JP5638015B2 - Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP5638015B2
JP5638015B2 JP2012015274A JP2012015274A JP5638015B2 JP 5638015 B2 JP5638015 B2 JP 5638015B2 JP 2012015274 A JP2012015274 A JP 2012015274A JP 2012015274 A JP2012015274 A JP 2012015274A JP 5638015 B2 JP5638015 B2 JP 5638015B2
Authority
JP
Japan
Prior art keywords
negative electrode
powder
carbon powder
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012015274A
Other languages
Japanese (ja)
Other versions
JP2013157120A (en
Inventor
▲高▼木 嘉則
嘉則 ▲高▼木
裕史 吉田
裕史 吉田
江口 邦彦
邦彦 江口
哲夫 塩出
哲夫 塩出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012015274A priority Critical patent/JP5638015B2/en
Publication of JP2013157120A publication Critical patent/JP2013157120A/en
Application granted granted Critical
Publication of JP5638015B2 publication Critical patent/JP5638015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、炭素粉末を用いるリチウムイオン二次電池用負極材料、負極合剤、リチウムイオン二次電池負極およびリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery using a carbon powder, a negative electrode mixture, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery.

リチウムイオン電池では、電解液に導電性の低い有機溶剤を用いることから、電極間距離を短くする必要があり、そのため集電体金属箔の上に薄く電極活物質、バインダ、溶媒等を混合したスラリーを塗工することにより電極が作製される。この製造工程上の課題は、剥離強度特性を改善することである。これは製造工程上での電極での剥離発生、粒子離脱が出現した場合、当該部分が不良となるだけでなく、剥離した粒子が他の部分に異物として付着することにより新たな不良箇所を生み出し、工程歩留まりの大幅な低下を誘発するためである。そのため剥離強度の上昇は、電池作製において重要な意味を有する。
また、作製された電池の使用時を想定しても剥離強度は重要である。例えば車載用用途において、リチウムイオン電池はますます使用量が増加すると考えられる。しかし絶えず振動にさらされる車載用用途に剥離強度が低い電極を用いると、電池内部で剥離を起こしやすく電池寿命が大幅に短くなってしまう。
Lithium ion batteries use an organic solvent with low conductivity for the electrolyte, so it is necessary to shorten the distance between the electrodes. Therefore, a thin electrode active material, binder, solvent, etc. were mixed on the current collector metal foil. An electrode is produced by applying the slurry. The problem in this manufacturing process is to improve the peel strength characteristics. This is because when the electrode is peeled off during the manufacturing process and particle detachment appears, not only will this part become defective, but the peeled particles will adhere to other parts as foreign matter, creating new defective parts. This is to induce a significant decrease in process yield. Therefore, the increase in peel strength has an important meaning in battery production.
The peel strength is important even when the produced battery is used. For example, lithium ion batteries are expected to be used more and more in automotive applications. However, if an electrode having a low peel strength is used in an in-vehicle application that is constantly exposed to vibration, peeling easily occurs inside the battery and the battery life is significantly shortened.

剥離強度上昇に対し、バインダ量の増量は最も安易でかつ有効な手段であり、従来から行われている技術である。しかしこれは同時に非導電性成分が増加するために、種々電池特性の劣化を誘発する。そのためこの手段での剥離強度上昇は望ましいものではなく、負極材料の改良により剥離強度上昇を実現することが重要な課題である。
またバインダの増量とは別に、予め負極材に各種の表面被覆を施すなどの例も従来から提唱されている。しかしながら、それらは何れも効果は不十分で、剥離強度は高々10N/m程度に留まる。
Increasing the binder amount is the easiest and most effective means for increasing the peel strength, and is a conventionally performed technique. However, this simultaneously induces deterioration of various battery characteristics due to an increase in non-conductive components. Therefore, an increase in peel strength by this means is not desirable, and it is an important issue to realize an increase in peel strength by improving the negative electrode material.
In addition to the increase in the amount of the binder, an example in which various surface coatings are previously applied to the negative electrode material has been proposed. However, they are all ineffective and the peel strength remains at most about 10 N / m.

別の問題として、黒鉛ないしは結晶化度の高い黒鉛質の炭素を負極活物質として用いると、非水電解液として最も一般的な非水溶媒の一つであるプロピレンカーボネートを含むものを用いた場合に、充電時にプロピレンカーボネートが分解するという問題がある。これに対する解決策として特許文献1では、負極活物質である炭素の表面を水溶性高分子で被覆することが提案されている。   Another problem is that when graphite or highly crystalline carbon is used as the negative electrode active material, a non-aqueous electrolyte containing propylene carbonate, one of the most common non-aqueous solvents, is used. In addition, there is a problem that propylene carbonate decomposes during charging. As a solution to this, Patent Document 1 proposes coating the surface of carbon, which is a negative electrode active material, with a water-soluble polymer.

特許文献2では、プロピレンカーボネート電解液の分解反応を抑制することができる新規なバインダーとしてポリアクリル酸とポリアクリルアミド成分との脱水縮合物が記載されている。   Patent Document 2 describes a dehydration condensate of polyacrylic acid and a polyacrylamide component as a novel binder capable of suppressing the decomposition reaction of the propylene carbonate electrolyte.

特許文献3では、負極材料表面に、カルボキシル基を有する高分子化合物および金属酸化物が付着してなるリチウムイオン二次電池用負極材料が記載されている。   Patent Document 3 describes a negative electrode material for a lithium ion secondary battery in which a polymer compound having a carboxyl group and a metal oxide are attached to the surface of a negative electrode material.

特開平11−120992号公報JP-A-11-129992 特開2007−287570号公報JP 2007-287570 A 特開2010−129363号公報JP 2010-129363 A

本発明は、負極集電体から負極材料の剥離が抑えられ、特に塗布した際の負極材料と銅箔との密着性が高い負極材料を得ることを目的とする。本発明者等は、バインダによって負極材料の粉末間は比較的強固に接着されている場合でも、電極剥離試験で低い剥離強度となる負極について検討した。
その結果、塗布電極では、塗布後の乾燥時に溶剤である水分の蒸発に同伴してバインダ成分が銅箔近傍から電極の表面側へ移動する現象が推定されていることから、このため粉末と銅箔間の密着性が不十分となる結果、電極剥離試験で低い剥離強度となることが考えられる。
また電池性能への影響を避けるため、炭素成分としての負極材料、バインダ以外の第三成分を加える場合はごく少量に留める必要がある。本発明者らはこれらの点を考慮のうえ鋭意検討を行った。
An object of the present invention is to obtain a negative electrode material in which peeling of the negative electrode material from the negative electrode current collector is suppressed, and the adhesiveness between the negative electrode material and the copper foil is particularly high when applied. The present inventors examined a negative electrode that has a low peel strength in an electrode peel test even when the powder of the negative electrode material is relatively firmly bonded by a binder.
As a result, in the coated electrode, it is estimated that the binder component moves from the vicinity of the copper foil to the surface side of the electrode accompanying the evaporation of the moisture as the solvent during drying after coating. As a result of insufficient adhesion between the foils, it is considered that the electrode peel test results in a low peel strength.
Moreover, in order to avoid the influence on battery performance, when adding 3rd components other than the negative electrode material and binder as a carbon component, it is necessary to keep to very small quantity. The present inventors have conducted intensive studies in consideration of these points.

本発明は、以上の点を鑑みてなされたものであり、リチウムイオン二次電池用負極材料として用いた場合に銅箔との密着性が高く、負極材料の剥離が抑えられ、密着性が高い負極を構成できる負極材料を得ることを目的とする。   The present invention has been made in view of the above points, and when used as a negative electrode material for a lithium ion secondary battery, the adhesiveness with the copper foil is high, peeling of the negative electrode material is suppressed, and the adhesiveness is high. It aims at obtaining the negative electrode material which can comprise a negative electrode.

本発明において、負極材料に用いる炭素粉末を、その表面に少量のSiO、Alを付着させた炭素粉末Iと少量のアクリル酸系ポリマーの被覆処理を施した炭素粉末IIとの2種類の異なる炭素粉末をそれぞれ負極合剤の原料用負極材料として用いることで、バインダ量を増量させることなく、またリチウムイオン二次電池としての各種性能に影響を与えることなく、大幅に負極電極における負極集電体とその表面に塗布される負極合剤との剥離強度の上昇が実現できることが明らかになった。またこれらは、SiO、およぶ・またはAlが付着された炭素粉末とアクリル酸系ポリマーが被覆された炭素粉末とが別々に製造され混合される場合にとくに剥離強度向上の効果を有することを見出した。 In the present invention, the carbon powder used for the negative electrode material is composed of carbon powder I having a small amount of SiO 2 and Al 2 O 3 adhered on the surface thereof and carbon powder II having a coating treatment of a small amount of acrylic acid polymer. By using different types of carbon powder as the negative electrode material for the negative electrode mixture, the amount of the binder is not increased, and various performances as a lithium ion secondary battery are not affected. It was revealed that an increase in peel strength between the negative electrode current collector and the negative electrode mixture applied to the surface thereof can be realized. In addition, these have an effect of improving the peel strength particularly when carbon powder coated with SiO 2 and / or Al 2 O 3 and carbon powder coated with acrylic acid polymer are separately manufactured and mixed. I found out.

特開2010−129362号公報(特許文献3)に示す通り、炭素粉末表面へのSiO、Alの付着処理は炭素粉末表面への親水性付与により、バインダ水溶液との濡れ性が向上し、水系バインダを使用した際の各種電池特性が向上することが従来から提唱されている。
またアクリル酸系ポリマーについては、特開2007−287570号公報(特許文献2)に示す通り、アクリル酸系ポリマーの被覆或いは添加効果により水系バインダでの塗布液粘度が上昇し、前述した塗布電極の乾燥時にバインダ成分が銅箔近傍から表面側へ移動する現象が抑えられることから、密着性を高めることが出来ると言われている。
一方、本発明において従来に対し剥離強度が飛躍的に向上した機構自体は明確になっていないが、従来技術の単なる組合せ効果に止まらず、SiOやAlの酸素基がアクリル酸のカルボキシル基と水素結合的に作用する化学的な親和力や、SiO、Alの微粒がアクリル酸系ポリマー層に食い込むアンカー的な効果も加わり高い効果が得られたと推定している。これらを実現して本発明の効果を得るためにはSiO、Alの付着した炭素粉末Iとアクリル酸系ポリマーの被覆部分を有する炭素粉末IIとを負極材料として別々に用い、炭素材料Iと炭素材料IIとが、負極合剤中に別個に存在し、しかも各々が高度に分散していることが重要である。
As shown in JP 2010-129362 A (Patent Document 3), the SiO 2 and Al 2 O 3 adhesion treatment on the surface of the carbon powder improves the wettability with the aqueous binder solution by imparting hydrophilicity to the surface of the carbon powder. However, it has been conventionally proposed that various battery characteristics are improved when an aqueous binder is used.
As for acrylic acid polymers, as shown in Japanese Patent Application Laid-Open No. 2007-287570 (Patent Document 2), the viscosity of the coating liquid in the aqueous binder increases due to the coating or addition effect of the acrylic acid polymer, and the coating electrode described above Since the phenomenon that the binder component moves from the vicinity of the copper foil to the surface side during drying is suppressed, it is said that the adhesion can be improved.
On the other hand, although the mechanism itself in which the peel strength has been dramatically improved in the present invention is not clear, it is not limited to the simple combination effect of the prior art, and the oxygen groups of SiO 2 and Al 2 O 3 are made of acrylic acid. It is presumed that a high effect was obtained by adding a chemical affinity that acts as a hydrogen bond with the carboxyl group and an anchor effect in which SiO 2 and Al 2 O 3 fine particles bite into the acrylic acid polymer layer. In order to realize the effects of the present invention by realizing these, carbon powder I to which SiO 2 and Al 2 O 3 are adhered and carbon powder II having a coating portion of acrylic acid polymer are separately used as negative electrode materials, carbon It is important that the material I and the carbon material II exist separately in the negative electrode mixture, and each of them is highly dispersed.

すなわち、本発明は、以下の(1)〜(6)を提供する。
(1)炭素粉末の表面にSiO粉および/またはAl粉が付着した炭素粉末Iと炭素粉末の表面にアクリル酸系ポリマーが被覆した炭素粉末IIとを含有するリチウムイオン二次電池用負極材料であって、
前記SiO粉とAl粉の合計の含有量が、
炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜3.0質量%であり、
前記アクリル酸系ポリマーの含有量が、
炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜2.5質量%であり、
前記炭素粉末Iと前記炭素粉末IIの割合が、質量比で炭素粉末I/炭素粉末II=10/90〜90/10であることを特徴とするリチウムイオン二次電池用負極材料。
(2)上記(1)に記載の負極材料と水溶性バインダーとの混合物を含有するリチウムイオン二次電池用負極合剤。
That is, the present invention provides the following (1) to (6).
(1) A lithium ion secondary battery containing carbon powder I having SiO 2 powder and / or Al 2 O 3 powder adhered to the surface of the carbon powder and carbon powder II having the surface of the carbon powder coated with an acrylic acid polymer. Negative electrode material for
The total content of the SiO 2 powder and Al 2 O 3 powder is
Carbon powder, SiO 2 powder and / or Al 2 O 3 powder, and 0.1 to 3.0% by mass with respect to the total amount of acrylic acid polymer,
Content of the acrylic acid polymer is
0.1 to 2.5% by mass with respect to the total amount of carbon powder, SiO 2 powder and / or Al 2 O 3 powder, and acrylic polymer,
The ratio of the said carbon powder I and the said carbon powder II is carbon powder I / carbon powder II = 10 / 90-90 / 10 by mass ratio, The negative electrode material for lithium ion secondary batteries characterized by the above-mentioned.
(2) A negative electrode mixture for a lithium ion secondary battery containing a mixture of the negative electrode material according to (1) and a water-soluble binder.

(3)上記(1)に記載の負極材料を有することを特徴とするリチウムイオン二次電池用負極。
(4)上記(3)に記載の負極を有することを特徴とするリチウムイオン二次電池。
(5)炭素粉末の表面にSiO粉および/またはAl粉が付着した炭素粉末で、SiO粉とAl粉の合計の含有量が炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜3.0質量%である炭素粉末I、および
炭素粉末の表面にアクリル酸系ポリマーが被覆し、アクリル酸系ポリマーの含有量が炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜2.5質量%である炭素粉末II、
を混合し、水溶性バインダーを添加して得られることを特徴とするリチウムイオン二次電池用負極合剤。
(6)上記(5)に記載の負極合剤を負極集電体表面に塗布し、真空乾燥して得られるリチウムイオン二次電池用負極。
(3) A negative electrode for a lithium ion secondary battery, comprising the negative electrode material as described in (1) above.
(4) A lithium ion secondary battery comprising the negative electrode according to (3) above.
(5) Carbon powder having SiO 2 powder and / or Al 2 O 3 powder adhered to the surface of the carbon powder, and the total content of SiO 2 powder and Al 2 O 3 powder is carbon powder, SiO 2 powder and / or Al 2 O 3 powder, and carbon powder I that is 0.1 to 3.0% by mass with respect to the total amount of the acrylic acid polymer, and the surface of the carbon powder is coated with the acrylic acid polymer, Carbon powder II whose content is 0.1 to 2.5% by mass with respect to the total amount of carbon powder, SiO 2 powder and / or Al 2 O 3 powder, and acrylic acid polymer,
A negative electrode mixture for a lithium ion secondary battery, which is obtained by mixing water and adding a water-soluble binder.
(6) A negative electrode for a lithium ion secondary battery obtained by applying the negative electrode mixture according to (5) above to the surface of the negative electrode current collector and vacuum drying.

本発明によれば、リチウムイオン二次電池用負極材料として用いた場合に、負極集電体から負極材料の剥離が抑えられ、密着性が高い負極合剤を構成する負極材料を得ることができる。また、本発明の負極材料を用いれば負極集電体との密着性の高い負極合剤を得ることができる。さらに本発明の負極合剤を用いれば、剥離強度の高い負極を有するリチウムイオン二次電池が得られる。   According to the present invention, when used as a negative electrode material for a lithium ion secondary battery, it is possible to obtain a negative electrode material that constitutes a negative electrode mixture with high adhesion that suppresses peeling of the negative electrode material from the negative electrode current collector. . Moreover, if the negative electrode material of the present invention is used, a negative electrode mixture having high adhesion to the negative electrode current collector can be obtained. Furthermore, if the negative electrode mixture of the present invention is used, a lithium ion secondary battery having a negative electrode with high peel strength can be obtained.

評価用のコイン型二次電池を示す断面図である。It is sectional drawing which shows the coin-type secondary battery for evaluation.

<1>負極材料
本発明のリチウムイオン二次電池用負極材料は、以下に説明する炭素粉末Iと炭素粉末IIとの組合せ材料である。炭素粉末Iと炭素粉末IIとを別々に製造し、その後水溶性バインダを添加して負極合剤が得られる。本発明の負極合剤は、炭素粉末Iと炭素粉末IIと水溶性バインダーとを有し、負極集電体に塗布した場合の剥離強度が高い特徴を有する。
[炭素材料]
本発明においては水溶性バインダを用いる負極合剤と負極集電体との剥離強度の向上を目的としている。負極材料の炭素基材としては黒鉛系と非黒鉛系があるが、ハードカーボンに代表される非黒鉛系の材料は有機溶媒で溶解するPVdF(PolyVinylidene Fluoride、ポリフッ化ビニリデン)等のバインダが用いられるため、水溶性バインダを用いる本発明の炭素基材には、黒鉛系の材料がおもに用いられる。この黒鉛系材料としては、天然黒鉛、またはメソフェーズ系やコークス系、電極端材等の人造黒鉛のいずれも用いることが可能であり、これらの混合物でもよい。
<1> Negative electrode material The negative electrode material for lithium ion secondary batteries of the present invention is a combination material of carbon powder I and carbon powder II described below. Carbon powder I and carbon powder II are produced separately, and then a water-soluble binder is added to obtain a negative electrode mixture. The negative electrode mixture of the present invention has carbon powder I, carbon powder II, and a water-soluble binder, and has a characteristic of high peel strength when applied to a negative electrode current collector.
[Carbon material]
The object of the present invention is to improve the peel strength between the negative electrode mixture using a water-soluble binder and the negative electrode current collector. As the carbon base material of the negative electrode material, there are a graphite type and a non-graphite type, but a non-graphite type material typified by hard carbon uses a binder such as PVdF (PolyVinylidene Fluoride) that dissolves in an organic solvent. Therefore, graphite-based materials are mainly used for the carbon base material of the present invention using a water-soluble binder. As this graphite-based material, any of natural graphite, artificial graphite such as mesophase-based, coke-based and electrode end materials can be used, and a mixture thereof may be used.

このうち天然黒鉛には、鱗片状のもの、球状形状のもの、また天然黒鉛に樹脂やピッチなど有機化合物を物理的な手法や加熱混合する等により処理し作製した天然黒鉛複合材料等があり、いずれも用いることができる。これらは特にX線回折における格子面間隔d002が0.34nm以下のものが望ましい。
また人造黒鉛には、石油系或いは石炭系のピッチを熱処理して得られるメソフェーズ小球体やバルクメソフェーズ等の非造粒の炭素質粒子、或いはさらに炭素化を進めた塊状のコークス等を約3000℃の高温で人工的に黒鉛化したものが使用出来るが、これらについても特にX線回折における格子面間隔d002が0.34nm以下のものが望ましい。
黒鉛系炭素粉末は単独使用に限られず、2種類以上で用いることもできる。
黒鉛系炭素粉末の平均粒径は、1〜50μmが好ましく、より好ましくは2〜30μm、さらに好ましくは5〜20μmである。平均粒径が小さすぎると、初回充電時の不可逆容量が大きいうえ、嵩密度が小さくなり体積容量が低下する。平均粒径が大きすぎると、粒径以下の厚さの電極が作製できない。また、大電流での容量が大きく低下する問題がある。人造の黒鉛系炭素材料は粉砕して粒度を調整するのが一般的であり、天然黒鉛は剪断処理で球状化する際に粒度調整するのが一般的であるが、さらに篩や風力分級を組み合わせて粒度調整してもよい。
Among these, natural graphite includes scaly, spherical shapes, and natural graphite composite materials prepared by processing organic compounds such as resins and pitches into natural graphite by physical techniques or heat mixing. Either can be used. In particular, it is desirable that the lattice spacing d002 in X-ray diffraction is 0.34 nm or less.
For artificial graphite, non-granulated carbonaceous particles such as mesophase spherules and bulk mesophase obtained by heat treatment of petroleum or coal-based pitch, or massive coke that has been further carbonized, etc. are about 3000 ° C. Although artificially graphitized at a high temperature can be used, those having a lattice plane distance d002 of 0.34 nm or less in X-ray diffraction are also desirable.
The graphite-based carbon powder is not limited to single use, and two or more types can be used.
The average particle diameter of the graphite-based carbon powder is preferably 1 to 50 μm, more preferably 2 to 30 μm, and still more preferably 5 to 20 μm. If the average particle size is too small, the irreversible capacity at the first charge is large, the bulk density is small, and the volume capacity is lowered. If the average particle size is too large, an electrode having a thickness equal to or smaller than the particle size cannot be produced. There is also a problem that the capacity at a large current is greatly reduced. Man-made graphite-based carbon materials are generally pulverized to adjust the particle size, and natural graphite is generally adjusted to a particle size when spheroidized by a shearing process. The particle size may be adjusted.

黒鉛系炭素粉末は、天然黒鉛または人造黒鉛にコールタールピッチが表面および内部に付着、含浸している複合黒鉛系炭素粉末を用いてもよい。複合黒鉛系炭素粉末を製造する方法は、例えば黒鉛系炭素粉末にコールタールピッチをタール油に溶解させた溶液を入れ、攪拌した後、減圧蒸留によってタール油成分を除去し、ピッチが表面および内部に付着、含浸した複合黒鉛系炭素粉末の前駆体を得る。これを坩堝に充填し例えば800℃〜1300℃で熱処理して、複合黒鉛系炭素粉末を得る。   As the graphite-based carbon powder, a composite graphite-based carbon powder in which coal tar pitch is attached to and impregnated on the surface and inside of natural graphite or artificial graphite may be used. A method for producing a composite graphite-based carbon powder is, for example, putting a solution in which coal tar pitch is dissolved in tar oil into graphite-based carbon powder, stirring, and then removing the tar oil component by distillation under reduced pressure so that the pitch is on the surface and inside. A precursor of a composite graphite-based carbon powder adhered and impregnated with is obtained. This is filled in a crucible and heat-treated at, for example, 800 ° C. to 1300 ° C. to obtain a composite graphite carbon powder.

これらの黒鉛系負極材料をリチウムイオン二次電池の負極材料として用いる場合、とくに水溶性バインダを用いる負極合剤では、負極集電体との剥離強度が低いため塗布電極の製造歩留が低く、またこれらを負極として用いて作製した電池のサイクル特性が低いという問題があった。この問題を解決するため、本発明では炭素粉末の表面にSiO、Alを付着した炭素粉末Iとアクリル酸系ポリマーの被覆を有する炭素粉末IIとを別々に有する負極材料を用いる。 When these graphite-based negative electrode materials are used as negative electrode materials for lithium ion secondary batteries, particularly in negative electrode mixtures using a water-soluble binder, the peel strength from the negative electrode current collector is low, so the production yield of the coated electrode is low, In addition, there is a problem that a battery manufactured using these as a negative electrode has low cycle characteristics. In order to solve this problem, in the present invention, a negative electrode material having carbon powder I having SiO 2 and Al 2 O 3 attached on the surface of carbon powder and carbon powder II having a coating of an acrylic acid polymer separately is used.

〔炭素粉末I〕
炭素粉末Iは、上記の黒鉛系炭素粉末の表面にSiO粉および/またはAl粉が付着した複合炭素粉末で、SiO粉とAl粉の合計の含有量が負極材料に用いる全炭素粉末量、アクリル酸系ポリマー、およびSiO粉とAl粉の合計質量100質量%に対して0.1〜3.0質量%である。
[Carbon powder I]
Carbon powder I is a composite carbon powder in which SiO 2 powder and / or Al 2 O 3 powder adheres to the surface of the graphite-based carbon powder, and the total content of SiO 2 powder and Al 2 O 3 powder is a negative electrode material. total carbon powder amount used in a 0.1 to 3.0 wt% based on the total weight 100 weight% of an acrylic acid polymer, and SiO 2 powder and Al 2 O 3 powder.

本発明は、SiO、Alのみを付着させた炭素粉末Iと、別途アクリル酸系ポリマーを被覆した炭素粉末IIを別々に製造し混合する。また、どちらの処理も行わない炭素粉末(付着処理をしない第3の炭素粉末III)を本発明の効果が失われない範囲で混合してもよい。混合後の炭素材料の総質量に対するSiO、Alの付着量、およびアクリル酸系ポリマーの被覆量がそれぞれ本発明で規定する範囲内であれば上述と同様の効果が得られる。一方、SiO、Alの付着処理とアクリル酸系ポリマーによる被覆を同一の炭素粉末粒子に対して行った場合、ポリマーによる被覆がなされた部分の炭素粉末表面にはSiO、Alの微粒が直接付着しないため、十分な剥離強度が得られないことが確認(後に記載する比較例4参照)されている。 In the present invention, carbon powder I to which only SiO 2 and Al 2 O 3 are attached and carbon powder II separately coated with an acrylic acid-based polymer are separately produced and mixed. Moreover, you may mix the carbon powder which does not perform either process (3rd carbon powder III which does not perform an adhesion | attachment process) in the range by which the effect of this invention is not lost. The effects similar to those described above can be obtained if the adhesion amount of SiO 2 and Al 2 O 3 and the coating amount of the acrylic acid polymer with respect to the total mass of the carbon material after mixing are within the ranges specified in the present invention. On the other hand, when the adhesion treatment of SiO 2 and Al 2 O 3 and the coating with the acrylic acid polymer are performed on the same carbon powder particles, the surface of the carbon powder coated with the polymer has SiO 2 , Al 2 It has been confirmed that sufficient peel strength cannot be obtained because the O 3 fine particles do not adhere directly (see Comparative Example 4 described later).

(炭素粉末へのSiO、Alの付着処理)
炭素粉末へのSiO、Alの付着は、SiO、Alそれぞれ単独でも両方を同一炭素粉末に付着させてもよい。炭素粉末に付着させるSiO、Alの合計量は、0.1〜3.0質量%の範囲が適当であり、好ましくは0.3〜2.0質量%、より好ましくは0.5〜1.0質量%の範囲である。SiO、Alの付着量が0.1質量%以下では剥離強度向上の効果がほとんど得られない。一方、3.0質量%超では添加の効果が飽和し、極端に加え過ぎると逆に剥離強度は低下する。またリチウムイオン二次電池性能に対しても、容量低下を招く。
(Adhesion treatment of SiO 2 and Al 2 O 3 to carbon powder)
The SiO 2 and Al 2 O 3 may be attached to the carbon powder by attaching SiO 2 or Al 2 O 3 alone or both to the same carbon powder. The total amount of SiO 2 and Al 2 O 3 attached to the carbon powder is suitably in the range of 0.1 to 3.0% by mass, preferably 0.3 to 2.0% by mass, more preferably 0.00. It is the range of 5-1.0 mass%. When the adhesion amount of SiO 2 and Al 2 O 3 is 0.1% by mass or less, the effect of improving the peel strength is hardly obtained. On the other hand, if it exceeds 3.0% by mass, the effect of addition is saturated, and if it is excessively added, the peel strength decreases. In addition, the capacity of the lithium ion secondary battery is reduced.

付着処理の方法は限定されない。例えば黒鉛系炭素粉末に、SiOおよび/またはAlの微粒子を添加し、ミキサー等で剪断力をかけながら、混合処理(以下、剪断力をかけて混合する処理を、メカノケミカル処理と記す。)を行い炭素粉末Iを製造する。
メカノケミカル処理の方法は、攪拌翼の付いた混合装置や或いは摩砕装置など、粉末にせん断が掛けられる方式の混練装置が選択される。これらの装置を用いて、SiO、Alの微粒が負極材料の炭素粉末表面に均一に塗布されるよう、せん断を掛けながら混合することで目的の付着処理が行われる。
The method of adhesion treatment is not limited. For example, by adding fine particles of SiO 2 and / or Al 2 O 3 to graphite-based carbon powder and applying a shearing force with a mixer or the like, a mixing process (hereinafter, a process of applying a shearing force is referred to as a mechanochemical process) To produce carbon powder I.
As the method of mechanochemical treatment, a kneading apparatus of a type in which shearing is applied to the powder, such as a mixing apparatus with a stirring blade or a grinding apparatus, is selected. Using these devices, the desired adhesion treatment is performed by mixing while applying shear so that the fine particles of SiO 2 and Al 2 O 3 are uniformly applied to the surface of the carbon powder of the negative electrode material.

メカノケミカル処理に用いる装置としては、圧縮力と剪断力とを同時に掛けることができる装置であれば特に限定されず、例えば、ヘンシェルミキサー、ナウターミキサー、ピンミル式やボールミル式の粉砕機や加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム(奈良機械製作所製)、メカノマイクロス(奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン社製)等の装置を使用することができる。   The apparatus used for the mechanochemical treatment is not particularly limited as long as it can simultaneously apply a compressive force and a shearing force. For example, a Henschel mixer, a Nauter mixer, a pin mill type or ball mill type pulverizer, or a pressurizing machine. A kneader such as a kneader or a two-roller, a rotating ball mill, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a mechanomicros (manufactured by Nara Machinery Co., Ltd.), a mechanofusion system (manufactured by Hosokawa Micron), etc. can be used. .

SiOおよび/またはAlの微粒子の平均粒径は1μm以下であるのが好ましく0.1μm以下であるのがより好ましい。SiOおよび/またはAlの微粒子は、気相法によって製造された粉状物、水、アルコール、有機溶媒などに分散されたゾルやコロイドが用いられる。形状は特に制限されないが、粒状、塊状、球状、板状、繊維状、膜状、鱗片状などのいずれであってもよいが、粒状、塊状、球状などの球状に近い形状が好ましい。 The average particle diameter of the fine particles of SiO 2 and / or Al 2 O 3 is preferably 1 μm or less, and more preferably 0.1 μm or less. As the fine particles of SiO 2 and / or Al 2 O 3 , a sol or colloid dispersed in a powdery product, water, alcohol, organic solvent or the like produced by a gas phase method is used. The shape is not particularly limited, but may be any of granular, lump, spherical, plate-like, fibrous, film-like, and scale-like shapes, and a shape close to a spherical shape such as granular, lump-like, and spherical is preferable.

〔炭素粉末II〕
炭素粉末IIは、上記の黒鉛系炭素粉末の表面をアクリル酸系ポリマーで被覆する。アクリル酸系ポリマーの含有量は、負極材料に用いる全炭素粉末量、アクリル酸系ポリマー、およびSiO粉とAl粉の合計質量100質量%に対して0.1〜2.5質量%である。好ましくはアクリル酸系ポリマーの含有量は、0.2〜1.0質量%、より好ましくは、0.3〜0.8質量%である。
被覆されるポリマーは、アクリル酸系ポリマーであれば限定されない。ポリアクリル酸、ポリアクリル酸ナトリウム、アクリル酸/マレイン酸共重合体塩等のいずれも用いることができる。またポリアクリル酸は試薬では分子量5000〜1000000のものが市販されているが、何れを用いても適量の添加に伴い効果が出現する。
用いる黒鉛系炭素材料は、上述した天然黒鉛や、コークス系やメソフェーズ系の人造黒鉛、複合黒鉛系炭素粉末も使用が可能であり、また黒鉛は単独使用に限られず、2種類以上となっても黒鉛系炭素材料の混合物総量に占めるポリマーの総量が0.1〜2.5質量%の範囲内であれば剥離強度上昇の効果は発現する。
(Carbon powder II)
The carbon powder II coats the surface of the graphite-based carbon powder with an acrylic acid-based polymer. The content of acrylic acid polymer is 0.1 to 2.5 mass with respect to total mass 100% by weight of the total carbon powder content, acrylic acid polymer, and SiO 2 powder and Al 2 O 3 powder used in the negative electrode material %. The content of the acrylic acid polymer is preferably 0.2 to 1.0% by mass, more preferably 0.3 to 0.8% by mass.
The polymer to be coated is not limited as long as it is an acrylic acid polymer. Any of polyacrylic acid, sodium polyacrylate, acrylic acid / maleic acid copolymer salt and the like can be used. In addition, polyacrylic acid having a molecular weight of 5000 to 1000000 is commercially available as a reagent. However, any of them will have an effect when an appropriate amount is added.
As the graphite-based carbon material used, the above-mentioned natural graphite, coke-based or mesophase-based artificial graphite, and composite graphite-based carbon powder can also be used, and graphite is not limited to single use, and may be two or more types. If the total amount of the polymer in the total amount of the graphite-based carbon material mixture is within the range of 0.1 to 2.5% by mass, the effect of increasing the peel strength is exhibited.

(炭素粉末へのポリアクリル酸の被覆処理)
被覆処理の方法は限定されない。炭素粉末へのアクリル酸系ポリマー被覆は、固体を用いて例えば前述のメカノケミカル処理のような方法であっても、また水溶液として例えばプラネタリーミキサーのような混練装置を用いて混合することによっても表面に被覆処理することが可能である。何れの処理でも電極の剥離強度を上昇させる働きを出現させることが出来る。付着させる炭素粉末は、特別な処理を行っていない黒鉛系炭素粉末を用いてもよいし、先にメカノケミカル処理で説明したコールタールピッチが表面および内部に付着した複合黒鉛系炭素粉末を用いてもよい。
具体的には、黒鉛系炭素粉末に、ポリアクリル酸の粉末とイオン交換水とを添加しプラネタリーミキサーで混練処理(以下、混合する処理を、ミキサー混合処理と記す。)した後、真空乾燥して水分を完全に除去する。また、黒鉛系炭素粉末および/またはコールタールピッチが表面および内部に付着した複合黒鉛系炭素粉末とアクリル酸系ポリマーの固体を用いて、ヘンシェルミキサー等で剪断力をかけながら、メカノケミカル処理を行い炭素粉末IIを製造してもよい。
(Coating treatment of polyacrylic acid on carbon powder)
The method of coating treatment is not limited. The acrylic polymer coating on the carbon powder may be performed by using a solid, for example, a method such as the above-mentioned mechanochemical treatment, or by mixing the aqueous solution using a kneading apparatus such as a planetary mixer. It is possible to coat the surface. In any treatment, the function of increasing the peel strength of the electrode can be exhibited. The carbon powder to be adhered may be a graphite-based carbon powder that has not been subjected to a special treatment, or a composite graphite-based carbon powder having the coal tar pitch previously described in the mechanochemical treatment adhered to the surface and inside. Also good.
Specifically, after adding polyacrylic acid powder and ion-exchanged water to graphite-based carbon powder and kneading with a planetary mixer (hereinafter, the mixing process is referred to as a mixer mixing process), followed by vacuum drying. To completely remove moisture. Also, mechanochemical treatment is performed using a graphite carbon powder and / or a composite graphite carbon powder with a coal tar pitch attached to the surface and inside and a solid of an acrylic acid polymer while applying a shearing force with a Henschel mixer or the like. Carbon powder II may be produced.

<2.負極合剤>
上記の本発明のリチウムイオン二次電池負極合剤は、本発明の炭素材料である炭素粉末Iと炭素粉末IIとを用いる。上記の黒鉛系炭素材料で、付着処理をしない第3の炭素粉末IIIを本発明の効果が失われない範囲で混合してもよい。炭素粉末IIIを混合する場合も、SiO粉および/またはAl粉の含有量は、0.1〜3.0質量%であり、アクリル酸系ポリマーの含有量は、0.1〜2.5質量%とする。
本発明を実施するに際しては、SiO、Alの付着処理を行った炭素粉末Iと、アクリル酸系ポリマーの被覆処理を行った炭素粉末IIを予め別々に製造し、バインダーと混合して負極合剤を製造する。炭素粉末Iと炭素粉末IIとを予め混合して、得られる混合物に水溶性バインダーを添加する製造方法が好ましい。炭素粉末Iとバインダー、炭素粉末IIとバインダーとを混合してから全体を混合する方法は、混合物の粘度が高くなるが、行ってもよく本発明の製造方法は限定されない。
〔水溶性バインダ〕
バインダとしては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いることが好ましく、例えば、ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴム(SBR)、さらにはカルボキシメチルセルロース(CMC)などが用いられる。また、これらを併用することもできる。バインダは通常、負極合剤の全量中、固形分で1〜20質量%程度の量で用いるのが好ましい。より好ましくは1〜7質量%である。その理由は、バインダが少なすぎると剥離強度が低くなる。バインダが多すぎるとバインダが電気抵抗となり電池特性が低下する。
負極合剤の作製の具体例として、前記配合負極材料の粒子をバインダと混合することによって負極合剤を調製し、この負極合剤を、通常、集電体の片面または両面に塗布することで負極合剤層を形成する方法が挙げられる。
〔溶媒〕
負極電極の作製には、負極作製用の通常の溶媒を用いることができる。負極合剤を溶媒中に分散させ、ペースト状にした後、集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着される。溶媒は公知の溶媒から選択して用いることができる。より具体的には、例えば、前記負極材料の粒子とスチレンブタジエンゴムなどの水分散粘結剤、カルボキシメチルセルロースなどの水溶性バインダとを、水、アルコールなどの溶媒と混合してスラリーとした後、ニーダーやミキサーなどで混練してペーストを調製する。このペーストを集電体の片面または両面に塗布し、乾燥すれば、負極合剤層が均一に接着した負極が得られる。負極合剤層の膜厚は好ましくは10〜200μm、より好ましくは20〜100μmである。
<2. Negative electrode mix>
The lithium ion secondary battery negative electrode mixture of the present invention uses carbon powder I and carbon powder II, which are the carbon materials of the present invention. You may mix the 3rd carbon powder III which does not perform an adhesion | attachment process with said graphite type carbon material in the range by which the effect of this invention is not lost. Also when carbon powder III is mixed, the content of SiO 2 powder and / or Al 2 O 3 powder is 0.1 to 3.0% by mass, and the content of acrylic acid polymer is 0.1 to 3.0% by mass. 2.5% by mass.
In carrying out the present invention, carbon powder I that has been subjected to adhesion treatment of SiO 2 and Al 2 O 3 and carbon powder II that has been subjected to coating treatment of an acrylic acid polymer are separately prepared in advance and mixed with a binder. To produce a negative electrode mixture. A production method in which carbon powder I and carbon powder II are mixed in advance and a water-soluble binder is added to the resulting mixture is preferred. The method of mixing the whole after mixing the carbon powder I and the binder and the carbon powder II and the binder increases the viscosity of the mixture, but may be performed and the production method of the present invention is not limited.
(Water-soluble binder)
As the binder, those having chemical stability and electrochemical stability to the electrolyte are preferably used. For example, polyethylene, polyvinyl alcohol, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like are used. Used. Moreover, these can also be used together. In general, the binder is preferably used in an amount of about 1 to 20% by mass in solid content in the total amount of the negative electrode mixture. More preferably, it is 1-7 mass%. The reason is that if there is too little binder, the peel strength will be low. If there is too much binder, the binder becomes an electric resistance and the battery characteristics are deteriorated.
As a specific example of the preparation of the negative electrode mixture, the negative electrode mixture is prepared by mixing particles of the above-described mixed negative electrode material with a binder, and this negative electrode mixture is usually applied to one or both sides of the current collector. The method of forming a negative mix layer is mentioned.
〔solvent〕
For production of the negative electrode, a normal solvent for producing a negative electrode can be used. When the negative electrode mixture is dispersed in a solvent and made into a paste, and then applied to the current collector and dried, the negative electrode mixture layer is uniformly and firmly adhered to the current collector. The solvent can be selected from known solvents. More specifically, for example, after the particles of the negative electrode material and an aqueous dispersion binder such as styrene butadiene rubber and a water-soluble binder such as carboxymethyl cellulose are mixed with a solvent such as water and alcohol to form a slurry, A paste is prepared by kneading with a kneader or a mixer. If this paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly bonded can be obtained. The film thickness of the negative electrode mixture layer is preferably 10 to 200 μm, more preferably 20 to 100 μm.

<3.負極合剤の製造方法>
上記の炭素粉末Iと炭素粉末II、必要な場合はこれらと、どちらの処理も行わない炭素粉末(付着処理をしない第3の炭素粉末III)を予め混合するのが好ましい。
前記炭素粉末Iと前記炭素粉末IIの割合が、好ましくは質量比で炭素粉末I/炭素粉末II=10/90〜90/10である。より好ましくは、質量比で炭素粉末I/炭素粉末II=20/80〜80/20、さらに好ましくは、質量比で炭素粉末I/炭素粉末II=40/60〜60/40である。最も好ましくは質量比で炭素粉末I/炭素粉末II=40/60〜20/80である。
この範囲であると、炭素粉末IのSiO、Alの付着部が、炭素粉末IIのアクリル酸ポリマーの被覆部に均一に作用することができるので好ましい。
混練方法は、炭素粉末I、IIと、必要な場合は炭素粉末IIIとを、プラネタリ―ミキサーで溶媒に水を加えて混合する。得られた混合物を場合により真空乾燥する。得られた混合物に水溶性バインダを添加し、さらに混合して負極合剤を得る方法が例示できる。
<3. Method for producing negative electrode mixture>
It is preferable to mix in advance the carbon powder I and the carbon powder II described above, and if necessary, the carbon powder that is not subjected to any treatment (the third carbon powder III that is not subjected to the adhesion treatment).
The ratio of the carbon powder I and the carbon powder II is preferably carbon powder I / carbon powder II = 10/90 to 90/10 in mass ratio. More preferably, the carbon powder I / carbon powder II is 20/80 to 80/20 by mass ratio, and more preferably, the carbon powder I / carbon powder II is 40/60 to 60/40 by mass ratio. Most preferably, carbon powder I / carbon powder II = 40/60 to 20/80 in terms of mass ratio.
Within this range, the SiO 2 and Al 2 O 3 adhering portions of the carbon powder I can work uniformly on the acrylic polymer coating portion of the carbon powder II, which is preferable.
In the kneading method, carbon powders I and II and, if necessary, carbon powder III are mixed by adding water to a solvent with a planetary mixer. The resulting mixture is optionally vacuum dried. An example is a method in which a water-soluble binder is added to the obtained mixture and further mixed to obtain a negative electrode mixture.

次に、本発明の負極材料を用いたリチウムイオン二次電池(以下、「本発明のリチウムイオン二次電池」ともいう)について説明する。   Next, a lithium ion secondary battery (hereinafter also referred to as “the lithium ion secondary battery of the present invention”) using the negative electrode material of the present invention will be described.

[リチウムイオン二次電池]
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正・負極はそれぞれリチウムイオンの担持体からなり、充放電過程におけるリチウムイオンの出入は層間で行われる。本質的に、充電時にはリチウムイオンが負極中にドープされ、放電時には負極から脱ドープする電池機構である。
本発明のリチウムイオン二次電池は、本発明の負極材料を用いること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準ずる。
[Lithium ion secondary battery]
In general, a lithium ion secondary battery includes a negative electrode, a positive electrode, and a nonaqueous electrolyte as main battery components. The positive and negative electrodes are each composed of a lithium ion carrier, and lithium ions are input and output between layers. In essence, this is a battery mechanism in which lithium ions are doped into the negative electrode during charging and are dedoped from the negative electrode during discharging.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode material of the present invention is used, and other battery components conform to the elements of a general lithium ion secondary battery.

〔負極〕
具体的には、本発明の負極合剤を、通常、集電体の片面または両面に塗布することで負極合剤層を形成する。この際、通常の溶媒を用いることができる。
(集電体)
負極に用いる集電体の形状としては、特に限定されず、例えば、箔状、;メッシュ、エキスパンドメタルなどの網状が挙げられる。集電体としては、例えば、銅、ステンレス、ニッケル等が挙げられる。
[Negative electrode]
Specifically, the negative electrode mixture layer is formed by applying the negative electrode mixture of the present invention to one or both sides of the current collector. At this time, a normal solvent can be used.
(Current collector)
The shape of the current collector used for the negative electrode is not particularly limited, and examples thereof include a foil shape; and a net shape such as a mesh and an expanded metal. Examples of the current collector include copper, stainless steel, and nickel.

〔正極〕
正極の材料(正極活物質)としては、充分量のリチウムイオンをドープ/脱ドープし得るものを選択するのが好ましい。そのような正極活物質としては、例えば、遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそれらのリチウム含有化合物、一般式MMo8−y(式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは遷移金属などの金属を表す)で表されるシェブレル相化合物、りん酸鉄リチウム、活性炭、活性炭素繊維などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。バナジウム酸化物はV 、V13 、V 、V などである。
[Positive electrode]
As a material for the positive electrode (positive electrode active material), it is preferable to select a material that can be doped / dedoped with a sufficient amount of lithium ions. Examples of such a positive electrode active material include transition metal oxides, transition metal chalcogenides, vanadium oxides and lithium-containing compounds thereof, and general formula M X Mo 6 S 8-y (where X is 0 ≦ X ≦ 4, Y is a numerical value in a range of 0 ≦ Y ≦ 1, and M represents a metal such as a transition metal), a lithium chelate phosphate compound, lithium iron phosphate, activated carbon, activated carbon fiber, and the like. May be used alone or in combination of two or more. Examples of the vanadium oxide include V 2 O 5 , V 6 O 13 , V 2 O 4 , and V 3 O 8 .

リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。リチウム含有遷移金属酸化物は、具体的には、LiM(1)1−pM(2)(式中Pは0≦P≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる)、または、LiM(1)2−qM(2)(式中Qは0≦Q≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる)が例示される。ここで、Mで示される遷移金属元素としては、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどが挙げられ、Co、Fe、Mn、Ti、Cr、V、Alが好ましい。好ましい遷移金属酸化物は、LiCoO、LiNiO 、LiMnO、LiNi0.9 Co0.1、LiNi0.5 Co0.5 などである。
このようなリチウム含有遷移金属酸化物は、例えば、Li、遷移金属の酸化物または塩類を出発原料とし、これら出発原料を組成に応じて混合し、酸素雰囲気下600〜1000℃の温度範囲で焼成することにより得ることができる。なお、出発原料は酸化物または塩類に限定されず、水酸化物などからも合成可能である。
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Specifically, the lithium-containing transition metal oxide is LiM (1) 1-p M (2) p O 2 (wherein P is a numerical value in the range of 0 ≦ P ≦ 1, M (1), M (2) is composed of at least one transition metal element) or LiM (1) 2-q M (2) q O 4 (wherein Q is a numerical value in the range of 0 ≦ Q ≦ 1 and M (1 And M (2) is composed of at least one transition metal element). Here, examples of the transition metal element represented by M include Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, and Sn. Co, Fe, Mn, Ti, Cr, and V Al is preferred. Preferred transition metal oxides include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.
Such lithium-containing transition metal oxides are, for example, Li, transition metal oxides or salts as starting materials, these starting materials are mixed according to the composition, and fired in a temperature range of 600 to 1000 ° C. in an oxygen atmosphere. Can be obtained. Note that the starting materials are not limited to oxides or salts, and can be synthesized from hydroxides or the like.

正極活物質は、前記酸化物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤などの各種添加剤を適宜に使用することができる。   The positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent, can be used suitably.

このような正極材料を用いて正極を形成する方法としては、例えば、正極材料、結合剤および導電剤からなる正極合剤を集電体の両面に塗布することで正極合剤層を形成する。結合剤としては、負極で例示したものを使用できる。導電剤としては、例えば、炭素材料、黒鉛、カーボンブラック、VGCFを使用できる。集電体の形状は特に限定されず、負極と同様の形状のものが用いられる。   As a method of forming a positive electrode using such a positive electrode material, for example, a positive electrode mixture layer is formed by applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive agent to both surfaces of a current collector. As the binder, those exemplified for the negative electrode can be used. As the conductive agent, for example, a carbon material, graphite, carbon black, or VGCF can be used. The shape of the current collector is not particularly limited, and the same shape as the negative electrode is used.

上述した負極および正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を、適宜使用することができる。   In forming the above-described negative electrode and positive electrode, various conventionally known additives such as a conductive agent and a binder can be appropriately used.

〔非水電解質〕
非水電解質としては、通常の非水電解液に使用される電解質の塩である。例えば、LiPF 、LiBF、LiAsF 、LiClO 、LiB(C )、LiCl、LiBr、LiCFSO 、LiCHSO 、LiN(CF SO 、LiC(CF SO 、LiN(CFCHOSO、LiN(CF CF OSO 、LiN(HCFCF CH OSO、LiN[(CF CHOSO、LiB[C (CF 、LiAlCl、LiSiF などのリチウム塩を用いることができる。特にLiPF 、LiBFが酸化安定性の点から好ましく用いられる。
非水電解液中の電解質塩濃度は0.1〜5mol/Lが好ましく、0.5〜3.0mol/L がより好ましい。 非水電解質は、液系の非水電解液であってもよいし、固体電解質や、ゲル電解質などの高分子電解質であってもよい。
[Non-aqueous electrolyte]
The non-aqueous electrolyte is an electrolyte salt used in a normal non-aqueous electrolyte. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 LiB [C 6 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 6 and other lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferably used from the viewpoint of oxidation stability.
The electrolyte salt concentration in the non-aqueous electrolyte is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 3.0 mol / L. The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte.

液系の非水電解質液とする場合には、非水溶媒として、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非プロトン性有機溶媒を使用できる。   In the case of a liquid nonaqueous electrolyte solution, an aprotic organic solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate or the like can be used as the nonaqueous solvent.

高分子電解質とする場合には、可塑剤(非水電解液)でゲル化されたマトリクス高分子を含む。このマトリクス高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子、ポリメタクリレート系、ポリアクリレート系、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子などを単独または混合して用いることができ、なかでも、酸化還元安定性等の観点から、フッ素系高分子が好ましい。
高分子電解質に含有される可塑剤(非水電解液)を構成する電解質塩や非水溶媒としては、上述したものを使用できる。
In the case of a polymer electrolyte, a matrix polymer gelled with a plasticizer (non-aqueous electrolyte) is included. Examples of the matrix polymer include ether-based polymers such as polyethylene oxide and cross-linked products thereof, fluorine-based polymers such as polymethacrylate-based, polyacrylate-based, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. Can be used alone or as a mixture, and among them, a fluorine-based polymer is preferable from the viewpoint of redox stability and the like.
As the electrolyte salt and non-aqueous solvent constituting the plasticizer (non-aqueous electrolyte solution) contained in the polymer electrolyte, those described above can be used.

本発明のリチウムイオン二次電池においては、セパレータを使用することができるが、ゲル電解質を用いて、例えば、本発明の炭素材料IおよびIIを含有する負極、ゲル電解質、正極をこの順で積層し、電池外装材内に収容することで構成することも可能である。
本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、例えば積層型や捲回型であってもよいし、円筒型、角型、コイン型から任意に選択することができる。
In the lithium ion secondary battery of the present invention, a separator can be used. For example, a negative electrode containing the carbon materials I and II of the present invention, a gel electrolyte, and a positive electrode are laminated in this order using a gel electrolyte. However, it can also be configured by being housed in a battery exterior material.
The structure of the lithium ion secondary battery of the present invention is arbitrary, and is not particularly limited with respect to its shape and form. For example, it may be a stacked type, a wound type, a cylindrical type, a square type, or a coin type Can be selected arbitrarily.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

<評価方法>
(1)負極電極の剥離強度の測定方法
得られた負極電極の剥離強度は、電極にプレス成形圧力を加えない状態において、JIS K 6854−2に示された180°剥離強度測定手法に則りオートグラフを用いて荷重を測定し算出する。
<Evaluation method>
(1) Method of measuring peel strength of negative electrode The peel strength of the obtained negative electrode is determined according to the 180 ° peel strength measurement method shown in JIS K 6854-2 in a state where no press molding pressure is applied to the electrode. Measure and calculate the load using the graph.

(2)負極の電池特性(放電容量、初期充放電効率およびサイクル特性)の測定方法
得られた負極電極を用い、以下の要領でコイン型二次電池を作製し、電池評価を行った。
評価電池は、図1に示す構造のコイン型二次電池を作製した。
集電体7bに密着した作用電極(負極)2と集電体7aに密着した対極(正極)4との間に、非電解質溶液を含浸させたセパレータ5を挟んで、積層した。その後、作用電極集電体7b側が外装カップ1内に、対極4集電体7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。負極と対極である正極との間に、電解液を含浸させたセパレータを挟み積層し、その後、負極、正極を外装カップおよび外装缶に収容した上で外装カップと外装缶とを合わせた。その際、外装カップと外装缶との周縁部に絶縁ガスケットを介在させ、両周縁部をかしめ密閉した。
測定した電池特性は、放電容量、初期充放電効率およびサイクル特性の値であり、これらは25℃の温度下での充放電試験の結果から算出した。
(3)充電容量、放電容量
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。
充電容量測定の後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。
(4)初期充放電効率
次式から初期充放電効率を計算した。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)×100
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料から離なす過程を放電とした。
(2) Measuring method of battery characteristics (discharge capacity, initial charge / discharge efficiency, and cycle characteristics) of the negative electrode Using the obtained negative electrode, a coin-type secondary battery was produced in the following manner, and battery evaluation was performed.
As the evaluation battery, a coin-type secondary battery having the structure shown in FIG. 1 was produced.
The separator 5 impregnated with the non-electrolyte solution was sandwiched between the working electrode (negative electrode) 2 in close contact with the current collector 7b and the counter electrode (positive electrode) 4 in close contact with the current collector 7a. Thereafter, the exterior cup 1 and the exterior can 3 were combined so that the working electrode current collector 7 b side was accommodated in the exterior cup 1 and the counter electrode 4 current collector 7 a side was accommodated in the exterior can 3. At that time, the outer peripheral cup 1 and the outer can 3 were prepared by interposing an insulating gasket 6 between the outer peripheral cup 1 and the outer can 3 and caulking both peripheral portions. A separator impregnated with an electrolytic solution was sandwiched between the negative electrode and the positive electrode as a counter electrode, and then the negative electrode and the positive electrode were accommodated in the outer cup and the outer can, and then the outer cup and the outer can were combined. At that time, an insulating gasket was interposed between the peripheral portions of the outer cup and the outer can, and both peripheral portions were caulked and sealed.
The measured battery characteristics are values of discharge capacity, initial charge / discharge efficiency, and cycle characteristics, which were calculated from the results of a charge / discharge test at a temperature of 25 ° C.
(3) Charging capacity and discharging capacity After performing 0.9 mA constant current charging until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time.
After measuring the charge capacity, it was paused for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. This was the first cycle.
(4) Initial charge / discharge efficiency The initial charge / discharge efficiency was calculated from the following equation.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity) × 100
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of separating from the negative electrode material was discharged.

(5)サイクル特性
放電容量、初期充放電効率を評価した評価電池とは別の評価電池を上記コイン型電池と同様に作製し、以下のような評価を行った。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。50回充放電を繰返し、得られた放電容量から、次式を用いてサイクル特性を計算した。
サイクル特性=(第50サイクルでの放電容量/第1サイクルでの放電容量)×100
(5) Cycle characteristics An evaluation battery different from the evaluation battery that evaluated the discharge capacity and the initial charge / discharge efficiency was produced in the same manner as the coin-type battery, and the following evaluation was performed.
After 4.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 50 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following formula.
Cycle characteristics = (discharge capacity at the 50th cycle / discharge capacity at the first cycle) × 100

(実施例1)
1)複合黒鉛粉末の製造
オートクレーブに、芯材として天然黒鉛(平均粒径10μm)を入れ、さらに有機化合物としてコールタールピッチをタール油に溶解させた溶液を入れ、攪拌下に140℃に加熱した。加熱を継続した後、減圧蒸留によってタール油成分を除去し、ピッチが表面および内部に付着、含浸した複合黒鉛粉末の前駆体を得た。これを坩堝に充填し1000℃で熱処理して、平均粒径13μmの複合黒鉛粉末「A」を得た。
Example 1
1) Manufacture of composite graphite powder In an autoclave, natural graphite (average particle size: 10 μm) was added as a core material, and a solution in which coal tar pitch was dissolved in tar oil was added as an organic compound, and heated to 140 ° C. with stirring. . After continuing the heating, the tar oil component was removed by distillation under reduced pressure to obtain a precursor of composite graphite powder having pitch adhered and impregnated on the surface and inside. This was filled in a crucible and heat treated at 1000 ° C. to obtain composite graphite powder “A” having an average particle size of 13 μm.

(メソフェーズ系材料の作製方法)
コールタールピッチを熱処理することで得られたメソフェーズ小球体を坩堝に充填して3000℃で黒鉛化処理を行い、平均粒径15μmのメソフェーズ系の人造黒鉛「B」を得た。
(Method for producing mesophase materials)
Mesophase spherules obtained by heat treatment of coal tar pitch were filled in a crucible and graphitized at 3000 ° C. to obtain mesophase-based artificial graphite “B” having an average particle size of 15 μm.

2)炭素粉末Iの製造(複合黒鉛粉末「A」へのSiO、Alの付着)
上述の複合黒鉛粉末「A」を50質量部に対し、平均粒径50nmのSiO微粒子を1質量部添加、ヘンシェルミキサーで周速10m/secのせん断を掛けながら30分間混合処理を行い、炭素粉末Iである複合黒鉛粉末「A」へのSiO付着品(炭素粉末I)を51質量部得た。 この方法を表で「メカノケミカル」と記載する。
2) Production of carbon powder I (attachment of SiO 2 and Al 2 O 3 to composite graphite powder “A”)
50 parts by mass of the above composite graphite powder “A”, 1 part by mass of SiO 2 fine particles having an average particle diameter of 50 nm are added, and a mixing process is performed for 30 minutes while applying shear at a peripheral speed of 10 m / sec with a Henschel mixer. 51 parts by mass of a SiO 2 adhering product (carbon powder I) to the composite graphite powder “A” as the powder I was obtained. This method is described as “Mechanochemical” in the table.

3)炭素粉末IIの製造(人造黒鉛「B」へのアクリル酸系ポリマーの被覆)
上述のメソフェーズ系の人造黒鉛「B」を50質量部に対し、分子量5,000のポリアクリル酸の粉末を1質量部とイオン交換水200質量部を添加し、プラネタリーミキサーで30分間混練処理を行った後、90℃で真空乾燥を行い水分を完全に除去し、炭素粉末IIである人造黒鉛「B」へのポリアクリル酸被覆品(炭素粉末II)を51質量部得た。この方法を表で「ミキサー混合」と記載する。表中、PAAは、ポリアクリル酸であり、PMMAは、ポリメチルメタクリレートである。
3) Production of carbon powder II (artificial graphite “B” coated with acrylic polymer)
1 part by weight of polyacrylic acid powder having a molecular weight of 5,000 and 200 parts by weight of ion-exchanged water are added to 50 parts by weight of the above-described artificial mesophase graphite “B”, and kneaded with a planetary mixer for 30 minutes. Then, vacuum drying was performed at 90 ° C. to completely remove moisture, and 51 parts by mass of a polyacrylic acid-coated product (carbon powder II) on artificial graphite “B”, which was carbon powder II, was obtained. This method is described as “mixer mixing” in the table. In the table, PAA is polyacrylic acid, and PMMA is polymethyl methacrylate.

4)負極電極の作製
上記で得られた炭素粉末Iと炭素粉末IIとを表1に示す質量比1で混合した。得られたリチウムイオン二次電池用負極材料は、2種の黒鉛系負極材料の混合物で、102質量部であった。SiO粉量は0.5質量%であり、ポリアクリル酸量は0.5質量%であった。
得られたリチウムイオン二次電池用負極材料に、固形分で1質量部のカルボキシメチルセルロースアンモニウムおよび2質量部のカルボキシ変性スチレンブタジエンゴムを加え、溶媒に水を用いてプラネタリーミキサーを用いて混合し、攪拌することで負極合剤ペーストを得た。得られたペーストを15μm厚みの銅箔上に塗布し、110℃の温度下にて真空乾燥させ、負極電極を得た。
4) Production of negative electrode The carbon powder I and the carbon powder II obtained above were mixed at a mass ratio of 1 shown in Table 1. The obtained negative electrode material for a lithium ion secondary battery was a mixture of two types of graphite-based negative electrode materials and was 102 parts by mass. The amount of SiO 2 powder was 0.5% by mass, and the amount of polyacrylic acid was 0.5% by mass.
1 part by mass of carboxymethyl cellulose ammonium and 2 parts by mass of carboxy-modified styrene butadiene rubber are added to the obtained negative electrode material for a lithium ion secondary battery, and mixed using a planetary mixer using water as a solvent. The negative electrode mixture paste was obtained by stirring. The obtained paste was applied onto a 15 μm thick copper foil and vacuum dried at a temperature of 110 ° C. to obtain a negative electrode.

5)剥離強度の測定
得られた負極電極について、プレス等による成形圧力印加はせず、JIS K 6854‐2に示された180°剥離強度測定手法に則りオートグラフを用いて荷重を測定し算出した。結果を表2に示した。剥離強度は35N/mで、目標の20N/mを上回る値であった。
5) Measurement of peel strength For the obtained negative electrode, the molding pressure was not applied by a press or the like, and the load was measured and calculated using an autograph according to the 180 ° peel strength measurement method shown in JIS K 6854-2. did. The results are shown in Table 2. The peel strength was 35 N / m, which exceeded the target value of 20 N / m.

6)対極(正極)の作製
リチウム金属箔(厚み0.5mm)をニッケルネットに押付け、直径15.5mmの円形に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔からなる対極(正極)を作製した。
6) Production of counter electrode (positive electrode) Lithium metal foil (thickness 0.5 mm) was pressed onto a nickel net and punched into a circular shape with a diameter of 15.5 mm, and the current collector made of nickel net was in close contact with the current collector. A counter electrode (positive electrode) made of lithium metal foil was produced.

7)電解質・セパレータ
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶媒に、LiPF6 を1mol/dm となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解質液が含浸したセパレータを作製した。
7) Electrolyte / Separator LiPF 6 was dissolved at a concentration of 1 mol / dm 3 in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

8)電池負極性能の特性
得られた負極電極について上記の構成のコイン型電池を試作し、電池特性を評価し結果を表2に示す。
放電容量355mAh/g、初回充放電効率93.8%で、各々目標水準の正常な値を示した。
また、サイクル特性は94.2%で目標水準の93%以上を上回る良好な値であった。
8) Characteristics of Battery Negative Electrode Performance A coin-type battery having the above-described configuration was prototyped for the obtained negative electrode, the battery characteristics were evaluated, and the results are shown in Table 2.
The discharge capacity was 355 mAh / g, and the initial charge / discharge efficiency was 93.8%, each showing a normal value of the target level.
The cycle characteristic was 94.2%, which was a good value exceeding 93% of the target level.

(実施例2〜6、比較例1〜3)
表1に示す原材料と製造条件で、実施例1と同様に、複合黒鉛粉末「A」、メソフェーズ系の人造黒鉛「B」を基材に、表1に示す、種々の条件・手順でSiO、Alの付着処理、アクリル酸系ポリマーの被覆を行い種々のサンプル電池として上記と同様のコイン型電池を製造した。得られた電池の剥離強度、および電池特性を実施例1と同様に評価した。結果を、表2に示す。
(Examples 2-6, Comparative Examples 1-3)
In the same manner as in Example 1, the raw materials and production conditions shown in Table 1 were mixed with a composite graphite powder “A” and mesophase-type artificial graphite “B” as a base material, and SiO 2 under various conditions and procedures shown in Table 1. Coin-type batteries similar to those described above were manufactured as various sample batteries by applying Al 2 O 3 and applying an acrylic acid polymer. The peel strength and battery characteristics of the obtained battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(比較例4)
人造黒鉛「B」とポリアクリル酸(PAA)とSiOとを混合後、実施例1と同様に、メカノケミカル処理を行って、ポリアクリル酸とSiOとを被覆・付着させた炭素粉末を得て、これに、複合黒鉛粉末「A」を混合した。ポリアクリル酸(PAA)とSiOは、それぞれ被覆・付着炭素粉末と複合黒鉛粉末「A」との混合物に対して0.5質量%であった。表1に示す炭素粉末I/炭素粉末IIは、比較例4の場合は複合黒鉛粉末「A」/人造黒鉛「B」との質量比を示す。得られた混合物に、実施例1と同様のバインダを添加して実施例1と同様に負極合剤を得た。実施例1と同様に負極を作成し、実施例1と同様の正極、セパレータ、電解質を用いて同様のコイン型電池を作成し電池特性を評価した。
(Comparative Example 4)
After mixing artificial graphite “B”, polyacrylic acid (PAA) and SiO 2 , a mechanochemical treatment was performed in the same manner as in Example 1 to obtain a carbon powder coated and adhered to polyacrylic acid and SiO 2. This was mixed with composite graphite powder “A”. Polyacrylic acid (PAA) and SiO 2 were 0.5% by mass with respect to the mixture of the coated and adhered carbon powder and the composite graphite powder “A”, respectively. In the case of Comparative Example 4, the carbon powder I / carbon powder II shown in Table 1 indicates a mass ratio of the composite graphite powder “A” / artificial graphite “B”. A binder similar to that in Example 1 was added to the obtained mixture to obtain a negative electrode mixture as in Example 1. A negative electrode was prepared in the same manner as in Example 1, and the same coin-type battery was prepared using the same positive electrode, separator, and electrolyte as in Example 1, and the battery characteristics were evaluated.

Figure 0005638015
Figure 0005638015

Figure 0005638015
Figure 0005638015

このような実施例1〜7と比較例1〜3とを対比すると、実施例は、炭素粉末の表面に所定量のSiOおよび/またはAlの微粒を付着した炭素粉末Iと、所定量のアクリル酸系ポリマーを被覆した炭素粉末IIを用いることにより、180°剥離強度が高く、同様の優れた電池特性が得られることがわかる。また、比較例1は、SiOおよび/またはAlが少なすぎ、アクリル酸系ポリマーが少なすぎるので、比較例2,3はそれぞれSiOおよび/またはAlが多すぎ、アクリル酸系ポリマーが多すぎるので、いずれも剥離強度が十分上がらないことがわかる。実施例4と比較例4とを対比すると、SiOおよび/またはAlとアクリル酸系ポリマーとを同一炭素粉末の表面に有すると、180°剥離強度が低いことがわかる。 When comparing Examples 1 to 7 and Comparative Examples 1 to 3, the example shows that the carbon powder I has a predetermined amount of SiO 2 and / or Al 2 O 3 fine particles attached to the surface of the carbon powder, It can be seen that by using the carbon powder II coated with a predetermined amount of acrylic acid polymer, the 180 ° peel strength is high and the same excellent battery characteristics can be obtained. Moreover, since Comparative Example 1 has too little SiO 2 and / or Al 2 O 3 and too little acrylic polymer, Comparative Examples 2 and 3 have too much SiO 2 and / or Al 2 O 3, respectively. Since there are too many acid type polymers, it turns out that neither peel strength raises sufficiently. When Example 4 is compared with Comparative Example 4, it can be seen that 180 ° peel strength is low when SiO 2 and / or Al 2 O 3 and an acrylic acid polymer are present on the surface of the same carbon powder.

本発明は、リチウムイオン二次電池の負極材料である炭素粉末の表面に、0.1〜3.0質量%のSiOおよび/またはAlの微粒を付着した炭素粉末Iと、0.1〜2.5質量%のアクリル酸系ポリマーを被覆した炭素粉末IIとを別々に原料として用いることで、電池の製造工程および電池性能上の重要な特性である剥離強度20N/m以上が実現可能で、容量・初回効率のほか、とくにサイクル特性で優れた負極材料を得ることができる。 The present invention relates to carbon powder I in which 0.1 to 3.0% by mass of SiO 2 and / or Al 2 O 3 fine particles are attached to the surface of carbon powder that is a negative electrode material of a lithium ion secondary battery, By using carbon powder II coated with 1 to 2.5% by mass of acrylic acid polymer separately as a raw material, a peel strength of 20 N / m or more, which is an important characteristic in the battery manufacturing process and battery performance, is achieved. It is feasible, and in addition to capacity and initial efficiency, a negative electrode material that is particularly excellent in cycle characteristics can be obtained.

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a 集電体
7b 集電体
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Separator 6 Insulating gasket 7a Current collector 7b Current collector

Claims (6)

炭素粉末の表面にSiO粉および/またはAl粉が付着した炭素粉末Iと
炭素粉末の表面にアクリル酸系ポリマーが被覆した炭素粉末IIとを含有するリチウムイオン二次電池用負極材料であって、
前記SiO粉とAl粉の合計の含有量が、
炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜3.0質量%であり、
前記アクリル酸系ポリマーの含有量が、
炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜2.5質量%であり、
前記炭素粉末Iと前記炭素粉末IIの割合が、質量比で炭素粉末I/炭素粉末II=10/90〜90/10であることを特徴とするリチウムイオン二次電池用負極材料。
A negative electrode material for a lithium ion secondary battery comprising carbon powder I having SiO 2 powder and / or Al 2 O 3 powder adhered to the surface of carbon powder, and carbon powder II having a surface coated with acrylic acid polymer on the surface of carbon powder Because
The total content of the SiO 2 powder and Al 2 O 3 powder is
Carbon powder, SiO 2 powder and / or Al 2 O 3 powder, and 0.1 to 3.0% by mass with respect to the total amount of acrylic acid polymer,
Content of the acrylic acid polymer is
0.1 to 2.5% by mass with respect to the total amount of carbon powder, SiO 2 powder and / or Al 2 O 3 powder, and acrylic polymer,
The ratio of the said carbon powder I and the said carbon powder II is carbon powder I / carbon powder II = 10 / 90-90 / 10 by mass ratio, The negative electrode material for lithium ion secondary batteries characterized by the above-mentioned.
請求項1に記載の負極材料と水溶性バインダーとの混合物を含有するリチウムイオン二次電池用負極合剤。   A negative electrode mixture for a lithium ion secondary battery, comprising a mixture of the negative electrode material according to claim 1 and a water-soluble binder. 請求項1に記載の負極材料を有することを特徴とするリチウムイオン二次電池用負極。   A negative electrode for a lithium ion secondary battery, comprising the negative electrode material according to claim 1. 請求項3に記載の負極を有することを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode according to claim 3. 炭素粉末の表面にSiO粉および/またはAl粉が付着した炭素粉末で、SiO粉とAl粉の合計の含有量が炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜3.0質量%である炭素粉末I、および
炭素粉末の表面にアクリル酸系ポリマーが被覆し、アクリル酸系ポリマーの含有量が炭素粉末、SiO粉および/またはAl粉、およびアクリル酸系ポリマー合計量に対して0.1〜2.5質量%である炭素粉末II、
を混合し、水溶性バインダーを添加して得られることを特徴とするリチウムイオン二次電池用負極合剤。
Carbon powder with SiO 2 powder and / or Al 2 O 3 powder adhered to the surface of the carbon powder, and the total content of SiO 2 powder and Al 2 O 3 powder is carbon powder, SiO 2 powder and / or Al 2 O 3 powder and carbon powder I which is 0.1-3.0% by mass with respect to the total amount of acrylic acid polymer, and the surface of the carbon powder is coated with acrylic acid polymer, and the content of acrylic acid polymer is Carbon powder II that is 0.1 to 2.5% by mass with respect to the total amount of carbon powder, SiO 2 powder and / or Al 2 O 3 powder, and acrylic acid polymer,
A negative electrode mixture for a lithium ion secondary battery, which is obtained by mixing water and adding a water-soluble binder.
請求項5に記載の負極合剤を負極集電体表面に塗布し、真空乾燥して得られるリチウムイオン二次電池用負極。   The negative electrode for lithium ion secondary batteries obtained by apply | coating the negative mix of Claim 5 to the negative electrode collector surface, and vacuum-drying.
JP2012015274A 2012-01-27 2012-01-27 Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Expired - Fee Related JP5638015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015274A JP5638015B2 (en) 2012-01-27 2012-01-27 Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015274A JP5638015B2 (en) 2012-01-27 2012-01-27 Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013157120A JP2013157120A (en) 2013-08-15
JP5638015B2 true JP5638015B2 (en) 2014-12-10

Family

ID=49052121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015274A Expired - Fee Related JP5638015B2 (en) 2012-01-27 2012-01-27 Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5638015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192470A (en) * 2018-04-24 2019-10-31 トヨタ自動車株式会社 Electrode and battery using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136417A1 (en) * 2014-03-13 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and method for fabricating electrode
KR101742854B1 (en) * 2014-09-30 2017-06-01 주식회사 엘지화학 Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR102323215B1 (en) 2015-05-20 2021-11-08 삼성전자주식회사 Electrode active material, electrode and energy storage device including the same, and method for preparing the electrode active material
CN111987296B (en) * 2018-12-17 2021-05-18 宁德新能源科技有限公司 Negative electrode material, and electrochemical device and electronic device using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070657B2 (en) * 2001-02-13 2012-11-14 ソニー株式会社 Nonaqueous electrolyte secondary battery and method for producing negative electrode of nonaqueous electrolyte secondary battery
JP4686974B2 (en) * 2002-12-17 2011-05-25 三菱化学株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US7491467B2 (en) * 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2008041465A (en) * 2006-08-08 2008-02-21 Sony Corp Negative electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery
JP2011065929A (en) * 2009-09-18 2011-03-31 Panasonic Corp Negative electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP5540805B2 (en) * 2010-03-23 2014-07-02 三菱化学株式会社 Non-aqueous secondary battery carbon material, negative electrode material and non-aqueous secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192470A (en) * 2018-04-24 2019-10-31 トヨタ自動車株式会社 Electrode and battery using the same
CN110400903A (en) * 2018-04-24 2019-11-01 丰田自动车株式会社 Electrode and the battery for using the electrode
JP7079411B2 (en) 2018-04-24 2022-06-02 トヨタ自動車株式会社 Electrodes and batteries using them

Also Published As

Publication number Publication date
JP2013157120A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI528620B (en) Negative electrode material for lithium-ion secondary battery and method of producing the same, negative electrode for lithium-ion secondary battery using negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
KR101752566B1 (en) Active material composite particles and lithium battery
JP5543533B2 (en) Anode material for lithium ion secondary battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4672955B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
JP2003012311A (en) Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
JP2010129363A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20120093756A (en) Active material for electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP5638015B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013157339A (en) Negative electrode mixture for lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
US20240234699A9 (en) Electrode material, method of producing electrode material, and method of producing all-solid-state battery
JP2015153714A (en) Electrode for lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP5394721B2 (en) Lithium ion secondary battery, negative electrode material and negative electrode therefor
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
JP4495531B2 (en) Granular composite carbon material and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014149989A (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery including the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141021

LAPS Cancellation because of no payment of annual fees