体的にはまず、内容積180 mLのフッ素樹脂(PFA)製容器にコロイダルシリカ(デュポン社、LUDOX(登録商標)HS-40,SiO2: 40wt%)を6.01g (40 mmol, SiO2)入れ、Al(OH)3 (Pfaltz & Bauer) 312 mg (4.0 mmol)を溶かして10分間攪拌した。次にKOH (8mol/L, 6.047mmol/g) (Wako)を加え、30分間攪拌し、最後に構造規定剤SDA (TEBOP2+(I-)2) 2.23g (4.0 mmol)を加え3時間攪拌した。ゲル組成比はSiO2-0.1 TEBOP2+(I-)2- 0.375 KOH-0.1 Al(OH)3-30 H2Oとした。調製したゲルを125 mLオートクレーブに移し、160℃のオーブン中で16日間静置した。得られた生成物を遠心分離し、その後80℃オーブン中で乾燥して白色粉末2.55g (Al-MCM-68 (as-synthesized))を得た。
(1) Synthesis of aluminosilicate Prior to the synthesis of aluminosilicate, N, N, N ', N'-tetraethylbicyclo [structure-directing agent (SDA) for crystallization of Al-MCM-68 2.2.2] oct-7-ene-2,3: 5,6-dipyrrolidinium diiodide (TEBOP2 + (I-) 2) was prepared according to a previous report (Japanese translation 2002-535227).
Next, hydrothermal synthesis of Al-MCM-68 was performed using this SDA. Specifically, first, 6.01 g (40 mmol, SiO 2 ) of colloidal silica (DuPont, LUDOX (registered trademark) HS-40, SiO 2 : 40 wt%) in a fluororesin (PFA) container with an internal volume of 180 mL. Then, 312 mg (4.0 mmol) of Al (OH) 3 (Pfaltz & Bauer) was dissolved and stirred for 10 minutes. Then KOH (8mol / L, 6.047mmol / g) a (Wako) was added, and stirred for 30 min and finally the structure directing agent SDA (TEBOP 2+ (I -) 2) 2.23g (4.0 mmol) was added 3 hours Stir. The gel composition ratio was SiO 2 −0.1 TEBOP 2+ (I ) 2 −0.375 KOH-0.1 Al (OH) 3 -30 H 2 O. The prepared gel was transferred to a 125 mL autoclave and left in an oven at 160 ° C. for 16 days. The obtained product was centrifuged and then dried in an oven at 80 ° C. to obtain 2.55 g of white powder (Al-MCM-68 (as-synthesized)).

(2)アルミノシリケート触媒の調製
得られたAl-MCM-68をマッフル炉にて600℃、10時間焼成を行い、アルミノシリケートに含まれるSDAを除去した。このとき、昇温速度は1〜2℃/minとして行った。焼成後の固体試料も粉末X線回折により、MSE構造を保持していることを確認した。
焼成後のAl-MCM-68を硝酸処理により、適宜脱アルミニウムを行った。具体的には、200-mLナスフラスコへ0.5〜10 Mの硝酸水溶液45 mLを入れ、そこに焼成したAl-MCM-68を1.5g加えたのち、空気雰囲気、還流条件下で2時間撹拌した。硝酸処理後には、ろ過・蒸留水による洗浄を行ってから、回収した固体を100℃で一晩乾燥した。硝酸処理後の固体試料も粉末X線回折により、MSE構造を保持していることを確認した。硝酸処理により、適度に脱アルミニウムしたAl-MCM-68(deAl-MCM-68、Si/Al比=52, 100, 130, 177, 258及び 613)が得られた。
(2) Preparation of aluminosilicate catalyst The obtained Al-MCM-68 was calcined in a muffle furnace at 600 ° C for 10 hours to remove SDA contained in the aluminosilicate. At this time, the heating rate was set to 1 to 2 ° C./min. The solid sample after firing was confirmed to retain the MSE structure by powder X-ray diffraction.
Al-MCM-68 after firing was appropriately dealuminated by nitric acid treatment. Specifically, 45 mL of 0.5-10 M nitric acid aqueous solution was put into a 200-mL eggplant flask, and 1.5 g of baked Al-MCM-68 was added thereto, followed by stirring for 2 hours in an air atmosphere and under reflux conditions. . After the nitric acid treatment, filtration and washing with distilled water were performed, and then the collected solid was dried at 100 ° C. overnight. It was confirmed that the solid sample after the nitric acid treatment also retained the MSE structure by powder X-ray diffraction. Nitrogen treatment gave moderately dealuminated Al-MCM-68 (deAl-MCM-68, Si / Al ratio = 52, 100, 130, 177, 258 and 613).

比較のため、脱アルミニウム処理を行っていないAl-MCM-68も調製した。焼成後のAl-MCM-68のイオン交換サイトに存在するKカチオンを除去するためにアンモニウムイオン交換を行った。具体的には、250mL-PPボトル中で硝酸アンモニウム(NH4NO3)3.0gを蒸留水75gに溶解したのち、焼成したAl-MCM-68を1.5g加えて、80℃で24時間加熱した。加熱後、ろ過して固体試料を回収した。イオン交換及びろ過の作業を合わせて3回繰り返し行ったのち、固体試料を乾燥し、アンモニウム型Al-MCM-68を得た。その後、マッフル炉にて550℃、6時間焼成を行い、プロトン型Al-MCM-68とした。イオン交換及び焼成後の固体試料も粉末X線回折により、MSE構造を保持していることを確認した。このプロトン型Al-MCM-68のSi/Al比は12であり、脱アルミニウムは起きていないものと考えられる。 For comparison, Al-MCM-68 without dealumination was also prepared. Ammonium ion exchange was performed to remove K cations present at the ion exchange site of Al-MCM-68 after firing. Specifically, after dissolving 3.0 g of ammonium nitrate (NH 4 NO 3 ) in 75 g of distilled water in a 250 mL-PP bottle, 1.5 g of baked Al-MCM-68 was added and heated at 80 ° C. for 24 hours. After heating, the solid sample was collected by filtration. After the ion exchange and filtration operations were repeated three times, the solid sample was dried to obtain ammonium-type Al-MCM-68. Thereafter, baking was performed at 550 ° C. for 6 hours in a muffle furnace to obtain proton type Al-MCM-68. It was confirmed that the solid sample after ion exchange and firing also retained the MSE structure by powder X-ray diffraction. This proton type Al-MCM-68 has a Si / Al ratio of 12, and it is considered that dealumination has not occurred.

(3)触媒反応装置
触媒反応実施に先立ち、粉末状のアルミノシリケートを成型・整粒した。具体的には、アルミノシリケート粉末1〜2gを内径20mmの錠剤成型器に詰めたのち、油圧プレスにて0.2 MPaで加圧成型し、径が20mmのペレットを得た。このペレットをふるいの上で適度に粉砕し、500〜600μmに整粒してこれを触媒として用いた。
本実施例における触媒反応は固定床常圧流通反応装置を用いて行った。
メタノールを反応物とする場合には、シリンジポンプを用いてシリンジから供給し、キャリアガスであるメタン(10%)−アルゴン混合ガスに導入した。シリンジポンプから供給されたメタノールは、あらかじめ加熱した気化室に導入されるため蒸発して気体となり、この気体をキャリアガスに同伴した。反応装置のガスラインには内径2 mmのステンレスパイプを用いて、ヒーターで外側から適温に加熱することで気化したメタノールの凝縮を防いだ。
DMEを反応物とする場合には、DMEガスボンベから供給し、キャリアガスであるメタン(1%)−アルゴン混合ガスに導入した。混合ガスに導入後の過程はメタノールと同様の構成とした。
反応管は内径8 mmの石英管を用い、これに先に整粒したアルミノシリケート触媒を100 mg詰め、石英ウールで触媒層を反応管中央部に保持した。反応前処理として、空気流通下で約7℃/minの昇温速度で500℃まで昇温し、この雰囲気で1時間保持した。その後、ヘリウム流通に切り替えてから5℃/minで、DMEでは400℃、メタノールでは350℃まで反応管温度を下げた。設定温度で安定したのを確認してから、DME又はメタノールを同伴したメタン−アルゴン混合ガスを触媒層に供給し、触媒反応を開始した。反応実施中は所定時間に六方バルブを切り替えることで、サンプリングループに溜めた反応後の生成物をガスクロマトグラフへ導入し、キャピラリーカラムで分離後、水素炎検出器(FID)にて各生成物・未反応物の定性・定量を行った。所定時間(210分)経過後、触媒層へのDMEないしメタノールの供給をやめ、ヘリウム流通に切り替えた。触媒反応時のW/Fは、21.5g-catalyst h (mol-DME)-1、43.0g-catalyst h (mol-メタノール)-1とした。触媒反応を停止した後には、ヘリウム流通下で自然放冷した。
(3) Catalytic reactor Prior to the catalytic reaction, powdered aluminosilicate was molded and sized. Specifically, 1 to 2 g of aluminosilicate powder was packed in a tablet molding machine having an inner diameter of 20 mm, and then press-molded at 0.2 MPa with a hydraulic press to obtain pellets having a diameter of 20 mm. The pellets were appropriately pulverized on a sieve and sized to 500 to 600 μm and used as a catalyst.
The catalytic reaction in this example was performed using a fixed bed normal pressure flow reactor.
When methanol was used as a reaction product, it was supplied from a syringe using a syringe pump and introduced into a methane (10%)-argon mixed gas as a carrier gas. The methanol supplied from the syringe pump was evaporated into a gas because it was introduced into the preheated vaporization chamber, and this gas was accompanied by the carrier gas. A stainless steel pipe with an inner diameter of 2 mm was used for the gas line of the reactor, and the vaporized methanol was prevented from condensing by heating from the outside to an appropriate temperature with a heater.
When DME was used as a reactant, it was supplied from a DME gas cylinder and introduced into a methane (1%)-argon mixed gas as a carrier gas. The process after introduction into the mixed gas was the same as that of methanol.
The reaction tube used was a quartz tube having an inner diameter of 8 mm, packed with 100 mg of the aluminosilicate catalyst previously sized, and the catalyst layer was held in the center of the reaction tube with quartz wool. As a pretreatment for the reaction, the temperature was raised to 500 ° C. at a rate of temperature increase of about 7 ° C./min under air flow, and this atmosphere was maintained for 1 hour. Then, after switching to helium flow, the reaction tube temperature was lowered to 400 ° C. for DME and 350 ° C. for methanol at 5 ° C./min. After confirming that the temperature was stable at the set temperature, a methane-argon mixed gas accompanied by DME or methanol was supplied to the catalyst layer to initiate a catalytic reaction. By switching the hexagonal valve at a predetermined time during the reaction, the reaction products accumulated in the sampling loop are introduced into the gas chromatograph, separated by a capillary column, and each product / unreacted product is detected by a hydrogen flame detector (FID). The reaction product was qualitatively and quantitatively determined. After a predetermined time (210 minutes) elapsed, the supply of DME or methanol to the catalyst layer was stopped, and the helium flow was switched to. The W / F during the catalytic reaction was 21.5 g-catalyst h (mol-DME) −1 and 43.0 g-catalyst h (mol-methanol) −1 . After stopping the catalytic reaction, it was allowed to cool naturally under a helium flow.

(4)結果
各アルミノシリケート触媒を用いたDME転換反応の結果を表2に、メタノール転換反応の結果を表3に示す。各生成物の収率は、導入したDME又はメタノール量に対する各生成物の収量を百分率にて求めた。収率はカーボンベース(炭素原子換算、C%)で表す。また触媒表記中のかっこの中の数字はSi/Al比(原子比)を表す。

Figure 0005646279
(4) Results Table 2 shows the results of the DME conversion reaction using each aluminosilicate catalyst, and Table 3 shows the results of the methanol conversion reaction. The yield of each product was determined as a percentage of the yield of each product relative to the amount of DME or methanol introduced. The yield is expressed on a carbon basis (C% conversion, C%). The numbers in parentheses in the catalyst notation represent the Si / Al ratio (atomic ratio).
Figure 0005646279

Figure 0005646279
表1と2から、メタノール又はDMEを転換してオレフィンを製造する方法において、Si/Al比(モル比)が100〜200のアルミノシリケートMCM−68を触媒として用いた場合には、エチレンの収率を低く抑えて、C3以上のオレフィンの収率を顕著に高くすることができることがわかる。
Figure 0005646279
From Tables 1 and 2, in the process for producing olefins by converting methanol or DME, when aluminosilicate MCM-68 having a Si / Al ratio (molar ratio) of 100 to 200 is used as a catalyst, the yield of ethylene is reduced. It can be seen that the yield of C3 or higher olefin can be remarkably increased by keeping the rate low.

Claims (2)

メタノール又はジメチルエーテルを転換してC3以上のオレフィンを選択的に製造する方法であって、Si/Al比(モル比)が100〜200のアルミノシリケートMCM−68を触媒として用いる方法。
A method for selectively producing C3 or higher olefins by converting methanol or dimethyl ether, wherein aluminosilicate MCM-68 having a Si / Al ratio (molar ratio) of 100 to 200 is used as a catalyst.
前記MCM−68が下記組成式
M'n+(4−y)m[MAlSi112−n−m224
(式中、Mは四配位構造の金属であってGa又はFeを表し、M'は六配位構造の金属であってAl、Ga若しくはFe又はアルカリ土類金属、希土類、チタン族金属、バナジウム族金属若しくは鉄族金属を表し、nはSi/Al比(モル比)が100〜200となるような数字を表し、mは0以上であり、n+mは12以下であり、xは触媒中のM'の含量が30重量%以下となるような数字を表し、yはMの価数を表す。)で表わされる請求項1に記載の方法。
The MCM-68 has the following composition formula M ′ x H n + (4-y) m [M m Al n Si 112-nm O 224 ]
(In the formula, M is a metal with a tetracoordinate structure and represents Ga or Fe, M ′ is a metal with a hexacoordinate structure and is Al, Ga or Fe, an alkaline earth metal, a rare earth, a titanium group metal, It represents a vanadium group metal or an iron group metal, n represents a number such that the Si / Al ratio (molar ratio) is 100 to 200, m is 0 or more, n + m is 12 or less, and x is in the catalyst. The method according to claim 1, wherein the M ′ represents a number such that the content of M ′ is 30% by weight or less, and y represents the valence of M.
JP2010241661A 2010-10-28 2010-10-28 Production method of light olefin Expired - Fee Related JP5646279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241661A JP5646279B2 (en) 2010-10-28 2010-10-28 Production method of light olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241661A JP5646279B2 (en) 2010-10-28 2010-10-28 Production method of light olefin

Publications (2)

Publication Number Publication Date
JP2012092063A JP2012092063A (en) 2012-05-17
JP5646279B2 true JP5646279B2 (en) 2014-12-24

Family

ID=46385859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241661A Expired - Fee Related JP5646279B2 (en) 2010-10-28 2010-10-28 Production method of light olefin

Country Status (1)

Country Link
JP (1) JP5646279B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105399592B (en) * 2015-11-04 2017-05-10 鹤壁宝发能源科技股份有限公司 System and technology for co-producing mixed olefin, arene and liquefied gas from crude dimethyl ether
JPWO2019155607A1 (en) * 2018-02-09 2020-12-17 Toyo Tire株式会社 Method for producing light olefin
CN113646081B (en) * 2019-03-18 2024-01-09 埃克森美孚科技工程公司 Mesoporous catalyst compounds and uses thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7024A (en) * 1850-01-15 Machinery tor towguzng and grooving
US7371915B1 (en) * 2004-06-25 2008-05-13 Uop Llc Conversion of oxygenate to propylene using moving bed technology
JP5023638B2 (en) * 2006-09-27 2012-09-12 三菱化学株式会社 Propylene production method
JP5354976B2 (en) * 2007-10-23 2013-11-27 出光興産株式会社 Catalyst for producing light olefins and method for producing light olefins
JP5388436B2 (en) * 2007-10-23 2014-01-15 出光興産株式会社 Method for producing light olefins
CN104761427A (en) * 2008-02-07 2015-07-08 道达尔研究技术弗吕公司 Dehydration of alcohols on crystalline silicates

Also Published As

Publication number Publication date
JP2012092063A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Shamzhy et al. New trends in tailoring active sites in zeolite-based catalysts
Sun et al. Advances in catalytic applications of zeolite‐supported metal catalysts
JP6278561B2 (en) Crystalline aluminosilicate and method for producing the same
He et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether
JP6835873B2 (en) High silica AFX framework type zeolite
WO2016090612A1 (en) Synthesis method for mesoporous and microporous sapo-34 molecular sieve
JP5354976B2 (en) Catalyst for producing light olefins and method for producing light olefins
CN109890782A (en) Produce the single-stage process of butadiene
JP2016513060A (en) Dehydration-hydrolysis process and catalyst therefor
JP5668422B2 (en) Method for producing aluminosilicate
KR101742360B1 (en) Bismuth molybdate catalyst having zeolite coating layer, preparation method thereof and method of preparing 1,3-butadiene using the same
JP5646279B2 (en) Production method of light olefin
US20190001311A1 (en) Zeolitic 3d scaffolds with tailored surface topography for methanol conversion with light olefins selectivity
Shi et al. Acidic properties of Al-rich ZSM-5 crystallized in strongly acidic fluoride medium
JP2010042344A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP5288255B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP2008255104A (en) Method for producing olefin
JP5131624B2 (en) Paraffin catalytic cracking process
WO2019155607A1 (en) Method for producing light olefin
JP2010042343A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP2008094685A (en) Crystalline metallosilicate, production method therefor and use of the same as catalyst
JP5674029B2 (en) Propylene and ethylene production method
JP2021154239A (en) Catalyst for production of aromatic compound, method for producing catalyst for aromatic compound, and method for producing aromatic compound
KR20210037773A (en) A manufacturing process of PST-32 zeolites
JP2010105974A (en) Method for producing olefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees