JP5131624B2 - Paraffin catalytic cracking process - Google Patents

Paraffin catalytic cracking process Download PDF

Info

Publication number
JP5131624B2
JP5131624B2 JP2009051952A JP2009051952A JP5131624B2 JP 5131624 B2 JP5131624 B2 JP 5131624B2 JP 2009051952 A JP2009051952 A JP 2009051952A JP 2009051952 A JP2009051952 A JP 2009051952A JP 5131624 B2 JP5131624 B2 JP 5131624B2
Authority
JP
Japan
Prior art keywords
mcm
ratio
catalyst
aluminosilicate
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009051952A
Other languages
Japanese (ja)
Other versions
JP2010202613A (en
Inventor
好浩 窪田
怜史 稲垣
一義 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2009051952A priority Critical patent/JP5131624B2/en
Publication of JP2010202613A publication Critical patent/JP2010202613A/en
Application granted granted Critical
Publication of JP5131624B2 publication Critical patent/JP5131624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

この発明は、パラフィン(アルカン)を接触分解する方法に関し、より詳細には、Si/Alを調節したアルミノシリケートMCM−68を触媒として用いて、パラフィンを接触分解してプロピレンを多く含む軽質オレフィン(アルケン)を製造する方法に関する。   The present invention relates to a method for catalytic cracking of paraffin (alkane), and more specifically, a light olefin containing a large amount of propylene by catalytic cracking of paraffin using aluminosilicate MCM-68 adjusted with Si / Al as a catalyst. Alkenes).

C6程度のパラフィンを接触分解して、プロピレンを得るために、従来型ゼオライト触媒として、Si/Alを種々調節したZSM−5、ベータ型ゼオライト、モルデナイトなどが知られている(特許文献1など)。しかし、プロピレンの収率には限界があった。プロピレンは現在、主として軽質ナフサの約700〜800℃での熱分解で得られている。しかし、熱分解では理論上エチレンが生成しやすく、実際エチレン選択性が高い。
一方、アルミノシリケートMCM−68は2000年にMobil社により合成された比較的新しいゼオライトである(特許文献2など)。このゼオライトは、大細孔(12員環細孔)や中細孔(10員環細孔)が三次元的に交わった構造をもつ。このタイプのゼオライトは一般に広い表面積と大きな内部空間を持つので、石油精製や石油化学プロセスにおける触媒として有用であり、比較的嵩高い有機分子を基質とする触媒として有用と期待されている。MCM−68はSi/Al比が9〜12であることから比較的Al含有量、つまり活性点が多く、さらに安定なため酸触媒として検討され、中でも、炭化水素の吸着能力が高いため、それが関与する反応、例えば芳香族炭化水素のアルキル化やアルキル芳香族炭化水素のトランスアルキル化、異性化、不均化、脱アルキル化などにおいて高い活性を示すため、炭化水素プロセシング触媒の基盤材料として期待されている。
本発明者らは、このMCM−68を脱アルミニウム処理して得られるSi/Al比が70程度のMCM−68が、ビフェニルのイソプロピル化反応の触媒として有効であることを報告している(非特許文献1)。
In order to obtain propylene by catalytic cracking of about C6 paraffin, ZSM-5, beta-type zeolite, mordenite, etc. with various Si / Al adjustments are known as conventional zeolite catalysts (Patent Document 1, etc.) . However, the yield of propylene was limited. Propylene is currently obtained mainly by pyrolysis of light naphtha at about 700-800 ° C. However, in the case of thermal decomposition, ethylene is theoretically easy to produce, and the ethylene selectivity is actually high.
On the other hand, aluminosilicate MCM-68 is a relatively new zeolite synthesized by Mobil in 2000 (Patent Document 2, etc.). This zeolite has a structure in which large pores (12-membered ring pores) and medium pores (10-membered ring pores) intersect three-dimensionally. Since this type of zeolite generally has a large surface area and a large internal space, it is useful as a catalyst in petroleum refining and petrochemical processes, and is expected to be useful as a catalyst using a relatively bulky organic molecule as a substrate. MCM-68 has a Si / Al ratio of 9-12, so it has a relatively high Al content, that is, active sites, and is considered to be an acid catalyst because it is more stable. As a base material for hydrocarbon processing catalysts because of its high activity in reactions involving methane, such as alkylation of aromatic hydrocarbons, transalkylation of alkylaromatic hydrocarbons, isomerization, disproportionation, dealkylation, etc. Expected.
The present inventors have reported that MCM-68 having a Si / Al ratio of about 70 obtained by dealumination of this MCM-68 is effective as a catalyst for biphenyl isopropylation reaction (non-conversion). Patent Document 1).

特許第4048458号Patent No. 4048458 特表2002-535227Special Table 2002-535227

Micropor. Mesopor. Mater., 116, 216-226 (2008)Micropor. Mesopor. Mater., 116, 216-226 (2008)

アルミノシリケートなどの固体酸を用いた接触分解法を用いれば、反応温度を低下させるとともにプロピレン選択性を向上させることができる。もしプロピレンを軽質ナフサの450〜600℃付近での接触分解で得られれば、熱分解と比較して省エネ効果も非常に大きいと考えられる。
本発明は、今まで全く検討されてこなかった新しいゼオライト骨格をもつMCM−68を用いてパラフィンを接触分解することにより、これまでより低い温度でより高いプロピレン選択性を実現することを目的とする。
If a catalytic cracking method using a solid acid such as aluminosilicate is used, the reaction temperature can be lowered and the propylene selectivity can be improved. If propylene is obtained by catalytic cracking of light naphtha at around 450 to 600 ° C., it is considered that the energy saving effect is very large compared to thermal cracking.
The object of the present invention is to achieve higher propylene selectivity at a lower temperature than ever by catalytically cracking paraffin using MCM-68 having a new zeolite framework that has not been studied at all. .

本発明者らは、アルミノシリケートMCM−68のAl量を調節し、ヘキサンの接触分解(クラッキング)反応の触媒として利用したところ、分解生成物中のプロピレンの収率が従来のゼオライト触媒(ZSM−5など)よりも高いことを見出し、本発明を完成させるに至った。
すなわち、本発明は、パラフィン原料を接触分解して軽質オレフィンを製造する方法であって、Si/Al比が20〜150のアルミノシリケートMCM−68を触媒として用いる方法である。
また、本発明は、Si/Al比が20〜150のアルミノシリケートMCM−68から成るパラフィンの接触分解用触媒である。
更に、本発明は、有機鋳型を用いた結晶化によりSi/Al比が8.3〜15のアルミノシリケートMCM−68を製造する段階、及びこのアルミノシリケートMCM−68を脱アルミニウム化してSi/Al比が20〜150のアルミノシリケートMCM−68を製造する段階から成るパラフィンの接触分解用触媒の製造方法である。
The present inventors adjusted the Al amount of aluminosilicate MCM-68 and used it as a catalyst for the catalytic cracking reaction of hexane. As a result, the yield of propylene in the cracked product was reduced by the conventional zeolite catalyst (ZSM- And the present invention has been completed.
That is, the present invention is a method for producing a light olefin by catalytic cracking of a paraffin raw material, and using aluminosilicate MCM-68 having a Si / Al ratio of 20 to 150 as a catalyst.
Further, the present invention is a catalyst for catalytic cracking of paraffin comprising aluminosilicate MCM-68 having a Si / Al ratio of 20 to 150.
Furthermore, the present invention provides a step of producing an aluminosilicate MCM-68 having a Si / Al ratio of 8.3 to 15 by crystallization using an organic template, and dealumination of the aluminosilicate MCM-68 to obtain a Si / Al This is a method for producing a catalyst for catalytic cracking of paraffin comprising the step of producing aluminosilicate MCM-68 having a ratio of 20 to 150.

本発明の触媒であるアルミノシリケートMCM−68は、パラフィンの接触分解用の触媒としてSi/Al比が最適化されており、パラフィンの接触分解反応に用いた場合、触媒活性が高く、プロピレン(C3=)の選択性・収率が高い。   The aluminosilicate MCM-68, which is the catalyst of the present invention, has an optimized Si / Al ratio as a catalyst for catalytic cracking of paraffin. When used for the catalytic cracking reaction of paraffin, the catalytic activity is high and propylene (C3 =) Selectivity and yield are high.

実施例の触媒反応に用いた固定床常圧流通反応装置を示す図である。It is a figure which shows the fixed bed normal pressure flow reaction apparatus used for the catalytic reaction of an Example.

本発明のアルミノシリケートは、MCM−68の基本骨格を有し、Si/Al比を20〜150、好ましくは30〜80としたものである。Si/Al比がこれよりも小さい領域では、反応初期の瞬間的な活性は高いが、コーキング(炭素析出)による活性劣化が激しく、結果的に活性の低い触媒となってしまう。一方、Si/Al比が高すぎると酸触媒としての活性が低下する。   The aluminosilicate of the present invention has a basic skeleton of MCM-68 and has a Si / Al ratio of 20 to 150, preferably 30 to 80. In a region where the Si / Al ratio is smaller than this, the instantaneous activity at the initial stage of the reaction is high, but the activity is greatly deteriorated by coking (carbon deposition), resulting in a catalyst having low activity. On the other hand, if the Si / Al ratio is too high, the activity as an acid catalyst decreases.

なお、本発明に於て、Si/Al比(モル比)は、誘導結合プラズマ原子発光スペクトル(ICP-AES)分析を用いて定量した値をいう。即ち、ICP-AES測定により得られるAlの重さ(mg/L)からSiのモル数と金属のモル数を計算し、これらから算出されるSi/Alモル比をいう。
通常は、処理時間や温度などの条件に対するSi/Alモル比について予め検量線を作成しておき、その条件を管理することにより所望のSi/Alモル比のシリケートを得ることができる。
In the present invention, the Si / Al ratio (molar ratio) refers to a value quantified using inductively coupled plasma atomic emission spectrum (ICP-AES) analysis. That is, the Si / Al molar ratio calculated from the number of moles of Si and the number of moles of metal calculated from the weight (mg / L) of Al obtained by ICP-AES measurement.
Usually, a silicate having a desired Si / Al molar ratio can be obtained by preparing a calibration curve in advance for the Si / Al molar ratio with respect to conditions such as processing time and temperature and managing the conditions.

本発明のアルミノシリケートは、(1)Si/Alが約8.3〜15であるMCM−68を製造する工程、及び(2)このMCM−68を、Si/Alが20〜150、好ましくは30〜80となるように酸処理を行う工程(脱アルミニウム処理工程)から成る製法により得ることができる。
以下、本発明のアルミノシリケートの製法を順に説明する。
(1)まず、Si/Alが約8.3〜15であるMCM−68(以下「Al−MCM−68」とも表す。)を製造する。
MCM-68は、12員環及び10員環のチャンネルが三次元的に交わった構造をもつアルミノシリケートである。ユニットセル(単位胞)はSi100.6Al111.4O224という組成の正方晶系である。MCM-68構造についてはInternational Zeolite Association Structure Commission (IZA-SC)の三文字コードはMSEで、表1に示す原子座標で一義的に決まる骨格トポロジーをもつ。c軸方向にまっすぐな12員環チャンネル(直径0.67nm)、a軸及びb軸方向に2つのうねった10員環チャンネル(直径0.50-0.55nm)が存在する。また、10員環を通ることによってのみアクセス可能な空洞(ケージ)(0.65×1.73nm)を有する(J. Phys. Chem. B, 2006, 110, 2045-2050)。
The aluminosilicate of the present invention comprises (1) a step of producing MCM-68 having a Si / Al ratio of about 8.3 to 15, and (2) the MCM-68 having a Si / Al ratio of 20 to 150, preferably It can be obtained by a production method comprising a step of performing an acid treatment (dealuminization treatment step) so as to be 30 to 80.
Hereafter, the manufacturing method of the aluminosilicate of this invention is demonstrated in order.
(1) First, MCM-68 (hereinafter also referred to as “Al-MCM-68”) having Si / Al of about 8.3 to 15 is manufactured.
MCM-68 is an aluminosilicate with a structure in which 12-membered and 10-membered channels intersect three-dimensionally. The unit cell (unit cell) is a tetragonal system having a composition of Si 100.6 Al 111.4 O 224 . For the MCM-68 structure, the three-letter code of the International Zeolite Association Structure Commission (IZA-SC) is MSE, and has a skeletal topology that is uniquely determined by the atomic coordinates shown in Table 1. There is a straight 12-membered ring channel (diameter 0.67 nm) in the c-axis direction, and two wavy 10-membered ring channels (diameter 0.50-0.55 nm) in the a-axis and b-axis directions. Moreover, it has a cavity (cage) (0.65 × 1.73 nm) accessible only through a 10-membered ring (J. Phys. Chem. B, 2006, 110, 2045-2050).

Figure 0005131624
注)空間群 P42/mnm (International Union of Crystallography (IUCr)の定めるNo. 136の空間群)格子定数 a (=b) = 18.286(1) Å, c = 20.208(2) Å
Figure 0005131624
Note) Space group P4 2 / mnm (No. 136 space group defined by International Union of Crystallography (IUCr)) Lattice constant a (= b) = 18.286 (1) Å, c = 20.208 (2) Å

アルミノシリケートMCM−68は、以下の組成式で表される。
AlSi112−n224
(式中、nは7〜12を表す。)
Si/Alは約8.3〜15である。
また、X線回折データは以下の値を含む。
2θ=6.56±0.10、6.88±0.10、8.16±0.10、8.80±0.10、9.70±0.10、19.50±0.10、21.76±0.10、22.56±0.10、23.10±0.10
Aluminosilicate MCM-68 is represented by the following composition formula.
H n Al n Si 112-n O 224
(In the formula, n represents 7 to 12.)
Si / Al is about 8.3-15.
The X-ray diffraction data includes the following values.
2θ = 6.56 ± 0.10, 6.88 ± 0.10, 8.16 ± 0.10, 8.80 ± 0.10, 9.70 ± 0.10, 19.50 ± 0.10 21.76 ± 0.10, 22.56 ± 0.10, 23.10 ± 0.10

このアルミノシリケートMCM-68は次のようにして作製することができる。
1.MCM-68作成のための鋳型(構造規定剤:SDA)として、ビシクロ[2.2.2]オクト-7-エン-2,3:5,6-テトラカルボン酸二無水物から3工程でN,N,N',N'-テトラエチルビシクロ[2.2.2]オクト-7-エン-2,3:5,6-ジピロリジニウム 二ヨウ化物を合成する。
2.上記ヨウ化物、コロイダルシリカ、水酸化カリウム、水酸化アルミニウム、水を混合して得たゲルを、オートクレーブ中160℃で16日間加熱する。
3.ろ過して得られた結晶(as-synthesized sample)を600℃で5時間焼成する。
This aluminosilicate MCM-68 can be manufactured as follows.
1. As a template for making MCM-68 (structure directing agent: SDA), N, N in 3 steps from bicyclo [2.2.2] oct-7-ene-2,3: 5,6-tetracarboxylic dianhydride , N ′, N′-Tetraethylbicyclo [2.2.2] oct-7-ene-2,3: 5,6-dipyrrolidinium diiodide is synthesized.
2. The gel obtained by mixing the iodide, colloidal silica, potassium hydroxide, aluminum hydroxide, and water is heated at 160 ° C. for 16 days in an autoclave.
3. The crystals (as-synthesized sample) obtained by filtration are fired at 600 ° C. for 5 hours.

(2)脱Al処理(酸処理)段階
この段階では、アルミノシリケートMCM−68を、Si/Al(モル比)が20〜150、好ましくは30〜80となるように酸処理を行う。
酸処理は以下の条件で行う。
酸としては、硝酸、塩酸及び硫酸が挙げられる。この酸を約1〜6Mの水溶液で用いることが好ましい。
この水溶液中でアルミノシリケートMCM−68を通常約80〜100℃で約24時間以上、好ましくは約24〜36時間加熱する。
Si/Al(モル比)を所望の値とするには、酸の種類や濃度及び処理時間や温度などの条件に対する脱アルミの度合い(Si/Alモル比)について予め知見を得ておき、その条件を管理することにより制御する。
このようにして得られたアルミノシリケートをdeAl−MCM−68とも表す。
(2) De-Al treatment (acid treatment) stage In this stage, the aluminosilicate MCM-68 is treated with an acid so that the Si / Al (molar ratio) is 20 to 150, preferably 30 to 80.
The acid treatment is performed under the following conditions.
Examples of the acid include nitric acid, hydrochloric acid, and sulfuric acid. The acid is preferably used in an aqueous solution of about 1-6M.
In this aqueous solution, the aluminosilicate MCM-68 is usually heated at about 80 to 100 ° C. for about 24 hours or longer, preferably about 24 to 36 hours.
In order to set Si / Al (molar ratio) to a desired value, knowledge is obtained in advance about the degree of dealumination (Si / Al molar ratio) with respect to conditions such as acid type, concentration, treatment time, and temperature. Control by managing conditions.
The aluminosilicate thus obtained is also referred to as deAl-MCM-68.

この段階で得られるdeAl−MCM−68は、以下の組成式で表される。
4n−3mAlSi112−n224
(式中、mは0〜0.74、nは7〜12を表す。)
また、X線回折データは以下の値を含む。
2θ=6.56±0.10、6.86±0.10、8.16±0.10、8.80±0.10、9.68±0.10、19.48±0.10、21.76±0.10、22.66±0.10、23.18±0.10
The deAl-MCM-68 obtained at this stage is represented by the following composition formula.
H 4n-3m Al m Si 112-n O 224
(In the formula, m represents 0 to 0.74, and n represents 7 to 12.)
The X-ray diffraction data includes the following values.
2θ = 6.56 ± 0.10, 6.86 ± 0.10, 8.16 ± 0.10, 8.80 ± 0.10, 9.68 ± 0.10, 19.48 ± 0.10 21.76 ± 0.10, 22.66 ± 0.10, 23.18 ± 0.10

工業的パラフィンの接触分解は通常以下のように行われる。
反応管(内径4mm〜400mm、長さ100mm〜10m)に保持した触媒層(0.1g〜10kg)を400〜600℃に加熱し、これにパラフィンまたはナフサを不活性ガスとともに気相で流通させる。触媒反応時の接触時間(W/F)は通常1〜100 g-catalyst h (mol)-1の範囲となるように調節される。
The catalytic cracking of industrial paraffin is usually carried out as follows.
A catalyst layer (0.1 g to 10 kg) held in a reaction tube (inner diameter 4 mm to 400 mm, length 100 mm to 10 m) is heated to 400 to 600 ° C., and paraffin or naphtha is circulated in the gas phase together with an inert gas. The contact time (W / F) during the catalytic reaction is usually adjusted to be in the range of 1 to 100 g-catalyst h (mol) −1 .

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
本実施例において、Si/Ti及びSi/Alは誘導結合プラズマ原子発光分析計(島津製作所製 ICP-8000E)を用いて検量線法(水溶液モード)により決定した。
The following examples illustrate the invention but are not intended to limit the invention.
In this example, Si / Ti and Si / Al were determined by a calibration curve method (aqueous solution mode) using an inductively coupled plasma atomic emission spectrometer (ICP-8000E manufactured by Shimadzu Corporation).

実施例1
(1)アルミノシリケートの合成
アルミノシリケートの合成に先立ち、Al-MCM-68を結晶化するための構造規定剤(structure-directing agent, SDA)であるN,N,N',N'-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium diiodide (TEBOP2+(I-)2)を既報(特許文献2)に従って調製した。
次にこのSDAを用いてAl-MCM-68の水熱合成を行った。具体的にはまず、内容積180 mLのフッ素樹脂(PFA)製容器にコロイダルシリカ(デュポン社、LUDOX(登録商標)HS-40,SiO2: 40wt%)を6.01 g (40 mmol, SiO2)入れ、Al(OH)3 (Pfaltz & Bauer) 312 mg (4.0 mmol)を溶かして10分間攪拌した。次にKOH (8mol/L, 6.047mmol/g) (Wako)を加え、30分間攪拌し、最後に構造規定剤SDA (TEBOP2+(I-)2) 2.23 g (4.0 mmol)を加え3時間攪拌した。ゲル組成比はSiO2-0.1 TEBOP2+(I-)2- 0.375 KOH-0.1 Al(OH)3-30 H2Oとした。調製したゲルを125 mLオートクレーブに移し、160℃のオーブン中で16日間静置した。得られた生成物を遠心分離し、その後80℃オーブン中で乾燥して白色粉末2.55 g (Al-MCM-68 (as-synthesized))を得た。
Example 1
(1) Synthesis of aluminosilicate Prior to the synthesis of aluminosilicate, N, N, N ', N'-tetraethylbicyclo [structure-directing agent (SDA) for crystallization of Al-MCM-68 2.2.2] oct-7-ene-2,3: 5,6-dipyrrolidinium diiodide (TEBOP 2+ (I ) 2 ) was prepared according to a previous report (Patent Document 2).
Next, hydrothermal synthesis of Al-MCM-68 was performed using this SDA. Specifically, first, colloidal silica (DuPont, LUDOX (registered trademark) HS-40, SiO 2 : 40 wt%) is put into a container made of fluororesin (PFA) having an internal volume of 180 mL, 6.01 g (40 mmol, SiO 2 ). Then, 312 mg (4.0 mmol) of Al (OH) 3 (Pfaltz & Bauer) was dissolved and stirred for 10 minutes. Then KOH (8mol / L, 6.047mmol / g) a (Wako) was added, and stirred for 30 min and finally the structure directing agent SDA (TEBOP 2+ (I -) 2) 2.23 g (4.0 mmol) was added 3 hours Stir. The gel composition ratio was SiO 2 −0.1 TEBOP 2+ (I ) 2 −0.375 KOH-0.1 Al (OH) 3 -30 H 2 O. The prepared gel was transferred to a 125 mL autoclave and left in an oven at 160 ° C. for 16 days. The obtained product was centrifuged and then dried in an oven at 80 ° C. to obtain 2.55 g of white powder (Al-MCM-68 (as-synthesized)).

(2)アルミノシリケートの触媒調製
得られたAl-MCM-68をマッフル炉にて600℃、10時間焼成を行い、アルミノシリケートに含まれるSDAを除去した。このとき、昇温速度は1〜2℃/minとして行った。焼成後の固体試料も粉末X線回折により、MSE構造を保持していることを確認した。
焼成後のAl-MCM-68を硝酸処理により、適宜脱アルミニウムを行った。具体的には、100-mLナスフラスコへ0.5〜2.0 Mの硝酸水溶液45 mLを入れ、そこに焼成したAl-MCM-68を1.5 g加えたのち、空気雰囲気、還流条件下で2時間撹拌した。硝酸処理後には、ろ過・蒸留水による洗浄を行ってから、回収した固体を100℃で一晩乾燥した。硝酸処理後の固体試料も粉末X線回折により、MSE構造を保持していることを確認した。硝酸処理により、適度に脱アルミニウムしたAl-MCM-68(deAl-MCM-68、Si/Al比=51、74及び156)が得られた。
(2) Preparation of aluminosilicate catalyst The obtained Al-MCM-68 was calcined in a muffle furnace at 600 ° C. for 10 hours to remove SDA contained in the aluminosilicate. At this time, the heating rate was set to 1 to 2 ° C./min. The solid sample after firing was confirmed to retain the MSE structure by powder X-ray diffraction.
Al-MCM-68 after firing was appropriately dealuminated by nitric acid treatment. Specifically, 45 mL of 0.5-2.0 M nitric acid aqueous solution was put into a 100-mL eggplant flask, and 1.5 g of baked Al-MCM-68 was added thereto, followed by stirring for 2 hours in an air atmosphere and under reflux conditions. . After the nitric acid treatment, filtration and washing with distilled water were performed, and then the collected solid was dried at 100 ° C. overnight. It was confirmed that the solid sample after the nitric acid treatment also retained the MSE structure by powder X-ray diffraction. Nitrogen treatment yielded moderately dealuminated Al-MCM-68 (deAl-MCM-68, Si / Al ratio = 51, 74 and 156).

比較のため、脱アルミニウム処理を行っていないAl-MCM-68も調製した。焼成後のAl-MCM-68のイオン交換サイトに存在するKカチオンを除去するためにアンモニウムイオン交換を行った。具体的には、250 mL-PPボトル中で硝酸アンモニウム(NH4NO3)3.0 gを蒸留水75 gに溶解したのち、焼成したAl-MCM-68を1.5 g加えて、80℃で24時間加熱した。加熱後、ろ過して固体試料を回収した。イオン交換及びろ過の作業を合わせて3回繰り返し行ったのち、固体試料を乾燥し、アンモニウム型Al-MCM-68を得た。その後、マッフル炉にて550℃、6時間焼成を行い、プロトン型Al-MCM-68とした。イオン交換及び焼成後の固体試料も粉末X線回折により、MSE構造を保持していることを確認した。またプロトン型Al-MCM-68のSi/Al比は13であり、もとのAl-MCM-68のSi/Al比12からほとんど変わっておらず、脱アルミニウムはほとんど起きていないものと考えられる。 For comparison, Al-MCM-68 without dealumination was also prepared. Ammonium ion exchange was performed to remove K cations present at the ion exchange site of Al-MCM-68 after firing. Specifically, after dissolving 3.0 g of ammonium nitrate (NH 4 NO 3 ) in 75 g of distilled water in a 250 mL-PP bottle, add 1.5 g of baked Al-MCM-68 and heat at 80 ° C for 24 hours. did. After heating, the solid sample was collected by filtration. After the ion exchange and filtration operations were repeated three times, the solid sample was dried to obtain ammonium-type Al-MCM-68. Thereafter, baking was performed at 550 ° C. for 6 hours in a muffle furnace to obtain proton type Al-MCM-68. It was confirmed that the solid sample after ion exchange and firing also retained the MSE structure by powder X-ray diffraction. The Si / Al ratio of proton-type Al-MCM-68 is 13, which is almost unchanged from the Si / Al ratio of 12 of the original Al-MCM-68, and it is considered that dealumination has hardly occurred. .

(3)触媒反応装置
触媒反応実施に先立ち、粉末状のアルミノシリケートを成型・整粒した。具体的には、アルミノシリケート粉末1〜2 gを内径20 mmの錠剤成型器に詰めたのち、油圧プレスにて0.4 MPaで加圧成型し、径が20 mmのペレットを得た。このペレットをふるいの上で適度に粉砕し、500〜600μmに整粒してこれを触媒として用いた。
本実施例における触媒反応は固定床常圧流通反応装置を用いて行った。装置の概略図を図1に示す。反応物であるヘキサンはシリンジポンプを用いてシリンジから供給し、キャリアガスであるメタン(5%)−ヘリウム混合ガスに導入した。シリンジポンプから供給されたヘキサンは、あらかじめ加熱した気化室に導入されるため蒸発して気体となり、この気体をキャリアガスに同伴した。反応装置のガスラインには内径2 mmのステンレスパイプを用いて、ヒーターで外側から適温に加熱することで気化したヘキサンの凝縮を防いだ。
反応管は内径8 mmの石英管を用い、これに先に整粒したアルミノシリケート触媒を100 mg詰め、石英ウールで触媒層を反応管中央部に保持した。反応前処理として、空気流通下で約7℃/minの昇温速度で650℃まで昇温し、この雰囲気で1時間保持した。その後、ヘリウム流通に切り替えてから5℃/minで450℃まで反応管温度を下げた。450℃で安定したのを確認してから、ヘキサンを同伴したメタン−ヘリウム混合ガスを触媒層に供給し、触媒反応を開始した。反応実施中は所定時間に六方バルブを切り替えることで、サンプリングループに溜めた反応後の生成物をガスクロマトグラフへ導入し、キャピラリーカラムで分離後、水素炎検出器(FID)にて各生成物・未反応物の定性・定量を行った。所定時間(70分)経過後、触媒層へのヘキサンの供給をやめ、ヘリウム流通に切り替えた。その後で、1〜2℃/minで500℃まで昇温して温度が安定したところで、再びヘキサンを供給し、触媒反応を行った。同様の操作を550及び600℃でも続けて行った。触媒反応時のW/Fはいずれの反応温度でも、12.1 g-catalyst h (mol-hexane)-1とした。600℃での触媒反応を停止した後には、ヘリウム流通下で自然放冷した。
(3) Catalytic reactor Prior to the catalytic reaction, powdered aluminosilicate was molded and sized. Specifically, 1 to 2 g of aluminosilicate powder was packed in a tablet molding machine with an inner diameter of 20 mm, and then press molded at 0.4 MPa with a hydraulic press to obtain pellets with a diameter of 20 mm. The pellets were appropriately pulverized on a sieve and sized to 500 to 600 μm and used as a catalyst.
The catalytic reaction in this example was performed using a fixed bed normal pressure flow reactor. A schematic diagram of the apparatus is shown in FIG. Hexane as a reactant was supplied from a syringe using a syringe pump and introduced into a methane (5%)-helium mixed gas as a carrier gas. Hexane supplied from the syringe pump was evaporated into gas because it was introduced into the preheated vaporization chamber, and this gas was accompanied by the carrier gas. A stainless steel pipe with an inner diameter of 2 mm was used for the gas line of the reactor, and the condensation of vaporized hexane was prevented by heating from the outside to an appropriate temperature with a heater.
The reaction tube used was a quartz tube having an inner diameter of 8 mm, packed with 100 mg of the aluminosilicate catalyst previously sized, and the catalyst layer was held in the center of the reaction tube with quartz wool. As a pretreatment for the reaction, the temperature was raised to 650 ° C. at a rate of temperature increase of about 7 ° C./min under air flow, and kept in this atmosphere for 1 hour. Then, after switching to helium circulation, the reaction tube temperature was lowered to 450 ° C. at 5 ° C./min. After confirming that it was stable at 450 ° C., a methane-helium mixed gas accompanied by hexane was supplied to the catalyst layer to start the catalytic reaction. By switching the hexagonal valve at a predetermined time during the reaction, the reaction products accumulated in the sampling loop are introduced into the gas chromatograph, separated by a capillary column, and each product / unreacted product is detected by a hydrogen flame detector (FID). The reaction product was qualitatively and quantitatively determined. After a predetermined time (70 minutes), the supply of hexane to the catalyst layer was stopped and the helium flow was switched to. Thereafter, when the temperature was stabilized by heating to 500 ° C. at 1 to 2 ° C./min, hexane was supplied again to carry out the catalytic reaction. The same operation was continued at 550 and 600 ° C. The W / F during the catalytic reaction was 12.1 g-catalyst h (mol-hexane) -1 at any reaction temperature. After stopping the catalytic reaction at 600 ° C., it was allowed to cool naturally under helium flow.

(4)結果
各アルミノシリケート触媒でのヘキサンのクラッキングの結果を表2に示す。各生成物への選択率はカーボンベース(炭素原子換算)で求めた。プロピレン収率(C=収率)は、転化率×プロピレン(C=)への選択率で求めた。アルミノシリケートの表記中のかっこの中の数字はSi/Al比(原子比)を表す。
なお、反応温度は、固定床常圧流通反応装置の石英製反応管を外側から加熱するように設置したヒーターと、反応管との間で測定したものである。

Figure 0005131624
(4) Results Table 2 shows the results of hexane cracking with each aluminosilicate catalyst. The selectivity for each product was determined on a carbon basis (in terms of carbon atoms). The propylene yield (C 3 = yield) was determined by the conversion rate × selectivity to propylene (C 3 =). The numbers in parentheses in the aluminosilicate notation represent the Si / Al ratio (atomic ratio).
In addition, reaction temperature is measured between the heater installed so that the quartz reaction tube of a fixed bed normal pressure flow reaction apparatus may be heated from the outside, and the reaction tube.
Figure 0005131624

表2から、Si/Al比が上がるにつれて転化率は下がり、特に、deAl-MCM-68(156)はdeAl-MCM-68(51)に比べて低い。
また、Si/Al比が低いと(13では)、プロピレン(C=)への選択率は低い。脱アルミニウム処理をしていないAl-MCM-68(13)では顕著な活性低下が起こり、反応温度600℃ではより低い反応温度でのクラッキング活性を下回っていた。deAl-MCM-68(51)は、反応温度によらず、高いプロピレン選択性を示し、また顕著な失活も起こらなかった。具体的には、deAl-MCM-68(51)では450℃から600℃の広い範囲かつ反応開始5分後から65分経過後でも、45%を超えるプロピレン選択率が得られた。
反応温度600℃において、Si/Al比が50〜80の場合、プロピレン収率は30%以上であり、パラフィンを接触分解してプロピレンを多く含む軽質オレフィン(アルケン)を製造するためには好ましいといえる。
From Table 2, the conversion rate decreases as the Si / Al ratio increases, and in particular, deAl-MCM-68 (156) is lower than deAl-MCM-68 (51).
Also, if the Si / Al ratio is low (13), the selectivity to propylene (C 3 =) is low. In Al-MCM-68 (13) that was not dealuminated, a significant decrease in activity occurred, and at a reaction temperature of 600 ° C., it was below the cracking activity at a lower reaction temperature. deAl-MCM-68 (51) showed high propylene selectivity regardless of the reaction temperature, and no significant deactivation occurred. Specifically, with deAl-MCM-68 (51), propylene selectivity exceeding 45% was obtained over a wide range from 450 ° C to 600 ° C and after 65 minutes from the start of the reaction.
When the reaction temperature is 600 ° C. and the Si / Al ratio is 50 to 80, the propylene yield is 30% or more, which is preferable for producing a light olefin (alkene) containing a large amount of propylene by catalytic cracking of paraffin. I can say that.

次に、反応後に回収したアルミノシリケート触媒の炭素析出量を求めた。
触媒を用いて、順に反応温度を450℃、500℃、550℃、600℃として70分間ずつ反応を実施してからヘリウム気流下で放冷した後に室温で触媒を回収した。回収した触媒を示差熱・熱重量分析装置(TG-DTA)にて重量減少値を測定した。重量減少値のうち、150〜800℃までの重量減少を触媒上に析出した炭素が燃焼したものと考え、析出炭素量を重量(WA)で見積もった。一方、無機物である触媒はこの測定中に酸化・燃焼が全く起こらないものと考えて、測定前の試料重量(WB)から800℃までに減少した重量(WC)を差し引いたものを触媒そのものに由来する重量(WD(=WB−WC))として見積もった。炭素析出量は(WA/WD)により百分率で算出した。炭素析出が起きると活性低下の原因となると考えられる。結果を表3に示す。

Figure 0005131624
deAl-MCM-68(51)及びdeAl-MCM-68(156)は、温度によらず、クラッキング活性はほとんど低下せず、炭素析出量も非常に少なかった。しかし、Al-MCM-68(13)の炭素析出量は非常に多いことから、Si/Al比が20未満では激しい炭素析出が起こり、触媒としては好ましくないといえる。 Next, the carbon deposition amount of the aluminosilicate catalyst recovered after the reaction was determined.
Using the catalyst, the reaction temperature was set to 450 ° C., 500 ° C., 550 ° C., and 600 ° C. for 70 minutes in this order, followed by cooling in a helium stream, and then the catalyst was recovered at room temperature. The recovered catalyst was measured for the weight loss value with a differential thermal and thermogravimetric analyzer (TG-DTA). Of the weight loss values, the weight loss up to 150-800 ° C. was considered as the carbon deposited on the catalyst burned, and the amount of precipitated carbon was estimated by weight (WA). On the other hand, the catalyst which is an inorganic substance is considered that oxidation and combustion do not occur at all during this measurement, and the catalyst itself is obtained by subtracting the weight (WC) reduced to 800 ° C. from the sample weight (WB) before the measurement. It was estimated as the derived weight (WD (= WB-WC)). The amount of carbon deposition was calculated as a percentage by (WA / WD). It is thought that when carbon deposition occurs, the activity is reduced. The results are shown in Table 3.
Figure 0005131624
In deAl-MCM-68 (51) and deAl-MCM-68 (156), the cracking activity was hardly lowered and the amount of carbon deposited was very small regardless of the temperature. However, since the carbon deposition amount of Al-MCM-68 (13) is very large, if the Si / Al ratio is less than 20, severe carbon deposition occurs, which is not preferable as a catalyst.

Claims (9)

パラフィン原料を接触分解することから成る軽質オレフィンを製造する方法であって、Si/Al比が20〜150のアルミノシリケートMCM−68を触媒として用いる方法。 A method for producing a light olefin comprising catalytic cracking of a paraffin raw material, wherein aluminosilicate MCM-68 having a Si / Al ratio of 20 to 150 is used as a catalyst. Si/Al比が30〜80である請求項1に記載の方法。 The method according to claim 1, wherein the Si / Al ratio is 30-80. 反応温度が450〜600℃である請求項1又は2に記載の方法。 The process according to claim 1 or 2, wherein the reaction temperature is 450 to 600 ° C. 前記パラフィン原料がC5−C8炭化水素を含む請求項1〜3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the paraffin raw material contains C5-C8 hydrocarbons. 前記パラフィン原料がナフサである請求項4に記載の方法。 The method according to claim 4, wherein the paraffin raw material is naphtha. Si/Al比が20〜150のアルミノシリケートMCM−68から成るパラフィンの接触分解用触媒。 A catalyst for catalytic cracking of paraffin comprising aluminosilicate MCM-68 having a Si / Al ratio of 20 to 150. Si/Al比が30〜80である請求項6に記載の触媒。 The catalyst according to claim 6, wherein the Si / Al ratio is 30-80. 有機鋳型を用いた結晶化によりSi/Al比が8.3〜15のアルミノシリケートMCM−68を製造する段階、及びこのアルミノシリケートMCM−68を脱アルミニウム化してSi/Al比が20〜150のアルミノシリケートMCM−68を製造する段階から成るパラフィンの接触分解用触媒の製造方法。 The step of producing an aluminosilicate MCM-68 having an Si / Al ratio of 8.3 to 15 by crystallization using an organic template, and dealumination of the aluminosilicate MCM-68 to obtain an Si / Al ratio of 20 to 150 A process for producing a catalyst for catalytic cracking of paraffin comprising the step of producing aluminosilicate MCM-68. 脱アルミニウム化の段階で、Si/Al比が30〜80のアルミノシリケートMCM−68を製造する請求項8に記載の方法。 The method according to claim 8, wherein an aluminosilicate MCM-68 having a Si / Al ratio of 30 to 80 is produced in the dealumination step.
JP2009051952A 2009-03-05 2009-03-05 Paraffin catalytic cracking process Expired - Fee Related JP5131624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051952A JP5131624B2 (en) 2009-03-05 2009-03-05 Paraffin catalytic cracking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051952A JP5131624B2 (en) 2009-03-05 2009-03-05 Paraffin catalytic cracking process

Publications (2)

Publication Number Publication Date
JP2010202613A JP2010202613A (en) 2010-09-16
JP5131624B2 true JP5131624B2 (en) 2013-01-30

Family

ID=42964467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051952A Expired - Fee Related JP5131624B2 (en) 2009-03-05 2009-03-05 Paraffin catalytic cracking process

Country Status (1)

Country Link
JP (1) JP5131624B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169651A1 (en) 2011-06-10 2012-12-13 Sumitomo Chemical Company, Limited Method for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms and apparatus for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms
JP5470592B2 (en) * 2011-11-25 2014-04-16 ユニゼオ株式会社 Zeolite, method for producing the same, and catalytic cracking catalyst for paraffin
CN113646081B (en) 2019-03-18 2024-01-09 埃克森美孚科技工程公司 Mesoporous catalyst compounds and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049018A (en) * 1999-01-21 2000-04-11 Mobil Corporation Synthetic porous crystalline MCM-68, its synthesis and use
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas

Also Published As

Publication number Publication date
JP2010202613A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
Shamzhy et al. New trends in tailoring active sites in zeolite-based catalysts
KR102048913B1 (en) Zeolite and method for producing same, and cracking catalyst for paraffin
US20110160508A1 (en) Production of aromatics from methane
CN103191776A (en) Preparation method of ZSM-5 molecular sieve catalyst
JP2008521743A (en) Zeolite composition and its manufacture and use
TW200942326A (en) Catalytic composition for producing olefins by catalytic cracking
JP5588973B2 (en) Method for producing crystalline metallosilicate
JP6053366B2 (en) Zeolite catalyst, method for producing zeolite catalyst, and method for producing lower olefin
CN101618337A (en) Method for improving catalytic property of methane aromatization catalyst
KR20110047178A (en) TNU-9 zeolite application as a hydrocarbon conversion catalyst
EP2917151A1 (en) Small crystal ferrierite and method of making the same
JP5588972B2 (en) Method for producing crystalline metallosilicate
KR20210098543A (en) Catalysts for the production of light olefins from C4-C7 hydrocarbons
JP5131624B2 (en) Paraffin catalytic cracking process
JP2022525534A (en) Mesoporous catalyst compounds and their use
KR20190023054A (en) Preparation of ZSM-5-based catalyst; use in ethylbenzene dealkylation process
JP2014024007A (en) Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin
JP2014024006A (en) Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin
JP5646279B2 (en) Production method of light olefin
JP2021516611A (en) Method of heavy reforming oil conversion to BTX by metal impregnated ZSM-5 + mesoporous mordenite zeolite composite catalyst
CN113019433B (en) Preparation method of HZSM-5 zeolite catalyst
CN112619686B (en) Supported non-noble metal dehydrogenation catalyst and preparation method and application thereof
Xiong et al. Aerosol Assisted Synthesis of Y/ZSM‐5 Composite Zeolite and Its Application in Cracking Reaction
JP5674029B2 (en) Propylene and ethylene production method
JP2021154239A (en) Catalyst for production of aromatic compound, method for producing catalyst for aromatic compound, and method for producing aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees