JP5639864B2 - Direct current heating method - Google Patents

Direct current heating method Download PDF

Info

Publication number
JP5639864B2
JP5639864B2 JP2010266859A JP2010266859A JP5639864B2 JP 5639864 B2 JP5639864 B2 JP 5639864B2 JP 2010266859 A JP2010266859 A JP 2010266859A JP 2010266859 A JP2010266859 A JP 2010266859A JP 5639864 B2 JP5639864 B2 JP 5639864B2
Authority
JP
Japan
Prior art keywords
plated steel
steel plate
plate
side edge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010266859A
Other languages
Japanese (ja)
Other versions
JP2012115864A (en
Inventor
下津 晃治
晃治 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asteer Co Ltd
Original Assignee
Asteer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asteer Co Ltd filed Critical Asteer Co Ltd
Priority to JP2010266859A priority Critical patent/JP5639864B2/en
Publication of JP2012115864A publication Critical patent/JP2012115864A/en
Application granted granted Critical
Publication of JP5639864B2 publication Critical patent/JP5639864B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、例えばホットプレス加工に際し、直接電流を流すことによりメッキ鋼鈑を加熱する直接通電加熱方法に関する。   The present invention relates to a direct current heating method for heating a plated steel plate by passing a direct current, for example, in hot pressing.

例えばホットプレス加工に際するメッキ鋼鈑の加熱方法の一つに、前記メッキ鋼鈑に直接電流を流す直接通電加熱方法(抵抗加熱方法とも呼ばれる)がある。直接通電加熱方法は、電流を流すメッキ鋼鈑の電気抵抗に比例して発熱することを利用して前記メッキ鋼鈑を加熱する方法であり、電力を無駄なく熱に変換して利用できるほか、短時間にメッキ鋼鈑を焼き入れ温度にまで昇温できる利点がある。メッキ鋼鈑に流す電流は、直流又は交流いずれでも構わないが、一般に商用電力がそのまま利用されるため、交流が通例である。交流を用いる場合、メッキ鋼鈑が厚いと表皮効果による電気抵抗の増加が見込めるので、より効率的にメッキ鋼鈑を加熱できる。   For example, one method of heating a plated steel sheet during hot pressing is a direct current heating method (also referred to as a resistance heating method) in which a direct current is passed through the plated steel sheet. The direct current heating method is a method of heating the plated steel plate by utilizing the fact that heat is generated in proportion to the electric resistance of the plated steel plate through which an electric current flows, and can be used by converting electric power to heat without waste. There is an advantage that the temperature of the plated steel plate can be raised to the quenching temperature in a short time. The current passed through the plated steel plate may be either direct current or alternating current, but since commercial power is generally used as it is, alternating current is common. When alternating current is used, if the plated steel sheet is thick, an increase in electrical resistance due to the skin effect can be expected, so that the plated steel sheet can be heated more efficiently.

ホットプレス加工するメッキ鋼鈑は、メッキ鋼鈑を焼き入れするまで昇温するのでメッキが一時的に溶融し、偏ってしまう問題が知られている。例えば平面視長方形のメッキ鋼鈑の延在方向に電流を流した場合、溶融したメッキが幅方向中央に偏って山盛りとなり、逆に側縁近傍のメッキが薄くなってしまう。メッキは、加熱されたメッキ鋼鈑の表面にスケール(酸化皮膜)が発生することを防止ししたり、ホットプレス加工後の防錆皮膜として働くことが期待されるが、メッキの偏りが生ずると、スケールの発生を防止できなくなったり、ホットプレス加工後の防錆性能が期待できなくなる。   Since the temperature of the plated steel plate to be hot-pressed is raised until the plated steel plate is quenched, there is a problem that the plating is temporarily melted and biased. For example, when an electric current is passed in the extending direction of the steel plate having a rectangular shape in plan view, the molten plating is biased toward the center in the width direction, and on the contrary, the plating in the vicinity of the side edge becomes thin. Plating is expected to prevent scale (oxide film) from being generated on the surface of the heated steel plate, or to work as a rust-proof film after hot pressing. It becomes impossible to prevent the generation of scale, and anti-rust performance after hot pressing cannot be expected.

特許文献1は、通電による磁界の影響(フレミングの左手の法則による引力)により溶融したメッキが移動して偏る(特許文献1・[0007])ことから、メッキが厚い場合に電流密度を小さくし、逆にメッキが薄い場合に電流密度を大きくして、メッキの偏りを防止するホットプレス成形方法を提案している。具体的には、メッキの厚みと電流密度とを特定の関係(特許文献1・式(1))に対応づけ、メッキの膜厚に応じて決定される電流密度以下の電流を流す。特許文献1が開示するホットプレス加工方法は、メッキの厚みと電流密度とを特定の関係から、メッキの厚みは最大22μmである(特許文献1・[0009])。また、メッキの厚みが十分に小さいと、メッキと鋼板とが速やかに合金化され、メッキの偏りが効果的に防止されるとしている(特許文献1・[0014])。   In Patent Document 1, since the molten plating moves and is biased by the influence of the magnetic field due to energization (attraction by Fleming's left hand rule) (Patent Document 1 [0007]), the current density is reduced when the plating is thick. On the contrary, when the plating is thin, a hot press molding method is proposed in which the current density is increased to prevent uneven plating. Specifically, the plating thickness and the current density are associated with a specific relationship (Patent Document 1 / Equation (1)), and a current equal to or lower than the current density determined according to the plating film thickness is passed. The hot press working method disclosed in Patent Document 1 has a maximum plating thickness of 22 μm because of a specific relationship between the thickness of plating and the current density (Patent Documents 1 and [0009]). Further, if the thickness of the plating is sufficiently small, the plating and the steel plate are rapidly alloyed, and uneven plating is effectively prevented (Patent Document 1 [0014]).

特開2010-070800公報JP 2010-070800 JP

メッキ鋼鈑に施されたメッキは、上述の通り、加熱されて表面にスケール(酸化皮膜)が発生することを防止したり、ホットプレス加工後の防錆皮膜として働くことが期待され、厳密な膜厚管理は必要がない。むしろ、前記働きを十分にするには、メッキの膜厚が大きい程好ましい。また、メッキは、膜厚管理が容易であるものの、形成される膜厚が比較的薄い電気メッキ法より、膜厚管理が難しいが、比較的厚く、安価である溶融メッキ法を利用する方が、製造コストを低減できることから好ましい。これから、メッキ鋼鈑に施されるメッキは厚い程好ましいことになるが、この場合、特許文献1が開示するホットプレス成形方法は利用し難くなる。   As described above, the plating applied to the plated steel plate is expected to prevent the scale (oxide film) from being generated on the surface by heating or to act as a rust-proof film after hot pressing. There is no need for film thickness control. Rather, it is preferable that the plating film thickness is larger in order to achieve the above-described function sufficiently. Although plating is easy to control the film thickness, it is more difficult to control the film thickness than the electroplating method where the film thickness is relatively thin. It is preferable because the manufacturing cost can be reduced. From this, it is preferable that the plating applied to the plated steel plate is thicker, but in this case, the hot press molding method disclosed in Patent Document 1 is difficult to use.

直接通電における磁界の影響を仔細に検討したところ、メッキの偏りは、メッキ鋼鈑の周囲に発生する磁界の一部のみの影響であることが判明した。延在方向に直接通電したメッキ鋼鈑に発生する磁界は、メッキ鋼鈑の幅方向断面をぐるりと囲むように発生する磁束により形成される。メッキ鋼鈑の表面及び裏面と平行に発生する磁束は、前記表面及び裏面に向けて押さえつけるローレンツ力を溶融したメッキに働かせるので、溶融したメッキを移動させることがない。すなわち、メッキ鋼鈑の表面及び裏面と平行に発生する磁束は、メッキの偏りに大きく影響しない。   A careful examination of the effect of the magnetic field in direct energization revealed that the plating bias was only an effect of a portion of the magnetic field generated around the plated steel plate. The magnetic field generated in the plated steel plate directly energized in the extending direction is formed by magnetic flux generated so as to surround the cross section in the width direction of the plated steel plate. The magnetic flux generated in parallel with the front and back surfaces of the plated steel plate works on the molten plating with the Lorentz force pressed against the front and back surfaces, so that the molten plating is not moved. That is, the magnetic flux generated in parallel with the front and back surfaces of the plated steel plate does not significantly affect the plating bias.

しかし、メッキ鋼鈑の側縁を巻き込んで上向き又は下向きに発生する磁束(例えば右側縁側に上向きの磁束が発生すれば、左側縁側に下向きの磁束が発生する)は、メッキ鋼鈑の幅方向中心に向けて移動させるローレンツ力を溶融したメッキに働かせる。前記ローレンツ力は、メッキ鋼鈑の側縁から遠ざかるに連れて弱くなるが、側縁にある溶融したメッキがメッキ鋼鈑の幅方向中心に向けて移動しようとして、溶融したメッキがメッキ鋼鈑の幅方向中心寄りに向けて順次押していくような格好となり、全体としてメッキ鋼鈑の幅方向中心にメッキが偏ってしまう。   However, the magnetic flux generated upward or downward by winding the side edge of the plated steel plate (for example, if the upward magnetic flux is generated on the right edge side, the downward magnetic flux is generated on the left edge side) is the center in the width direction of the plated steel plate. The Lorentz force that moves toward the surface is applied to the molten plating. The Lorentz force becomes weaker as it moves away from the side edge of the plated steel plate, but the molten plating on the side edge moves toward the center in the width direction of the plated steel plate, It becomes like pushing sequentially toward the center in the width direction, and the plating is biased to the center in the width direction of the plated steel plate as a whole.

ここで、直接通電する電流が交流であると、メッキ鋼鈑の側縁を巻き込んで発生する磁束は、方向が短時間に入れ替わることから、磁束の向きによっては、溶融したメッキをメッキ鋼鈑の幅方向中心から遠ざける方向にも押すようにも見える。しかし、ローレンツ力は、メッキ鋼鈑の側縁から遠ざかるに連れて弱くなることから、メッキ鋼鈑の幅方向中心に向けたローレンツ力は逆向きのローレンツ力より常に大きくなり、結果として溶融したメッキはメッキ鋼鈑の幅方向中心に向けて移動する。   Here, if the direct current is AC, the direction of the magnetic flux generated by winding the side edge of the plated steel plate is changed in a short time. It seems to push in the direction away from the center in the width direction. However, since the Lorentz force becomes weaker as it moves away from the side edge of the plated steel plate, the Lorentz force toward the center in the width direction of the plated steel plate is always greater than the reverse Lorentz force, resulting in molten plating. Moves toward the center of the steel plate in the width direction.

これから、メッキ鋼鈑の側縁を巻き込んで上向き(又は下向き)に発生する磁束を弱める、少なくとも前記磁束に起因するローレンツ力を小さくできると、メッキの偏りが防止できることが理解される。そこで、例えばホットプレス加工に際し、直接電流を流すことによりメッキ鋼鈑を加熱する直接通電加熱方法において、溶融したメッキが偏る不具合を解消できるように、メッキ鋼鈑の側縁を巻き込んで上向き(又は下向き)に発生する磁束に起因するローレンツ力を小さくする直接通電加熱方法を開発するため、検討した。   From this, it is understood that the unevenness of the plating can be prevented if the side edge of the plated steel plate is wound to weaken the magnetic flux generated upward (or downward), and at least the Lorentz force caused by the magnetic flux can be reduced. Thus, for example, in hot press processing, in the direct current heating method in which the plated steel plate is heated by passing a direct current, the side edge of the plated steel plate is rolled upward (or so as to eliminate the problem of uneven melting of the plated plating) In order to develop a direct current heating method that reduces the Lorentz force caused by the magnetic flux generated downward), we examined it.

検討の結果開発したものが、直接電流を流すことによりメッキ鋼鈑を加熱する直接通電加熱方法において、メッキ鋼鈑の電流が流れる方向に延びる側縁(以下、メッキ鋼鈑の側縁)に対して絶縁間隙を挟んで延びる側縁を有する補助通電板を前記メッキ鋼鈑と同一平面内に並べ、メッキ鋼鈑及び補助通電板に同位相の電流を通電することを特徴とする直接通電加熱方法である。メッキ鋼鈑の電流が流れる方向に延びる側縁は、前記電流を流す方向を挟んで一対あるから、補助通電板は前記側縁に対してそれぞれ1枚、計2枚が用いられる。   As a result of the study, in the direct energization heating method in which the plated steel plate is heated by passing a direct current, the side edge that extends in the direction in which the current of the plated steel plate flows (hereinafter referred to as the side edge of the plated steel plate) A direct energization heating method characterized in that an auxiliary energizing plate having side edges extending across an insulating gap is arranged in the same plane as the plated steel plate, and an electric current having the same phase is applied to the plated steel plate and the auxiliary energizing plate. It is. Since there are a pair of side edges extending in the direction in which the current of the plated steel plate flows, the auxiliary energizing plate is used for each of the side edges.

本発明の直接通電加熱方法は、同一平面内に並べたメッキ鋼鈑及び補助通電板に同位相の電流を通電し、メッキ鋼鈑及び補助通電板それぞれの幅方向断面をぐるりと囲むように同じ向きの磁束を発生させて、メッキ鋼鈑の側縁を巻き込んで上向き(又は下向き)に発生する磁束と、前記メッキ鋼鈑の側縁に対向する位置関係にある補助通電板の側縁を巻き込んで下向き(又は上向き)に発生する磁束とを打ち消し合わせ、メッキ鋼鈑の側縁を巻き込んで発生する磁束を弱める。   The direct current heating method of the present invention applies the same phase current to the plated steel plate and auxiliary current plate arranged in the same plane, and surrounds the cross sections in the width direction of the plated steel plate and auxiliary current plate. The magnetic flux of the direction is generated, the side edge of the plated steel plate is rolled up, and the magnetic flux generated upward (or downward) and the side edge of the auxiliary energizing plate in a positional relationship facing the side edge of the plated steel plate are rolled up. Cancels the magnetic flux generated downward (or upward) and weakens the magnetic flux generated by winding the side edges of the plated steel plate.

メッキ鋼鈑及び補助通電板に流す電流は、直流又は交流を問わない。同位相の電流とは、直流や、同じ周波数で位相差のない交流を意味する。メッキ鋼鈑及び補助通電板に流す電流が交流である場合、メッキ鋼鈑の側縁を巻き込んで発生する磁束や、前記メッキ鋼鈑の側縁に対向する位置関係にある補助通電板の側縁を巻き込んで発生する磁束は、向きを変化させるため、同じ周波数で位相差をなくすることで、常に打ち消し合うことができる。   The current passed through the plated steel plate and the auxiliary energizing plate may be direct current or alternating current. In-phase current means direct current or alternating current with the same frequency and no phase difference. When the current flowing through the plated steel plate and the auxiliary energizing plate is alternating current, the magnetic flux generated by entraining the side edge of the plated steel plate or the side edge of the auxiliary energizing plate in a positional relationship facing the side edge of the plated steel plate Since the magnetic flux generated by winding is changed in direction, it can always cancel each other by eliminating the phase difference at the same frequency.

「メッキ鋼鈑の電流が流れる方向に延びる側縁」とは、流す電流に平行なメッキ鋼鈑の側縁を意味し、通常、延在方向(長手方向)に電流を流すので、前記延在方向の側縁となる。ホットプレス加工におけるメッキ鋼鈑は、直接通電により加熱し、焼き入れすることが目的となるから、昇温速度が延在方向で一様になる必要がある。これから、ホットプレス加工におけるメッキ鋼鈑、延在方向における電気抵抗が一様になるように、同幅で延在する平面視長方形であることが通例であり、左右一対に形成される「メッキ鋼鈑の電流が流れる方向に延びる側縁」は平行になる。   “The side edge of the plated steel plate extending in the direction in which the current flows” means the side edge of the plated steel plate parallel to the current to be supplied, and normally the current flows in the extending direction (longitudinal direction). It becomes the side edge of the direction. The purpose of heating and quenching the plated steel sheet in the hot press process is to be uniform in the extending direction. From this, it is customary that the steel plate in hot press processing is a rectangular in plan view extending in the same width so that the electric resistance in the extending direction is uniform, and “plated steel formed in a pair of left and right” The side edges extending in the direction in which the soot current flows are parallel.

補助通電板がメッキ鋼鈑の「側縁に対して絶縁間隙を挟んで延びる側縁を有する」とは、メッキ鋼鈑の側縁に対向する側にある補助通電板の側縁がメッキ鋼鈑の側縁と平行であることを意味する。絶縁間隙は、メッキ鋼鈑と補助通電板との間で絶縁破壊を招かない大きさの隔たりを意味し、最も簡易には空隙であが、メッキ鋼鈑及び補助通電板の側縁間に絶縁板を挟んで構成してもよい。メッキ鋼鈑の側縁から遠い側にある補助通電板の側縁は、電流が流れる方向の電流密度を同じにし、補助通電板の幅方向断面をぐるりと囲む磁束を延在方向に一様にするため、メッキ鋼鈑の側縁に平行として、補助通電板の断面積を一定にすることが好ましい。   Auxiliary energizing plate has a side edge extending across the insulating gap with respect to the side edge of the plated steel plate means that the side edge of the auxiliary energizing plate on the side facing the side edge of the plated steel plate is the plated steel plate. It means that it is parallel to the side edge. Insulation gap means the distance between the plated steel plate and the auxiliary energizing plate that does not cause dielectric breakdown. You may comprise on both sides of a board. The side edge of the auxiliary energizing plate that is far from the side edge of the plated steel plate has the same current density in the direction in which the current flows, and the magnetic flux that surrounds the cross section in the width direction of the auxiliary energizing plate is even in the extending direction. Therefore, it is preferable to make the cross-sectional area of the auxiliary energizing plate constant so as to be parallel to the side edge of the plated steel plate.

メッキ鋼鈑と補助通電板とを「同一平面内に並べ」るとは、メッキ鋼鈑及び補助通電板それぞれの平面を平行かつ面一に揃え、上述した側縁同士を対向させる位置関係で並べることを意味する。この場合、メッキ鋼鈑の側縁を巻き込んで発生する磁束と、前記メッキ鋼鈑の側縁に対向する位置関係にある補助通電板の側縁を巻き込んで発生する磁束とを打ち消し合わせることができれば、メッキ鋼鈑に対して補助通電板が平行に上下又は左右に若干ずれたり、斜めになったりしても構わない。   “Place the plated steel plate and the auxiliary energizing plate in the same plane” means that the planes of the plated steel plate and the auxiliary energizing plate are parallel and flush with each other, and the side edges described above are arranged side by side. Means that. In this case, if the magnetic flux generated by entraining the side edge of the plated steel plate and the magnetic flux generated by entraining the side edge of the auxiliary energizing plate in a positional relationship opposite to the side edge of the plated steel plate can be canceled out The auxiliary energization plate may be slightly shifted in the vertical and horizontal directions with respect to the plated steel plate, or may be inclined.

具体的な補助通電板は、プレス成形されたメッキ鋼鈑の端材部分や、別のメッキ鋼鈑を挙げることができる。プレス成形されたメッキ鋼鈑の端材部分を補助通電板とした場合、メッキ鋼鈑の電流が流れる方向に延びる側縁に対してスリットを設けて絶縁間隙を形成し、延在方向両端をメッキ鋼鈑と繋げて前記メッキ鋼鈑と共用の電極接続板にするとよい。共用の電極接続板を設けることにより、メッキ鋼鈑と補助通電板とに同位相の電流を流しやすくなる。   Specific examples of the auxiliary current-carrying plate may include an end material portion of a press-formed plated steel plate or another plated steel plate. When the end material part of the press-formed plated steel plate is used as an auxiliary current plate, a slit is provided on the side edge extending in the direction in which the current flows in the plated steel plate to form an insulating gap, and both ends in the extending direction are plated. It is good to connect with a steel plate to make an electrode connection plate shared with the plated steel plate. By providing the common electrode connection plate, it becomes easy to flow the same phase current through the plated steel plate and the auxiliary energizing plate.

また、別のメッキ鋼鈑を補助通電板とした場合、電流を流す方向に延びる側縁間に絶縁間隙を残して複数のメッキ鋼鈑を同一平面内に並べる。これは、電流を流す方向に直交して、複数のメッキ鋼鈑を並べて一度に直接通電する直接通電加熱方法であり、一度に多くのメッキ鋼鈑を加熱する場合に好適である。並べたメッキ鋼鈑のうち、両端に位置するメッキ鋼鈑の隣り合うメッキ鋼鈑がない側の側縁に対しては、別体の補助通電板を配置したり、前記側縁についてのみ端材部分を残して補助通電板にするとよい。   Moreover, when another plated steel plate is used as an auxiliary energizing plate, a plurality of plated steel plates are arranged in the same plane leaving an insulating gap between side edges extending in the direction of current flow. This is a direct energization heating method in which a plurality of plated steel plates are arranged in a direction orthogonal to the direction of current flow and directly energized at once, and is suitable for heating many plated steel plates at a time. Among the arranged steel plates, a separate auxiliary energizing plate is arranged on the side edge on the side where there is no adjacent plated steel plate located at both ends, or the end material is only for the side edge. It is better to leave the part and use it as an auxiliary energizing plate.

本発明を利用して、直接電流を流すことによりメッキ鋼鈑を加熱する直接通電加熱方法において、メッキ鋼鈑の電流が流れる方向に延びる側縁に沿って延びる側縁を有する補助通電板を、前記メッキ鋼鈑の平面と絶縁間隙を挟んで対向する平行平面内に並べ、メッキ鋼鈑及び補助通電板に逆位相の電流を通電することを特徴とする直接通電加熱方法も、本発明の技術的特徴である磁束の打ち消し合いを利用して、メッキ鋼鈑の側縁を巻き込んで発生する磁束を弱めることができる。 In the direct energization heating method for heating a plated steel plate by flowing a direct current using the present invention, an auxiliary energization plate having a side edge extending along a side edge extending in a direction in which the current of the plated steel plate flows, The direct energization heating method is characterized in that it is arranged in a parallel plane facing the plane of the plated steel plate with an insulating gap interposed therebetween, and a current of opposite phase is applied to the plated steel plate and the auxiliary energizing plate. The magnetic flux generated by entraining the side edges of the plated steel plate can be weakened by utilizing the canceling of magnetic flux, which is a characteristic feature.

メッキ鋼鈑及び補助通電板それぞれの平面を対向させる上記直接通電加熱方法は、平行平面それぞれに並べたメッキ鋼鈑及び補助通電板に逆位相の電流を通電し、メッキ鋼鈑及び補助通電板それぞれの幅方向断面をぐるりと囲むように逆向きの磁束を発生させて、例えば上段のメッキ鋼鈑の側縁を巻き込んで上向き(又は下向き)に発生する磁束と、前記側縁と上下に対向する下段の補助通電板の側縁を巻き込んで下向き(又は上向き)に発生する磁束とを打ち消し合わせ、上段のメッキ鋼鈑の側縁を巻き込んで発生する磁束を弱める。   In the direct current heating method in which the planes of the plated steel plate and the auxiliary energizing plate are opposed to each other, currents in opposite phases are applied to the plated steel plate and the auxiliary energizing plate arranged in parallel planes, respectively. A magnetic flux in the opposite direction is generated so as to surround the cross section in the width direction of the steel plate. For example, a magnetic flux generated upward (or downward) by entraining the side edge of the upper steel plate is opposed to the side edge vertically. The side edge of the lower auxiliary energizing plate is rolled up to counteract the magnetic flux generated downward (or upward), and the magnetic flux generated by winding the side edge of the upper plated steel plate is weakened.

平行平面それぞれに並べたメッキ鋼鈑及び補助通電板は、例えば上下に分かれた上段及び下段の平行平面それぞれと面一に並べ、メッキ鋼鈑及び補助通電板それぞれの側縁を水平方向に揃える。メッキ鋼鈑及び補助通電板それぞれの側縁を水平方向に揃えるには、メッキ鋼鈑と補助通電板とを平面視同形状にするとよい。これから、上記直接通電加熱方法は、補助通電板を別のメッキ鋼鈑として、メッキ鋼鈑の電流が流れる方向に延びる側縁を、メッキ鋼鈑同士を対向させる方向に直交する方向に一致して揃え、絶縁間隙を挟んで対向する平行平面内それぞれにメッキ鋼鈑を並べてもよい。この場合、一度の加熱処理で、2枚のメッキ鋼鈑を同時に加熱できることになる。   The plated steel plates and auxiliary current plates arranged in parallel planes, for example, are arranged flush with the upper and lower parallel planes divided into upper and lower sides, and the side edges of the plated steel plates and auxiliary current plates are aligned in the horizontal direction. In order to align the side edges of the plated steel plate and the auxiliary energizing plate in the horizontal direction, it is preferable that the plated steel plate and the auxiliary energizing plate have the same shape in plan view. From this, the direct energization heating method uses the auxiliary energizing plate as another plated steel plate, and the side edges extending in the direction in which the current of the plated steel plate flows coincide with the direction orthogonal to the direction in which the plated steel plates are opposed to each other. It is also possible to arrange the plated steel plates in parallel planes facing each other across the insulating gap. In this case, two plated steel plates can be heated simultaneously by a single heat treatment.

本発明は、例えばホットプレス加工に際し、直接電流を流すことによりメッキ鋼鈑を加熱する直接通電加熱方法において、メッキ鋼鈑の側縁を巻き込んで発生する磁束を、補助通電板の側縁を巻き込んで発生する磁束で打ち消し合うことにより弱め、メッキ鋼鈑の側縁を巻き込んで発生する磁束に起因するローレンツ力を小さくして、溶融したメッキが偏る不具合を解消する効果を有する。また、本発明は、メッキの膜厚に関係がなく前記効果を得ることができ、例えば特許文献1の発明と併用することもできる。   The present invention relates to a direct current heating method in which, for example, in hot pressing, a plated steel sheet is heated by direct current flow, a magnetic flux generated by winding a side edge of the plated steel sheet is entrained on the side edge of the auxiliary current plate. It is weakened by canceling each other with the magnetic flux generated in step 1, and the Lorentz force caused by the magnetic flux generated by entraining the side edges of the plated steel plate is reduced, thereby eliminating the problem that the molten plating is biased. In addition, the present invention can obtain the above effects regardless of the thickness of the plating, and can be used in combination with the invention of Patent Document 1, for example.

本発明を利用するには、従来の直接通電加熱方法に比べて、別途補助通電板が必要になる。しかし、補助通電板の追加は、直接通電加熱においてそれほど大きな労力及びコストの増加をもたらさない。また、例えば補助通電板をプレス成形されたメッキ鋼鈑の端材部分としたり、別のメッキ鋼鈑とすることにより、補助通電板を簡易に追加できる。特に、補助通電板を別のメッキ鋼鈑とすれば、メッキの偏りを生じさせることなく、多数のメッキ鋼鈑を一度に加熱できる利点が得られる。   In order to use the present invention, a separate auxiliary energization plate is required as compared with the conventional direct energization heating method. However, the addition of the auxiliary energization plate does not cause a great increase in labor and cost in direct energization heating. Further, for example, the auxiliary energizing plate can be easily added by using the auxiliary energizing plate as an end material portion of a press-formed plated steel plate or another plated steel plate. In particular, if the auxiliary energizing plate is made of another plated steel plate, there is an advantage that a large number of plated steel plates can be heated at one time without causing uneven plating.

メッキ鋼鈑と補助通電板とをそれぞれ平行平面内に並べ、逆位相の電流を通電する直接通電加熱方法は、メッキ鋼鈑及び補助通電板を平面の直交方向に重ねていくことになり、本発明を利用した直接通電加熱装置の設置面積を抑制できる効果を有する。また、補助通電板を別のメッキ鋼鈑にすれば、処理効率を向上させることができる。更に、例えばメッキ鋼鈑と補助通電板又は別のメッキ鋼鈑とを交互に重ねていく構成にすれば、一度に加熱処理できるメッキ鋼鈑の数が増え、更に処理効率を向上させることができる。   The direct current heating method, in which the plated steel plate and the auxiliary energizing plate are arranged in parallel planes and the current of opposite phase is applied, the plated steel plate and the auxiliary energizing plate are stacked in the direction perpendicular to the plane. It has the effect that the installation area of the direct current heating apparatus using the invention can be suppressed. Further, if the auxiliary energizing plate is made of another plated steel plate, the processing efficiency can be improved. Further, for example, if a configuration in which a plated steel plate and an auxiliary energizing plate or another plated steel plate are alternately stacked, the number of plated steel plates that can be heat-treated at a time increases, and the processing efficiency can be further improved. .

メッキ鋼鈑と補助通電板とを同一平面内に並べた本発明の直接通電加熱方法の一例を表す斜視図である。It is a perspective view showing an example of the direct energization heating method of the present invention which arranged a plating steel plate and an auxiliary energization board in the same plane. 図1中A−A断面図である。It is AA sectional drawing in FIG. 側縁と平行に延びる端材を補助通電板とした本発明の直接通電加熱方法の一例を表す斜視図である。It is a perspective view showing an example of the direct energization heating method of the present invention which used the end material extended in parallel with a side edge as an auxiliary energization board. 別のメッキ鋼鈑を補助通電板とした本発明の直接通電加熱方法の一例を表す斜視図である。It is a perspective view showing an example of the direct current heating method of this invention which used another plated steel plate as an auxiliary electricity supply board. メッキ鋼鈑と補助通電板又は別のメッキ鋼鈑とをそれぞれ平行平面内に並べた本発明を利用する直接通電加熱方法の一例を表す斜視図である。It is a perspective view showing an example of a direct current heating method using the present invention in which a plated steel plate and an auxiliary energizing plate or another plated steel plate are arranged in parallel planes. 図5中B−B断面図である。It is BB sectional drawing in FIG.

本発明を実施するための形態について図を参照しながら説明する。本発明による直接通電加熱方法は、図1に見られるように、例えば長手方向に長尺である平面視長方形のメッキ鋼鈑1と、長さがメッキ鋼鈑1と同じで幅がメッキ鋼鈑1より狭い平面視長方形の補助通電板3,3とを、メッキ鋼鈑1を短手方向に挟む位置関係で、それぞれの側縁11,31の間に絶縁間隙2を設けて同一平面内で並べ、メッキ鋼鈑1及び補助通電板3の長手方向両端部を一体に挟んだ電極4,4により、メッキ鋼鈑1及び補助通電板3の長手方向にそれぞれ同位相の電流Iを通電する。   An embodiment for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the direct current heating method according to the present invention includes, for example, a rectangular plated steel plate 1 that is long in the longitudinal direction and a plated steel plate having the same length as the plated steel plate 1 and a width. Auxiliary current-carrying plates 3 and 3 having a rectangular shape in plan view narrower than 1 are arranged in the same plane with an insulating gap 2 between the side edges 11 and 31 in a positional relationship with the plated steel plate 1 sandwiched in the short direction. A current I having the same phase is applied in the longitudinal direction of the plated steel plate 1 and the auxiliary energizing plate 3 by the electrodes 4 and 4 which are arranged and sandwiched between both ends in the longitudinal direction of the plated steel plate 1 and the auxiliary energizing plate 3.

本発明は、図2に見られるように、同一平面内に並べたメッキ鋼鈑1及び補助通電板3に同位相の電流Iを通電し、メッキ鋼鈑1及び補助通電板3それぞれの短手方向(幅方向)断面をぐるりと囲むように、同じ向きの磁束Bを発生させ、メッキ鋼鈑1の側縁11を巻き込んで下向きに発生する磁束B(図2中下向きの太矢印)と、補助通電板3の側縁31を巻き込んで上向きに発生する磁束B(図2中上向きの太矢印)とを打ち消し合わせ、メッキ鋼鈑1の側縁11を巻き込んで発生する磁束Bを弱めて、前記側縁11から短手方向中央に向けて働くローレンツ力Fを弱める。図示を省略するが、メッキ鋼鈑1の反対側の側縁11でも同様な磁束Bの打ち消しが生じている。   As shown in FIG. 2, the present invention applies a current I of the same phase to the plated steel plate 1 and the auxiliary energizing plate 3 arranged in the same plane, and each of the short sides of the plated steel plate 1 and the auxiliary energizing plate 3. Magnetic flux B in the same direction is generated so as to surround the direction (width direction) cross section, and magnetic flux B (downward thick arrow in FIG. 2) generated by winding the side edge 11 of the plated steel plate 1 downward, The magnetic flux B (upward thick arrow in FIG. 2) generated by winding the side edge 31 of the auxiliary energizing plate 3 is canceled out, and the magnetic flux B generated by winding the side edge 11 of the plated steel plate 1 is weakened. The Lorentz force F acting from the side edge 11 toward the center in the lateral direction is weakened. Although illustration is omitted, similar cancellation of the magnetic flux B occurs at the side edge 11 on the opposite side of the plated steel plate 1.

図2中、フレミング左手の法則を表す矢印群は、下向きの破線矢印が打ち消し合う前のメッキ鋼鈑1の側縁11に発生する磁束Bを、下向きの実線矢印が打ち消し合った後のメッキ鋼鈑1の側縁11に働く磁束Bをそれぞれ表し、また左向きの破線白抜き矢印が、磁束Bが打ち消し合う前にメッキ鋼鈑1の側縁11付近に働くローレンツ力Fを、左向きの実線白抜き矢印が、磁束Bが打ち消し合った後にメッキ鋼鈑1の側縁11付近に働くローレンツ力Fをそれぞれ表している。前記矢印群から理解されるように、メッキ鋼鈑1の側縁11付近に働くローレンツ力Fが弱められるので、前記ローレンツ力Fにより溶融したメッキが偏る事態が抑制又は防止できる。   In FIG. 2, a group of arrows representing the Fleming left-hand rule is the plated steel after the downward solid line arrow cancels out the magnetic flux B generated at the side edge 11 of the plated steel plate 1 before the downward broken line arrow cancels out. Each of the magnetic fluxes B acting on the side edge 11 of the steel plate 1 is represented, and the left broken white arrow indicates the Lorentz force F acting near the side edge 11 of the plated steel plate 1 before the magnetic flux B cancels out. The extracted arrows represent the Lorentz force F acting on the side edge 11 of the plated steel plate 1 after the magnetic flux B cancels each other. As understood from the group of arrows, since the Lorentz force F acting near the side edge 11 of the plated steel plate 1 is weakened, a situation in which the molten plating is biased by the Lorentz force F can be suppressed or prevented.

本発明の直接通電加熱方法は、上述した補助通電板3(図1参照)に代えて、図3に見られるように、プレス成形されたメッキ鋼鈑1の端材部分12を利用することもできる。この場合、長手方向に長尺である平面視長方形のメッキ鋼鈑1と、長さがメッキ鋼鈑1と同じで幅がメッキ鋼鈑1より狭い平面視長方形の端材部分12,12とが、それぞれの側縁11,121の間に絶縁間隙2を設けて同一平面内で並び、長手方向両端に形成された電極接続板122により繋がった状態にあり、前記電極接続板122を挟んだ電極4,4により、メッキ鋼鈑1及び端材部分12の長手方向にそれぞれ同位相の電流Iを通電する。直接通電加熱が例えばホットプレス加工を目的としていた場合、ホットプレス加工後、端材部分12及び電極接続板122を切除する。   The direct current heating method of the present invention may utilize the end material portion 12 of the press-formed plated steel plate 1 as shown in FIG. 3 instead of the auxiliary current plate 3 (see FIG. 1) described above. it can. In this case, a rectangular steel plate 1 in plan view that is long in the longitudinal direction, and rectangular end material parts 12 and 12 in plan view that are the same length as the plated steel plate 1 and narrower than the plated steel plate 1. Insulating gaps 2 are provided between the side edges 11 and 121, are arranged in the same plane, and are connected by electrode connection plates 122 formed at both ends in the longitudinal direction. 4, current I having the same phase is applied in the longitudinal direction of the plated steel plate 1 and the end material portion 12. When the direct current heating is intended for hot pressing, for example, the end material portion 12 and the electrode connecting plate 122 are cut off after the hot pressing.

また、上述した補助通電板3(図1参照)に代えて、図4に見られるように、別のメッキ鋼鈑1を利用することもできる。この場合、例えば同形である複数のメッキ鋼鈑1を、それぞれの側縁11,11間に絶縁間隙2を設けて同一平面内で並べ、すべてのメッキ鋼鈑1の長手方向両端部を一体に挟んだ電極4,4により、メッキ鋼鈑1の長手方向にそれぞれ同位相の電流Iを通電する。これにより、隣り合うメッキ鋼鈑1,1相互が相手方に対して補助通電板3(図1参照)と同じ役割を果たす。ここで、両端に位置するメッキ鋼鈑1の隣り合うメッキ鋼鈑1がない側の側縁11に対して、上述同様、補助通電板3を配置している。両端に位置するメッキ鋼鈑1の隣り合うメッキ鋼鈑1がない側の側縁11についてのみ端材部分を残してもよい(図示略)。   Moreover, it replaces with the auxiliary | assistant electricity supply board 3 (refer FIG. 1) mentioned above, and another plated steel plate 1 can also be utilized so that it may be seen by FIG. In this case, for example, a plurality of plated steel plates 1 having the same shape are arranged in the same plane with insulating gaps 2 provided between the side edges 11 and 11, and both longitudinal ends of all plated steel plates 1 are integrated. Currents I having the same phase are applied in the longitudinal direction of the plated steel plate 1 by the sandwiched electrodes 4, 4. Thereby, the adjacent plated steel plates 1 and 1 play the same role as the auxiliary energizing plate 3 (see FIG. 1) with respect to the other party. Here, the auxiliary energization plate 3 is arranged on the side edge 11 on the side where the adjacent plated steel plates 1 of the plated steel plates 1 located at both ends do not exist, as described above. End material portions may be left only on the side edges 11 on the side where the adjacent plated steel plates 1 of the plated steel plates 1 located at both ends are not present (not shown).

本発明を利用する直接通電加熱方法は、図5に見られるように、例えば長手方向に長尺である平面視長方形のメッキ鋼鈑1と、平面視形状が前記メッキ鋼鈑1と同じである別のメッキ鋼鈑1とを、対向する平面間に絶縁間隙2を設けてそれぞれ平行平面内に並べ、メッキ鋼鈑1,1の長手方向両端部を一体に挟んだ電極4,4により、メッキ鋼鈑1,1の長手方向にそれぞれ同位相の電流Iを通電する態様でもよい。絶縁間隙2は、メッキ鋼鈑1,1の間に介装される絶縁板5により、安定して維持される。別のメッキ鋼鈑1に代えて、平面視形状がメッキ鋼鈑1と同じである補助通電板3を用いてもよい(図5中、符号を括弧書きしている)。 Direct electrical heating how to utilize the present invention, as seen in FIG. 5, for example, longitudinal direction and plated steel sheet 1 of rectangular shape as viewed in plan is long, the same in plan view shape as the plating steel plate 1 An electrode 4, 4, in which a certain other steel plate 1 is arranged in parallel planes with an insulating gap 2 between opposing planes, and the longitudinal ends of the steel plates 1, 1 are sandwiched together, A mode in which the current I having the same phase is applied in the longitudinal direction of the plated steel plates 1 and 1 may be employed. The insulating gap 2 is stably maintained by the insulating plate 5 interposed between the plated steel plates 1 and 1. Instead of another plated steel plate 1, an auxiliary energizing plate 3 having the same shape in plan view as that of the plated steel plate 1 may be used (in FIG. 5, reference numerals are shown in parentheses).

メッキ鋼鈑1,1を平行平面内に並べた場合、図6に見られるように、前記メッキ鋼鈑1,1に逆位相の電流Iを通電し、メッキ鋼鈑1,1それぞれの短手方向(幅方向)断面をぐるりと囲むように、同じ向きの磁束Bを発生させ、上段のメッキ鋼鈑1の側縁11を巻き込んで上向きに発生する磁束B(図6中上向きの太矢印)と、下段のメッキ鋼板1の側縁11を巻き込んで下向きに発生する磁束B(図6中下向きの太矢印)とを打ち消し合わせ、各メッキ鋼鈑1の側縁11を巻き込んで発生する磁束Bを弱めて、前記側縁11から短手方向中央に向けて働くローレンツ力Fを弱める。図示を省略するが、メッキ鋼鈑1の反対側の側縁11でも同様な磁束Bの打ち消しが生じている。   When the plated steel plates 1, 1 are arranged in a parallel plane, as shown in FIG. 6, a current I having an opposite phase is applied to the plated steel plates 1, 1, and the short sides of the plated steel plates 1, 1 are respectively short. A magnetic flux B in the same direction is generated so as to surround the direction (width direction) section, and the magnetic flux B generated upward by entraining the side edge 11 of the upper steel plate 1 (upward thick arrow in FIG. 6) And the magnetic flux B generated downward by winding the side edge 11 of the lower plated steel sheet 1 (downward thick arrow in FIG. 6), and the magnetic flux B generated by winding the side edge 11 of each plated steel plate 1 And the Lorentz force F acting from the side edge 11 toward the center in the short direction is weakened. Although illustration is omitted, similar cancellation of the magnetic flux B occurs at the side edge 11 on the opposite side of the plated steel plate 1.

図6中、フレミング左手の法則を表す矢印群は、上向き又は下向きの破線矢印が打ち消し合う前のメッキ鋼鈑1の側縁11に発生する磁束Bを、上向き又は下向きの実線矢印が打ち消し合った後のメッキ鋼鈑1の側縁11に働く磁束Bをそれぞれ表し、また左向きの破線白抜き矢印が、磁束Bが打ち消し合う前にメッキ鋼鈑1の側縁11付近に働くローレンツ力Fを、左向きの実線白抜き矢印が、磁束Bが打ち消し合った後にメッキ鋼鈑1の側縁11付近に働くローレンツ力Fをそれぞれ表している。上段のメッキ鋼鈑1と下段のメッキ鋼鈑1とでは、電流Iの流れる向きが逆になるため、発生する磁束Bの方向も逆になり、ローレンツ力Fのみが同じ向きを向くことになる。   In FIG. 6, the arrow group representing the Fleming left-hand rule is such that the upward or downward solid line arrows cancel the magnetic flux B generated at the side edge 11 of the plated steel plate 1 before the upward or downward broken line arrows cancel each other. Respective magnetic fluxes B acting on the side edges 11 of the plated steel sheet 1 are shown, and the left-pointed broken white arrow indicates the Lorentz force F acting near the side edges 11 of the plated steel sheet 1 before the magnetic fluxes B cancel each other. The solid white arrows pointing to the left represent the Lorentz forces F acting near the side edges 11 of the plated steel plate 1 after the magnetic flux B cancels each other. In the upper plated steel plate 1 and the lower plated steel plate 1, the direction in which the current I flows is reversed, so the direction of the generated magnetic flux B is also reversed, and only the Lorentz force F is directed in the same direction. .

1 メッキ鋼鈑
11 メッキ鋼鈑の側縁
12 端材部分
121 端材の側縁
122 電極接続板
2 絶縁間隙
3 補助通電板
31 補助通電板の側縁
4 電極
5 絶縁板
I 電流
B 磁束
F ローレンツ力
1 Plated steel plate
11 Side edge of plated steel plate
12 End material part
121 Side edges of mill ends
122 Electrode connection plate 2 Insulation gap 3 Auxiliary energization plate
31 Side edge of auxiliary energizing plate 4 Electrode 5 Insulating plate I Current B Magnetic flux F Lorentz force

Claims (3)

直接電流を流すことによりメッキ鋼鈑を加熱する直接通電加熱方法において、
メッキ鋼鈑の電流が流れる方向に延びる側縁に対して絶縁間隙を挟んで延びる側縁を有する補助通電板を前記メッキ鋼鈑と同一平面内に並べ、メッキ鋼鈑及び補助通電板に同位相の電流を通電することを特徴とする直接通電加熱方法。
In the direct current heating method in which the plated steel plate is heated by passing a direct current,
Auxiliary energizing plates having side edges extending across the insulating gap with respect to the side edges extending in the direction in which the current flows in the plated steel plate are arranged in the same plane as the plated steel plate, and are in phase with the plated steel plate and the auxiliary energizing plate. A direct current heating method characterized by passing a current of
補助通電板は、成形されたメッキ鋼鈑の端材部分であり、メッキ鋼鈑の電流が流れる方向に延びる側縁に対してスリットを設けて絶縁間隙を形成し、延在方向両端をメッキ鋼鈑と繋げて前記メッキ鋼鈑と共用の電極接続板にする請求項1記載の直接通電加熱方法。 The auxiliary energizing plate is an end material portion of the formed plated steel plate. A slit is provided in the side edge extending in the direction in which the current flows in the plated steel plate to form an insulating gap, and both ends in the extending direction are plated steel. The direct energization heating method according to claim 1, wherein the electrode connection plate is connected to a reed and shared with the plated steel reed. 補助通電板は、別のメッキ鋼鈑であり、電流が流れる方向に延びる側縁間に絶縁間隙を残して複数のメッキ鋼鈑を同一平面内に並べる請求項1記載の直接通電加熱方法。 The direct energization heating method according to claim 1, wherein the auxiliary energizing plate is another plated steel plate, and the plurality of plated steel plates are arranged in the same plane leaving an insulating gap between side edges extending in a direction in which a current flows.
JP2010266859A 2010-11-30 2010-11-30 Direct current heating method Expired - Fee Related JP5639864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266859A JP5639864B2 (en) 2010-11-30 2010-11-30 Direct current heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266859A JP5639864B2 (en) 2010-11-30 2010-11-30 Direct current heating method

Publications (2)

Publication Number Publication Date
JP2012115864A JP2012115864A (en) 2012-06-21
JP5639864B2 true JP5639864B2 (en) 2014-12-10

Family

ID=46499355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266859A Expired - Fee Related JP5639864B2 (en) 2010-11-30 2010-11-30 Direct current heating method

Country Status (1)

Country Link
JP (1) JP5639864B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669610B2 (en) 2011-02-15 2015-02-12 株式会社アステア Direct current heating method
JP5712752B2 (en) * 2011-04-11 2015-05-07 新日鐵住金株式会社 Hot stamping metal plate for hot stamping, current heating device and hot stamping product with excellent surface properties
JP5904094B2 (en) * 2012-10-30 2016-04-13 マツダ株式会社 Electric heating method, electric heating device and hot press molding method
JP5904095B2 (en) * 2012-10-30 2016-04-13 マツダ株式会社 Electric heating method, electric heating device and hot press molding method
JP2014124673A (en) * 2012-12-27 2014-07-07 Daihatsu Motor Co Ltd Manufacturing method of die quench finished article
JP6337738B2 (en) * 2014-10-17 2018-06-06 新日鐵住金株式会社 Electric heating device for hot stamped metal plate
JP2016110950A (en) * 2014-12-10 2016-06-20 高周波熱錬株式会社 Heating method and heater
EP4302896A1 (en) * 2021-03-02 2024-01-10 Sumitomo Heavy Industries, LTD. Molding system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103982A (en) * 1996-06-17 1998-01-06 Sharp Corp Heating element
JP3932425B2 (en) * 2002-08-08 2007-06-20 有限会社ケイツーテクノ Heating element with less generation of magnetic field in electromagnetic wave and manufacturing method thereof
JP4837712B2 (en) * 2008-09-18 2011-12-14 新日本製鐵株式会社 Hot press molding method, molded products and automotive parts

Also Published As

Publication number Publication date
JP2012115864A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5639864B2 (en) Direct current heating method
EP2311296B1 (en) Electric induction edge heating of electrically conductive slabs
CN110323044B (en) Heat-resistant magnetic domain refining type oriented silicon steel and manufacturing method thereof
JP5751453B2 (en) Induction heating device
US5578233A (en) Induction furnace with linear flux concentrator
JP5669610B2 (en) Direct current heating method
JP4942571B2 (en) Induction heating device
KR101983388B1 (en) Induction heating apparatus
JP2014086506A (en) Semiconductor device
JP5349862B2 (en) Power pull-in device
KR102031865B1 (en) Secondary battery pouch electrode lead sealing device
US20010011855A1 (en) Electromagneto-mechanical converter
JP5481100B2 (en) Induction heating coil, induction heating apparatus and component manufacturing apparatus
JP6337738B2 (en) Electric heating device for hot stamped metal plate
JP2016110950A (en) Heating method and heater
JP2017195016A (en) Iron core for induction heating coil, induction heating coil, and heater
JP6424537B2 (en) Electric heating device for plated metal plate for hot stamping
JP2891651B2 (en) C type coil
CN219499576U (en) Electromagnetic heating device, battery and vehicle
JP4356884B2 (en) Induction heating apparatus and induction heating method
KR101940887B1 (en) Induction-heating apparatus
KR20210039313A (en) Stacked Core and Induction Heating Apparatus Using the Same
JP2012171017A (en) Planar one-turn coil for electromagnetic welding
CN113352026A (en) Electromagnetic welding head
JPH11195480A (en) Induction heating device for strip edge and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

LAPS Cancellation because of no payment of annual fees