JP5641192B2 - Method for obtaining S-adenosylmethionine highly accumulating yeast - Google Patents

Method for obtaining S-adenosylmethionine highly accumulating yeast Download PDF

Info

Publication number
JP5641192B2
JP5641192B2 JP2010045789A JP2010045789A JP5641192B2 JP 5641192 B2 JP5641192 B2 JP 5641192B2 JP 2010045789 A JP2010045789 A JP 2010045789A JP 2010045789 A JP2010045789 A JP 2010045789A JP 5641192 B2 JP5641192 B2 JP 5641192B2
Authority
JP
Japan
Prior art keywords
yeast
sam
strain
adenosylmethionine
cordycepin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010045789A
Other languages
Japanese (ja)
Other versions
JP2011177125A (en
Inventor
家藤 治幸
治幸 家藤
伸斗 安田
伸斗 安田
宗良 金井
宗良 金井
力 藤井
力 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2010045789A priority Critical patent/JP5641192B2/en
Publication of JP2011177125A publication Critical patent/JP2011177125A/en
Application granted granted Critical
Publication of JP5641192B2 publication Critical patent/JP5641192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、S−アデノシルメチオニン(S−adenosylmethionine:以下、SAMe、SAMということもある)高蓄積酵母の取得方法等に関する。詳細には、SAM高蓄積酵母の選択培地によるスクリーニング方法、及び、SAM高蓄積酵母を用いたSAMの大量製造方法に関する。   The present invention relates to a method for obtaining S-adenosylmethionine (hereinafter also referred to as SAMe, SAM) highly accumulating yeast, and the like. In detail, it is related with the screening method by the selective culture medium of SAM high accumulation yeast, and the mass production method of SAM using SAM high accumulation yeast.

SAMは生体内に存在する含硫アミノ酸代謝のkey物質であり、メチオニンアデノシルトランスフェラーゼの作用によりメチオニンとATPから合成される。その構造中に活性型のメチルチオエーテル基を持ち、タンパク質や核酸など種々のメチル基受容体にメチル基を供与することで、生体内の主要なメチル基供与体として働く。医学的臨床試験により、アルコール性肝機能障害、動脈硬化、老人性痴呆症や鬱病、関節炎といった種々の疾患に対し、予防及び改善効果を発揮する生理機能があるという報告がある。更に近年では、癌やAIDSにも作用することが新たに報告されており、EU諸国においては医療用医薬品として、アメリカ合衆国においてはサプリメントとしての地位を確立している。日本においても、2009年2月厚生労働省において、SAMe(SAM)が天然に含有する酵母等の食品につき、栄養成分表示等でSAMeを記載すること自体に問題がないという見解が示されたことより、近い将来、市場活発化の期待が高まっている物質である。   SAM is a key substance for metabolism of sulfur-containing amino acids present in the living body, and is synthesized from methionine and ATP by the action of methionine adenosyltransferase. It has an active methylthioether group in its structure, and functions as a major methyl group donor in vivo by donating a methyl group to various methyl group acceptors such as proteins and nucleic acids. According to medical clinical trials, there are reports that there are physiological functions that exert preventive and ameliorating effects on various diseases such as alcoholic liver dysfunction, arteriosclerosis, senile dementia, depression, and arthritis. In recent years, it has been newly reported that it acts on cancer and AIDS, and has established itself as a prescription drug in the EU countries and a supplement in the United States. In Japan, the Ministry of Health, Labor and Welfare in February 2009 showed that there was no problem in describing SAMe in nutritional labeling etc. for foods such as yeast naturally contained in SAMe (SAM) In the near future, it is a substance that is expected to activate the market.

現在までの知見より、このSAMはあらゆる微生物の中でも特に酵母においてその生産能力が高いことが知られており、現在、SAMの工業的生産はSaccharomyces cerevisiaeから抽出することにより行われているが、SAMの生産機構については不明な点が多く、また酵母培養培地に高価なアミノ酸の大量添加などが必要であり生産コストが高いため、SAMの作用機序の解明や、従来のSAM生産系よりも迅速かつ安価で大量生産の可能な系の構築等が現状の課題となっている。   From the knowledge to date, it is known that this SAM has a high production capacity in yeast among all microorganisms. Currently, industrial production of SAM is carried out by extraction from Saccharomyces cerevisiae. There are many unclear points about the production mechanism, and the production cost is high due to the need to add a large amount of expensive amino acids to the yeast culture medium, so that the mechanism of action of SAM is elucidated and faster than conventional SAM production systems. The construction of a system that can be mass-produced at low cost is a current problem.

従来のSAMの生産は、既存の株を用い、その菌での生産培地組成を検討することにより生産性の向上が図られてきた。ようやく最近になって、SAM生産性酵母の中から、さらに生産性が向上した変異株の取得が試みられているが、大幅なSAM生産性の向上に達していなかったり(特許文献1)、またセルフクローニング法という煩雑な操作が必要であったり(特許文献2)、特に食品として用いにくい、特定の遺伝子を遺伝子操作によって欠損等させた遺伝子組換え体であるなど(特許文献3)、更に改善の余地がある。   Conventional SAM production has been attempted to improve productivity by using an existing strain and examining the composition of the production medium of the bacterium. Finally, recently, attempts have been made to obtain mutant strains with further improved productivity from among SAM-producing yeasts, but no significant improvement in SAM productivity has been achieved (Patent Document 1). Further improvements such as requiring a complicated operation such as self-cloning (Patent Document 2), particularly difficult to use as a food, or a genetic recombinant in which a specific gene is deleted by genetic manipulation (Patent Document 3). There is room for.

特開2004−283103号公報JP 2004-283103 A 特開2009−034043号公報JP 2009-034043 A 特開2009−213469号公報JP 2009-213469 A

本発明は、S−アデノシルメチオニン(SAM)の大量生産のため、従来のSAM高生産酵母のスクリーニング系と比べてより実験操作が簡易で、且つ、生産性のより高いSAM高蓄積酵母の取得方法、及び、それによって得られた酵母を用いたSAMの大量製造方法を提供することを目的とする。   In the present invention, because of the mass production of S-adenosylmethionine (SAM), the experimental operation is simpler than that of a conventional SAM high-producing yeast screening system, and acquisition of a highly productive SAM high-accumulating yeast is achieved. It is an object of the present invention to provide a method and a mass production method of SAM using the yeast obtained thereby.

上記目的を達成するため、本発明者らは鋭意研究を行い、コルディセピンを含有した選択培地を用いて酵母を培養し、生育してくる変異酵母であるコルディセピン耐性株を選択することにより(ポジティブスクリーニングにより)、SAM高蓄積酵母を簡便かつ効率的に取得できることを見出し、本発明に至った。
また、得られた酵母を用いて所定の培地で培養することで、SAMの大量生産を工業的に行うことができることも見出した。
In order to achieve the above object, the present inventors conducted intensive research, cultured yeast using a selective medium containing cordycepin, and selected a cordycepin-resistant strain that is a mutant yeast that grows (positive screening). ) And found that SAM high-accumulation yeast can be obtained simply and efficiently, and led to the present invention.
It was also found that mass production of SAM can be industrially performed by culturing in a predetermined medium using the obtained yeast.

すなわち、本発明の実施形態は次のとおりである。
(1)コルディセピンを含有する選択培地で生育してくるコルディセピン耐性株を取得すること、を特徴とするS−アデノシルメチオニン高蓄積酵母の取得方法(親株の2〜20倍量以上(例えば2〜30倍量)SAMを高蓄積するSAM高蓄積酵母の取得方法)。
(2)(1)に記載の方法で取得してなる、遺伝子組換え体でないコルディセピン耐性変異株であるS−アデノシルメチオニン高蓄積酵母。
(3)該酵母が、Saccharomyces属又はCandida属に属する酵母であること、を特徴とする(2)に記載のS−アデノシルメチオニン高蓄積酵母。
(4)該酵母が、Saccharomyces cerevisiaeであること、を特徴とする(3)に記載のS−アデノシルメチオニン高蓄積酵母。
(5)コルディセピン耐性を有するS−アデノシルメチオニン高蓄積酵母である、Sake yeast NY9−10(NITE P−831)。
(6)コルディセピン耐性を有するS−アデノシルメチオニン高蓄積酵母である、Sake yeast NY7−3(NITE P−830)。
(7)(2)〜(6)のいずれか1つに記載の酵母を培養し、培養物(培地及び/又は菌体)からS−アデノシルメチオニンを取得すること、を特徴とするS−アデノシルメチオニンの大量製造方法。
(8)コルディセピンを含有してなること、を特徴とするS−アデノシルメチオニン高蓄積酵母選択培地。
That is, the embodiment of the present invention is as follows.
(1) Obtaining a cordycepin-resistant strain that grows on a selective medium containing cordycepin, a method for obtaining a yeast that accumulates highly accumulated S-adenosylmethionine (2 to 20 times the amount of the parent strain (for example, 2 to 2) 30 times the amount) a method for obtaining a SAM high-accumulation yeast that highly accumulates SAM.
(2) S-adenosylmethionine highly accumulating yeast, which is a cordycepin-resistant mutant that is not a gene recombinant, obtained by the method according to (1).
(3) The S-adenosylmethionine highly accumulating yeast according to (2), wherein the yeast belongs to the genus Saccharomyces or Candida.
(4) The S-adenosylmethionine highly accumulating yeast according to (3), wherein the yeast is Saccharomyces cerevisiae.
(5) Sake yeast NY9-10 (NITE P-831), which is a S-adenosylmethionine high accumulation yeast having resistance to cordycepin.
(6) Sake yeast NY7-3 (NITE P-830), which is an S-adenosylmethionine high accumulation yeast having resistance to cordycepin.
(7) S- characterized by culturing the yeast according to any one of (2) to (6) and obtaining S-adenosylmethionine from the culture (medium and / or cells). A method for mass production of adenosylmethionine.
(8) An S-adenosylmethionine highly accumulating yeast selective medium characterized by comprising cordycepin.

本発明によれば、コルディセピン含有選択培地によりコルディセピン耐性株をポジティブスクリーニングすることで、簡易かつ効率的にSAM高蓄積(又はSAM高含有)酵母を取得することができる。また、SAMを高濃度に菌体内に蓄積及び/又は菌体外に分泌する酵母も取得することができる。そして、得られた酵母を用いることで、SAMの大量生産を工業的かつ効率的に行うことができる   According to the present invention, a SAM high accumulation (or SAM high content) yeast can be easily and efficiently obtained by positive screening of a cordycepin resistant strain using a cordycepin-containing selective medium. It is also possible to obtain yeast that accumulates SAM at high concentrations and / or secretes SAM outside the cells. And mass production of SAM can be performed industrially and efficiently by using the obtained yeast.

K−9株より取得した25株(NY9−1〜25)のコルディセピン耐性株をYPD培地で30℃、24時間振とう培養した際のSAM蓄積量を示す(丸印は寄託菌株(NITE P−831)を示す)。なお、dry cell weight(DCW)は、乾燥菌体重量を示す。以下同じ。The SAM accumulation amount when 25 strains (NY9-1 to 25) of the cordycepin resistant strains obtained from the K-9 strain were cultured with shaking in a YPD medium at 30 ° C. for 24 hours (circles indicate the deposited strain (NITE P- 831)). In addition, dry cell weight (DCW) shows a dry cell weight. same as below. K−7株より取得した9株(NY7−1〜9)のコルディセピン耐性株をYPD培地で30℃、24時間振とう培養した際のSAM蓄積量を示す(丸印は寄託菌株(NITE P−830)を示す)。The SAM accumulation amount when nine strains (NY7-1 to 9) of the cordycepin resistant strains obtained from the K-7 strain were cultured with shaking in YPD medium at 30 ° C. for 24 hours (circles indicate the deposited strain (NITE P- 830)). K−9株より取得した5株(NY9−1、4、9、10、24)のコルディセピン耐性株をO−培地で30℃、24時間振とう培養した際のSAM蓄積量を示す(丸印は寄託菌株(NITE P−831)を示す)。The SAM accumulation amount when five strains (NY9-1, 4, 9, 10, 24) of cordycepin resistant strains obtained from the K-9 strain were cultured with shaking in an O-medium at 30 ° C. for 24 hours (circles) Indicates the deposited strain (NITE P-831). K−7株より取得した3株(NY7−3、5、6)のコルディセピン耐性株をO−培地で30℃、24時間振とう培養した際のSAM蓄積量を示す(丸印は寄託菌株(NITE P−830)を示す)。The SAM accumulation amount when three strains (NY7-3, 5, 6) obtained from K-7 strain were cultured with shaking in O-medium at 30 ° C. for 24 hours (circles indicate the deposited strain ( NITE P-830)).

本発明においては、コルディセピン(cordycepin:3−デオキシアデノシン)含有選択培地を用いる。コルディセピンは、リボヌクレオシドであるアデノシンの誘導体で、アデノシンのリボース部位の3位である酸素が欠落している構造であり、酵母のメチオニン代謝経路の中間代謝産物であるアデノシンの正常な機能を阻害する。これによって、メチオニンが正常に代謝されずSAMとして細胞内に高蓄積するものと考えられる。   In the present invention, a selection medium containing cordycepin (3-deoxyadenosine) is used. Cordycepin is a derivative of adenosine, a ribonucleoside, with a structure lacking oxygen at the 3-position of the ribose site of adenosine, which inhibits the normal function of adenosine, an intermediate metabolite of the yeast methionine metabolic pathway. . Thus, it is considered that methionine is not normally metabolized and is highly accumulated in the cell as SAM.

正常な酵母は、コルディセピン含有培地では生育できない。本発明では、正常な酵母(野生株)をそのまま使用して耐性株を偶発的に出現させる方法を用いても良いが、野性株に突然変異処理を行って使用することによって、コルディセピン耐性株を効率的に取得できる。突然変異処理は定法が適宜利用され、物理的方法及び化学的方法のいずれもが使用可能である。物理的方法としては、紫外線照射、放射線(例えばγ線)照射などがあり、化学的方法としては、例えば、亜硝酸、ナイトロジェンマスタード、アクリジン系色素、エチルメタンスルホン酸(EMS)、N−メチル−N'−ニトロ−N−ニトロソグアニジン(NTG)などの変異剤の溶液に菌体を懸濁させる方法などがある。これらの方法は、適宜組み合わせて行うこともできる。   Normal yeast cannot grow on a medium containing cordycepin. In the present invention, a normal yeast (wild strain) may be used as it is, and a method of allowing a resistant strain to appear accidentally may be used. Can be acquired efficiently. A conventional method is appropriately used for the mutation treatment, and either a physical method or a chemical method can be used. Examples of the physical method include ultraviolet irradiation and radiation (for example, γ-ray) irradiation, and examples of the chemical method include nitrous acid, nitrogen mustard, acridine dye, ethyl methanesulfonic acid (EMS), and N-methyl. There is a method of suspending bacterial cells in a solution of a mutation agent such as -N'-nitro-N-nitrosoguanidine (NTG). These methods can also be performed in combination as appropriate.

なお、本発明においては、特定の遺伝子を欠損等させた遺伝子組換え体酵母は使用しない。よって、本発明では、遺伝子組換え体でない、つまり野生株が偶発的に変異した変異株又は上記突然変異処理により出現した変異株(本発明においてはこれらを「変異株」と総称している)を得ることができ、食品に用いても問題はない。   In the present invention, a genetically modified yeast deficient in a specific gene is not used. Therefore, in the present invention, it is not a gene recombinant, that is, a mutant strain in which a wild strain is accidentally mutated or a mutant strain that has emerged through the above-described mutation treatment (in the present invention, these are collectively referred to as “mutant strains”). There is no problem even if it is used for food.

つづいて、上述の野生株酵母又は突然変異処理酵母をコルディセピン含有培地で培養して生育してくるコルディセピン耐性株を取得する。本発明におけるスクリーニングは、ポジティブスクリーニングであるので、操作がシンプルでしかも結果判定が正確に行われるため、きわめて効率的である。コルディセピンの添加は、液体培養で清酒酵母の場合、1mlあたり500〜1000μg(より好ましくは600〜800μg)含有したYPD培地(酵母エキス1%、ペプトン2%、グルコース2%)が例示される。他の酵母については、上記数値範囲に基づき適宜定めればよい。   Subsequently, the above-mentioned wild strain yeast or mutation-treated yeast is cultured in a cordycepin-containing medium to obtain a cordycepin resistant strain that grows. Since the screening in the present invention is a positive screening, it is very efficient because the operation is simple and result determination is performed accurately. The addition of cordycepin is exemplified by YPD medium (yeast extract 1%, peptone 2%, glucose 2%) containing 500 to 1000 μg (more preferably 600 to 800 μg) per ml in the case of sake yeast in liquid culture. About other yeast, what is necessary is just to determine suitably based on the said numerical range.

酵母としては、Candida utilis、C.macedoniensis等のCandida属やSaccharomyces属に属する酵母等が例示される。後者においては、Saccharomyces cerevisiae、S.rouxii、S.uvarum、S.bayanus、S.chevalieri、S.bailli等が例示される。   Examples of yeast include Candida utilis, C.I. Examples include yeast belonging to the genus Candida such as Macedoniensis and the genus Saccharomyces. In the latter, Saccharomyces cerevisiae, S. et al. rouxii, S .; uvarum, S.M. Bayanus, S.B. chevaleri, S .; An example is baili.

また、サッカロマイセス(Saccharomyces)属に属する各種の市販酵母、実用酵母、実験室酵母等も本発明の対象であって、清酒酵母(協会6号酵母、協会7号酵母、協会9号酵母、協会10号酵母等)、焼酎酵母(日本醸造協会焼酎用2号酵母等)、ワイン酵母(ブドウ酒1号酵母(日本醸造協会ブドウ酒1号酵母)、ブドウ酒3号酵母、ブドウ酒4号酵母等)、ビール酵母、パン酵母等も非限定例として挙げられる。   In addition, various commercially available yeasts, practical yeasts, laboratory yeasts and the like belonging to the genus Saccharomyces are also objects of the present invention, and sake yeasts (Association No. 6 yeast, Association No. 7 yeast, Association No. 9 yeast, Association 10). No. yeast etc.), shochu yeast (Japan Brewing Association Shochu No. 2 yeast, etc.), wine yeast (vinegar No. 1 yeast (Japan Brewing Association No. 1 yeast), wine No. 3 yeast, wine No. 4 yeast etc. ), Brewer's yeast, baker's yeast and the like are also given as non-limiting examples.

本発明では、上述のような手法で目的とするSAM高蓄積酵母を取得することができる。一例として挙げると、清酒酵母であるSaccharomyces cerevisiae K−9(協会9号酵母)、K−7(協会7号酵母)を親株として、それぞれ、目的株を取得するのに成功し、それらの内、K−9から取得した株をNY9−10、K−7から取得した株をNY7−3と命名し、独立行政法人製品評価技術基盤機構 特許微生物寄託センターにそれぞれNITE P−831、NITE P−830として寄託した。   In the present invention, the target SAM high accumulation yeast can be obtained by the method as described above. As an example, Saccharomyces cerevisiae K-9 (Association No. 9 yeast) and K-7 (Association No. 7 yeast), which are sake yeasts, were successfully obtained as parent strains, respectively, The strain acquired from K-9 was named NY9-10, the strain acquired from K-7 was named NY7-3, and NITE P-831 and NITE P-830 were assigned to the Patent Microorganism Depositary, National Institute of Technology and Evaluation. As deposited.

そして、このようにして分離育種したSAM高蓄積株を培養することによって培養物からSAMを大量に取得することができる。YPD培地においては、同じ培地で親株より20倍を超えるSAMの高蓄積を行うことができ、さらに大量に生産蓄積したいのであれば、例えばO−培地(グルコース5%、ペプトン1%、酵母エキス0.5%、KHPO 0.4%、KHPO 0.2%、MgSO・7HO 0.05%、L−メチオニン0.15%)で培養した場合、K−9菌から選別された変異株は、酵母細胞乾物重量1gあたり、1〜80mg(例えば3〜80mg)、場合によっては80mg以上のSAMを高蓄積し、100mg以上も蓄積する可能性も充分に認められる。なお、本実施例によれば、親株の2〜20倍程度のSAMの蓄積が確認されたが、それ以上(例えば10〜30倍)の蓄積も充分可能である。 A large amount of SAM can be obtained from the culture by culturing the SAM high-accumulation strain separated and bred in this manner. In the YPD medium, SAM can be accumulated 20 times more than the parent strain in the same medium, and if it is desired to produce and accumulate in large quantities, for example, O-medium (glucose 5%, peptone 1%, yeast extract 0 5%, KH 2 PO 4 0.4%, K 2 HPO 4 0.2%, MgSO 4 .7H 2 O 0.05%, L-methionine 0.15%) The mutant strain selected from 1 has a high accumulation of 1 to 80 mg (for example, 3 to 80 mg), sometimes 80 mg or more of SAM per 1 g of yeast cell dry matter weight, and the possibility of accumulating 100 mg or more is fully recognized. In addition, according to the present Example, accumulation | storage of about 2-20 times SAM of a parent strain was confirmed, However Accumulation beyond that (for example, 10-30 times) is also possible enough.

上述のように、SAM高蓄積酵母(コルディセピン耐性株)を培養して該酵母を増殖せしめ、増殖した酵母の培養物からSAMを抽出、取得することによってSAMを大量に取得することが可能となる。培養は常法にしたがって行えばよく、その際、親株と変異株との間の増殖特性には格別の相違は認められない(むしろ変異株の方が親株と比べて良好な増殖を示す場合も見られる)。   As described above, a large amount of SAM can be obtained by culturing SAM high-accumulation yeast (cordycepin-resistant strain) and growing the yeast, and extracting and obtaining SAM from the grown yeast culture. . Culture may be carried out according to a conventional method, in which case there is no particular difference in the growth characteristics between the parent strain and the mutant strain (the mutant strain may show better growth than the parent strain). Seen).

なお、培養にあたり、YPD培地を使用しても問題ないが、メチオニン添加培地(O−培地等)を使用するとより好ましく、更なるSAMの大量取得が可能となる。メチオニンの添加量は、適宜でよいが、好ましくは0.15%〜0.75%の範囲内が好適である。
さらには、リン酸塩、硫酸塩、エタノールから選ばれる少なくとも1以上の添加培地を使用することがより好ましい。これらの添加量も適宜でよいが、好ましくはそれぞれ0.2〜0.4%、0.05%、4.0%程度が好適である。
In addition, although there is no problem even if YPD medium is used for the culture, it is more preferable to use a methionine-added medium (O-medium etc.), and further mass acquisition of SAM becomes possible. The amount of methionine added may be appropriate, but is preferably in the range of 0.15% to 0.75%.
Furthermore, it is more preferable to use at least one additional medium selected from phosphate, sulfate, and ethanol. These addition amounts may be appropriate, but are preferably about 0.2 to 0.4%, 0.05%, and 4.0%, respectively.

以下に本発明の実施例について述べる。   Examples of the present invention will be described below.

Saccharomyces cerevisiae K−9(協会9号酵母)及びK−7(協会7号酵母)を親株とし、常法に基づき紫外線照射で変異処理を行った。生存率はおよそ10%であった。処理菌株を、コルディセピン600μg/ml含有YPD液体培地に植菌し、K−9株に関しては、30℃で3日間培養を3回、1日間培養を3回繰り返す継代培養を行い、濁ってきた菌体を10の5乗倍希釈し、YPDプレートに100ml塗布し30℃で培養を行い、生育してきたコロニーをピックアップして、コルディセピン耐性株を260株選択、取得した。K−7株に関しては、30℃で3日間培養を5回、1日間培養を3回繰り返す継代培養を行い、濁ってきた菌体を10の5乗倍希釈し、YPDプレートに100ml塗布し30℃で培養を行い、生育してきたコロニーをピックアップして、コルディセピン耐性株を93株選択、取得した。   Saccharomyces cerevisiae K-9 (Association No. 9 yeast) and K-7 (Association No. 7 yeast) were used as parent strains, and mutation treatment was performed by ultraviolet irradiation based on a conventional method. The survival rate was approximately 10%. The treated strain was inoculated in a YPD liquid medium containing 600 μg / ml of cordycepin, and the K-9 strain was turbid after 3 times of culture at 30 ° C. for 3 days and 1 day of culture for 3 times. The bacterial cells were diluted to the fifth power of 10, and 100 ml was applied to a YPD plate and cultured at 30 ° C. The grown colonies were picked up and 260 strains of cordycepin resistant strains were selected and obtained. For the K-7 strain, subculture was repeated 5 times for 3 days at 30 ° C. and 3 times for 1 day, and the turbid cells were diluted to the fifth power of 10 and 100 ml was applied to the YPD plate. Cultivation was carried out at 30 ° C., colonies that had grown were picked up, and 93 strains resistant to cordycepin were selected and obtained.

このようにしてコルディセピン耐性株として選択した株の中から無作為に、K−9菌由来の株から25株(NY9−1〜25)、K−7菌由来の株から9株(NY7−1〜9)を選び、YPD培地で30℃、24時間前培養し、YPD培地で30℃、24時間振とう培養した。培養した菌体を、10%過塩素酸を用いてSAMを抽出し(30℃、1時間)、上清を希釈し、キャピラリー電気泳動にてSAM蓄積量の分析を行った。   Thus, 25 strains (NY9-1 to 25) from strains derived from K-9 bacteria and 9 strains (NY7-1) from strains derived from K-7 bacteria were randomly selected from the strains selected as resistant strains of cordycepin. -9) was selected, pre-cultured in YPD medium at 30 ° C for 24 hours, and cultured in YPD medium at 30 ° C for 24 hours with shaking. SAM was extracted from the cultured cells using 10% perchloric acid (30 ° C., 1 hour), the supernatant was diluted, and the amount of SAM accumulated was analyzed by capillary electrophoresis.

SAMの分析は以下の要領でキャピラリー電気泳動法により測定した。分析条件は以下のとおり。
分析装置
キャピラリー電気泳動システム(Agilent、1100シリーズ)
分析条件
キャピラリー:HPCE stndrd cap 75μm×72cm
バッファー:40mMリン酸ナトリウムバッファー(pH 2.5)
電圧:positive、20kV
サンプリング:4秒、ハイドロスタティック法
温度:25℃
検出:UV254nm
SAM analysis was measured by capillary electrophoresis in the following manner. The analysis conditions are as follows.
Analyzer capillary electrophoresis system (Agilent, 1100 series)
Analysis conditions Capillary: HPCE stndrd cap 75 μm × 72 cm
Buffer: 40 mM sodium phosphate buffer (pH 2.5)
Voltage: positive, 20kV
Sampling: 4 seconds, hydrostatic temperature: 25 ° C
Detection: UV254nm

図1に、K−9株より取得した25株(NY9−1〜25)、図2にK−7株より取得した9株(NY7−1〜9)の菌体内SAM量をそれぞれ親株とともに示した。その結果、K−9株においてはコルディセピン耐性株25株中25株で約20倍(8〜12mg SAM/g DCW)、またK−7株においてはコルディセピン耐性株9株中9株で約10倍(約3mg SAM/g DCW)、親株より有意にSAMが蓄積していた。   Fig. 1 shows the amount of SAM in the cells of 25 strains (NY9-1 to 25) acquired from the K-9 strain, and 9 strains (NY7-1 to 9) acquired from the K-7 strain in Fig. 2 together with the parent strain. It was. As a result, in K-9 strain, 25 out of 25 cordycepin resistant strains were about 20 times (8-12 mg SAM / g DCW), and in K-7 strain, about 9 out of 9 out of 9 cordycepin resistant strains. (About 3 mg SAM / g DCW), SAM was significantly accumulated from the parent strain.

さらにコルディセピン耐性株として選択した株の中から無作為に、K−9菌由来の株から5株(NY9−1、4、9、10、24)、K−7菌由来の株から3株(NY7−3、5、6)を選び、YPD培地で30℃、24時間前培養し、O−培地で30℃、24時間振とう培養した。培養した菌体を、10%過塩素酸を用いてSAMを抽出し(30℃、1時間)、上清を希釈し、キャピラリー電気泳動にてSAM蓄積量の分析を行った。   Furthermore, 5 strains (NY9-1, 4, 9, 10, 24) from K-9 strains and 3 strains from K-7 strains were selected from among the strains selected as cordycepin resistant strains ( NY7-3, 5, 6) was selected, pre-cultured in YPD medium at 30 ° C. for 24 hours, and cultured in O-medium at 30 ° C. for 24 hours with shaking. SAM was extracted from the cultured cells using 10% perchloric acid (30 ° C., 1 hour), the supernatant was diluted, and the amount of SAM accumulated was analyzed by capillary electrophoresis.

図3に、K−9株より取得した5株(NY9−1、4、9、10、24)、図4にK−7株より取得した3株(NY7−3、5、6)の菌体内SAM量をそれぞれ親株とともに示した。その結果、K−9株においてはコルディセピン耐性株5株中5株で約4倍(約80mg SAM/g DCW)、またK−7株においてはコルディセピン耐性株3株中3株で約2倍(60〜70mg SAM/g DCW)、親株より有意にSAMが蓄積していた。   FIG. 3 shows 5 strains (NY9-1, 4, 9, 10, 24) acquired from the K-9 strain, and FIG. 4 shows 3 strains (NY7-3, 5, 6) acquired from the K-7 strain. The amount of SAM in the body was shown together with the parent strain. As a result, in the K-9 strain, about 5 out of 5 cordycepin resistant strains were about 4 times (about 80 mg SAM / g DCW), and in the K-7 strain about 3 times out of 3 out of 3 cordycepin resistant strains ( 60-70 mg SAM / g DCW), SAM was significantly accumulated from the parent strain.

本発明を要約すれば、以下の通りである。   The present invention is summarized as follows.

本発明は、S−アデノシルメチオニン(SAM)の大量生産のため、従来のSAM高生産酵母のスクリーニング系と比べてより実験操作が簡易で、且つ、生産性のより高いSAM高蓄積酵母の取得方法を提供し、それによって得られた酵母を用いたSAMの大量製造方法を提供することを目的とする。   In the present invention, because of the mass production of S-adenosylmethionine (SAM), the experimental operation is simpler than that of a conventional SAM high-producing yeast screening system, and acquisition of a highly productive SAM high-accumulating yeast is achieved. It is an object of the present invention to provide a method, and to provide a method for mass production of SAM using yeast obtained thereby.

そして、コルディセピンを含有した選択培地を用いて酵母を培養し、生育してくる酵母(コルディセピン耐性株)を選択することにより、SAM高蓄積酵母を効率的に取得することができる。そして、得られた酵母を用いて所定の培地で培養することで、SAMの大量生産を工業的に行うことができる。   Then, by culturing yeast using a selective medium containing cordycepin and selecting a growing yeast (cordycepin resistant strain), it is possible to efficiently obtain SAM highly accumulating yeast. And mass production of SAM can be industrially performed by culturing with a predetermined culture medium using obtained yeast.

本発明において寄託されている微生物の受託番号を下記に示す。
(1)Sake yeast NY9−10(NITE P−831)。
(2)Sake yeast NY7−3(NITE P−830)。
The accession numbers of the microorganisms deposited in the present invention are shown below.
(1) Sake yeast NY9-10 (NITE P-831).
(2) Sake yeast NY7-3 (NITE P-830).

Claims (5)

コルディセピンを1mlあたり500〜1000μg含有する選択培地で生育してくるコルディセピン耐性株を取得し、ここから酵母細胞乾物重量1gあたり1〜80mgのS−アデノシルメチオニンを蓄積するものを選択すること、を特徴とするS−アデノシルメチオニン高蓄積酵母の取得方法。 Obtaining a cordycepin-resistant strain that grows in a selective medium containing 500 to 1000 μg of cordycepin per ml, and selecting one that accumulates 1 to 80 mg of S-adenosylmethionine per gram of yeast cell dry matter weight ; A method for obtaining a yeast having a high S-adenosylmethionine accumulation. 親株としてSaccharomyces属に属する酵母を用いることを特徴とする、請求項1に記載の方法。The method according to claim 1, wherein yeast belonging to the genus Saccharomyces is used as a parent strain. S−アデノシルメチオニン高蓄積酵母Sake yeast NY9−10(NITE P−831)。 S-adenosylmethionine highly accumulating yeast Sake yeast NY9-10 (NITE P-831). S−アデノシルメチオニン高蓄積酵母Sake yeast NY7−3(NITE P−830)。 S-adenosylmethionine highly accumulating yeast Sake yeast NY7-3 (NITE P-830). 請求項3又は4に記載の酵母を培養し、培養物からS−アデノシルメチオニンを取得すること、を特徴とするS−アデノシルメチオニンの大量製造方法。     A method for mass production of S-adenosylmethionine, comprising culturing the yeast according to claim 3 or 4 and obtaining S-adenosylmethionine from the culture.
JP2010045789A 2010-03-02 2010-03-02 Method for obtaining S-adenosylmethionine highly accumulating yeast Active JP5641192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045789A JP5641192B2 (en) 2010-03-02 2010-03-02 Method for obtaining S-adenosylmethionine highly accumulating yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045789A JP5641192B2 (en) 2010-03-02 2010-03-02 Method for obtaining S-adenosylmethionine highly accumulating yeast

Publications (2)

Publication Number Publication Date
JP2011177125A JP2011177125A (en) 2011-09-15
JP5641192B2 true JP5641192B2 (en) 2014-12-17

Family

ID=44689396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045789A Active JP5641192B2 (en) 2010-03-02 2010-03-02 Method for obtaining S-adenosylmethionine highly accumulating yeast

Country Status (1)

Country Link
JP (1) JP5641192B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836397A (en) * 1981-08-27 1983-03-03 Nippon Zeon Co Ltd Preparation of s-adenosyl methionine
JPS58152497A (en) * 1982-03-08 1983-09-10 Nippon Zeon Co Ltd Production of s-adenosylmethionine
JP3972098B2 (en) * 2003-03-24 2007-09-05 独立行政法人酒類総合研究所 Method for obtaining microorganisms highly accumulating S-adenosylmethionine
JP2008067693A (en) * 2006-08-15 2008-03-27 Ishihara Sangyo Kaisha Ltd New method of utilizing microbial mutant
JP2009034043A (en) * 2007-08-01 2009-02-19 Iwata Kagaku Kogyo Kk New yeast strain having high productivity of s-adenosylmethionine and method for producing the same
JP2009213469A (en) * 2008-02-12 2009-09-24 Ishihara Sangyo Kaisha Ltd Method of producing s-adenosylmethionine

Also Published As

Publication number Publication date
JP2011177125A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
ES2373397T3 (en) NON-RECOMBINANT SACCHAROMYCES STRAINS THAT GROW IN XILOSA.
Kaplan-Levy et al. Akinetes: dormant cells of cyanobacteria
EP2468860B1 (en) Transformant and process for production thereof, and process for production of lactic acid
Andrés-Barrao et al. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production
JP5883780B2 (en) Yeast culture method
CA3004177A1 (en) Genetically modified yeasts and fermentation processes using genetically modified yeasts
Camelia et al. Yeast isolation and selection for bioethanol production from inulin hydrolysates
CN105505950B (en) The new opplication of five tobacco metallothionein genes
ES2695728T3 (en) Strain that ferments pentoses with optimized propagation
JP6249456B2 (en) How to produce plastic raw materials in cyanobacteria
ES2912995T3 (en) Obtaining high-yield yeast strains for arabinose metabolization
JP5641192B2 (en) Method for obtaining S-adenosylmethionine highly accumulating yeast
JP5051727B2 (en) Heat-resistant ethanol-producing yeast and ethanol production method using the same
WO2008020595A1 (en) Novel method for utilization of microbial mutant
ES2288301T3 (en) LEAVE WITH MODIFIED PERMEABILITY.
CN104711284A (en) Method for improving sulfur-tolerant capability of saccharomyces uvarum by transforming SSU1 gene and identification method
CN107177623B (en) Saccharomyces cerevisiae strain for wine with high glycerol yield and low acetic acid yield and construction method
KR101264294B1 (en) Yeast Variants Having Resistance to Low Temperatures
KR101249778B1 (en) Yeast Variants Having Resistance to Low Temperatures
US10597662B2 (en) Transformant and process for production thereof, and process for production of lactic acid
JP3972098B2 (en) Method for obtaining microorganisms highly accumulating S-adenosylmethionine
KR20180034280A (en) Microorganism Capable of Using Acetic Acid as Sole Carbon Source
KR100730315B1 (en) Method for Manufacturing Xylitol with High-Yield
Wu et al. Screening and Genomic Analysis of Alkaloid-Producing Endophytic Fungus Fusarium solani Strain MC503 from Macleaya cordata
JP6265446B1 (en) Seaweed saccharification method and alcohol production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5641192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250