JP5645473B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP5645473B2
JP5645473B2 JP2010113463A JP2010113463A JP5645473B2 JP 5645473 B2 JP5645473 B2 JP 5645473B2 JP 2010113463 A JP2010113463 A JP 2010113463A JP 2010113463 A JP2010113463 A JP 2010113463A JP 5645473 B2 JP5645473 B2 JP 5645473B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
binder
mixture
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010113463A
Other languages
Japanese (ja)
Other versions
JP2011243368A (en
Inventor
秀典 都築
秀典 都築
村上 秀二
秀二 村上
國谷 繁之
繁之 國谷
佳明 石谷
佳明 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2010113463A priority Critical patent/JP5645473B2/en
Publication of JP2011243368A publication Critical patent/JP2011243368A/en
Application granted granted Critical
Publication of JP5645473B2 publication Critical patent/JP5645473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Description

この発明はアルカリ乾電池に関し、とくに、アルカリ乾電池の生産性向上技術に関する。   The present invention relates to an alkaline battery, and more particularly to a technology for improving the productivity of an alkaline battery.

図1に本発明の対象となるアルカリ乾電池の一般的な構造を示した。当該図は、LR14型の円筒形アルカリ乾電池1であり、円筒軸10の延長方向を縦方向としたときの縦断面図である。このアルカリ乾電池1は、有底筒状の金属製電池缶(正極缶)2、環状に成型された正極合剤3、この正極合剤3の内側に配設された有底円筒状のセパレーター4、亜鉛合金を含んでセパレーター4の内側に充填される負極ゲル5、この負極ゲル5中に挿入された負極集電子6、負極端子板7、封口ガスケット8などにより構成される。この構造において、正極合剤3、セパレーター4、負極ゲル5が、電解液の存在下でアルカリ乾電池1の発電要素を形成する。   FIG. 1 shows a general structure of an alkaline dry battery that is an object of the present invention. The drawing is an LR14 type cylindrical alkaline battery 1 and is a longitudinal sectional view when the extending direction of the cylindrical shaft 10 is a longitudinal direction. The alkaline dry battery 1 includes a bottomed cylindrical metal battery can (positive electrode can) 2, a positive electrode mixture 3 formed in an annular shape, and a bottomed cylindrical separator 4 disposed inside the positive electrode mixture 3. The negative electrode gel 5 is filled with zinc alloy and filled inside the separator 4, the negative electrode current collector 6 inserted in the negative electrode gel 5, the negative electrode terminal plate 7, the sealing gasket 8, and the like. In this structure, the positive electrode mixture 3, the separator 4, and the negative electrode gel 5 form the power generation element of the alkaline dry battery 1 in the presence of the electrolytic solution.

電池ケースを兼ねる正極缶2は、底面に正極端子9を備えるともに、内面にて正極合剤3と直接接触することによって正極集電体として機能する。したがって、環状に成型された状態の正極合剤3を正極缶2に圧入するなどして、環状の正極合剤3を正極缶2の内壁に密着させた状態で配置し、正極缶2と正極合剤3との間の接触抵抗を可能な限り低減させる必要がある。また、接触抵抗を低減させるために、正極缶2の内壁には、普通、導電塗料を塗布してなる導電膜が形成されている。   The positive electrode can 2 also serving as a battery case has a positive electrode terminal 9 on the bottom surface and functions as a positive electrode current collector by directly contacting the positive electrode mixture 3 on the inner surface. Therefore, the positive electrode mixture 3 in an annular shape is press-fitted into the positive electrode can 2, and the annular positive electrode mixture 3 is placed in close contact with the inner wall of the positive electrode can 2, so that the positive electrode can 2 and the positive electrode It is necessary to reduce the contact resistance with the mixture 3 as much as possible. In order to reduce the contact resistance, a conductive film is usually formed on the inner wall of the positive electrode can 2 by applying a conductive paint.

負極ゲル5中に挿入された棒状の金属製負極集電子6は、皿状の金属製負極端子板7の内面7iに溶接により立設固定されている。負極端子板7、負極集電子6および封口ガスケット8は、封口体としてあらかじめ一体に組み合わせられており、封口ガスケット8の外周部が正極缶2の開口縁部と負極端子板7の周縁部との間にかしめられるなどして挟持されて正極缶2が気密シールされる。   A rod-shaped metal negative electrode current collector 6 inserted into the negative electrode gel 5 is fixed upright on the inner surface 7i of the dish-shaped metal negative electrode terminal plate 7 by welding. The negative electrode terminal plate 7, the negative electrode current collector 6, and the sealing gasket 8 are combined in advance as a sealing body, and the outer periphery of the sealing gasket 8 is formed between the opening edge of the positive electrode can 2 and the peripheral edge of the negative electrode terminal plate 7. The positive electrode can 2 is hermetically sealed by being clamped in between.

ところで、正極合剤3は、二酸化マンガンなどの正極活物質、黒鉛、バインダー、電解液である水酸化カリウム水溶液を混合し、この混合体をコンパクティング、解砕、造粒等の工程によって、所定の粒度に調整された粉体状の造粒物(合剤粒)を作製するとともに、その合剤粒を金型を用いて環状の成型体にすることで得られる。そして、上述したように、環状の正極合剤3を正極缶2内に圧入し、正極缶2の内面に密着させる。あるいは、正極缶2内に粉体状の合剤粒を入れ、正極缶2を型にして圧力を掛けて環状に成型する。いずれにしても、環状の正極合剤3は、正極缶2内に密着した状態で配置される。しかし、正極合剤3の成型強度が不足していると、正極合剤3が、その圧入時や、正極缶2内に配置された後の電池組立工程などにおいて欠損することがある。そのため、十分な成型強度を確保するために、従来から、正極合剤3に含ませる黒鉛や水分の比率を高めたり、成型圧力を高めたりしていた。あるいは、以下の特許文献1に記載の技術のように、バインダーとしてポリアクリル酸などの膨潤タイプのバインダーを用いるとともに、そのバインダーの添加量を最適化していた。   By the way, the positive electrode mixture 3 is mixed with a positive electrode active material such as manganese dioxide, graphite, a binder, and an aqueous potassium hydroxide solution that is an electrolytic solution, and the mixture is subjected to predetermined steps by processes such as compacting, crushing, and granulating. It can be obtained by preparing a powdery granulated product (mixture granule) adjusted to the particle size of the material and making the mixture granule into an annular molded body using a mold. And as above-mentioned, the cyclic | annular positive electrode mixture 3 is press-fit in the positive electrode can 2, and it is made to adhere to the inner surface of the positive electrode can 2. FIG. Alternatively, powdery mixture particles are put into the positive electrode can 2, and the positive electrode can 2 is used as a mold to apply pressure to form an annular shape. In any case, the annular positive electrode mixture 3 is disposed in a state of being in close contact with the positive electrode can 2. However, if the molding strength of the positive electrode mixture 3 is insufficient, the positive electrode mixture 3 may be lost during the press-fitting or in the battery assembly process after being disposed in the positive electrode can 2. Therefore, conventionally, in order to ensure sufficient molding strength, the ratio of graphite and moisture contained in the positive electrode mixture 3 has been increased, or the molding pressure has been increased. Or like the technique of the following patent document 1, while using swelling type binders, such as polyacrylic acid, as a binder, the addition amount of the binder was optimized.

特開平10−144304号公報JP-A-10-144304

しかしながら、従来の技術では、正極合剤の成型強度と、アルカリ乾電池の他の性能(内部抵抗、放電性能、生産性、製造コストなど)との関係が背反してしまう。例えば、黒鉛比率を高めれば、相対的に正極活物質の量が減り、電池容量が減る。とくに、正極活物質の減少は、軽負荷時の放電性能を劣化させる。   However, in the conventional technology, the relationship between the molding strength of the positive electrode mixture and other performances (internal resistance, discharge performance, productivity, manufacturing cost, etc.) of the alkaline battery is contradictory. For example, if the graphite ratio is increased, the amount of the positive electrode active material is relatively reduced, and the battery capacity is reduced. In particular, the decrease in the positive electrode active material deteriorates the discharge performance at light load.

また、正極合剤中の水分を多くする場合では、金型成型時に成型体と金型との摩擦抵抗が増加し、金型から成型体を取り出しにくくなる。そのため、正極合剤の生産性が低下する。また、摩擦抵抗が高いために、金型から成型体を取り出すときに、その成型体が破損する場合もある。さらに、摩擦抵抗が大きいと、金型の摩耗が早くなり、金型の寿命を短くする。もちろん、成型圧力を上げても同様に金型の寿命が短くなる。   Further, when the moisture in the positive electrode mixture is increased, the frictional resistance between the molded body and the mold increases during mold molding, and it becomes difficult to take out the molded body from the mold. Therefore, the productivity of the positive electrode mixture is reduced. Further, since the frictional resistance is high, the molded body may be damaged when the molded body is taken out from the mold. Further, when the frictional resistance is large, the mold wears quickly, and the life of the mold is shortened. Of course, even if the molding pressure is increased, the life of the mold is similarly shortened.

また、金型の摩耗が早いと、成型体である正極合剤の寸法精度を高めることが難しくなる。そして、その寸法は、設計値より大きくなるため、正極缶に圧入する際により大きな圧力が必要となり、たとえ成型強度が高くなっていても破損する可能性が高くなる。金型を頻繁に交換すれば、さらにアルカリ乾電池の生産性が劣化するとともに、金型に掛かる費用が製品価格に転嫁されて大きなコストアップを招く。さらに、金型が摩耗すると、金型の材質である鉄が正極合剤中に混入しやすくなる。鉄は、電解液中で活物質と反応しガスを発生させ、漏液を発生させる要因となる。   In addition, when the mold wears quickly, it is difficult to increase the dimensional accuracy of the positive electrode mixture that is a molded body. And since the dimension becomes larger than the design value, a larger pressure is required when press-fitting into the positive electrode can, and the possibility of breakage increases even if the molding strength is high. If the mold is frequently replaced, the productivity of the alkaline battery further deteriorates, and the cost of the mold is transferred to the product price, resulting in a large cost increase. Furthermore, when the mold is worn, iron which is the mold material is likely to be mixed into the positive electrode mixture. Iron reacts with the active material in the electrolytic solution to generate a gas and cause leakage.

上記特許文献1に記載のアルカリ乾電池のように、ポリアクリル酸を正極合剤のバインダーとして用いる場合では、確かに正極合剤の成型強度が向上し、金型の寿命を短くさせる可能性も少ない。しかし、ポリアクリル酸をバインダーとして用いた正極合剤を用いたアルカリ乾電池では、内部抵抗が増加する、という問題があることが本発明者らによって知見された。そして、その内部抵抗増加のメカニズムについて検討したところ、ポリアクリル酸は、電解液に分散することで造粒された合剤粒同士の結着力の起源となる粘性が発現すること。アルカリ乾電池は、合剤粒に電解液を染みこませて成型した正極合剤を正極缶内に配置した後、さらに電解液を染みこませて作製するため、合剤粒同士の間に分散されたポリアクリル酸が、正極合剤配置後の吸液に際し、さらに膨潤し、正極合剤自体が膨張すること。すなわち、成型強度が高くても、実際は、合剤粒の表面同士が密着せず、合剤粒子同士の接触抵抗が大きくなる、というメカニズムで内部抵抗が増加するのではないか、という結論に至った。   In the case where polyacrylic acid is used as the binder of the positive electrode mixture as in the alkaline dry battery described in Patent Document 1, the positive electrode mixture has an improved molding strength and is less likely to shorten the mold life. . However, the present inventors have found that there is a problem that the internal resistance increases in an alkaline battery using a positive electrode mixture using polyacrylic acid as a binder. And when the mechanism of the increase in the internal resistance was examined, polyacrylic acid developed a viscosity that was the origin of the binding force between the mixture granules granulated by being dispersed in the electrolyte. Alkaline batteries are prepared by placing a positive electrode mixture formed by impregnating the electrolyte solution into the mixture particles in the positive electrode can and then infiltrating the electrolyte solution. When the polyacrylic acid absorbs liquid after the positive electrode mixture is placed, it further swells and the positive electrode mixture itself expands. In other words, even if the molding strength is high, the conclusion is that the internal resistance may actually increase due to the mechanism that the surface of the mixture particles do not adhere to each other and the contact resistance between the mixture particles increases. It was.

本発明は、上述したようなアルカリ乾電池における正極合剤の成型強度に関わる問題に鑑み、また、上記知見に基づく考察に基づいて創作されたものであり、その目的は、内部抵抗が低く、成型強度が高い正極合剤を備えて、生産性に優れ、より安価なアルカリ乾電池を提供することにある。   The present invention has been created in view of the problems related to the molding strength of the positive electrode mixture in the alkaline dry battery as described above, and has been created based on the consideration based on the above knowledge. An object of the present invention is to provide an alkaline dry battery which is provided with a positive electrode mixture having high strength, is excellent in productivity, and is less expensive.

上記目的を達成するための本発明は、正極活物質を含んで環状に成型されてなる正極合剤が正極集電体を兼ねる有底筒状の正極缶内に配置されてなるアルカリ乾電池であって、
前記正極合剤には40wt%水酸化カリウム水溶液からなる電解液とバインダーとが含まれ、
前記バインダーはポリアクリル酸ナトリウムからなり、該ポリアクリル酸ナトリウムが前記正極合剤に対して0.1wt%〜3.0wt%添加され、
前記ポリアクリル酸ナトリウムは、40wt%水酸化カリウム水溶液に3wt%混合したときの粘度が15Pa・s以下であり、
前記正極缶の内面には、導電塗料を塗布して形成する導電膜が形成されておらず、
前記バインダーを添加した場合の正極合剤における正極コア強度は、前記バインダーを添加しない場合の正極合剤における正極コア強度の1.5倍以上であるとともに、前記バインダーを添加した正極合剤を使用したアルカリ乾電池における短絡電流は、前記バインダーを添加しない正極合剤を使用したアルカリ乾電池における短絡電流の1倍以上である、
ことを特徴とするアルカリ乾電池としている。
The present invention for achieving the above object is an alkaline dry battery in which a positive electrode mixture formed into an annular shape containing a positive electrode active material is disposed in a bottomed cylindrical positive electrode can also serving as a positive electrode current collector. And
The positive electrode mixture includes an electrolyte solution composed of a 40 wt% potassium hydroxide aqueous solution and a binder,
The binder is made of sodium polyacrylate, and 0.1 wt% to 3.0 wt% of the sodium polyacrylate is added to the positive electrode mixture,
The sodium polyacrylate has a viscosity of 15 Pa · s or less when mixed with a 40 wt% potassium hydroxide aqueous solution at 3 wt%,
On the inner surface of the positive electrode can, a conductive film formed by applying a conductive paint is not formed,
The positive electrode core strength in the positive electrode mixture when the binder is added is not less than 1.5 times the positive electrode core strength in the positive electrode mixture when the binder is not added, and the positive electrode mixture with the binder added is used. The short circuit current in the alkaline dry battery is at least 1 time the short circuit current in the alkaline dry battery using the positive electrode mixture without adding the binder.
The alkaline dry battery is characterized by this.

本発明のアルカリ乾電池によれば、内部抵抗が低く、成型強度が高い正極合剤を備えて、電池として十分な性能を有するとともに、生産性に優れてより安価に提供することが可能となる。なお、その他の効果については,以下の記載で明らかにする。   According to the alkaline dry battery of the present invention, a positive electrode mixture having a low internal resistance and a high molding strength is provided, which has sufficient performance as a battery and is excellent in productivity and can be provided at a lower cost. Other effects will be clarified in the following description.

一般的なアルカリ乾電池の構成を示す図である。It is a figure which shows the structure of a general alkaline battery.

本発明の実施例に係るアルカリ乾電池の基本的な構造は、図1に示した一般的なアルカリ乾電池1と同様である。しかし、本実施例のアルカリ乾電池は、正極合剤3の組成が従来のものとは異なっており、バインダーとしてポリアクリル酸ナトリウム(Na−PA)が添加されており、かつ、そのバインダーの粘度や添加量が最適化されている点に特徴を有している。そして、本発明の実施例におけるアルカリ乾電池の特性を評価するために、バインダーの添加条件が異なる各種正極合剤を正極缶に組み込んだ各種アルカリ乾電池をサンプルとして作製し、それらのサンプルの特性を評価した。   The basic structure of the alkaline battery according to the embodiment of the present invention is the same as that of the general alkaline battery 1 shown in FIG. However, the alkaline dry battery of this example has a composition of the positive electrode mixture 3 different from the conventional one, sodium polyacrylate (Na-PA) is added as a binder, and the viscosity of the binder It is characterized in that the addition amount is optimized. Then, in order to evaluate the characteristics of the alkaline battery in Examples of the present invention, various alkaline batteries in which various positive electrode mixtures with different binder addition conditions are incorporated into the positive electrode can are prepared as samples, and the characteristics of these samples are evaluated. did.

===サンプルの作成条件===
本実施例のアルカリ乾電池に対応するサンプル(以下、実施例)と、当該実施例と特性を比較するためのサンプル(以下、比較例)は、図1に示した構造のLR14形のアルカリ乾電池1であり、実施例と比較例とでは、正極合剤3に含まれるバインダーの添加条件(樹脂、粘度、添加量)が異なっている。そして、実施例のアルカリ乾電池は、正極合剤のバインダーにNa−PAを使用している。そこで、まず、バインダーを含まない正極合剤、およびNa−PA以外のバインダーを用いて成型した正極合剤を、内面に導電膜が形成されている正極缶に組み込んで従来のアルカリ乾電池(比較例1〜5)を作成し、その比較例1〜5のアルカリ乾電池に対して、Na−PAを添加した正極合剤3を用いたアルカリ乾電池の性能を評価することで、正極合剤の最適作成条件を求めた。
=== Sample creation conditions ===
A sample (hereinafter referred to as an example) corresponding to the alkaline battery of the present example and a sample for comparing characteristics with the example (hereinafter referred to as a comparative example) are an LR14 type alkaline dry battery 1 having the structure shown in FIG. In addition, the addition conditions (resin, viscosity, addition amount) of the binder contained in the positive electrode mixture 3 are different between the example and the comparative example. And the alkaline dry battery of an Example uses Na-PA for the binder of positive electrode mixture. Therefore, first, a positive electrode mixture containing no binder and a positive electrode mixture molded using a binder other than Na-PA are incorporated into a positive electrode can having a conductive film formed on the inner surface, and a conventional alkaline battery (Comparative Example). 1-5), and the optimal preparation of the positive electrode mixture by evaluating the performance of the alkaline battery using the positive electrode mixture 3 with Na-PA added to the alkaline batteries of Comparative Examples 1 to 5 The conditions were sought.

なお、バインダーを添加した正極合剤については、電解二酸化マンガン(EMD)、黒鉛、および電解液(40%水酸化カリウム水溶液)を、それぞれ、89wt%、7wt%、および4wt%の重量比とし、これらの材料に、さらにバインダーをサンプルごとに条件を変えて混合し、その混合物を圧延、造粒した後、金型成型して作成した。   In addition, about the positive electrode material mixture to which the binder was added, electrolytic manganese dioxide (EMD), graphite, and electrolytic solution (40% potassium hydroxide aqueous solution) were respectively in a weight ratio of 89 wt%, 7 wt%, and 4 wt%, A binder was mixed with these materials under different conditions for each sample, the mixture was rolled and granulated, and then molded by molding.

また、各サンプルの正極合剤に添加した樹脂の種類や粘度が異なる各種バインダーについては、架橋剤の配合比などが異なるそれぞれの樹脂材料を入手し、実際の粘度については、各種樹脂材料を40wt%水酸化カリウム水溶液に3wt%の重量比で混合したものを粘度計(東機産業株式界社製TV−10)を用い、回転数5RPMの条件で測定した。   In addition, for various binders with different types and viscosities of resins added to the positive electrode mixture of each sample, respective resin materials with different blending ratios of cross-linking agents, etc. are obtained. What was mixed with 3% by weight of 3% by weight potassium hydroxide aqueous solution was measured using a viscometer (TV-10 manufactured by Toki Sangyo Co., Ltd.) under the condition of 5 RPM.

また、正極合剤の成型強度については、環状(中空円筒状)の正極合剤を、その円筒軸が水平方向となるように水平試験台上に載置し、その正極合剤の上方から下方に向けて漸次高圧の圧力を加えていき、正極合剤が割れたときの圧力とした。   As for the molding strength of the positive electrode mixture, an annular (hollow cylindrical) positive electrode mixture is placed on a horizontal test stand so that its cylindrical axis is in the horizontal direction, and the upper side of the positive electrode mixture is below. The pressure at the time when the positive electrode mixture was cracked was determined by gradually applying a high pressure toward the surface.

===従来のアルカリ乾電池===
以下の表1に従来のアルカリ乾電池に対応する各サンプル(比較例1〜5)における正極合剤中のバインダーの添加条件と、短絡電流特性とを示した。

Figure 0005645473
=== Conventional alkaline battery ===
Table 1 below shows the conditions for adding the binder in the positive electrode mixture and the short-circuit current characteristics in each sample (Comparative Examples 1 to 5) corresponding to a conventional alkaline battery.
Figure 0005645473

上記表1において、比較例1は、バインダーを添加しないで成型した正極合剤を内面に導電膜が形成された一般的な正極缶に組み込んだサンプルであり、この比較例1における正極合剤の成型強度や放電性能を基準値100として他のサンプルの性能を基準値に対する相対値(性能値)で評価した。また、基準値に対する合否判定としては、正極合剤の成型強度については、性能値150以上で合格とし、内部抵抗の指標となる短絡電流については性能値100以上で合格とした。   In Table 1 above, Comparative Example 1 is a sample in which a positive electrode mixture molded without adding a binder is incorporated into a general positive electrode can having a conductive film formed on its inner surface. With the molding strength and the discharge performance as the reference value 100, the performance of other samples was evaluated as a relative value (performance value) to the reference value. In addition, regarding the pass / fail judgment with respect to the reference value, regarding the molding strength of the positive electrode mixture, a performance value of 150 or more was passed, and for the short-circuit current serving as an index of internal resistance, the performance value was 100 or more.

表1より、正極合剤中にバインダーとして、ポリアクリル酸(PA)、ポリビニルアルコール(PVA)、およびポリエチレン(PE)を0.5wt%の割合で添加したサンプル(比較例2〜5)について、バインダーをPAとした比較例2、3の正極合剤では、十分な成型強度を有していることが分かった。また、正極合剤の成型強度が粘度に比例して高くなることも分かった。しかし、短絡電流についての性能が不合格となり、正極合剤にバインダーとしてPAを含むアルカリ乾電池における、内部抵抗が大きくなる、という課題を確認できた。また、PVAやPEをバインダーとした比較例4、5正極合剤では、短絡電流については基準値と同等の性能値を得たが、十分な粘度が得られず成型強度が不足して不合格となった。なお、PEの粘度は、測定限界以下であった。   From Table 1, as a binder in the positive electrode mixture, polyacrylic acid (PA), polyvinyl alcohol (PVA), and polyethylene (PE) added at a ratio of 0.5 wt% (Comparative Examples 2 to 5), It was found that the positive electrode mixtures of Comparative Examples 2 and 3 in which the binder was PA had sufficient molding strength. It was also found that the molding strength of the positive electrode mixture increased in proportion to the viscosity. However, the performance about a short circuit current was rejected and the subject that the internal resistance in the alkaline dry battery which contains PA as a binder in a positive electrode mixture became large was confirmed. Further, in Comparative Example 4 and 5 positive electrode mixture using PVA or PE as a binder, a performance value equivalent to the reference value was obtained for the short circuit current, but a sufficient viscosity could not be obtained and the molding strength was insufficient and it was rejected. It became. In addition, the viscosity of PE was below the measurement limit.

===ポリアクリル酸ナトリウムの最適粘度====
つぎに、バインダーとしてNa−PAを用いた正極合剤を、内面に導電膜が形成されている正極缶に組み込んで作成したサンプルについて特性を評価した。まず、Na−PAの粘度の最適値を求めるために、Na−PAの添加量を、表1に示した従来のアルカリ乾電池に対応する各サンプルと同じ0.5wt%とした上で、粘度が異なるNa−PAを添加した各種正極合剤を正極缶に組み込んでサンプル(実施例1〜3,比較例6,比較例7)を作成した。
=== Optimum viscosity of sodium polyacrylate ====
Next, the characteristics of a sample prepared by incorporating a positive electrode mixture using Na-PA as a binder into a positive electrode can having a conductive film formed on the inner surface thereof were evaluated. First, in order to obtain the optimum value of the viscosity of Na-PA, the addition amount of Na-PA is set to 0.5 wt% which is the same as that of each sample corresponding to the conventional alkaline battery shown in Table 1, and the viscosity is Samples (Examples 1 to 3, Comparative Example 6, and Comparative Example 7) were prepared by incorporating various positive electrode mixtures to which different Na-PA was added into a positive electrode can.

表2に、正極合剤の成型強度とアルカリ乾電池の短絡電流について、Na−PAの粘度依存性を示した。

Figure 0005645473
Table 2 shows the viscosity dependency of Na-PA for the molding strength of the positive electrode mixture and the short-circuit current of the alkaline battery.
Figure 0005645473

表2より、成型強度と短絡電流とは、その特性がトレードオフの関係にあることが分かった。そして、Na−PAの粘度が15Pa・s以下となる実施例1〜3のサンプルでは、成型強度と短絡電流がともに合格判定となり、粘度が15Pa・sよりも大きなサンプル(比較例6、比較例7)では、大きな短絡電流が得られず不合格判定となった。   From Table 2, it was found that the molding strength and the short-circuit current are in a trade-off relationship. In the samples of Examples 1 to 3 in which the viscosity of Na-PA is 15 Pa · s or less, both the molding strength and the short-circuit current are determined to be acceptable, and the sample has a viscosity greater than 15 Pa · s (Comparative Example 6, Comparative Example). In 7), a large short-circuit current could not be obtained, resulting in a failure determination.

ここで、表1における、比較例2と比較例3の特性を見ると、PAの粘度をさらに低くすれば、短絡電流についての性能も合格になると推測されるが、表2に示した結果と比較すると、添加量と成型強度が同じ場合では、PAの方が粘度が高くなることが分かる。例えば、成型強度の性能値が同じ200となった比較例2と実施例3とを比較すると、PAの粘度は、Na−PAの粘度の3割以上も大きい。そのため、PAをバインダーとした正極合剤では、その合剤の材料を混合する際に材料が均一に混ざりにくい、ということが懸念される。均一に混合するためには、混合時の攪拌時間を長くする必要があり、生産性が低下する。   Here, looking at the characteristics of Comparative Example 2 and Comparative Example 3 in Table 1, it is estimated that if the viscosity of PA is further lowered, the performance with respect to the short-circuit current is also passed, but the results shown in Table 2 By comparison, it can be seen that when the addition amount and the molding strength are the same, the viscosity of PA is higher. For example, when Comparative Example 2 and Example 3 in which the performance value of the molding strength is the same 200 are compared, the viscosity of PA is 30% or more of the viscosity of Na-PA. Therefore, in the positive electrode mixture using PA as a binder, there is a concern that the materials are difficult to mix evenly when the materials of the mixture are mixed. In order to mix uniformly, it is necessary to lengthen the stirring time at the time of mixing, and productivity falls.

また、実施例1と、バインダーにPVAを用いた比較例4とでは、バインダーの粘度がともに測定限界に近い低い粘度(1Pa・s)であり、極めて低い。そして、比較例4では、十分な成型強度が得られなかったが、実施例1では、十分な成型強度が得られ、Na−PAをバインダーとした正極合剤では、粘度が極めて低くても十分な成型強度が得られることが確認できた。   In Example 1 and Comparative Example 4 using PVA as the binder, the viscosity of the binder is a low viscosity (1 Pa · s) close to the measurement limit, which is extremely low. In Comparative Example 4, sufficient molding strength was not obtained, but in Example 1, sufficient molding strength was obtained, and the positive electrode mixture using Na-PA as a binder is sufficient even if the viscosity is extremely low. It was confirmed that a good molding strength was obtained.

ここで、Na−PAが、低い粘度でも大きな成型強度が得られる、という事実について考察してみると、Na−PAにおける粘度の発現メカニズムが、PAのように電解液中に分散されることで粘度が発現するのとは異なり、Na−PAが電解液を吸収し、その分子構造内に電解液を保持することで粘度が発現し、低い粘度でも十分に結着力を発揮する、と考えることができる。また、この考察に基づけば、Na−PAは、PAのように成型強度を高めるために粘度を大きくする必要が無いため、正極合剤の膨張に伴う内部抵抗の上昇がなく、その結果、大きな短絡電流を得ることができる。という論理が成立する。   Here, when considering the fact that Na-PA can obtain a large molding strength even at a low viscosity, the expression mechanism of the viscosity in Na-PA is dispersed in the electrolyte like PA. Contrary to the manifestation of viscosity, Na-PA absorbs the electrolyte and holds the electrolyte in its molecular structure, so that the viscosity is developed, and the binding force is fully exhibited even at low viscosity. Can do. Also, based on this consideration, Na-PA does not require an increase in viscosity in order to increase the molding strength like PA, so there is no increase in internal resistance due to the expansion of the positive electrode mixture, resulting in a large Short circuit current can be obtained. The logic is established.

そして、Na−PAの粘度の最適値は、40wt%水酸化カリウム水溶液に3wt%の重量比で混合したときに15Pa・s以下であり、粘度がその最適値となるNa−PAをバインダーとした正極合剤を用いた本発明の実施例に係るアルカリ乾電池では、十分な短絡電流が得られるとともに、十分な成型強度の正極合剤を用いているため、正極缶に圧入する際に破損する可能性が少なくなり、生産性が向上し、より安価に提供することが期待できる。また、バインダーの粘度が低いため、正極合剤を作成する際に合剤の材料が均一に混合され、正極合剤自体の特性が均一となる。結果的に、最終製品であるアルカリ乾電池の品質が均一となり、さらに生産性を向上させる。   The optimum value of the viscosity of Na-PA is 15 Pa · s or less when mixed in a 40 wt% potassium hydroxide aqueous solution at a weight ratio of 3 wt%, and Na-PA having the optimum viscosity is used as a binder. In the alkaline dry battery according to the embodiment of the present invention using the positive electrode mixture, a sufficient short-circuit current is obtained, and the positive electrode mixture having sufficient molding strength is used, so that it can be damaged when pressed into the positive electrode can. It can be expected that productivity will be reduced, productivity will be improved, and it will be provided at lower cost. Moreover, since the viscosity of a binder is low, when preparing positive mix, the material of a mix is mixed uniformly and the characteristic of positive mix itself becomes uniform. As a result, the quality of the alkaline battery as the final product becomes uniform, and the productivity is further improved.

===添加量の最適化===
上述したように、Na−PAをバイダーとした正極合剤は、低い粘度でも大きな成型強度が得られるともに、短絡電流特性についても、バインダーを含まない正極合剤を用いたアルカリ乾電池(比較例1)よりも大きな電流値を得ることができ、生産性を向上させつつ、内部抵抗が低いアルカリ乾電池を達成することができた。
=== Optimization of addition amount ===
As described above, the positive electrode mixture using Na-PA as a binder can obtain a large molding strength even at a low viscosity, and the short-circuit current characteristics are alkaline dry batteries using a positive electrode mixture containing no binder (Comparative Example 1). ) And an alkaline dry battery with low internal resistance can be achieved while improving productivity.

つぎに、Na−PAの添加量が異なる正極合剤を、内面に導電膜が形成されている正極缶に組み込んで各種サンプル(実施例4〜6,比較例1,比較例8,比較例9:実施例5は、実施例2と同じ条件)を作成し、各サンプルについて、正極容量の指標となる放電性能を評価した。周知のごとく、正極合剤中のバインダーの添加量が増えれば正極活物質の量は相対的に少なくなり、正極容量が減少する。また、添加量を少なくすれば、正極合剤の成型強度が低下する。そこで、Na−PAをバインダーとした正極合剤を用いたアルカリ乾電池において、正極合剤の成型強度と十分な放電性能が得られる条件について検討した。   Next, a positive electrode mixture having a different amount of Na-PA added is incorporated into a positive electrode can having a conductive film formed on the inner surface, and various samples (Examples 4 to 6, Comparative Example 1, Comparative Example 8, Comparative Example 9). In Example 5, the same conditions as in Example 2 were prepared, and the discharge performance serving as an index of the positive electrode capacity was evaluated for each sample. As is well known, if the amount of the binder added in the positive electrode mixture increases, the amount of the positive electrode active material decreases relatively, and the positive electrode capacity decreases. Moreover, if the addition amount is reduced, the molding strength of the positive electrode mixture is lowered. Therefore, in an alkaline dry battery using a positive electrode mixture containing Na-PA as a binder, the conditions under which the molding strength of the positive electrode mixture and sufficient discharge performance were obtained were studied.

なお、放電性能については、各サンプルについて、終止電圧を0.9Vとし、一日に4時間、10Ωの負荷で放電させ、残りの20時間を無負荷の状態で放置する、というサイクルを繰り返したときに、終止電圧に至るまでの放電時間を計測することで評価した。また、評価結果は、正極合剤にバインダーが含まれず、理論的に正極容量が最も大きくなる比較例1のサンプルの放電時間を100としたときに、性能値が95以上となったサンプルを合格とした。粘度については、比較例1と同じ5Pa・sとした。   Regarding the discharge performance, a cycle was repeated for each sample in which the end voltage was 0.9 V, the battery was discharged for 4 hours a day with a load of 10Ω, and the remaining 20 hours were left unloaded. Evaluation was sometimes made by measuring the discharge time to reach the end voltage. In addition, the evaluation result is that a sample having a performance value of 95 or more is passed when the discharge time of the sample of Comparative Example 1 in which the positive electrode mixture contains no binder and theoretically has the largest positive electrode capacity is 100. It was. The viscosity was 5 Pa · s, the same as in Comparative Example 1.

以下の表3にNa−PAの添加量と放電性能との関係を示した。

Figure 0005645473
Table 3 below shows the relationship between the amount of Na-PA added and the discharge performance.
Figure 0005645473

表3の結果より、Na−PAの添加量が0.1wt%以上、3%以下であれば、正極合剤の成型強度が十分に高く、十分な放電性能が得られることが分かった。   From the results of Table 3, it was found that when the amount of Na-PA added was 0.1 wt% or more and 3% or less, the molding strength of the positive electrode mixture was sufficiently high and sufficient discharge performance was obtained.

なお、表3に示した放電性能のNa−PA添加量依存性では、粘度を5Pa・sとしているが、表2に示したように、0.5%の添加量で、少なくとも、1Pa・s〜30Pa・sまでの粘度に調整可能なことが判明しており、添加量が0.1wt%〜3wt%であれば、粘度を最適値の範囲である1Pa・s〜15Pa・sに調整することは容易である。したがって、Na−PAをバインダーとして含んだ正極合剤を用いたアルカリ乾電池では、十分な短絡電流を得た上で生産性を向上させるために、そのNa−Paの粘度を15Pa・s以下とすることが必要であり、さらに十分な放電性能を得るためには、その添加量を0.1wt%〜3wt%とすればよい。   In addition, in the Na-PA addition amount dependence of the discharge performance shown in Table 3, the viscosity is 5 Pa · s. However, as shown in Table 2, at 0.5% addition amount, at least 1 Pa · s. It has been found that the viscosity can be adjusted to ˜30 Pa · s, and if the addition amount is 0.1 wt% to 3 wt%, the viscosity is adjusted to 1 Pa · s to 15 Pa · s which is the optimum value range. It is easy. Therefore, in an alkaline battery using a positive electrode mixture containing Na-PA as a binder, the viscosity of Na-Pa is set to 15 Pa · s or less in order to improve productivity after obtaining a sufficient short-circuit current. In order to obtain more sufficient discharge performance, the addition amount may be 0.1 wt% to 3 wt%.

===正極缶内面の導電膜について===
上述したように、Na−PAをバインダーとした正極合剤を用いたアルカリ乾電池は、高い生産性によって安価に提供できるともに、正極合剤の成型強度が高く、内部抵抗が低く、十分な短絡電流を得ることができる。ここで、本発明者は、十分に内部抵抗が低ければ、従来、内部抵抗の上昇を抑制するために正極缶内面に形成されていた導電膜を省略しても、実用的なアルカリ乾電池が達成できるのではないか、と考えた。そして、導電膜が不要であれば、導電膜となる導電塗料、及び導電塗料の塗布工程に掛かるコストを削減でき、アルカリ乾電池のさらなるコストダウンが達成できる。
=== About the conductive film on the inner surface of the positive electrode can ===
As described above, an alkaline dry battery using a positive electrode mixture with Na-PA as a binder can be provided at low cost due to high productivity, and the positive electrode mixture has high molding strength, low internal resistance, and sufficient short-circuit current. Can be obtained. Here, if the internal resistance is sufficiently low, the present inventor achieves a practical alkaline dry battery even if the conductive film previously formed on the inner surface of the positive electrode can in order to suppress the increase in internal resistance is omitted. I thought it could be done. And if a conductive film is unnecessary, the cost concerning the conductive paint used as the conductive film and the coating process of the conductive paint can be reduced, and further cost reduction of the alkaline battery can be achieved.

また、導電膜を形成するために正極缶内面に塗布される導電塗料は、近年、その排出が規制されつつある揮発性有機溶剤(VOC)に導電材を分散あるいは溶解させたものであり、環境問題の観点からも導電塗料の塗布工程の省略化が望まれる。VOCの問題に鑑み、水を溶媒とした導電塗料に代替することも可能であるが、この場合は、溶媒である水が自然に揮発しないので、導電塗料の塗布工程に続いて、溶媒である水を除去するための乾燥工程が必要となる。そして、この乾燥工程では、余分なエネルギーと時間が消費されることになり、アルカリ乾電池の生産性が低下する。また、エネルギー消費量の増大は、世界的なCO削減要求にも反し、やはり、環境問題の観点からも望ましくない。いずれにしても、生産性の向上は、製造コストだけではなく、環境問題の観点からも重要な課題である。そこで、内面に導電膜が形成されていない正極缶に、バインダーが異なる各種正極合剤を組み込んだサンプルを作成し、各サンプルについて、短絡電流特性を評価した。 In addition, the conductive paint applied to the inner surface of the positive electrode can to form a conductive film is obtained by dispersing or dissolving a conductive material in a volatile organic solvent (VOC) whose emission is being regulated in recent years. From the viewpoint of problems, it is desirable to omit the coating process of the conductive paint. In view of the VOC problem, it is possible to replace the conductive paint using water as a solvent, but in this case, since the solvent water does not volatilize naturally, the solvent is used after the conductive paint application process. A drying step is required to remove the water. And in this drying process, excess energy and time will be consumed, and the productivity of an alkaline battery will fall. Also, the increase in energy consumption is not desirable from the viewpoint of environmental problems, contrary to the global demand for CO 2 reduction. In any case, improvement of productivity is an important issue not only from the manufacturing cost but also from the viewpoint of environmental problems. Therefore, samples were prepared by incorporating various positive electrode mixtures with different binders into a positive electrode can with no conductive film formed on the inner surface, and the short circuit current characteristics of each sample were evaluated.

表4に、当該評価結果を示した。

Figure 0005645473
Table 4 shows the evaluation results.
Figure 0005645473

表4において、比較例10、比較例11、および比較例12は、それぞれ、表1における比較例1、比較例2、および比較例5と同じ正極合剤を、内面に導電膜が形成されていない「導電膜無し」の正極缶に組み込んで作成したサンプルであり、また、実施例7は、表2における実施例2(表3における実施例5)と同じ正極合剤を導電膜無しの正極缶に組み込んで作成したサンプルである。   In Table 4, Comparative Example 10, Comparative Example 11, and Comparative Example 12 have the same positive electrode mixture as Comparative Example 1, Comparative Example 2, and Comparative Example 5 in Table 1, respectively, and a conductive film formed on the inner surface. Example 7 is a sample prepared by incorporating in a positive electrode can having no “conductive film”, and Example 7 is a positive electrode having no conductive film and the same positive electrode mixture as Example 2 in Table 2 (Example 5 in Table 3) It is a sample created by incorporating it into a can.

表4より、正極合剤にバインダーとしてNa−PAを含んだ実施例7のサンプルでは、評価の基準となる比較例1、すなわち、バインダーを含まない正極合剤を「導電膜有り」の正極缶に組み込んだアルカリ乾電池と同等の短絡電流を得ることができ、合格判定となった。導電膜無しの正極缶に、Na−PA以外のバインダーが添加された正極合剤を組み込んだサンプルでは、全てサンプルで短絡電流が基準値100に満たず、不合格判定となった。具体的には、表4に示した各サンプルは、いずれも、正極合剤を同じ圧力で正極缶に圧入したものであるが、従来の正極合剤を組み込んだサンプル(比較例10〜12)では、性能値が最大でも70であり、比較例1に対して3割も短絡電流が低下していた。一方、本発明の実施例である実施例7のサンプルでは、基準値であり合格基準でもある性能値100を達成した。   From Table 4, in the sample of Example 7 containing Na-PA as a binder in the positive electrode mixture, Comparative Example 1 serving as a reference for evaluation, that is, the positive electrode mixture containing no binder was used as the positive electrode can with “conductive film”. A short-circuit current equivalent to that of the alkaline battery incorporated in the battery was obtained, and the result was a pass judgment. In the samples in which the positive electrode mixture in which the binder other than Na-PA was added to the positive electrode can without the conductive film, the short-circuit current did not reach the reference value 100 in all the samples, and the determination was rejected. Specifically, each sample shown in Table 4 is a sample in which the positive electrode mixture is press-fitted into the positive electrode can at the same pressure, but a sample incorporating a conventional positive electrode mixture (Comparative Examples 10 to 12) Then, the performance value was 70 at the maximum, and the short-circuit current was reduced by 30% compared to Comparative Example 1. On the other hand, in the sample of Example 7, which is an example of the present invention, a performance value of 100, which is a reference value and also a pass standard, was achieved.

また、本実施例のアルカリ乾電池では、上述したように、正極合剤の成型強度が高いため、生産性を維持しつつ、正極缶への圧入する際の圧力をさらに大きくすることも可能である。したがって、正極缶内面と正極合剤とをさらに密着させることで、短絡電流特性をさらに向上させることも期待できる。   Further, in the alkaline dry battery of this example, as described above, since the molding strength of the positive electrode mixture is high, the pressure at the time of press-fitting into the positive electrode can can be further increased while maintaining the productivity. . Therefore, it is expected that the short-circuit current characteristics can be further improved by further bringing the positive electrode can inner surface and the positive electrode mixture into close contact with each other.

1 アルカリ乾電池、2 電池缶(正極缶)、3 正極合剤、4 セパレーター、
5 負極ゲル、6 負極集電子、7 負極端子板、8 ガスケット、9 正極端子
1 alkaline dry battery, 2 battery can (positive electrode can), 3 positive electrode mixture, 4 separator,
5 Negative gel, 6 Negative current collector, 7 Negative terminal plate, 8 Gasket, 9 Positive terminal

Claims (1)

正極活物質を含んで環状に成型されてなる正極合剤が正極集電体を兼ねる有底筒状の正極缶内に配置されてなるアルカリ乾電池であって、
前記正極合剤には40wt%水酸化カリウム水溶液からなる電解液とバインダーとが含まれ、
前記バインダーはポリアクリル酸ナトリウムからなり、該ポリアクリル酸ナトリウムが前記正極合剤に対して0.1wt%〜3.0wt%添加され、
前記ポリアクリル酸ナトリウムは、40wt%水酸化カリウム水溶液に3wt%混合したときの粘度が15Pa・s以下であり、
前記正極缶の内面には、導電塗料を塗布して形成する導電膜が形成されておらず、
前記バインダーを添加した場合の正極合剤における正極コア強度は、前記バインダーを添加しない場合の正極合剤における正極コア強度の1.5倍以上であるとともに、前記バインダーを添加した正極合剤を使用したアルカリ乾電池における短絡電流は、前記バインダーを添加しない正極合剤を使用したアルカリ乾電池における短絡電流の1倍以上である、
ことを特徴とするアルカリ乾電池。
An alkaline dry battery in which a positive electrode mixture formed in an annular shape containing a positive electrode active material is disposed in a bottomed cylindrical positive electrode can also serving as a positive electrode current collector,
The positive electrode mixture includes an electrolyte solution composed of a 40 wt% potassium hydroxide aqueous solution and a binder,
The binder is made of sodium polyacrylate, and 0.1 wt% to 3.0 wt% of the sodium polyacrylate is added to the positive electrode mixture,
The sodium polyacrylate has a viscosity of 15 Pa · s or less when mixed with a 40 wt% potassium hydroxide aqueous solution at 3 wt%,
On the inner surface of the positive electrode can, a conductive film formed by applying a conductive paint is not formed,
The positive electrode core strength in the positive electrode mixture when the binder is added is not less than 1.5 times the positive electrode core strength in the positive electrode mixture when the binder is not added, and the positive electrode mixture added with the binder is used. The short circuit current in the alkaline dry battery is at least 1 time the short circuit current in the alkaline dry battery using the positive electrode mixture without adding the binder.
An alkaline battery characterized by that.
JP2010113463A 2010-05-17 2010-05-17 Alkaline battery Expired - Fee Related JP5645473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113463A JP5645473B2 (en) 2010-05-17 2010-05-17 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113463A JP5645473B2 (en) 2010-05-17 2010-05-17 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2011243368A JP2011243368A (en) 2011-12-01
JP5645473B2 true JP5645473B2 (en) 2014-12-24

Family

ID=45409855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113463A Expired - Fee Related JP5645473B2 (en) 2010-05-17 2010-05-17 Alkaline battery

Country Status (1)

Country Link
JP (1) JP5645473B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152674A (en) * 1981-03-16 1982-09-21 Hitachi Maxell Ltd Alkaline manganese battery
JPH10144304A (en) * 1996-11-15 1998-05-29 Fuji Elelctrochem Co Ltd Alkali battery
JP2003017010A (en) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd Alkaline dry battery
JP2005129309A (en) * 2003-10-22 2005-05-19 Fdk Energy Co Ltd Positive electrode mixture of alkaline battery, and alkaline battery
JP5622996B2 (en) * 2006-11-06 2014-11-12 Fdkエナジー株式会社 Alkaline battery and method for producing alkaline battery
JP2009087872A (en) * 2007-10-02 2009-04-23 Fdk Energy Co Ltd Alkali battery, and method of manufacturing positive electrode mixture in alkali battery

Also Published As

Publication number Publication date
JP2011243368A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5626957B2 (en) Alkaline electrochemical cell
JP2010524174A (en) Alkaline chemical battery
CN1171336C (en) Alkaline cell with improved anode
US5219685A (en) Alkaline manganese cell
JP5645473B2 (en) Alkaline battery
JP3216451B2 (en) Non-aqueous electrolyte battery
JP2009087872A (en) Alkali battery, and method of manufacturing positive electrode mixture in alkali battery
JP2005353308A (en) Alkaline dry cell and manufacturing method of the same
JP2016173936A (en) Alkali battery
JP2018018743A (en) Lead storage battery
JP2005129309A (en) Positive electrode mixture of alkaline battery, and alkaline battery
EP3433893B1 (en) Alkaline battery
JP5102970B2 (en) Alkaline battery
KR101631231B1 (en) METHOD OF MANUFACTURING LTO/Graphens ANODE AND HYBRID CAPACITOR USING THE LTO/Graphens ANODE
Landi et al. New biodegradable nano-composites for transient electronics devices
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP7146545B2 (en) Cathode mixture for alkaline batteries
JP7408578B2 (en) alkaline battery
JP6217921B2 (en) Lead acid battery, negative electrode plate thereof, and method for producing lead acid battery
JP2008071541A (en) Alkaline battery
JP2017069097A (en) Alkaline battery
JP2000306575A (en) Alkaline dry battery and manufacture of positive electrode mixture thereof
JP6775764B2 (en) Lead-acid battery
JP6560943B2 (en) Positive electrode mixture for alkaline battery and inside-out alkaline battery
JPH0724215B2 (en) Dry cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees