JP5639818B2 - Refrigeration liquefier and operation method of refrigeration liquefier - Google Patents

Refrigeration liquefier and operation method of refrigeration liquefier Download PDF

Info

Publication number
JP5639818B2
JP5639818B2 JP2010186858A JP2010186858A JP5639818B2 JP 5639818 B2 JP5639818 B2 JP 5639818B2 JP 2010186858 A JP2010186858 A JP 2010186858A JP 2010186858 A JP2010186858 A JP 2010186858A JP 5639818 B2 JP5639818 B2 JP 5639818B2
Authority
JP
Japan
Prior art keywords
valve
compressor
gas
discharge
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010186858A
Other languages
Japanese (ja)
Other versions
JP2012047350A (en
Inventor
実 信時
実 信時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2010186858A priority Critical patent/JP5639818B2/en
Publication of JP2012047350A publication Critical patent/JP2012047350A/en
Application granted granted Critical
Publication of JP5639818B2 publication Critical patent/JP5639818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷凍液化機及び冷凍液化機の運転方法に関し、詳しくは、冷媒ガス中の不純物を除去して冷媒ガスを精製する機能を備えた冷凍液化機及び冷凍液化機の運転方法に関する。   The present invention relates to a refrigeration liquefier and a method for operating the refrigeration liquefier, and more particularly to a refrigeration liquefier having a function of removing impurities in the refrigerant gas and purifying the refrigerant gas, and a method for operating the refrigeration liquefier.

冷凍液化機、例えばヘリウム冷凍液化機は、寒冷を発生する膨張タービンやJT弁、発生した寒冷を回収する熱交換器等の低温機器類をコールドボックスに収容した冷凍液化機本体と、冷媒ガスであるヘリウムを圧縮して冷凍液化機本体に循環供給する圧縮機と、該圧縮機の吸入圧力及び吐出圧力を一定圧力に制御するための圧力制御手段と、ヘリウムを貯留するガス貯留容器とを備えるとともに、ヘリウム中の酸素、窒素、二酸化炭素等の不純物を除去するための精製器とを備えている(例えば、特許文献1参照。)。   A refrigeration liquefaction machine, for example, a helium refrigeration liquefaction machine, includes a refrigeration liquefaction machine main body in which low-temperature equipment such as an expansion turbine and a JT valve that generate cold and a heat exchanger that recovers the generated cold are housed in a cold box, and refrigerant gas. A compressor that compresses certain helium and circulates it to the refrigeration liquefier main body; pressure control means for controlling the suction pressure and discharge pressure of the compressor to a constant pressure; and a gas storage container that stores helium. In addition, a purifier for removing impurities such as oxygen, nitrogen, and carbon dioxide in helium is provided (see, for example, Patent Document 1).

特公平7−21358号公報Japanese Patent Publication No. 7-21358

しかし、特許文献1では、ガス貯留容器内の冷媒ガスを精製器で精製するため、ガス貯留容器と精製器とを接続する配管、ガス貯留容器内の冷媒ガスを精製器に循環させるための圧縮機、精製の開始及び終了を制御するための開閉弁などをガス精製用として設置する必要があり、装置コストの上昇を招くことになる。また、一部の配管を精製用にも兼用できるように形成した場合は、冷凍液化機本体への冷媒ガスの循環供給を継続中に冷媒ガスの精製を開始すると、圧縮機周りの圧力や流量が不安定になり、制御が困難になって冷凍液化機本体の運転に支障を来すおそれがあった。   However, in patent document 1, in order to refine | purify the refrigerant gas in a gas storage container with a refiner, it connects with the piping which connects a gas storage container and a refiner, and compression for circulating the refrigerant gas in a gas storage container to a refiner It is necessary to install an on-off valve for controlling the start and end of the refining machine for gas purification, leading to an increase in apparatus cost. In addition, if some pipes are formed so that they can also be used for purification, if the refrigerant gas purification is started while the refrigerant gas is circulated and supplied to the refrigeration liquefier main body, the pressure and flow around the compressor May become unstable and difficult to control, which may hinder the operation of the refrigeration liquefier body.

そこで本発明は、冷凍液化機本体への冷媒ガスの循環供給を継続中でもガス貯留容器内の冷媒ガスを精製器に循環させて冷媒ガスの精製を行うことができる冷凍液化機及びその運転方法を提供することを目的としている。   Therefore, the present invention provides a refrigeration liquefier and a method of operating the refrigeration liquefier capable of purifying the refrigerant gas by circulating the refrigerant gas in the gas storage container to the purifier while continuing to circulate and supply the refrigerant gas to the refrigeration liquefier main body. It is intended to provide.

上記目的を達成するため、本発明の冷凍液化機は、冷凍液化機本体からの冷媒ガスを圧縮して前記冷凍液化機本体に循環供給する圧縮機と、該圧縮機の吐出側と吸入側とをバイパス弁を介して接続するバイパス経路と、前記圧縮機の吸入側にロード弁を有するガス導入経路を介して接続し、かつ、前記圧縮機の吐出側にアンロード弁を有するガス導出経路を介して接続するガス貯留容器と、前記圧縮機の吐出側と吸入側とにそれぞれガス精製経路を介して接続するガス精製器と、前記圧縮機の吸入圧力を検出して該吸入圧力が低下したときに前記バイパス弁を開弁方向に、吸入圧力が上昇したときに前記バイパス弁を閉弁方向に制御する吸入圧力制御手段と、前記圧縮機の吐出圧力を検出して該吐出圧力が低下したときに前記アンロード弁を閉じて前記ロード弁を開弁方向に制御し、前記吐出圧力が上昇したときに前記ロード弁を閉じて前記アンロード弁を開弁方向に制御する吐出圧力制御手段と、前記アンロード弁及び前記ロード弁の双方の弁を開弁状態とする精製操作用制御手段とを備えていることを特徴としている。 To achieve the above object, a refrigeration liquefier of the present invention comprises a compressor that compresses refrigerant gas from a refrigeration liquefier main body and circulates the refrigerant gas to the refrigeration liquefier main body, a discharge side and a suction side of the compressor A bypass path that connects to the compressor through a gas introduction path that has a load valve on the suction side of the compressor, and a gas lead-out path that has an unload valve on the discharge side of the compressor A gas storage container connected to the compressor, a gas purifier connected to the discharge side and the suction side of the compressor via a gas purification path, respectively, and the suction pressure of the compressor was detected to reduce the suction pressure. Sometimes the bypass valve is in the valve opening direction, and when the suction pressure rises, the suction pressure control means for controlling the bypass valve in the valve closing direction, and the discharge pressure of the compressor is detected and the discharge pressure decreases. Sometimes the unload valve A discharge pressure control means for controlling the load valve in the valve opening direction, closing the load valve and controlling the unload valve in the valve opening direction when the discharge pressure rises, the unload valve, and the It is characterized in that it comprises a purification operation control means for an open state bi side of the valve of the load valve.

また、本発明の冷凍液化機の運転方法の第1の構成は、冷凍液化機本体からの冷媒ガスを圧縮して前記冷凍液化機本体に循環供給する圧縮機と、該圧縮機の吐出側と吸入側とをバイパス弁を介して接続するバイパス経路と、前記圧縮機の吸入側にロード弁を有するガス導入経路を介して接続するとともに、前記圧縮機の吐出側にアンロード弁を有するガス導出経路を介して接続するガス貯留容器と、前記圧縮機の吐出側と吸入側とをガス精製器を介して接続するガス精製経路と、前記圧縮機の吸入圧力を検出して該吸入圧力が低下したときに前記バイパス弁を開弁方向に、吸入圧力が上昇したときに前記バイパス弁を閉弁方向に制御する吸入圧力制御手段と、前記圧縮機の吐出圧力を検出して該吐出圧力が低下したときに前記ロード弁を開弁方向に制御して前記アンロード弁を閉じ、前記吐出圧力が上昇したときに前記アンロード弁を開弁方向に制御して前記ロード弁を閉じる吐出圧力制御手段とを備えた冷凍液化機の運転方法であって、前記アンロード弁又は前記ロード弁のいずれか一方の弁が開弁状態のときに他方の弁を閉弁状態とする冷却運転用制御により前記冷凍液化機本体への冷媒ガスの循環供給を継続中に、前記アンロード弁及び前記ロード弁を開く精製操作用制御に切り替えて前記ガス貯留容器内の冷媒ガスを前記ガス精製器に循環させることを特徴としている。   Further, the first configuration of the operation method of the refrigeration liquefier of the present invention includes a compressor that compresses refrigerant gas from the refrigeration liquefier main body and circulates the refrigerant gas to the refrigeration liquefier main body, a discharge side of the compressor, A gas lead-out having a bypass path connecting to the suction side via a bypass valve and a gas introduction path having a load valve on the suction side of the compressor and having an unload valve on the discharge side of the compressor A gas storage container connected via a path, a gas purification path connecting a discharge side and a suction side of the compressor via a gas purifier, and a suction pressure of the compressor is detected to reduce the suction pressure The suction valve control means for controlling the bypass valve in the valve opening direction when the suction valve rises and the valve closing direction when the suction pressure increases, and the discharge pressure of the compressor is reduced by detecting the discharge pressure of the compressor When the load valve is opened Operation of the refrigeration liquefaction machine comprising discharge pressure control means for closing the unload valve by closing the unload valve and controlling the unload valve in the valve opening direction when the discharge pressure rises The refrigerant gas to the refrigeration liquefier main body is controlled by a cooling operation control that closes the other valve when either the unload valve or the load valve is open. While the circulation supply is continued, the refrigerant gas in the gas storage container is circulated to the gas purifier by switching to the purification operation control for opening the unload valve and the load valve.

さらに、本発明の冷凍液化機の運転方法の第2の構成は、冷凍液化機本体からの冷媒ガスを圧縮して前記冷凍液化機本体に循環供給する圧縮機と、該圧縮機の吐出側と吸入側とをバイパス弁を介して接続するバイパス経路と、前記圧縮機の吸入側にロード弁を有するガス導入経路を介して接続するとともに、前記圧縮機の吐出側にアンロード弁を有するガス導出経路を介して接続するガス貯留容器と、前記圧縮機の吐出側と吸入側とをガス精製器を介して接続するガス精製経路と、前記圧縮機の吸入圧力を検出して該吸入圧力が低下したときに前記バイパス弁を開弁方向に、吸入圧力が上昇したときに前記バイパス弁を閉弁方向に制御する吸入圧力制御手段と、前記圧縮機の吐出圧力を検出して該吐出圧力が低下したときに前記ロード弁を開弁方向に制御して前記アンロード弁を閉じ、前記吐出圧力が上昇したときに前記アンロード弁を開弁方向に制御して前記ロード弁を閉じる吐出圧力制御手段とを備えた冷凍液化機の運転方法であって、前記アンロード弁又は前記ロード弁のいずれか一方の弁が開弁状態のときに他方の弁を閉弁状態とする冷却運転用制御により前記冷凍液化機本体への冷媒ガスの循環供給を継続中に、一方の弁が開弁状態となったときに閉弁状態となるべき他方の弁を開弁状態とする精製操作用制御に切り替えて前記ガス貯留容器内の冷媒ガスを前記ガス精製器に循環させることを特徴としている。   Furthermore, the second configuration of the operation method of the refrigeration liquefier of the present invention includes a compressor that compresses the refrigerant gas from the refrigeration liquefier main body and circulates the refrigerant gas to the refrigeration liquefier main body, and a discharge side of the compressor. A gas lead-out having a bypass path connecting to the suction side via a bypass valve and a gas introduction path having a load valve on the suction side of the compressor and having an unload valve on the discharge side of the compressor A gas storage container connected via a path, a gas purification path connecting a discharge side and a suction side of the compressor via a gas purifier, and a suction pressure of the compressor is detected to reduce the suction pressure The suction valve control means for controlling the bypass valve in the valve opening direction when the suction valve rises and the valve closing direction when the suction pressure increases, and the discharge pressure of the compressor is reduced by detecting the discharge pressure of the compressor When the load valve is opened Operation of a refrigeration liquefaction machine comprising discharge pressure control means that closes the unload valve by controlling in the direction and controls the unload valve in the valve opening direction to close the load valve when the discharge pressure rises The refrigerant gas to the refrigeration liquefier main body is controlled by a cooling operation control that closes the other valve when either the unload valve or the load valve is open. While the circulation supply is being continued, when one valve is opened, the control is switched to the refining operation control that opens the other valve that should be closed, and the refrigerant gas in the gas storage container is changed. It is characterized by circulating in the gas purifier.

本発明によれば、冷凍液化機本体への冷媒ガスの循環供給を継続中にガス貯留容器内に貯留されている冷媒ガスをガス精製器に循環させて冷媒ガスの精製を行うことができる。   According to the present invention, it is possible to purify the refrigerant gas by circulating the refrigerant gas stored in the gas storage container to the gas purifier while continuing to circulate and supply the refrigerant gas to the refrigeration liquefier main body.

本発明の第1形態例を示す冷凍液化機の系統図である。1 is a system diagram of a refrigeration liquefier showing a first embodiment of the present invention. 第1形態例におけるロード弁及びアンロード弁の開度制御を説明する図である。It is a figure explaining the opening degree control of the load valve in a 1st example, and an unload valve. 本発明の第2形態例を示す冷凍液化機の系統図である。It is a systematic diagram of a refrigeration liquefier showing a second embodiment of the present invention. 第2形態例におけるロード弁及びアンロード弁の開度制御を説明する図である。It is a figure explaining the opening degree control of the load valve in a 2nd example, and an unload valve.

まず、図1及び図2は本発明の第1形態例を示すもので、本形態例に示す冷凍液化機は、寒冷を発生する膨張タービンやJT弁、発生した寒冷を回収する熱交換器等の低温機器類をコールドボックスに収納した冷凍液化機本体11と、該冷凍液化機本体11からの低圧の冷媒ガス(LP)を吸引して圧縮した高圧の冷媒ガス(HP)を冷凍液化機本体11に循環供給するための圧縮機12と、冷媒ガスを貯留するガス貯留容器13と、冷媒ガス中の酸素、窒素、二酸化炭素等の低温で固化する不純物を除去するための精製器14と、前記圧縮機12の吐出側経路12aと吸入側経路12bとをバイパス弁15Vを介して接続するバイパス経路15と、前記圧縮機12の吐出側経路12aと前記ガス貯留容器13とをアンロード弁16Vを介して接続するガス導出経路16と、前記圧縮機12の吸入側経路12bと前記ガス貯留容器13とをロード弁17Vを介して接続するガス導入経路17と、前記精製器14を圧縮機12の吐出側経路12aと吸入側経路12bとにそれぞれ接続する精製経路14a,14bとを備えるとともに、圧縮機12の吸入圧力を一定に保つための吸入圧力制御手段18と、圧縮機12の吐出圧力を一定に保つための吐出圧力制御手段19とを備えている。   1 and 2 show a first embodiment of the present invention. The refrigeration liquefier shown in this embodiment includes an expansion turbine and JT valve that generate cold, a heat exchanger that recovers the generated cold, and the like. Refrigeration liquefier main body 11 in which low-temperature equipment is stored in a cold box, and refrigeration liquefier main body with high-pressure refrigerant gas (HP) compressed by suctioning low-pressure refrigerant gas (LP) from the refrigeration liquefier main body 11 11, a compressor 12 for circulating supply to the gas, a gas storage container 13 for storing the refrigerant gas, a purifier 14 for removing impurities that solidify at a low temperature such as oxygen, nitrogen, carbon dioxide in the refrigerant gas, The bypass path 15 connecting the discharge side path 12a and the suction side path 12b of the compressor 12 via a bypass valve 15V, and the discharge side path 12a of the compressor 12 and the gas storage container 13 are unloaded valves 16V. Through A gas lead-out path 16 to be connected, a gas introduction path 17 for connecting the suction side path 12b of the compressor 12 and the gas storage container 13 via a load valve 17V, and the purifier 14 to the discharge side of the compressor 12 The refining paths 14a and 14b are respectively connected to the path 12a and the suction side path 12b, the suction pressure control means 18 for keeping the suction pressure of the compressor 12 constant, and the discharge pressure of the compressor 12 constant. And a discharge pressure control means 19 for maintaining.

吐出圧力制御手段19は、圧縮機12の吐出圧力を検出する吐出側圧力検出手段(PIC1)21で検出した吐出圧力と制御目標値とに応じて出力される信号(計装用語のMV値(Manipulated Value)、以下、「操作出力」という。)に基づいて、アンロード弁16V及びロード弁17Vをスプリット制御するように設定されている。なお、このような制御において、バイパス弁15Vにはバイパス流れが専ら形成されるので、図2に破線で示す特性を付与し、安定時にはロード弁17Vの流量とアンロード弁16Vの流量とが共にゼロとなるように、すなわち、操作出力を50%に設定することが通常行われている。また、ロード弁17Vやアンロード弁16Vに微小な流れが発生することによる外乱を抑制するため、吐出側圧力検出手段21の操作出力が50%の付近にロード弁17Vやアンロード弁16Vが閉状態を維持するための不感帯を設けることが多い。例えば、アンロード弁16V及びロード弁17Vが共に閉弁状態となる圧力のときの操作出力を50%、不感帯幅を10%にそれぞれ設定すれば、操作出力50%に対しては45〜55%の範囲が不感帯となる。図2では不感帯を含めて制御を行う際の操作線を図示するが、以下の説明では、数値が煩雑になるため、不感帯を0%として説明を行う。   The discharge pressure control means 19 is a signal output according to the discharge pressure detected by the discharge side pressure detection means (PIC1) 21 for detecting the discharge pressure of the compressor 12 and the control target value (MV value (instrumentation term MV value ( Manipulated Value), hereinafter referred to as “operation output”), the unload valve 16V and the load valve 17V are set to be split-controlled. In such control, since the bypass flow is exclusively formed in the bypass valve 15V, the characteristic shown by the broken line in FIG. 2 is given, and both the flow rate of the load valve 17V and the flow rate of the unload valve 16V are both stable. Usually, the operation output is set to 50% so as to be zero. In addition, in order to suppress disturbance due to the occurrence of a minute flow in the load valve 17V and the unload valve 16V, the load valve 17V and the unload valve 16V are closed when the operation output of the discharge side pressure detecting means 21 is near 50%. A dead zone for maintaining the state is often provided. For example, if the operation output at the pressure at which both the unload valve 16V and the load valve 17V are closed is set to 50% and the dead zone width is set to 10%, the operation output is 50% to 45% to 55%. The range of becomes a dead zone. Although FIG. 2 illustrates an operation line for performing control including the dead zone, in the following description, since the numerical value becomes complicated, the dead zone is described as 0%.

吐出圧力制御手段19によるアンロード弁16V及びロード弁17Vのスプリット制御は、図2の各図に破線でそれぞれ示すように、吐出側圧力検出手段21の操作出力0〜100%に対して0〜50%の範囲では、アンロード弁16Vを閉弁状態(開度0%)に保持するとともに、ロード弁17Vは、操作出力0%で全開状態(開度100%)に、操作出力50%以上で全閉状態(開度0%)になるように直線的に開弁状態を制御する。一方のアンロード弁16Vは、操作出力50%以下で全閉状態、操作出力50〜100%の範囲で、開度0%から開度100%に直線的に開弁制御する。   The split control of the unload valve 16V and the load valve 17V by the discharge pressure control means 19 is 0 to 100% of the operation output 0 to 100% of the discharge side pressure detection means 21, as indicated by broken lines in each drawing of FIG. In the range of 50%, the unload valve 16V is kept in the closed state (opening degree 0%), and the load valve 17V is in the fully open state (opening degree 100%) with the operation output 0%, and the operation output 50% or more. The valve open state is controlled linearly so that the fully closed state (opening degree 0%) is obtained. On the other hand, the unload valve 16V is linearly controlled to open from 0% to 100% in a fully closed state with an operation output of 50% or less and in the range of 50 to 100% of operation output.

このように、アンロード弁16V及びロード弁17Vを、一方の弁が開いているときには他方の弁を閉じるように設定したスプリット制御を行う吐出圧力制御手段19において、本形態例では、通常の冷却運転を前記スプリット制御にて行う冷却運転用制御と、系内の冷媒ガスの精製操作を行うための精製操作用制御とを切替可能に設定している。精製操作用制御では、吐出側圧力検出手段21の操作出力が0〜50%の範囲でロード弁17Vの開弁状態を制御する際に、前記スプリット制御では全閉状態となるべきアンロード弁16Vを、あらかじめ設定された範囲まで開弁状態に維持するように制御するとともに、吐出側圧力検出手段21の操作出力が50〜100%の範囲でアンロード弁16Vの開弁状態を制御する際に、前記スプリット制御では全閉状態となるべきロード弁17Vを、あらかじめ設定された範囲まで開弁状態に維持するように制御する。   As described above, the discharge pressure control means 19 that performs the split control in which the unload valve 16V and the load valve 17V are set so that the other valve is closed when one of the valves is open. The control for cooling operation in which the operation is performed by the split control and the control for purification operation for performing the purification operation of the refrigerant gas in the system are set to be switchable. In the control for refining operation, when controlling the valve open state of the load valve 17V in the range of 0 to 50% of the operation output of the discharge side pressure detecting means 21, the unload valve 16V that should be fully closed in the split control. Is controlled so as to maintain the valve open state up to a preset range, and when the operation output of the discharge side pressure detecting means 21 is in the range of 50 to 100%, the valve open state of the unload valve 16V is controlled. In the split control, the load valve 17V, which should be fully closed, is controlled so as to be kept open to a preset range.

通常の冷却運転用制御では、図2(a)に破線Vaで示すロード弁17Vの開度A[%]は、吐出側圧力検出手段21の操作出力MV[%]に対して、傾きをa、切片をb[%]で表すと、次式で制御するように設定されており、求めたAの値が負になったときには全閉状態(開度0%)としている。
A=a×MV+b=−2×MV+100
In the normal cooling operation control, the opening degree A [%] of the load valve 17V indicated by the broken line Va in FIG. 2A has a slope a with respect to the operation output MV [%] of the discharge side pressure detecting means 21. When the intercept is expressed by b [%], it is set so as to be controlled by the following equation, and when the obtained value of A becomes negative, it is in the fully closed state (opening degree 0%).
A = a × MV + b = −2 × MV + 100

同様に、図2(b)に破線Vcで示すアンロード弁16Vの開度B[%]は、吐出側圧力検出手段21の操作出力MV[%]に対して、傾きをc、切片をd[%]で表すと、次式で制御するように設定されており、求めたBの値が負になったときには全閉状態(開度0%)としている。
B=c×MV+d=2×MV−100
Similarly, the opening B [%] of the unload valve 16V indicated by the broken line Vc in FIG. 2B is c with respect to the operation output MV [%] of the discharge side pressure detection means 21 and d is the intercept. When expressed in [%], it is set to be controlled by the following equation, and when the obtained value of B becomes negative, it is in a fully closed state (opening degree 0%).
B = c × MV + d = 2 × MV−100

そして、精製操作用制御では、アンロード弁16Vとロード弁17Vとにおける前記傾きa,cの値を一定の比率で変化させ、ロード弁17Vは、吐出側圧力検出手段21の操作出力が50%を超えても開弁状態を維持し、アンロード弁16Vは、吐出側圧力検出手段21の操作出力が50%を下回っても開弁状態を維持するように設定する。但し、アンロード弁16Vの切片dは、吐出側圧力検出手段21の操作出力が100%、アンロード弁16Vの開度が100%になる点を通るように設定している。   In the purification operation control, the slopes a and c of the unload valve 16V and the load valve 17V are changed at a constant ratio. The load valve 17V has an operation output of the discharge side pressure detecting means 21 of 50%. The unload valve 16V is set so as to maintain the valve open state even when the operation output of the discharge side pressure detecting means 21 falls below 50%. However, the intercept d of the unload valve 16V is set so as to pass through a point where the operation output of the discharge side pressure detecting means 21 is 100% and the opening degree of the unload valve 16V is 100%.

ロード弁17Vでは、前記傾きaの値を精製操作用制御で使用する傾きa1に変更し、例えば、図2(a)に実線Vbで示すように、吐出側圧力検出手段21の操作出力が100%近くに達したときにロード弁17Vの開度が0%(閉弁状態)になるように、精製操作用制御で用いる傾きa1を−1に設定する。この精製操作用制御におけるロード弁17Vの制御は次式で行われる。
A=a1×MV+b=−1×MV+100
In the load valve 17V, the value of the slope a is changed to the slope a1 used in the purification operation control. For example, as shown by the solid line Vb in FIG. 2A, the operation output of the discharge side pressure detecting means 21 is 100. The inclination a1 used in the control for the refinement operation is set to −1 so that the opening degree of the load valve 17V becomes 0% (closed state) when it reaches nearly%. The control of the load valve 17V in the purification operation control is performed by the following equation.
A = a1 × MV + b = −1 × MV + 100

同様に、アンロード弁16Vの制御においても、例えば、図2(b)に実線Vdで示すように、前記傾きcを精製操作用制御で使用する傾きc1に変更するとともに、切片dは、前述のように、吐出側圧力検出手段21の操作出力が100%、アンロード弁16Vの開度が100%になる点を通る切片d1に変更する。傾きc1を、ロード弁17Vの前記傾きa1に対応させて、a1=−c1にした場合は、a1=−1であるからc1=1となる。この精製操作用制御におけるアンロード弁16Vの制御は次式で行われる。
B=c1×MV+d1=1×MV−0
Similarly, in the control of the unload valve 16V, for example, as shown by the solid line Vd in FIG. 2B, the slope c is changed to the slope c1 used in the control for the refinement operation, and the intercept d is the same as that described above. As described above, the intercept d1 passes through a point where the operation output of the discharge side pressure detecting means 21 is 100% and the opening degree of the unload valve 16V is 100%. When the inclination c1 is made to correspond to the inclination a1 of the load valve 17V and a1 = −c1, a1 = −1, so c1 = 1. The control of the unload valve 16V in the purification operation control is performed by the following equation.
B = c1 * MV + d1 = 1 * MV-0

このように精製操作用制御を設定することにより、吐出側圧力検出手段21の操作出力が50%のときには、アンロード弁16V及びロード弁17Vの開度は共に50%程度となる。   By setting the refining operation control in this way, when the operation output of the discharge side pressure detecting means 21 is 50%, the opening degrees of the unload valve 16V and the load valve 17V are both about 50%.

冷凍液化機が冷却運転用制御にて定常状態で安定した運転を行っているときには、圧縮機12では、略一定量の低圧の冷媒ガスを吸引し、圧縮機12で圧縮した高圧の冷媒ガスは、略一定量が冷凍液化機本体11に供給され、余剰となる高圧の冷媒ガスをバイパス経路15を通して圧縮機12の吸入側に循環させる状態となっている。この安定運転状態では、圧縮機12の吸入圧力及び吐出圧力はほとんど変化せず、吐出側圧力検出手段21の操作出力は約50%となり、アンロード弁16V及びロード弁17Vは共に全閉状態(開度0%)、バイパス弁15Vは略一定の開度を保持した状態となっている。   When the refrigeration liquefier performs stable operation in the steady state by the cooling operation control, the compressor 12 sucks a substantially constant amount of low-pressure refrigerant gas, and the high-pressure refrigerant gas compressed by the compressor 12 is A substantially constant amount is supplied to the refrigeration liquefier main body 11, and excess high-pressure refrigerant gas is circulated to the suction side of the compressor 12 through the bypass path 15. In this stable operation state, the suction pressure and the discharge pressure of the compressor 12 hardly change, the operation output of the discharge-side pressure detection means 21 is about 50%, and both the unload valve 16V and the load valve 17V are fully closed ( Opening 0%), the bypass valve 15V is in a state of maintaining a substantially constant opening.

冷却運転用制御を精製操作用制御に切り替えると、吐出圧力制御手段19は、冷却運転用制御で使用していた傾きa,cを、精製操作用制御で使用する傾きa1,c1に変更する。このとき、急激に傾きを変更すると、圧縮機12の吸入圧力及び吐出圧力が乱れることがあるので、あらかじめ設定された時間、例えば30分を掛けて、あるいは、開度が毎分1%ずつ変化するように、徐々に傾きをa,cからa1,c1になるように制御する。   When the cooling operation control is switched to the refining operation control, the discharge pressure control means 19 changes the inclinations a and c used in the cooling operation control to the inclinations a1 and c1 used in the refining operation control. At this time, if the inclination is suddenly changed, the suction pressure and the discharge pressure of the compressor 12 may be disturbed. Therefore, it takes a preset time, for example, 30 minutes, or the opening degree changes by 1% per minute. Thus, the inclination is gradually controlled from a, c to a1, c1.

このようにして吐出圧力制御手段19を精製操作用制御に切り替えると、アンロード弁16V及びロード弁17Vが略半開状態(開度50%程度)になるので、圧縮機12の吐出側経路12aに吐出された高圧の冷媒ガスの一部が、圧力差によってガス導出経路16を前記ガス貯留容器13に向かって流れ、ガス貯留容器13内に貯留されている冷媒ガスは、流入した高圧の冷媒ガスによってガス貯留容器13からガス導入経路17に押し出され、吸入側経路12bを通って圧縮機12に吸入される。   When the discharge pressure control means 19 is switched to the refining operation control in this manner, the unload valve 16V and the load valve 17V are in a substantially half open state (opening degree of about 50%), so that the discharge side path 12a of the compressor 12 A portion of the discharged high-pressure refrigerant gas flows through the gas outlet path 16 toward the gas storage container 13 due to a pressure difference, and the refrigerant gas stored in the gas storage container 13 flows into the high-pressure refrigerant gas that has flowed in. Is pushed out from the gas storage container 13 to the gas introduction path 17 and is sucked into the compressor 12 through the suction side path 12b.

同時に、高圧の冷媒ガスの一部は、吐出側経路12aから精製経路14aを経て精製器14に流入し、精製器14で精製された後に精製経路14bから吸入側経路12bを通って圧縮機12に吸入される。精製操作用制御を行っているときに圧縮機12から吐出される高圧の冷媒ガスは、冷凍液化機本体11からの低圧の冷媒ガス(LP)と、バイパス経路15から循環する冷媒ガスと、ガス貯留容器13からの冷媒ガスとが合流した冷媒ガスであるから、合流した冷媒ガス中に含まれているガス貯留容器13からの冷媒ガスの一部が精製器14を通ることになる。したがって、ガス貯留容器13の容積や圧力、精製器14を通る冷媒ガスの量などの条件に応じて、精製操作用制御の各種条件を設定するとともに、精製操作用制御をあらかじめ設定された時間継続して行うことにより、ガス貯留容器13内を含めた系内の冷媒ガスの全量を精製器14で精製することができる。   At the same time, a part of the high-pressure refrigerant gas flows into the purifier 14 from the discharge side path 12a via the purification path 14a, and after being purified by the purifier 14, the compressor 12 passes from the purification path 14b through the suction side path 12b. Inhaled. The high-pressure refrigerant gas discharged from the compressor 12 during the refining operation control includes the low-pressure refrigerant gas (LP) from the refrigeration liquefier main body 11, the refrigerant gas circulated from the bypass path 15, and the gas Since the refrigerant gas from the storage container 13 merges with the refrigerant gas, a part of the refrigerant gas from the gas storage container 13 contained in the merged refrigerant gas passes through the purifier 14. Accordingly, various conditions for the purification operation control are set according to conditions such as the volume and pressure of the gas storage container 13 and the amount of refrigerant gas passing through the purifier 14, and the purification operation control is continued for a preset time. As a result, the entire amount of the refrigerant gas in the system including the inside of the gas storage container 13 can be purified by the purifier 14.

また、高圧の冷媒ガスの一部がガス貯留容器13を通って圧縮機12に循環し、圧縮機12が吸入する冷媒ガス量が多くなって圧縮機12の吸入圧力が上昇することになるが、吸入側圧力検出手段(PIC2)22で検出した吸入圧力の上昇に基づいて前記吸入圧力制御手段18がバイパス弁15Vを閉弁方向に制御し、バイパス経路15を通って循環する冷媒ガス量を少なくすることにより、圧縮機12の吸入圧力を一定に保持する。このようにして圧縮機12の吸入圧力及び吐出圧力を一定に保つことにより、冷凍液化機本体11には、所定の圧力及び流量の冷媒ガスが安定した状態で供給されて循環する。   In addition, a part of the high-pressure refrigerant gas circulates through the gas storage container 13 to the compressor 12, and the amount of refrigerant gas sucked by the compressor 12 increases and the suction pressure of the compressor 12 increases. The suction pressure control means 18 controls the bypass valve 15V in the valve closing direction based on the increase of the suction pressure detected by the suction side pressure detection means (PIC2) 22, and the amount of refrigerant gas circulated through the bypass path 15 is determined. By reducing it, the suction pressure of the compressor 12 is kept constant. Thus, by keeping the suction pressure and discharge pressure of the compressor 12 constant, the refrigerant gas of a predetermined pressure and flow rate is supplied to the refrigeration liquefier main body 11 in a stable state and circulated.

このように、吐出圧力制御手段19に精製操作用制御を行う精製操作用制御手段を組み込むことにより、アンロード弁16V及びロード弁17Vの一方が開弁状態のときに他方を閉弁状態とする冷却運転用制御を、一方の弁を開弁方向に制御すると同時に他方の弁を閉弁方向に制御してアンロード弁16V及びロード弁17Vの両者を開状態とする精製操作用制御に切り替えるだけで、ガス導出経路16及びガス導入経路17を利用してガス貯留容器13に冷媒ガスを循環させることができ、精製用に別の圧縮機や配管を必要とせずに、冷凍液化機本体11への冷媒ガスの循環供給を継続しながら、系内の冷媒ガスの全量を精製器14に導入して精製することができる。これにより、設備コストや運転コストをほとんど上昇させることなく、冷媒ガスの精製処理を行うことができる。また、圧縮機12の吐出圧力に応じてアンロード弁16V及びロード弁17Vを開閉制御するので、冷凍液化機本体11の負荷変動によって冷凍液化機本体11を循環する冷媒ガス量が変動しても、アンロード弁16V及びロード弁17Vがそれぞれ関連した状態で開閉制御されるので、冷凍液化機本体11の負荷変動にも追従することができる。   Thus, by incorporating the purification operation control means for performing the purification operation control into the discharge pressure control means 19, when one of the unload valve 16V and the load valve 17V is in the open state, the other is closed. The control for cooling operation is simply switched to the control for refining operation that controls one valve in the valve opening direction and simultaneously controls the other valve in the valve closing direction so that both the unload valve 16V and the load valve 17V are opened. Thus, the refrigerant gas can be circulated in the gas storage container 13 by using the gas lead-out path 16 and the gas introduction path 17, and the refrigerating machine main body 11 can be recirculated without requiring another compressor or piping for purification. The entire amount of the refrigerant gas in the system can be introduced into the purifier 14 and purified while continuing the circulation and supply of the refrigerant gas. Thereby, the purification process of the refrigerant gas can be performed with almost no increase in equipment cost and operation cost. In addition, since the unload valve 16V and the load valve 17V are controlled to open and close according to the discharge pressure of the compressor 12, even if the amount of refrigerant gas circulating through the refrigeration liquefier main body 11 fluctuates due to the load fluctuation of the refrigeration liquefier main body 11. Since the unload valve 16V and the load valve 17V are controlled to open and close in a related state, it is possible to follow the load fluctuation of the refrigeration liquefier main body 11.

なお、精製器14は、冷却運転用制御を行っているときにも冷媒ガスの一部を連続して精製するものであってもよく、精製操作用制御のときにのみ作動して冷媒ガスの一部を精製するものであってもよく、冷却運転用制御と精製操作用制御とを切り替える際に圧縮機12の吸入圧力及び吐出圧力に大きな影響を与えるものならば、各種精製器を使用することができる。   The purifier 14 may continuously purify a part of the refrigerant gas even when the cooling operation control is performed, and operates only during the purification operation control to operate the refrigerant gas. Some purifiers may be used, and various purifiers are used if they greatly affect the suction pressure and discharge pressure of the compressor 12 when switching between the cooling operation control and the purification operation control. be able to.

図3及び図4は、本発明の第2形態例を示すもので、前記第1形態例に示した冷凍液化機の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   3 and 4 show a second embodiment of the present invention, and the same components as those of the refrigeration liquefier shown in the first embodiment are denoted by the same reference numerals and are described in detail. Is omitted.

本形態例では、アンロード弁16V及びロード弁17Vのいずれか一方を前記スプリット制御から切り離し、あらかじめ設定された開度で開弁状態とする精製操作用制御を行う。例えば、図3に示すように、アンロード弁16Vの開閉制御を、前記吐出圧力制御手段19と精製操作用制御手段23とに切り替えるためのスイッチ24を設け、該スイッチ24を吐出圧力制御手段19から精製操作用制御手段23に切り替えることによって冷媒ガスの精製を行うようにしている。   In the present embodiment, purification operation control is performed in which one of the unload valve 16V and the load valve 17V is disconnected from the split control and is opened at a preset opening degree. For example, as shown in FIG. 3, a switch 24 is provided for switching the opening / closing control of the unload valve 16V between the discharge pressure control means 19 and the refining operation control means 23. The switch 24 is connected to the discharge pressure control means 19 as shown in FIG. Then, the refrigerant gas is purified by switching to the control means 23 for purification operation.

吐出圧力制御手段19による通常の冷却運転用制御では、図4(a)に実線Vaで示すように、ロード弁17Vは、吐出側圧力検出手段21の操作出力0〜50%の範囲で所定の開弁状態に、図4(b)に実線Vcで示すように、アンロード弁16Vは、操作出力50〜100%の範囲で所定の開弁状態に、これ以外の範囲ではそれぞれ閉弁状態になるように制御されている。   In normal cooling operation control by the discharge pressure control means 19, the load valve 17V has a predetermined output in the range of 0 to 50% of the operation output of the discharge side pressure detection means 21, as shown by the solid line Va in FIG. In the valve open state, as shown by the solid line Vc in FIG. 4B, the unload valve 16V is in the predetermined valve open state in the range of the operation output of 50 to 100%, and in the other ranges, it is in the valve closed state. It is controlled to become.

スイッチ24を精製操作用制御手段23に切り替えると、図4(c)に実線Ve示すように、アンロード弁16Vは、あらかじめ設定された時間を掛けて、あらかじめ設定された開度、例えば開度70%に向けて徐々に開弁し、スイッチ24が冷却運転用制御Sに切り替えられるまで開度70%を維持する精製操作用制御が行われる。   When the switch 24 is switched to the refining operation control means 23, as shown by the solid line Ve in FIG. 4C, the unload valve 16V takes a preset time, for example, an opening, for example, an opening. The valve is gradually opened toward 70%, and purification operation control is performed to maintain the opening degree of 70% until the switch 24 is switched to the cooling operation control S.

アンロード弁16Vが開弁状態になると、圧縮機12の吐出側経路12aに吐出された高圧の冷媒ガスの一部が、圧力差によってガス導出経路16を前記ガス貯留容器13に向かって流れるので、ガス貯留容器13に流入する冷媒ガスの量に応じて吐出側圧力検出手段21で検出する圧縮機12の吐出圧力が低下する。操作出力が50%を下回ると、前記吐出圧力制御手段19が作動し、前記スプリット制御により、操作出力に基づいてロード弁17Vの開度が制御され、ガス貯留容器13内に貯留されている冷媒ガスの所定量が、ガス導入経路17を通って圧縮機12の吸入側経路12bに導入される。   When the unload valve 16V is opened, a part of the high-pressure refrigerant gas discharged to the discharge side passage 12a of the compressor 12 flows through the gas outlet passage 16 toward the gas storage container 13 due to a pressure difference. The discharge pressure of the compressor 12 detected by the discharge-side pressure detection means 21 decreases according to the amount of refrigerant gas flowing into the gas storage container 13. When the operation output falls below 50%, the discharge pressure control means 19 is activated, the opening of the load valve 17V is controlled based on the operation output by the split control, and the refrigerant stored in the gas storage container 13 A predetermined amount of gas is introduced into the suction side passage 12 b of the compressor 12 through the gas introduction passage 17.

このように、アンロード弁16Vが精製操作用制御手段23によって開弁状態に保持されている間、ロード弁17Vは、吐出圧力制御手段19によって吐出圧力に応じた開弁状態に制御されるので、圧縮機12からガス導出経路16を通ってガス貯留容器13に流入する冷媒ガスの量に相当する量の冷媒ガスがガス貯留容器13からロード弁17V及びガス導入経路17を通って圧縮機12に吸引される。したがって、冷媒ガスの一部がガス貯留容器13を循環する状態になるとともに、冷媒ガスの他の一部が精製器14を循環する状態になるので、前記第1形態例と同様にして冷媒ガスの精製が行われる。さらに、ガス貯留容器13を循環する冷媒ガスの量に応じて吸入圧力制御手段18がバイパス弁15Vを制御するので、吸入圧力制御手段18及び吐出圧力制御手段19によって圧縮機12の吸入圧力及び吐出圧力が一定に保持され、所定量の冷媒ガスが冷凍液化機本体11に供給されて循環する。   Thus, while the unload valve 16V is held open by the refining operation control means 23, the load valve 17V is controlled by the discharge pressure control means 19 to open according to the discharge pressure. An amount of refrigerant gas corresponding to the amount of refrigerant gas flowing into the gas storage container 13 from the compressor 12 through the gas outlet path 16 passes through the load valve 17V and the gas introduction path 17 from the gas storage container 13. Sucked into. Accordingly, a part of the refrigerant gas is circulated through the gas storage container 13 and another part of the refrigerant gas is circulated through the purifier 14, so that the refrigerant gas is the same as in the first embodiment. Is purified. Further, since the suction pressure control means 18 controls the bypass valve 15V according to the amount of refrigerant gas circulating through the gas storage container 13, the suction pressure and discharge pressure of the compressor 12 are controlled by the suction pressure control means 18 and the discharge pressure control means 19. The pressure is kept constant, and a predetermined amount of refrigerant gas is supplied to the refrigeration liquefier main body 11 and circulated.

また、アンロード弁16Vに代えてロード弁17Vを精製操作用制御で開弁するように設定した場合は、ロード弁17Vが開弁状態になることでガス貯留容器13内のガスがガス導入経路17を通って圧縮機12に吸引され、圧縮機12で圧縮される冷媒ガス量が増加することから吐出側経路12aの圧力が上昇するので、吐出側圧力検出手段21の操作出力が50%を超える状態になり、前記吐出圧力制御手段19が操作出力に基づいてアンロード弁16Vを開弁方向に制御し、圧縮機12から吐出された冷媒ガスの一部がアンロード弁16Vを通ってガス貯留容器13内に流入する。したがって、この場合も、圧縮機12から吐出された冷媒ガスは、一部がガス貯留容器13を循環し、他の一部が精製器14を循環する状態になり、前記同様に冷媒ガスの精製が行われる。このときも、吸入圧力制御手段18がバイパス弁15Vを制御することで圧縮機12の吸入圧力が一定に保持されることで、所定量の冷媒ガスが冷凍液化機本体11に供給されて循環する状態を継続できる。   Further, when the load valve 17V is set to be opened by the refining operation control instead of the unload valve 16V, the gas in the gas storage container 13 is transferred to the gas introduction path by opening the load valve 17V. Since the amount of refrigerant gas sucked into the compressor 12 through 17 and compressed by the compressor 12 increases, the pressure of the discharge side passage 12a rises, so that the operation output of the discharge side pressure detecting means 21 is 50%. The discharge pressure control means 19 controls the unload valve 16V in the valve opening direction based on the operation output, and a part of the refrigerant gas discharged from the compressor 12 passes through the unload valve 16V to become gas. It flows into the storage container 13. Therefore, in this case as well, the refrigerant gas discharged from the compressor 12 is partially circulated through the gas storage container 13 and the other part is circulated through the purifier 14. Is done. Also at this time, the suction pressure control means 18 controls the bypass valve 15V to keep the suction pressure of the compressor 12 constant, so that a predetermined amount of refrigerant gas is supplied to the refrigeration liquefier main body 11 and circulates. The state can be continued.

11…冷凍液化機本体、12…圧縮機、12a…吐出側経路、12b…吸入側経路、13…ガス貯留容器、14…精製器、14a,14b…精製経路、15…バイパス経路、15V…バイパス弁、16…ガス導出経路、16V…アンロード弁、17…ガス導入経路、17V…ロード弁、18…吸入圧力制御手段、19…吐出圧力制御手段、21…吐出側圧力検出手段(PIC1)、22…吸入側圧力検出手段(PIC2)、23…精製操作用制御手段、24…スイッチ   DESCRIPTION OF SYMBOLS 11 ... Refrigerator main body, 12 ... Compressor, 12a ... Discharge side path, 12b ... Inhalation side path, 13 ... Gas storage container, 14 ... Purifier, 14a, 14b ... Purification path, 15 ... Bypass path, 15V ... Bypass Valve, 16 ... gas outlet path, 16V ... unload valve, 17 ... gas introduction path, 17V ... load valve, 18 ... suction pressure control means, 19 ... discharge pressure control means, 21 ... discharge side pressure detection means (PIC1), 22 ... suction side pressure detection means (PIC2), 23 ... purification control means, 24 ... switch

Claims (3)

冷凍液化機本体からの冷媒ガスを圧縮して前記冷凍液化機本体に循環供給する圧縮機と、該圧縮機の吐出側と吸入側とをバイパス弁を介して接続するバイパス経路と、前記圧縮機の吸入側にロード弁を有するガス導入経路を介して接続し、かつ、前記圧縮機の吐出側にアンロード弁を有するガス導出経路を介して接続するガス貯留容器と、前記圧縮機の吐出側と吸入側とにそれぞれガス精製経路を介して接続するガス精製器と、前記圧縮機の吸入圧力を検出して該吸入圧力が低下したときに前記バイパス弁を開弁方向に、吸入圧力が上昇したときに前記バイパス弁を閉弁方向に制御する吸入圧力制御手段と、前記圧縮機の吐出圧力を検出して該吐出圧力が低下したときに前記アンロード弁を閉じて前記ロード弁を開弁方向に制御し、前記吐出圧力が上昇したときに前記ロード弁を閉じて前記アンロード弁を開弁方向に制御する吐出圧力制御手段と、前記アンロード弁及び前記ロード弁の双方の弁を開弁状態とする精製操作用制御手段とを備えていることを特徴とする冷凍液化機。 A compressor that compresses refrigerant gas from the refrigeration liquefier main body and circulates the refrigerant gas to the refrigeration liquefier main body; a bypass path that connects a discharge side and a suction side of the compressor via a bypass valve; and the compressor A gas storage container connected to a suction side of the compressor via a gas introduction path having a load valve and connected to a discharge side of the compressor via a gas outlet path having an unload valve, and a discharge side of the compressor And a gas purifier connected to the suction side through a gas purification path, and when the suction pressure of the compressor is detected and the suction pressure decreases, the bypass valve is opened and the suction pressure increases. A suction pressure control means for controlling the bypass valve in a closing direction when detected, and detecting the discharge pressure of the compressor and closing the unload valve and opening the load valve when the discharge pressure decreases Control the direction of the discharge A discharge pressure control means for controlling said unloading valve to close the load valve when the force rises in the valve opening direction, purification of the valve of the twin sides of the unloading valve and the load valve an open state A refrigeration machine comprising a control means for use. 冷凍液化機本体からの冷媒ガスを圧縮して前記冷凍液化機本体に循環供給する圧縮機と、該圧縮機の吐出側と吸入側とをバイパス弁を介して接続するバイパス経路と、前記圧縮機の吸入側にロード弁を有するガス導入経路を介して接続するとともに、前記圧縮機の吐出側にアンロード弁を有するガス導出経路を介して接続するガス貯留容器と、前記圧縮機の吐出側と吸入側とをガス精製器を介して接続するガス精製経路と、前記圧縮機の吸入圧力を検出して該吸入圧力が低下したときに前記バイパス弁を開弁方向に、吸入圧力が上昇したときに前記バイパス弁を閉弁方向に制御する吸入圧力制御手段と、前記圧縮機の吐出圧力を検出して該吐出圧力が低下したときに前記ロード弁を開弁方向に制御して前記アンロード弁を閉じ、前記吐出圧力が上昇したときに前記アンロード弁を開弁方向に制御して前記ロード弁を閉じる吐出圧力制御手段とを備えた冷凍液化機の運転方法であって、前記アンロード弁又は前記ロード弁のいずれか一方の弁が開弁状態のときに他方の弁を閉弁状態とする冷却運転用制御により前記冷凍液化機本体への冷媒ガスの循環供給を継続中に、前記アンロード弁及び前記ロード弁を開く精製操作用制御に切り替えて前記ガス貯留容器内の冷媒ガスを前記ガス精製器に循環させることを特徴とする冷凍液化機の運転方法。   A compressor that compresses refrigerant gas from the refrigeration liquefier main body and circulates the refrigerant gas to the refrigeration liquefier main body; a bypass path that connects a discharge side and a suction side of the compressor via a bypass valve; and the compressor A gas storage container connected via a gas introduction path having a load valve to the suction side of the compressor and a gas outlet path having an unload valve to the discharge side of the compressor, and a discharge side of the compressor A gas purification path connecting the suction side with a gas purifier, and when the suction pressure of the compressor is detected and the suction pressure is reduced, the bypass valve is opened and the suction pressure is increased. Suction pressure control means for controlling the bypass valve in the valve closing direction, and detecting the discharge pressure of the compressor, and controlling the load valve in the valve opening direction when the discharge pressure is reduced, the unload valve Close the discharge pressure An operating method of a refrigeration liquefier comprising discharge pressure control means for controlling the unload valve in the valve opening direction and closing the load valve when the valve rises, wherein either the unload valve or the load valve While the circulation supply of the refrigerant gas to the refrigeration liquefier main body is continued by the control for cooling operation in which the other valve is closed when one valve is open, the unload valve and the load valve are A method of operating a refrigeration liquefier, wherein the refrigerant gas in the gas storage container is circulated to the gas purifier by switching to the refining operation control to be opened. 冷凍液化機本体からの冷媒ガスを圧縮して前記冷凍液化機本体に循環供給する圧縮機と、該圧縮機の吐出側と吸入側とをバイパス弁を介して接続するバイパス経路と、前記圧縮機の吸入側にロード弁を有するガス導入経路を介して接続するとともに、前記圧縮機の吐出側にアンロード弁を有するガス導出経路を介して接続するガス貯留容器と、前記圧縮機の吐出側と吸入側とをガス精製器を介して接続するガス精製経路と、前記圧縮機の吸入圧力を検出して該吸入圧力が低下したときに前記バイパス弁を開弁方向に、吸入圧力が上昇したときに前記バイパス弁を閉弁方向に制御する吸入圧力制御手段と、前記圧縮機の吐出圧力を検出して該吐出圧力が低下したときに前記ロード弁を開弁方向に制御して前記アンロード弁を閉じ、前記吐出圧力が上昇したときに前記アンロード弁を開弁方向に制御して前記ロード弁を閉じる吐出圧力制御手段とを備えた冷凍液化機の運転方法であって、前記アンロード弁又は前記ロード弁のいずれか一方の弁が開弁状態のときに他方の弁を閉弁状態とする冷却運転用制御により前記冷凍液化機本体への冷媒ガスの循環供給を継続中に、一方の弁が開弁状態となったときに閉弁状態となるべき他方の弁を開弁状態とする精製操作用制御に切り替えて前記ガス貯留容器内の冷媒ガスを前記ガス精製器に循環させることを特徴とする冷凍液化機の運転方法。   A compressor that compresses refrigerant gas from the refrigeration liquefier main body and circulates the refrigerant gas to the refrigeration liquefier main body; a bypass path that connects a discharge side and a suction side of the compressor via a bypass valve; and the compressor A gas storage container connected via a gas introduction path having a load valve to the suction side of the compressor and a gas outlet path having an unload valve to the discharge side of the compressor, and a discharge side of the compressor A gas purification path connecting the suction side with a gas purifier, and when the suction pressure of the compressor is detected and the suction pressure is reduced, the bypass valve is opened and the suction pressure is increased. Suction pressure control means for controlling the bypass valve in the valve closing direction, and detecting the discharge pressure of the compressor, and controlling the load valve in the valve opening direction when the discharge pressure is reduced, the unload valve Close the discharge pressure An operating method of a refrigeration liquefier comprising discharge pressure control means for controlling the unload valve in the valve opening direction and closing the load valve when the valve rises, wherein either the unload valve or the load valve While one of the valves is in the open state, one of the valves is in the open state while the refrigerant gas is continuously being circulated and supplied to the refrigeration liquefier main body by the control for cooling operation that closes the other valve. The refrigerant liquefier is characterized in that the refrigerant valve in the gas storage container is circulated to the gas purifier by switching to the refining operation control in which the other valve that should be in a closed state is opened. how to drive.
JP2010186858A 2010-08-24 2010-08-24 Refrigeration liquefier and operation method of refrigeration liquefier Active JP5639818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186858A JP5639818B2 (en) 2010-08-24 2010-08-24 Refrigeration liquefier and operation method of refrigeration liquefier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186858A JP5639818B2 (en) 2010-08-24 2010-08-24 Refrigeration liquefier and operation method of refrigeration liquefier

Publications (2)

Publication Number Publication Date
JP2012047350A JP2012047350A (en) 2012-03-08
JP5639818B2 true JP5639818B2 (en) 2014-12-10

Family

ID=45902441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186858A Active JP5639818B2 (en) 2010-08-24 2010-08-24 Refrigeration liquefier and operation method of refrigeration liquefier

Country Status (1)

Country Link
JP (1) JP5639818B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848587A (en) * 2014-02-18 2015-08-19 青岛海信日立空调系统有限公司 Frequency conversion multi-connected type heat pump system and control method of bypass electronic expansion valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599766B2 (en) * 2011-09-30 2014-10-01 住友重機械工業株式会社 Cryogenic refrigerator
US9157540B2 (en) * 2013-01-28 2015-10-13 Tescom Corporation Fluid regulator with integrated rapid pressurization bypass valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375759U (en) * 1986-11-05 1988-05-20
JPH0721358B2 (en) * 1987-01-30 1995-03-08 株式会社日立製作所 Cryogenic liquefier
JP2953848B2 (en) * 1992-01-30 1999-09-27 アイシン精機株式会社 Pressure regulator for refrigerant circuit
JP3113990B2 (en) * 1992-02-12 2000-12-04 日本酸素株式会社 Helium liquefaction refrigeration apparatus and operating method thereof
JP2009121786A (en) * 2007-11-19 2009-06-04 Ihi Corp Cryogenic refrigerator and control method for it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848587A (en) * 2014-02-18 2015-08-19 青岛海信日立空调系统有限公司 Frequency conversion multi-connected type heat pump system and control method of bypass electronic expansion valve
CN104848587B (en) * 2014-02-18 2017-04-12 青岛海信日立空调系统有限公司 Frequency conversion multi-connected type heat pump system and control method of bypass electronic expansion valve

Also Published As

Publication number Publication date
JP2012047350A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
EP2737265B1 (en) Temperature control logic for refrigeration system
JP6087744B2 (en) refrigerator
US20080196420A1 (en) Flashgas Removal From a Receiver in a Refrigeration Circuit
KR101527072B1 (en) Cryopump system, operation method of cryopump system and compressor unit
WO2013073065A1 (en) Refrigeration unit
JP2005164103A (en) Refrigerating cycle device and its control method
CN113302439B (en) Starting method of cryogenic refrigerator and cryogenic refrigerator
JP5639818B2 (en) Refrigeration liquefier and operation method of refrigeration liquefier
CN102562556B (en) Operation control method for BOG multistage displacement compressor
WO2019163742A1 (en) Cryogenic refrigerator
WO2020054181A1 (en) Control device, heat source system, method for calculating lower limit of cooling water inlet temperature, control method, and program
JPH07190520A (en) Freezer
JP2006308230A (en) Refrigerating cycle control device
JP2013064573A (en) Refrigerating apparatus for container
JP5914806B2 (en) Refrigeration equipment
JP2008096072A (en) Refrigerating cycle device
WO2022176652A1 (en) Compressor for ultra-low-temperature freezer, and adsorber unit
JP5538061B2 (en) Refrigeration equipment
JP2017172923A (en) Refrigerating device
JP2011522208A (en) Multiple refrigerant cooling system with refrigerant composition adjustment function
CN112484355A (en) Air conditioning system and driving motor cooling method for the same
JPH0464869A (en) Helium gas refining device
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
JP3765945B2 (en) Operation control device for refrigerator
JP2003279185A (en) Cryogenic refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5639818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250