WO2019155607A1 - Method for producing light olefin - Google Patents

Method for producing light olefin Download PDF

Info

Publication number
WO2019155607A1
WO2019155607A1 PCT/JP2018/004616 JP2018004616W WO2019155607A1 WO 2019155607 A1 WO2019155607 A1 WO 2019155607A1 JP 2018004616 W JP2018004616 W JP 2018004616W WO 2019155607 A1 WO2019155607 A1 WO 2019155607A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ynu
zeolite
methanol
reaction
Prior art date
Application number
PCT/JP2018/004616
Other languages
French (fr)
Japanese (ja)
Inventor
範立 椿
嘉治 米山
中村 典彦
Original Assignee
Toyo Tire株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire株式会社 filed Critical Toyo Tire株式会社
Priority to JP2019570243A priority Critical patent/JPWO2019155607A1/en
Priority to PCT/JP2018/004616 priority patent/WO2019155607A1/en
Publication of WO2019155607A1 publication Critical patent/WO2019155607A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Embodiment of this invention is related with the manufacturing method of a light olefin. More specifically, the present invention relates to a method for producing light olefins such as ethylene, propylene and butene from methanol.
  • zeolite As a catalyst for this reaction, zeolite is used as a solid acid, but catalyst deactivation due to coke formation during the reaction is a problem, and development of a catalyst having a long life is desired.
  • Non-Patent Document 1 discloses a Hi-SAPO-34 catalyst having mesopores as an MTO reaction catalyst.
  • Hi-SAPO-34 catalyst is prepared by co-existing multi-walled carbon nanotubes in the preparation gel of SAPO-34 zeolite catalyst, preparing a mixture of carbon nanotubes and SAPO-34 by hydrothermal synthesis method, and then burning the mixture Is done. Further, a catalyst obtained by impregnating a Hi-SAPO-34 catalyst with Ni or Co is also disclosed. These catalysts are used to convert methanol to light olefins (MTO reaction), and ethylene, propylene, and butene are generated in any catalyst. However, the deactivation of these catalysts is fast and almost no propylene is produced after 200 minutes. In this document, expensive carbon nanotubes are used, and it is required to perform the MTO reaction with a catalyst using a cheaper raw material.
  • MTO reaction light olefins
  • Non-Patent Document 2 discloses the preparation method and structure of YNU-5, which is a novel zeolite, and the catalyst can be used in a method for converting dimethyl ether to light olefin (DTO reaction). It is disclosed.
  • Non-Patent Document 2 describes the use of YNU-5 zeolite as a catalyst for the synthesis of light olefins, but it is used for the DTO reaction using dimethyl ether as a raw material and uses methanol as a raw material. It is not described for use in the MTO reaction. In general, it is considered that the MTO reaction produces much more water as a by-product than the DTO reaction and causes much damage (ie, deactivation) to the catalyst.
  • An object of the present invention is to provide a method capable of producing light olefins from methanol at a high conversion rate over a long period of time.
  • the method for producing a light olefin according to an embodiment of the present invention includes converting methanol into a light olefin in the presence of a catalyst containing YNU-5 zeolite.
  • a light olefin can be synthesized from methanol at a high conversion rate over a long period of time.
  • the graph which shows the XRD analysis result of YNU-5 catalyst in 1st Example Conceptual diagram of the reactor used in the examples Graph showing the methanol conversion rate at a flow rate of 22 mL / min in the first example. Graph showing the methanol conversion rate at a flow rate of 33 mL / min in the first example. The graph which shows the methanol conversion in 2nd Example
  • a catalyst containing YNU-5 zeolite (hereinafter sometimes referred to as YNU-5 catalyst) is used as the solid acid catalyst in the MTO reaction for synthesizing light olefin from methanol. It is characterized by using.
  • YNU-5 zeolite has a crystal structure of 12-membered large pores extending in the x-axis direction, 12-membered large pores extending in the y-axis direction, and a pair of 8-membered small rings extending in the z-axis direction. It is a microporous aluminosilicate zeolite having a three-dimensional pore structure composed of pores and having an independent 8-membered small pore different from the three-dimensional pore structure.
  • the large pores extending in the x-axis direction and the large pores extending in the y-axis direction extend in two dimensions while intersecting the passages of the large pores, and a pair of small pores extending in parallel with each other Connected vertically to the hole passage.
  • an independent 8-membered small pore extends in the z-axis direction to form a one-dimensional passage that is not connected to the three-dimensional pore structure.
  • a light olefin can be synthesized from methanol at a high conversion rate over a long period of time. The reason is not intended to be limited by this, but is considered as follows.
  • Coke which is a cause of deactivation of the conventional zeolite catalyst in the MTO reaction, is considered to be formed due to the high acid strength of the acid sites in the zeolite pore inlet and the pore and the size of the pore diameter. . Therefore, in order to suppress coke formation, it is considered effective to control the acid strength of the zeolite catalyst or to have a large pore diameter that promotes mass transfer. In this regard, YNU-5 zeolite is considered to be able to suppress coke formation mainly by promoting mass transfer due to the size of the pore diameter.
  • YNU-5 zeolite promotes mass transfer in the 12-membered large pores, provides a high surface area reaction field in the 8-membered small pores, and suppresses the production of olefins having 5 or more carbon atoms. It is thought that the reaction is promoted. Therefore, it is considered that coke formation is suppressed and the MTO reaction is promoted to extend the life.
  • the molar ratio Si / Al between Si and Al in the YNU-5 zeolite is not particularly limited, and may be, for example, 5 to 2000 or 8 to 200 from the viewpoint of controlling the acid strength to suppress coke formation. .
  • the BET specific surface area, pore volume and average pore diameter of YNU-5 zeolite are not particularly limited.
  • the BET specific surface area is more preferably 200 to 800 m 2 / g.
  • it is 400 to 500 m 2 / g.
  • the pore volume is preferably 0.1 to 1.0 cm 3 / g, more preferably 0.2 to 0.4 cm 3 / g.
  • the average pore diameter is preferably 0.7 to 2.0 nm, more preferably 0.9 to 1.6 nm.
  • YNU-5 zeolite may carry a metal.
  • the metal is not particularly limited as long as it can enhance the catalytic function of YNU-5 zeolite.
  • metals that is, metal elements include transition metals (for example, Group 8 elements such as Fe, Group 9 elements such as Co, Group 10 elements such as Ni), Group 12 elements such as Zn, La, Ce, and the like. And rare earth elements.
  • transition metals for example, Group 8 elements such as Fe, Group 9 elements such as Co, Group 10 elements such as Ni
  • Group 12 elements such as Zn, La, Ce, and the like.
  • rare earth elements rare earth elements.
  • the form of the supported metal may be a single metal or a compound containing a metal.
  • the metal-containing compound include nitrates, oxides, chlorides, sulfates, and the like, and nitrate hydrates are preferable.
  • the method for supporting the metal is not particularly limited, and for example, it can be supported by a known method such as an impregnation method or an ion exchange method. It may be introduced into the YNU-5 zeolite after calcination, or may be added and introduced during the synthesis of YNU-5 zeolite by hydrothermal synthesis.
  • the amount of the metal element introduced is not particularly limited, and may be, for example, 0.1 to 10% by mass, 1 to 10% by mass, or 3 to 8% by mass with respect to the mass of YNU-5 zeolite.
  • the catalyst other catalysts may be used in combination with the YNU-5 catalyst.
  • the other catalyst include zeolite catalysts such as a SAPO-5 catalyst, a SAPO-18 catalyst, a SAPO-34 catalyst, a DNL-6 catalyst, and an SSZ-13 catalyst.
  • a combination may be used in combination with the YNU-5 catalyst.
  • methanol is converted to light olefin in the presence of YNU-5 catalyst.
  • a raw material containing methanol may be brought into contact with the YNU-5 catalyst.
  • Methanol is not particularly limited.
  • methanol produced using natural gas and carbon dioxide as raw materials may be used.
  • saturated hydrocarbons that exist in a gaseous state under MTO reaction conditions such as hexane and heptane, may be added to the above raw materials in order to calculate the conversion rate.
  • the method for bringing methanol into contact with the YNU-5 catalyst is not particularly limited as long as it is a method capable of converting methanol into light olefin in the presence of the YNU-5 catalyst.
  • a gas containing methanol as a gas is included.
  • the stream may be fed to a catalyst bed containing YNU-5 catalyst.
  • the gas flow may be supplied as a mixed gas of an inert gas such as nitrogen or argon and methanol.
  • a YNU-5 catalyst diluted by adding inert inorganic particles (diluent) such as quartz sand to the YNU-5 catalyst may be used as the catalyst bed.
  • the amount of inorganic particles added is not particularly limited, and may be, for example, 2 to 5 times the mass of the YNU-5 catalyst.
  • the reaction temperature of the MTO reaction is not particularly limited as long as it is a temperature at which methanol can be converted into light olefin, and may be, for example, 350 to 450 ° C. or 400 to 450 ° C.
  • the reaction method may be a continuous flow method or a batch method.
  • the gas space velocity (GHSV) is not particularly limited, and may be, for example, 1000 to 2500 mLg cat ⁇ 1 h ⁇ 1 or 1300 to 2000 mLg cat ⁇ 1 h ⁇ 1 per 1 g of YNU-5 catalyst.
  • GHSV gas space velocity
  • limiting in particular as a reaction format Any of a fixed bed type, a moving bed type, and a fluidized bed type may be sufficient.
  • the light olefin produced in this embodiment is an olefin having 2 to 4 carbon atoms (ie, alkene), and at least one olefin selected from the group consisting of ethylene, propylene and butene is produced.
  • the product preferably contains butene.
  • the YNU-5 catalyst is suitable as a method for producing butene because the selectivity of butene in the product is higher than that of the conventional zeolite catalyst.
  • the MTO reaction test was conducted using a fixed bed quartz glass reactor at normal pressure (0.1 MPa).
  • the conceptual diagram of the reaction apparatus is as shown in FIG. 2, and a catalyst bed is provided in the middle of the flow path of a tubular reactor having an inner diameter of 6 mm.
  • the catalyst bed was fixed by packing quartz wool on both sides.
  • a heater for heating the catalyst bed is provided on the outer circumference of the reactor, and a thermocouple thermometer for measuring the internal temperature of the catalyst bed and a reaction temperature control thermocouple for measuring the outer wall temperature of the reactor, It was configured to control the output of the heater.
  • Example 1 a catalyst bed was formed by mixing 1.0 g of H-type YNU-5 zeolite and 3.0 g of quartz sand and mixing them in a reactor. Methanol: hexane is mixed as a reaction gas at a ratio of 90: 1 (molar ratio), 0.005 mL / min of the reaction raw material (liquid mixture) is vaporized at 300 ° C., and then circulated from one end of the reactor into the reactor. I let you.
  • 33 mL / min reaction gas gas space velocity: 1980 mLg cat ⁇ 1 h ⁇ 1 .
  • the reaction was performed by raising the temperature to 400 ° C. in 80 minutes. After the temperature increase was completed, the product was measured online by gas chromatography (“GC-2014” manufactured by Shimadzu Corporation, FID: Porapak Q column) every hour, and the reaction was performed for 7 hours.
  • Example 2 instead of 1.0 g of H-type YNU-5 zeolite, a mixture of 0.4 g of H-type YNU-5 zeolite, 0.3 g of SAPO-5 zeolite and 0.3 g of SAPO-18 zeolite was used. The others were reacted in the same manner as in Example 1.
  • Comparative Example 1 1.0 g of SAPO-5 zeolite was used instead of 1.0 g of H-type YNU-5 zeolite, and the others were reacted in the same manner as in Example 1.
  • Comparative Example 2 1.0 g of SAPO-18 zeolite was used instead of 1.0 g of H-type YNU-5 zeolite, and the others were reacted in the same manner as in Example 1.
  • FIG. 3 shows the methanol conversion rate at a flow rate of 22 mL / min
  • FIG. 4 shows the methanol conversion rate at a flow rate of 33 mL / min. From FIG. 3 and FIG. 4, in all of Examples 1 and 2 and Comparative Examples 1 and 2, the methanol conversion was 80% or more, indicating high catalytic activity. It was also found that even after 7 hours, the methanol conversion rate remained high and the catalyst life was long.
  • Example 1 using YNU-5 catalyst always showed 100% methanol conversion.
  • Comparative Example 1 using the SAPO-5 catalyst the methanol conversion rate was slightly unstable for 2 hours after the start of the reaction, but after that, it became stable and reached 100%.
  • Example 2 In Comparative Example 2 using the SAPO-18 catalyst, although high catalytic activity was exhibited, the methanol conversion was unstable. Further, in Example 2 using the mixture containing YNU-5 zeolite (Mixture), the methanol conversion was stably 100% as in Example 1 (see FIG. 4).
  • the average methanol conversion rate in the 7-hour reaction and the average selectivity of each product in the 7-hour reaction are shown in Table 2 (flow rate 22 mL / min) and Table 3 (flow rate 33 mL / min), respectively. Show. From Tables 2 and 3, in Examples 1 and 2 using YNU-5 catalyst, the average methanol conversion was higher than in Comparative Examples 1 and 2. Further, the methane selectivity at all catalysts is low, had higher light olefins (C 2 H 4, C 3 H 6, C 4 H 8) selectivity. In particular, in Examples 1 and 2, the selectivity for butene was higher than in Comparative Examples 1 and 2, and therefore, it was found that the MTO reaction using YNU-5 catalyst was more effective as a method for producing butene. .
  • the obtained YNU-5Fe catalyst was pretreated at a temperature of 200 ° C. for 2 hours, and the BET specific surface area, pore volume and average pore diameter were measured in the same manner as in Example 1.
  • the specific surface area of the YNU-5Fe catalyst was 295.5 m 2 / g
  • the pore volume was 0.22 cm 3 / g
  • the average pore diameter was 1.51 nm
  • the specific surface area and pore volume were It was lower than the YNU-5 catalyst of the first example.
  • the YNU-5Fe catalyst was subjected to a catalyst performance evaluation test by MTO reaction.
  • the flow rate of nitrogen gas was only 33 mL / min (reaction gas gas space velocity: 1980 mLg cat ⁇ 1 h ⁇ 1 ), and the others were performed in the same manner as in the first example.
  • Example 3 using the YNU-5Fe catalyst the methanol conversion was maintained at almost 100% as in Example 1 using the YNU-5 catalyst not supporting metal. It was found to have a long catalyst life.
  • Table 4 below shows the average methanol conversion in the 7-hour reaction and the average selectivity of each product in the 7-hour reaction.
  • the selectivity for butene was higher than in Example 1 using the YNU-5 catalyst not supporting the metal, so that the metal was supported on the YNU-5 zeolite. By doing so, it turned out that it is more effective as a manufacturing method of butene.
  • light olefins can be synthesized from methanol over a long period of time with high methanol conversion and high olefin selectivity. Therefore, a light olefin useful as an industrial raw material can be efficiently produced from natural gas containing shale gas by an MTO reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A method for producing light olefin according to one embodiment of the present invention converts methanol into light olefin in the presence of a catalyst that contains YNU-5 zeolite. The YNU-5 zeolite may be loaded with a metal. The light olefin includes at least one substance that is selected from the group consisting of ethylene, propylene and butene. According to the present invention, light olefin is able to be produced from methanol with a high conversion rate over a long period of time.

Description

軽質オレフィンの製造方法Production method of light olefin
 本発明の実施形態は、軽質オレフィンの製造方法に関する。より詳細には、メタノールからエチレン、プロピレン、ブテン等の軽質オレフィンを製造する方法に関するものである。 Embodiment of this invention is related with the manufacturing method of a light olefin. More specifically, the present invention relates to a method for producing light olefins such as ethylene, propylene and butene from methanol.
 従来、軽質オレフィン(低級オレフィンとも称される。)は主にナフサのクラッキングから得られている。近年その需要が高まっているため、石油以外の原料からの軽質オレフィンの合成が求められている。その中で、メタノールから軽質オレフィンへの変換反応(MTO反応)が代替製造法として注目されている。天然ガスを原料とするメタノールを利用できるためである。特に近年開発されたシェールガス(天然ガス)は価格が安いことから、低コストで軽質オレフィンの合成が可能になるとして、高い性能を持つMTO反応触媒の開発が望まれている。 Conventionally, light olefins (also referred to as lower olefins) have been obtained mainly from naphtha cracking. In recent years, since the demand has increased, synthesis of light olefins from raw materials other than petroleum has been demanded. Among them, a conversion reaction from methanol to light olefin (MTO reaction) has attracted attention as an alternative production method. This is because methanol from natural gas can be used. In particular, since shale gas (natural gas) developed in recent years is inexpensive, it is desired to develop an MTO reaction catalyst having high performance, because it enables synthesis of light olefins at low cost.
 この反応の触媒としては、固体酸としてゼオライトが用いられているが、反応中でのコーク生成による触媒失活が問題となっており、長寿命を持つ触媒の開発が望まれている。 As a catalyst for this reaction, zeolite is used as a solid acid, but catalyst deactivation due to coke formation during the reaction is a problem, and development of a catalyst having a long life is desired.
 非特許文献1には、MTO反応触媒として、メソ細孔を持つHi-SAPO-34触媒が開示されている。Hi-SAPO-34触媒は、SAPO-34ゼオライト触媒の調製ゲルに多層膜カーボンナノチューブを共存させ、水熱合成法によりカーボンナノチューブとSAPO-34の混合物を調製した後、混合物を燃焼させることにより調製される。また、Hi-SAPO-34触媒にNiもしくはCoを含浸させた触媒も開示されている。そして、これらの触媒を用いて、メタノールから軽質オレフィンへの変換(MTO反応)を行っており、いずれの触媒もエチレン、プロピレン及びブテンが生成している。しかしながら、これらの触媒の失活は早く、200分後にはプロピレンはほとんど生成していない。また、この文献では、高価なカーボンナノチューブを用いており、より安価な原料を用いた触媒でMTO反応を行うことが求められる。 Non-Patent Document 1 discloses a Hi-SAPO-34 catalyst having mesopores as an MTO reaction catalyst. Hi-SAPO-34 catalyst is prepared by co-existing multi-walled carbon nanotubes in the preparation gel of SAPO-34 zeolite catalyst, preparing a mixture of carbon nanotubes and SAPO-34 by hydrothermal synthesis method, and then burning the mixture Is done. Further, a catalyst obtained by impregnating a Hi-SAPO-34 catalyst with Ni or Co is also disclosed. These catalysts are used to convert methanol to light olefins (MTO reaction), and ethylene, propylene, and butene are generated in any catalyst. However, the deactivation of these catalysts is fast and almost no propylene is produced after 200 minutes. In this document, expensive carbon nanotubes are used, and it is required to perform the MTO reaction with a catalyst using a cheaper raw material.
 一方、非特許文献2には、新規なゼオライトであるYNU-5についてその調製法と構造が開示されており、また、この触媒をジメチルエーテルから軽質オレフィンに変換する方法(DTO反応)に用いることが開示されている。このように非特許文献2には、YNU-5ゼオライトを軽質オレフィンの合成用触媒に用いることが記載されているが、ジメルエーテルを原料とするDTO反応に用いるものであり、メタノールを原料とするMTO反応に用いることは記載されていない。一般に、MTO反応は、DTO反応より遥かに多い水を副生し、触媒に与えられるダメージ(即ち、失活)が多いと考えられている。水によるルイス酸点の被毒、及び、水による脱アルミニウム(ゼオライトの永久失活)などはいずれも深刻な難関である。このように両者は全く別の反応であり、DTO反応で使えるゼオライトがMTO反応に使えないケースが、多くみられるのが実情である。 On the other hand, Non-Patent Document 2 discloses the preparation method and structure of YNU-5, which is a novel zeolite, and the catalyst can be used in a method for converting dimethyl ether to light olefin (DTO reaction). It is disclosed. Thus, Non-Patent Document 2 describes the use of YNU-5 zeolite as a catalyst for the synthesis of light olefins, but it is used for the DTO reaction using dimethyl ether as a raw material and uses methanol as a raw material. It is not described for use in the MTO reaction. In general, it is considered that the MTO reaction produces much more water as a by-product than the DTO reaction and causes much damage (ie, deactivation) to the catalyst. The poisoning of Lewis acid sites with water and dealumination with water (permanent deactivation of zeolite) are all serious difficulties. Thus, the two are completely different reactions, and in reality, there are many cases where zeolite that can be used in the DTO reaction cannot be used in the MTO reaction.
 本発明の実施形態は、メタノールから高い転化率でかつ長時間にわたって軽質オレフィンを製造することができる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of producing light olefins from methanol at a high conversion rate over a long period of time.
 本発明の実施形態に係る軽質オレフィンの製造方法は、YNU-5ゼオライトを含む触媒の存在下でメタノールを軽質オレフィンに変換することを含むものである。 The method for producing a light olefin according to an embodiment of the present invention includes converting methanol into a light olefin in the presence of a catalyst containing YNU-5 zeolite.
 本実施形態によれば、メタノールから高い転化率でかつ長時間にわたって軽質オレフィンを合成することができる。 According to this embodiment, a light olefin can be synthesized from methanol at a high conversion rate over a long period of time.
第1実施例におけるYNU-5触媒のXRD分析結果を示すグラフThe graph which shows the XRD analysis result of YNU-5 catalyst in 1st Example 実施例で用いた反応装置の概念図Conceptual diagram of the reactor used in the examples 第1実施例の流速22mL/minでのメタノール転化率を示すグラフGraph showing the methanol conversion rate at a flow rate of 22 mL / min in the first example. 第1実施例の流速33mL/minでのメタノール転化率を示すグラフGraph showing the methanol conversion rate at a flow rate of 33 mL / min in the first example. 第2実施例におけるメタノール転化率を示すグラフThe graph which shows the methanol conversion in 2nd Example
 本実施形態に係る軽質オレフィンの製造方法は、メタノールから軽質オレフィンを合成するMTO反応において、その固体酸触媒として、YNU-5ゼオライトを含む触媒(以下、YNU-5触媒ということがある。)を用いることを特徴とする。 In the light olefin production method according to the present embodiment, a catalyst containing YNU-5 zeolite (hereinafter sometimes referred to as YNU-5 catalyst) is used as the solid acid catalyst in the MTO reaction for synthesizing light olefin from methanol. It is characterized by using.
 YNU-5ゼオライトは、その結晶構造として、x軸方向に延びる12員環の大細孔とy軸方向に延びる12員環の大細孔とz軸方向に延びる一対の8員環の小細孔とからなる三次元細孔構造を有するとともに、該三次元細孔構造とは別の独立した8員環の小細孔を持つ、ミクロ多孔性のアルミノシリケートゼオライトである。x軸方向に延びる大細孔とy軸方向に延びる大細孔により、大細孔の通路が交差しながら二次元に延びており、互いに平行に並んで延びる一対の小細孔がこの大細孔の通路に垂直に接続されている。また、独立した8員環の小細孔がz軸方向に延びており、上記三次元細孔構造とは接続されていない一次元の通路を形成している。YNU-5ゼオライトについては、上記非特許文献2にその調製法及び構造が詳細に記載されており、該非特許文献2の内容を参照によりここに取り込む。 YNU-5 zeolite has a crystal structure of 12-membered large pores extending in the x-axis direction, 12-membered large pores extending in the y-axis direction, and a pair of 8-membered small rings extending in the z-axis direction. It is a microporous aluminosilicate zeolite having a three-dimensional pore structure composed of pores and having an independent 8-membered small pore different from the three-dimensional pore structure. The large pores extending in the x-axis direction and the large pores extending in the y-axis direction extend in two dimensions while intersecting the passages of the large pores, and a pair of small pores extending in parallel with each other Connected vertically to the hole passage. In addition, an independent 8-membered small pore extends in the z-axis direction to form a one-dimensional passage that is not connected to the three-dimensional pore structure. The preparation method and structure of YNU-5 zeolite are described in detail in Non-Patent Document 2, and the contents of Non-Patent Document 2 are incorporated herein by reference.
 このような特異な空間構造を持つYNU-5ゼオライトをMTO反応の触媒として用いることにより、メタノールから高い転化率でかつ長時間にわたって軽質オレフィンを合成することができる。その理由は、これにより限定されることを意図するものではないが、次のように考えられる。 By using YNU-5 zeolite having such a unique spatial structure as a catalyst for the MTO reaction, a light olefin can be synthesized from methanol at a high conversion rate over a long period of time. The reason is not intended to be limited by this, but is considered as follows.
 MTO反応における従来のゼオライト触媒の失活の要因であるコークは、ゼオライト細孔入り口と細孔中における酸点の酸強度の高さと、細孔径の大きさとが要因となり、形成されると考えられる。そのため、コーク形成を抑制するためには、ゼオライト触媒の酸強度を制御したり、物質移動を促進する大きな細孔径を持たせたりすることが有効であると考えられる。この点に関し、YNU-5ゼオライトは、主として細孔径の大きさによる物質移動促進によりコーク形成を抑制することができると考えられる。すなわち、YNU-5ゼオライトであると、12員環の大細孔において物質移動が促進されるとともに、8員環の小細孔中において高表面積反応場の提供および炭素数5以上のオレフィン生成抑制により反応が促進されると考えられる。そのため、コーク形成を抑制してMTO反応を促進し、長寿命化されると考えられる。 Coke, which is a cause of deactivation of the conventional zeolite catalyst in the MTO reaction, is considered to be formed due to the high acid strength of the acid sites in the zeolite pore inlet and the pore and the size of the pore diameter. . Therefore, in order to suppress coke formation, it is considered effective to control the acid strength of the zeolite catalyst or to have a large pore diameter that promotes mass transfer. In this regard, YNU-5 zeolite is considered to be able to suppress coke formation mainly by promoting mass transfer due to the size of the pore diameter. That is, YNU-5 zeolite promotes mass transfer in the 12-membered large pores, provides a high surface area reaction field in the 8-membered small pores, and suppresses the production of olefins having 5 or more carbon atoms. It is thought that the reaction is promoted. Therefore, it is considered that coke formation is suppressed and the MTO reaction is promoted to extend the life.
 YNU-5ゼオライトにおけるSiとAlとのモル比Si/Alについては、特に限定されず、例えば、酸強度を制御してコーク形成を抑制する観点から、5~2000でもよく、8~200でもよい。 The molar ratio Si / Al between Si and Al in the YNU-5 zeolite is not particularly limited, and may be, for example, 5 to 2000 or 8 to 200 from the viewpoint of controlling the acid strength to suppress coke formation. .
 YNU-5ゼオライトのBET比表面積、細孔容積及び平均細孔径は特に限定されないが、例えばコーク形成を抑制し転化率を高める観点から、BET比表面積は200~800m/gであることがより好ましく、より好ましくは400~500m/gである。細孔容積は0.1~1.0cm/gであることが好ましく、より好ましくは0.2~0.4cm/gである。平均細孔径は0.7~2.0nmであることが好ましく、より好ましくは0.9~1.6nmである。 The BET specific surface area, pore volume and average pore diameter of YNU-5 zeolite are not particularly limited. For example, from the viewpoint of suppressing coke formation and increasing the conversion rate, the BET specific surface area is more preferably 200 to 800 m 2 / g. Preferably, it is 400 to 500 m 2 / g. The pore volume is preferably 0.1 to 1.0 cm 3 / g, more preferably 0.2 to 0.4 cm 3 / g. The average pore diameter is preferably 0.7 to 2.0 nm, more preferably 0.9 to 1.6 nm.
 YNU-5ゼオライトには金属を担持させてもよい。金属としては、YNU-5ゼオライトの触媒機能を高めることができるものであれば特に限定されない。金属、即ち金属元素としては、遷移金属(例えば、Feなどの第8族元素、Coなどの第9族元素、Niなどの第10族元素など)、Znなどの第12族元素、La、Ceなどの希土類元素などが挙げられる。これらのうち、Fe、Co、Ni、Zn、La及びCeからなる群から選択される少なくとも1種の金属が好ましく、より好ましくはFeである。 YNU-5 zeolite may carry a metal. The metal is not particularly limited as long as it can enhance the catalytic function of YNU-5 zeolite. Examples of metals, that is, metal elements include transition metals (for example, Group 8 elements such as Fe, Group 9 elements such as Co, Group 10 elements such as Ni), Group 12 elements such as Zn, La, Ce, and the like. And rare earth elements. Among these, at least one metal selected from the group consisting of Fe, Co, Ni, Zn, La, and Ce is preferable, and Fe is more preferable.
 担持する金属の形態としては、金属単体でもよく、金属を含む化合物でもよい。金属を含む化合物としては、例えば、硝酸塩、酸化物、塩化物、硫酸塩などが挙げられ、好ましくは硝酸塩水和物である。金属を担持する方法は、特に限定されず、例えば、含浸法やイオン交換法などの公知の方法により担持させることができる。焼成後のYNU-5ゼオライトに対して導入してもよく、水熱合成によるYNU-5ゼオライトの合成時に添加して導入してもよい。 The form of the supported metal may be a single metal or a compound containing a metal. Examples of the metal-containing compound include nitrates, oxides, chlorides, sulfates, and the like, and nitrate hydrates are preferable. The method for supporting the metal is not particularly limited, and for example, it can be supported by a known method such as an impregnation method or an ion exchange method. It may be introduced into the YNU-5 zeolite after calcination, or may be added and introduced during the synthesis of YNU-5 zeolite by hydrothermal synthesis.
 金属元素の導入量は、特に限定されず、例えば、YNU-5ゼオライトの質量に対して、0.1~10質量%でもよく、1~10質量%でもよく、3~8質量%でもよい。 The amount of the metal element introduced is not particularly limited, and may be, for example, 0.1 to 10% by mass, 1 to 10% by mass, or 3 to 8% by mass with respect to the mass of YNU-5 zeolite.
 触媒としては、YNU-5触媒とともに、他の触媒を併用してもよい。他の触媒としては、例えば、SAPO-5触媒、SAPO-18触媒、SAPO-34触媒、DNL-6触媒、SSZ-13触媒などのゼオライト触媒が挙げられ、これらはいずれか1種又は2種以上組み合わせて、YNU-5触媒と併用してもよい。 As the catalyst, other catalysts may be used in combination with the YNU-5 catalyst. Examples of the other catalyst include zeolite catalysts such as a SAPO-5 catalyst, a SAPO-18 catalyst, a SAPO-34 catalyst, a DNL-6 catalyst, and an SSZ-13 catalyst. A combination may be used in combination with the YNU-5 catalyst.
 本実施形態では、YNU-5触媒の存在下でメタノールを軽質オレフィンに変換する。そのためには、メタノールを含む原料をYNU-5触媒に接触させればよい。 In this embodiment, methanol is converted to light olefin in the presence of YNU-5 catalyst. For this purpose, a raw material containing methanol may be brought into contact with the YNU-5 catalyst.
 メタノールとしては、特に限定するものではないが、例えば天然ガスと二酸化炭素を原料として製造されたメタノールを用いてもよい。これにより、従来の石油由来ナフサを原料として製造される軽質オレフィンの代替製造法になるとともに、二酸化炭素の削減にも繋がる。 Methanol is not particularly limited. For example, methanol produced using natural gas and carbon dioxide as raw materials may be used. As a result, it becomes an alternative production method of light olefins produced using conventional petroleum-derived naphtha as a raw material, and also leads to reduction of carbon dioxide.
 上記原料には、メタノールとともに、その転化率を計算するためにヘキサン、へプタンなどのMTO反応条件下において気体で存在する飽和炭化水素を加えてもよい。 In addition to methanol, saturated hydrocarbons that exist in a gaseous state under MTO reaction conditions, such as hexane and heptane, may be added to the above raw materials in order to calculate the conversion rate.
 YNU-5触媒にメタノールを接触させる方法としては、YNU-5触媒の存在下でメタノールを軽質オレフィンに変換できる方法であれば、特に限定されず、例えば、メタノールを気体にして、これを含むガス流を、YNU-5触媒を含む触媒床に供給することが挙げられる。 The method for bringing methanol into contact with the YNU-5 catalyst is not particularly limited as long as it is a method capable of converting methanol into light olefin in the presence of the YNU-5 catalyst. For example, a gas containing methanol as a gas is included. The stream may be fed to a catalyst bed containing YNU-5 catalyst.
 その場合、ガス流は、窒素やアルゴンなどの不活性ガスとメタノールとの混合ガスとして供給してもよい。 In that case, the gas flow may be supplied as a mixed gas of an inert gas such as nitrogen or argon and methanol.
 また、触媒床としては、YNU-5触媒に石英砂などの不活性な無機粒子(希釈材)を加えることにより、YNU-5触媒を希釈したものを用いてもよい。無機粒子の添加量は特に限定されず、例えばYNU-5触媒の質量の2~5倍の質量でもよい。 Further, as the catalyst bed, a YNU-5 catalyst diluted by adding inert inorganic particles (diluent) such as quartz sand to the YNU-5 catalyst may be used. The amount of inorganic particles added is not particularly limited, and may be, for example, 2 to 5 times the mass of the YNU-5 catalyst.
 MTO反応の反応温度(触媒床の温度)は、メタノールを軽質オレフィンに変換できる温度であれば特に限定されず、例えば350~450℃でもよく、400~450℃でもよい。 The reaction temperature of the MTO reaction (catalyst bed temperature) is not particularly limited as long as it is a temperature at which methanol can be converted into light olefin, and may be, for example, 350 to 450 ° C. or 400 to 450 ° C.
 反応方式としては、連続流通式でも、回分式でもよい。連続流通式の場合、ガス空間速度(GHSV)は特に限定されず、例えば、YNU-5触媒1g当たり、1000~2500mLgcat -1-1でもよく、1300~2000mLgcat -1-1でもよい。また、反応形式としては、特に制限はなく、固定床式、移動床式、流動床式のいずれでもよい。反応器の形式としても特に制限はなく、例えば管型反応器等を用いることができる。 The reaction method may be a continuous flow method or a batch method. In the case of the continuous flow type, the gas space velocity (GHSV) is not particularly limited, and may be, for example, 1000 to 2500 mLg cat −1 h −1 or 1300 to 2000 mLg cat −1 h −1 per 1 g of YNU-5 catalyst. . Moreover, there is no restriction | limiting in particular as a reaction format, Any of a fixed bed type, a moving bed type, and a fluidized bed type may be sufficient. There is no restriction | limiting in particular also as a form of a reactor, For example, a tubular reactor etc. can be used.
 本実施形態において生成される軽質オレフィンは、炭素数2~4のオレフィン(即ち、アルケン)であり、エチレン、プロピレン及びブテンからなる群から選択される少なくとも1種のオレフィンが生成される。生成物は、好ましくはブテンを含むことである。YNU-5触媒であると、従来のゼオライト触媒に比べて、生成物におけるブテンの選択率が高いため、ブテンの製造方法として好適である。 The light olefin produced in this embodiment is an olefin having 2 to 4 carbon atoms (ie, alkene), and at least one olefin selected from the group consisting of ethylene, propylene and butene is produced. The product preferably contains butene. The YNU-5 catalyst is suitable as a method for producing butene because the selectivity of butene in the product is higher than that of the conventional zeolite catalyst.
 以下、実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples will be shown, but the present invention is not limited to these examples.
 [1]第1実施例
 [YNU-5触媒の調製]
 フッ素樹脂製容器に1.44gのNaOHと2.02gのKOHと35.2gのコロイダルシリカ(Sigma-Aldrich社製「LUDOX SM Colloidal silica」30質量%水分散体)を入れて溶解させた。次いで、ジメチルジプロピルアンモニウム15.0gを加えて、80℃で12時間撹拌した。撹拌後、室温まで冷却し、Y型ゼオライト(東ソー(株)製「HSZ-350HUA」、Si/Al=5.3)5.98gを入れて撹拌してゲル溶液を調製した。ゲル溶液を160℃で7日間にわたり水熱合成を行った。水熱合成後、生成物をpHが中性になるまで洗浄し、120℃で一晩乾燥した後、550℃で8時間焼成した。ここで得られたのはNa型YNU-5ゼオライトであるため、該ゼオライトをH型にするため、1.0M硝酸アンモニウムを用いて80℃で12時間イオン交換を行い、NH型に転換した。その後、120℃で一晩乾燥し、更に550℃で6時間焼成して、H型YNU-5ゼオライト(Si/Al=9)を得た。
[1] First Example [Preparation of YNU-5 catalyst]
In a fluororesin container, 1.44 g of NaOH, 2.02 g of KOH, and 35.2 g of colloidal silica (“LUDOX SM Colloidal silica” 30% by mass aqueous dispersion manufactured by Sigma-Aldrich) were added and dissolved. Next, 15.0 g of dimethyldipropylammonium was added and stirred at 80 ° C. for 12 hours. After stirring, the mixture was cooled to room temperature, and 5.98 g of Y-type zeolite (“HSZ-350HUA” manufactured by Tosoh Corporation, Si / Al = 5.3) was added and stirred to prepare a gel solution. The gel solution was hydrothermally synthesized at 160 ° C. for 7 days. After hydrothermal synthesis, the product was washed until the pH became neutral, dried at 120 ° C. overnight, and then calcined at 550 ° C. for 8 hours. Since Na type YNU-5 zeolite was obtained here, in order to convert the zeolite to H type, ion exchange was performed using 1.0 M ammonium nitrate at 80 ° C. for 12 hours to convert to NH 4 type. Thereafter, it was dried at 120 ° C. overnight and further calcined at 550 ° C. for 6 hours to obtain H-type YNU-5 zeolite (Si / Al = 9).
 [SAPO-5触媒の調製]
 フッ素樹脂製容器にイオン交換水21.69g、アルミニウムイソプロポキシド10.45g、フュームドシリカ(Sigma-Aldrich製「0.007μm」)0.3gおよびリン酸5.78gを入れ撹拌後、トリエチルアミン2.54gを添加し6時間撹拌しゲル溶液を調製した。ゲル溶液を200℃で48時間にわたり水熱合成を行った。水熱合成後、生成物をpHが中性になるまで洗浄し、120℃で一晩乾燥後、600℃で10時間焼成して、SAPO-5ゼオライトを得た。
[Preparation of SAPO-5 catalyst]
In a fluororesin container, 21.69 g of ion-exchanged water, 10.45 g of aluminum isopropoxide, 0.3 g of fumed silica (“0.007 μm” manufactured by Sigma-Aldrich) and 5.78 g of phosphoric acid were added and stirred. 54 g was added and stirred for 6 hours to prepare a gel solution. The gel solution was hydrothermally synthesized at 200 ° C. for 48 hours. After hydrothermal synthesis, the product was washed until the pH became neutral, dried at 120 ° C. overnight, and calcined at 600 ° C. for 10 hours to obtain a SAPO-5 zeolite.
 [SAPO-18触媒の調製]
 フッ素樹脂製容器にイオン交換水7.4mLとアルミニウムイソプロポキシド4.84gを入れ、さらにリン酸1.4gとイオン交換水1.4gを入れて撹拌した。次に、コロイダルシリカ(Sigma-Aldrich製「LUDOX SM Colloidal silica」30質量%水分散体)0.5gをイオン交換水1.1gで懸濁させた溶液とN,N-ジイソプロピルエチルアミン3.3gを加え撹拌しゲル溶液を調製した。ゲル溶液を160℃で7日間にわたり水熱合成を行った。水熱合成後、生成物をpHが中性になるまで洗浄し、120℃で一晩乾燥後、550℃で6時間焼成して、SAPO-18ゼオライトを得た。
[Preparation of SAPO-18 catalyst]
In a fluororesin container, 7.4 mL of ion exchange water and 4.84 g of aluminum isopropoxide were added, and 1.4 g of phosphoric acid and 1.4 g of ion exchange water were further added and stirred. Next, a solution obtained by suspending 0.5 g of colloidal silica (“LUDOX SM Colloidal silica” 30 mass% aqueous dispersion manufactured by Sigma-Aldrich) in 1.1 g of ion-exchanged water and 3.3 g of N, N-diisopropylethylamine were added. The mixture was stirred and a gel solution was prepared. The gel solution was hydrothermally synthesized at 160 ° C. for 7 days. After hydrothermal synthesis, the product was washed until the pH became neutral, dried at 120 ° C. overnight, and calcined at 550 ° C. for 6 hours to obtain SAPO-18 zeolite.
 [結晶構造の解析]
 上記で調製したYNU-5触媒について、X線回折(XRD)法(CuKα 40kV,20mA,2°~80°)を用いて結晶構造の解析を行った。
[Analysis of crystal structure]
The crystal structure of the YNU-5 catalyst prepared above was analyzed using an X-ray diffraction (XRD) method (CuKα 40 kV, 20 mA, 2 ° to 80 °).
 結果は図1に示す通りであり、非特許文献2に記載されたYNU-5のXRD結果と同様の特有のピークが見られたため、調製した触媒はYNU-5ゼオライトであることがわかる。なお、図示しないが、SAPO-18触媒及びSAPO-5触媒についても、XRD法を用いた結晶構造解析により、それぞれ標準チャートと同様の特有のピークを持ち、触媒の調製に成功したことを確認した。 The results are as shown in FIG. 1, and since a unique peak similar to the XRD result of YNU-5 described in Non-Patent Document 2 was observed, it can be seen that the prepared catalyst was YNU-5 zeolite. Although not shown in the figure, the SAPO-18 catalyst and the SAPO-5 catalyst each had a specific peak similar to that of the standard chart by the crystal structure analysis using the XRD method, and it was confirmed that the catalyst was successfully prepared. .
 [比表面積、細孔容積及び細孔直径の測定]
 上記で調製したYNU-5触媒、SAPO-18触媒及びSAPO-5触媒についてそれぞれ、温度200℃で2時間前処理した後、BET比表面積、細孔容積及び平均細孔径を測定した。これらの測定は、カンタクローム社「Nova2200e」自動吸着装置のセルに触媒を入れ、機械にセットし、測定を開始することにより行った(測定点数79point)。
[Measurement of specific surface area, pore volume and pore diameter]
Each of the YNU-5 catalyst, SAPO-18 catalyst, and SAPO-5 catalyst prepared above was pretreated at a temperature of 200 ° C. for 2 hours, and then the BET specific surface area, pore volume and average pore diameter were measured. These measurements were carried out by placing the catalyst in the cell of Cantachrome's “Nova 2200e” automatic adsorption device, setting it in the machine, and starting the measurement (number of measurement points 79 points).
 結果は、下記表1に示す通りであり、いずれの触媒も比表面積が高く、また平均細孔径が1nm以上と大きな細孔径を持っており、コーク形成の抑制が期待できるものであった。 The results are as shown in Table 1 below, and all of the catalysts have a high specific surface area and a large pore diameter of 1 nm or more, and the suppression of coke formation can be expected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [MTO反応]
 上記で調製したYNU-5触媒、SAPO-18触媒及びSAPO-5触媒について、MTO反応による触媒性能評価試験を行った。
[MTO reaction]
The YNU-5 catalyst, the SAPO-18 catalyst, and the SAPO-5 catalyst prepared above were subjected to a catalyst performance evaluation test by MTO reaction.
 MTO反応試験は、常圧(0.1MPa)において、固定床石英ガラス反応器を用いて行った。反応装置の概念図は図2に示す通りであり、内径6mmの管状の反応器の流路の途中に触媒床を設けた。触媒床はその両側に石英ウールを詰めて固定した。反応器の外周には触媒床を加熱するためのヒータを設け、触媒床の内部温度を測定する温度測定用熱電対温度計と、反応器の外壁温度を測定する反応温度コントロール用熱電対により、ヒータの出力を制御するように構成した。 The MTO reaction test was conducted using a fixed bed quartz glass reactor at normal pressure (0.1 MPa). The conceptual diagram of the reaction apparatus is as shown in FIG. 2, and a catalyst bed is provided in the middle of the flow path of a tubular reactor having an inner diameter of 6 mm. The catalyst bed was fixed by packing quartz wool on both sides. A heater for heating the catalyst bed is provided on the outer circumference of the reactor, and a thermocouple thermometer for measuring the internal temperature of the catalyst bed and a reaction temperature control thermocouple for measuring the outer wall temperature of the reactor, It was configured to control the output of the heater.
 実施例1では、H型YNU-5ゼオライト1.0gと石英砂3.0gを混ぜ合わせて反応器内に入れることにより触媒床を形成した。反応ガスとしてメタノール:ヘキサンを90:1(モル比)の割合で混合し、該反応原料(液体混合物)0.005mL/minを300℃で気化させて、反応器の一端から反応器内に流通させた。その際、窒素ガスを22mL/min(反応ガスのガス空間速度:1320mLgcat -1-1)又は33mL/min(反応ガスのガス空間速度:1980mLgcat -1-1)で流通させた。反応は400℃まで80分で昇温させて行った。昇温が完了した後、1時間ごとにガスクロマトグラフィー((株)島津製作所製「GC-2014」、FID:Porapak Qカラム)によりオンラインで生成物を測定し、7時間反応を行った。 In Example 1, a catalyst bed was formed by mixing 1.0 g of H-type YNU-5 zeolite and 3.0 g of quartz sand and mixing them in a reactor. Methanol: hexane is mixed as a reaction gas at a ratio of 90: 1 (molar ratio), 0.005 mL / min of the reaction raw material (liquid mixture) is vaporized at 300 ° C., and then circulated from one end of the reactor into the reactor. I let you. At that time, nitrogen gas was circulated at 22 mL / min (reaction gas gas space velocity: 1320 mLg cat −1 h −1 ) or 33 mL / min (reaction gas gas space velocity: 1980 mLg cat −1 h −1 ). The reaction was performed by raising the temperature to 400 ° C. in 80 minutes. After the temperature increase was completed, the product was measured online by gas chromatography (“GC-2014” manufactured by Shimadzu Corporation, FID: Porapak Q column) every hour, and the reaction was performed for 7 hours.
 ガスクロマトグラフィーによる測定により、メタノール転化率を求めるとともに、各生成物の選択率を求めた。算出式は以下の通りである。 Measured by gas chromatography, the methanol conversion was determined and the selectivity of each product was determined. The calculation formula is as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 実施例2では、H型YNU-5ゼオライト1.0gの代わりに、H型YNU-5ゼオライト0.4gとSAPO-5ゼオライト0.3gとSAPO-18ゼオライト0.3gを混合したものを用い、その他は実施例1と同様にして反応を行った。 In Example 2, instead of 1.0 g of H-type YNU-5 zeolite, a mixture of 0.4 g of H-type YNU-5 zeolite, 0.3 g of SAPO-5 zeolite and 0.3 g of SAPO-18 zeolite was used. The others were reacted in the same manner as in Example 1.
 比較例1では、H型YNU-5ゼオライト1.0gの代わりに、SAPO-5ゼオライト1.0gを用い、その他は実施例1と同様にして反応を行った。 In Comparative Example 1, 1.0 g of SAPO-5 zeolite was used instead of 1.0 g of H-type YNU-5 zeolite, and the others were reacted in the same manner as in Example 1.
 比較例2では、H型YNU-5ゼオライト1.0gの代わりに、SAPO-18ゼオライト1.0gを用い、その他は実施例1と同様にして反応を行った。 In Comparative Example 2, 1.0 g of SAPO-18 zeolite was used instead of 1.0 g of H-type YNU-5 zeolite, and the others were reacted in the same manner as in Example 1.
 図3に流速22mL/minでのメタノール転化率を、図4に流速33mL/minでのメタノール転化率をそれぞれ示す。図3及び図4より、実施例1,2及び比較例1,2のいずれについても、メタノール転化率80%以上であり、高い触媒活性を示した。また、7時間経過後でも高いメタノール転化率のままであり、長い触媒寿命を持つことが分かった。YNU-5触媒を用いた実施例1では、常に100%のメタノール転化率を示した。SAPO-5触媒を用いた比較例1では、反応開始してから2時間はメタノール転化率がやや不安定であったが、その後は安定し100%となった。SAPO-18触媒を用いた比較例2では、高い触媒活性を示したものの、メタノール転化率が不安定であった。また、YNU-5ゼオライトを含む混合物(Mixture)を用いた実施例2では、実施例1と同様、メタノール転化率が安定して100%を示した(図4参照)。 3 shows the methanol conversion rate at a flow rate of 22 mL / min, and FIG. 4 shows the methanol conversion rate at a flow rate of 33 mL / min. From FIG. 3 and FIG. 4, in all of Examples 1 and 2 and Comparative Examples 1 and 2, the methanol conversion was 80% or more, indicating high catalytic activity. It was also found that even after 7 hours, the methanol conversion rate remained high and the catalyst life was long. Example 1 using YNU-5 catalyst always showed 100% methanol conversion. In Comparative Example 1 using the SAPO-5 catalyst, the methanol conversion rate was slightly unstable for 2 hours after the start of the reaction, but after that, it became stable and reached 100%. In Comparative Example 2 using the SAPO-18 catalyst, although high catalytic activity was exhibited, the methanol conversion was unstable. Further, in Example 2 using the mixture containing YNU-5 zeolite (Mixture), the methanol conversion was stably 100% as in Example 1 (see FIG. 4).
 また、7時間の反応における平均のメタノール転化率と、7時間の反応での各生成物の選択率の平均を、下記表2(流速22mL/min)及び表3(流速33mL/min)にそれぞれ示す。表2及び表3より、YNU-5触媒を用いた実施例1及び2では、比較例1及び2に対して、平均メタノール転化率が高かった。また、全ての触媒でメタン選択率は低く、軽質オレフィン(C、C、C)の選択率が高かった。特に、実施例1及び2では、比較例1及び2に対して、ブテンの選択率が高く、そのため、YNU-5触媒を用いたMTO反応はブテンの製造方法としてより有効であることが分かった。 In addition, the average methanol conversion rate in the 7-hour reaction and the average selectivity of each product in the 7-hour reaction are shown in Table 2 (flow rate 22 mL / min) and Table 3 (flow rate 33 mL / min), respectively. Show. From Tables 2 and 3, in Examples 1 and 2 using YNU-5 catalyst, the average methanol conversion was higher than in Comparative Examples 1 and 2. Further, the methane selectivity at all catalysts is low, had higher light olefins (C 2 H 4, C 3 H 6, C 4 H 8) selectivity. In particular, in Examples 1 and 2, the selectivity for butene was higher than in Comparative Examples 1 and 2, and therefore, it was found that the MTO reaction using YNU-5 catalyst was more effective as a method for producing butene. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [2]第2実施例
 第1実施例で調製したH型YNU-5ゼオライト(Si/Al=9)に、鉄担持量が5質量%となるように、硝酸鉄(III)九水和物を含浸し、一晩乾燥させた後、550℃で6時間焼成を行って、鉄を5質量%担持させたYNU-5ゼオライト(YNU-5Fe)を得た。
[2] Second Example Iron (III) nitrate nonahydrate so that the amount of iron supported on the H-type YNU-5 zeolite (Si / Al = 9) prepared in the first example is 5% by mass. And dried overnight, and calcined at 550 ° C. for 6 hours to obtain YNU-5 zeolite (YNU-5Fe) supporting 5% by mass of iron.
 得られたYNU-5Fe触媒について、第1実施例と同様に、温度200℃で2時間前処理した後、BET比表面積、細孔容積及び平均細孔径を測定した。その結果、YNU-5Fe触媒の比表面積は295.5m/gであり、細孔容積は0.22cm/gであり、平均細孔径は1.51nmであり、比表面積と細孔容積が第1実施例のYNU-5触媒よりも低下した。 The obtained YNU-5Fe catalyst was pretreated at a temperature of 200 ° C. for 2 hours, and the BET specific surface area, pore volume and average pore diameter were measured in the same manner as in Example 1. As a result, the specific surface area of the YNU-5Fe catalyst was 295.5 m 2 / g, the pore volume was 0.22 cm 3 / g, the average pore diameter was 1.51 nm, and the specific surface area and pore volume were It was lower than the YNU-5 catalyst of the first example.
 また、YNU-5Fe触媒について、MTO反応による触媒性能評価試験を行った。窒素ガスの流速を33mL/min(反応ガスのガス空間速度:1980mLgcat -1-1)のみとし、その他は第1実施例と同様に行った。 Further, the YNU-5Fe catalyst was subjected to a catalyst performance evaluation test by MTO reaction. The flow rate of nitrogen gas was only 33 mL / min (reaction gas gas space velocity: 1980 mLg cat −1 h −1 ), and the others were performed in the same manner as in the first example.
 図5に示されるように、YNU-5Fe触媒を用いた実施例3では、金属を担持していないYNU-5触媒を用いた上記実施例1と同様、メタノール転化率がほぼ100%で維持されており、長い触媒寿命を持つことが分かった。 As shown in FIG. 5, in Example 3 using the YNU-5Fe catalyst, the methanol conversion was maintained at almost 100% as in Example 1 using the YNU-5 catalyst not supporting metal. It was found to have a long catalyst life.
 7時間の反応における平均のメタノール転化率と、7時間の反応での各生成物の選択率の平均を、下記表4に示す。YNU-5Fe触媒を用いた実施例3では、金属を担持していないYNU-5触媒を用いた上記実施例1に比べて、ブテンの選択率が高く、そのため、YNU-5ゼオライトに金属を担持することにより、ブテンの製造方法としてより有効であることが分かった。 Table 4 below shows the average methanol conversion in the 7-hour reaction and the average selectivity of each product in the 7-hour reaction. In Example 3 using the YNU-5Fe catalyst, the selectivity for butene was higher than in Example 1 using the YNU-5 catalyst not supporting the metal, so that the metal was supported on the YNU-5 zeolite. By doing so, it turned out that it is more effective as a manufacturing method of butene.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上のように、本実施形態であると、メタノールから、高いメタノール転化率かつ高いオレフィン選択率で、長時間にわたって軽質オレフィンを合成することができる。そのため、シェールガスを含む天然ガスからMTO反応により工業原料として有用な軽質オレフィンを効率良く製造することができる。 As described above, in the present embodiment, light olefins can be synthesized from methanol over a long period of time with high methanol conversion and high olefin selectivity. Therefore, a light olefin useful as an industrial raw material can be efficiently produced from natural gas containing shale gas by an MTO reaction.
 以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their omissions, replacements, changes, and the like are included in the inventions described in the claims and their equivalents as well as included in the scope and gist of the invention.

Claims (4)

  1.  YNU-5ゼオライトを含む触媒の存在下でメタノールを軽質オレフィンに変換することを含む、軽質オレフィンの製造方法。 A process for producing light olefins, comprising converting methanol to light olefins in the presence of a catalyst containing YNU-5 zeolite.
  2.  前記YNU-5ゼオライトが金属を担持したものである、請求項1に記載の軽質オレフィンの製造方法。 The method for producing a light olefin according to claim 1, wherein the YNU-5 zeolite carries a metal.
  3.  前記軽質オレフィンが、エチレン、プロピレン及びブテンからなる群から選択される少なくとも1種である、請求項1又は2に記載の軽質オレフィンの製造方法。 The method for producing a light olefin according to claim 1 or 2, wherein the light olefin is at least one selected from the group consisting of ethylene, propylene and butene.
  4.  前記軽質オレフィンがブテンを含む、請求項1~3のいずれか1項に記載の軽質オレフィンの製造方法。 The method for producing a light olefin according to any one of claims 1 to 3, wherein the light olefin contains butene.
PCT/JP2018/004616 2018-02-09 2018-02-09 Method for producing light olefin WO2019155607A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019570243A JPWO2019155607A1 (en) 2018-02-09 2018-02-09 Method for producing light olefin
PCT/JP2018/004616 WO2019155607A1 (en) 2018-02-09 2018-02-09 Method for producing light olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004616 WO2019155607A1 (en) 2018-02-09 2018-02-09 Method for producing light olefin

Publications (1)

Publication Number Publication Date
WO2019155607A1 true WO2019155607A1 (en) 2019-08-15

Family

ID=67549546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004616 WO2019155607A1 (en) 2018-02-09 2018-02-09 Method for producing light olefin

Country Status (2)

Country Link
JP (1) JPWO2019155607A1 (en)
WO (1) WO2019155607A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085096A1 (en) * 2020-10-20 2022-04-28
WO2022165354A1 (en) * 2021-02-01 2022-08-04 Basf Corporation Ynu-5 zeolite, methods of preparation, and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074411A1 (en) * 2003-02-18 2004-09-02 Japan Gas Synthesize, Ltd. Method for producing liquefied petroleum gas
JP2013245163A (en) * 2012-05-23 2013-12-09 Tokyo Institute Of Technology Method for producing propylene
US20170166493A1 (en) * 2015-12-11 2017-06-15 Uop Llc Sapo catalyst for a high pressure mto process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080238A (en) * 2006-09-27 2008-04-10 Jgc Corp Regeneration method of mfi structure zeolite catalyst
JP5646279B2 (en) * 2010-10-28 2014-12-24 国立大学法人横浜国立大学 Production method of light olefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074411A1 (en) * 2003-02-18 2004-09-02 Japan Gas Synthesize, Ltd. Method for producing liquefied petroleum gas
JP2013245163A (en) * 2012-05-23 2013-12-09 Tokyo Institute Of Technology Method for producing propylene
US20170166493A1 (en) * 2015-12-11 2017-06-15 Uop Llc Sapo catalyst for a high pressure mto process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAZAWA, N. ET AL.: "A microporous aluminosilicate with 12-, 12-, and 8-ring pores and isolated 8- ring channels", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, pages 7989 - 7997, XP055501405, doi:10.1021/jacs.7b03308 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085096A1 (en) * 2020-10-20 2022-04-28
JP7407966B2 (en) 2020-10-20 2024-01-04 Toyo Tire株式会社 Method for producing light olefins
WO2022165354A1 (en) * 2021-02-01 2022-08-04 Basf Corporation Ynu-5 zeolite, methods of preparation, and methods of use thereof

Also Published As

Publication number Publication date
JPWO2019155607A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
Li et al. Methanol-to-olefin conversion on 3D-printed ZSM-5 monolith catalysts: Effects of metal doping, mesoporosity and acid strength
CN104226360B (en) Holocrystalline ZSM-5 molecular sieve catalyst and its production and use
US9643899B2 (en) SSZ-13 as a catalyst for conversion of chloromethane to olefins
JP2021516146A (en) Method for producing lower olefin by direct conversion of catalyst and syngas
JP6053366B2 (en) Zeolite catalyst, method for producing zeolite catalyst, and method for producing lower olefin
US10787611B2 (en) Process to convert synthesis gas to olefins using a bifunctional chromium/zinc oxide-SAPO-34 catalyst
RU2753413C1 (en) Catalyst based on molecular sieve, method for production and application thereof
WO2014047801A1 (en) Sapo-34 molecular sieve and synthesis method thereof
JP5668422B2 (en) Method for producing aluminosilicate
KR20210098543A (en) Catalysts for the production of light olefins from C4-C7 hydrocarbons
KR101985861B1 (en) Preparation of Metal Oxide Catalyst Supported on Mesoporous HZSM-11 for Direct Dehydroaromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst
WO2019155607A1 (en) Method for producing light olefin
JP2014024007A (en) Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin
Ying et al. Direct synthesis and superior catalytic performance of V-containing SBA-15 mesoporous materials for oxidative dehydrogenation of propane
KR101227970B1 (en) The Ti-SAPO-34 crystalline catalyst, the method for preparing it and the method of preparation for light olefin using it
KR101631324B1 (en) UZM-12 zeolite and method for its synthesizing and a catalyst for conversion of methanol using it
KR101878547B1 (en) The method for conversion of ethylene using zeolite
JP6251788B2 (en) Zeolite catalyst, method for producing zeolite catalyst, and method for producing lower olefin
JP2010018556A (en) Method for producing lower olefin from ethanol
WO2022085095A1 (en) Method for producing lightweight olefin
Xu et al. Conversion of methanol to propylene over a high silica B-HZSM-5 catalyst
WO2014047800A1 (en) Method for synthesizing sapo-34 molecular sieve and catalyst prepared thereby
CN104056655A (en) Core-shell microsphere catalyst
KR102239941B1 (en) Synthesis method of SSZ-13 zeolite with high performance for methanol to light olefin conversion
WO2022085096A1 (en) Light olefin production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904699

Country of ref document: EP

Kind code of ref document: A1