JP5636870B2 - Online nondestructive spectrometer - Google Patents

Online nondestructive spectrometer Download PDF

Info

Publication number
JP5636870B2
JP5636870B2 JP2010236960A JP2010236960A JP5636870B2 JP 5636870 B2 JP5636870 B2 JP 5636870B2 JP 2010236960 A JP2010236960 A JP 2010236960A JP 2010236960 A JP2010236960 A JP 2010236960A JP 5636870 B2 JP5636870 B2 JP 5636870B2
Authority
JP
Japan
Prior art keywords
measurement
measured
light
transmission
spectrophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010236960A
Other languages
Japanese (ja)
Other versions
JP2011117942A (en
Inventor
崇史 乙井
崇史 乙井
Original Assignee
一般財団法人雑賀技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人雑賀技術研究所 filed Critical 一般財団法人雑賀技術研究所
Priority to JP2010236960A priority Critical patent/JP5636870B2/en
Publication of JP2011117942A publication Critical patent/JP2011117942A/en
Application granted granted Critical
Publication of JP5636870B2 publication Critical patent/JP5636870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorting Of Articles (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、搬送装置により順次搬送されてくる被測定物の内部性状の測定をオンラインでかつ非破壊で行う、オンライン型非破壊分光分析装置に関するものである。
The present invention performs the measurement of the internal condition of the object to be measured coming sequentially conveyed by a conveying device online at and non-destructive, it relates to on-line non-destructive spectrometer.

青果物等の被測定物の内部性状を光学的に非破壊で測定する分光分析装置として、光源から被測定物に照射した光の透過光を回折格子で分光し、必要とする波長の分光をラインセンサにより測定し、該測定値を信号処理及び制御装置により演算処理及び波形分析するとともに検量線を用いて演算処理するものがある(例えば、特許文献1及び特許文献2参照。)。
このような非破壊分光分析装置において、特許文献2は搬送装置(コンベア)により順次搬送されてくるサイズ(光路長)が異なる被測定物の内部性状をオンラインで測定するオンライン型非破壊分光分析装置を示しており、被測定物のサイズ計測器として単一光軸の投光器(光源)及び受光センサを、搬送路の上流の両側に、透過型分光光度計の受光部受光領域の中心と同じ高さに対向設置し、順次搬送される被測定物による光線遮断時間から該被測定物のサイズを測定し、透過型分光光度計に対して測定開始タイミング及びラインセンサが光電荷を蓄積するための蓄積時間を与えている。
As a spectroscopic analyzer that optically and non-destructively measures the internal properties of objects to be measured such as fruits and vegetables, the transmission light of the light irradiated from the light source to the object to be measured is dispersed with a diffraction grating, and the spectrum of the required wavelength is lined up. There are some which measure by a sensor, perform calculation processing and waveform analysis by a signal processing and control device, and perform calculation processing using a calibration curve (for example, see Patent Document 1 and Patent Document 2).
In such a non-destructive spectroscopic analysis apparatus, Patent Document 2 discloses an on-line non-destructive spectroscopic analysis apparatus that measures on-line the internal properties of objects to be measured having different sizes (optical path lengths) that are sequentially transported by a transport device (conveyor). A single optical axis projector (light source) and a light receiving sensor as the size measuring device of the object to be measured are located at the same height as the center of the light receiving area of the transmission spectrophotometer on both sides upstream of the transport path. The size of the object to be measured is measured from the light blocking time by the object to be measured that is sequentially conveyed, and the measurement start timing and the line sensor for accumulating the photo charge with respect to the transmission spectrophotometer Giving accumulation time.

特開平6−213804号公報JP-A-6-213804 特開平7−229840号公報Japanese Unexamined Patent Publication No. 7-229840

しかしながら、特許文献2のような光線遮断時間から被測定物のサイズ(大きさ)を測定する方式(以下において、「光線遮断方式」という。)では、例えば玉ねぎのような測定に必要な部位(以下において、「測定必要部位」という。)である鱗葉の他に、浮き上がった保護葉(表皮)、首部(芽)及び根等の測定に不要な部位(以下において、「測定不要部位」という。)がある被測定物を姿勢が不揃いな状態で搬送する場合に、被測定物のサイズ計測における誤差が大きくなり、搬送速度から算出する蓄積開始及び蓄積終了のタイミングがずれてしまうため、スペクトルデータに飽和がなくても測定不要部位と測定必要部位のスペクトルデータが加算されることになって測定精度が悪くなるという問題点がある。   However, in the method of measuring the size (size) of the object to be measured from the light blocking time as in Patent Document 2 (hereinafter referred to as “light blocking method”), for example, a part necessary for measurement such as an onion ( In the following, in addition to the scale leaves, which are “measurement-required parts”, parts that are not necessary for measurement of the floating protective leaves (skin), neck (buds), roots, etc. (hereinafter referred to as “measurement-unnecessary parts”) )) When a certain object to be measured is transported in an uneven posture, the error in size measurement of the object to be measured becomes large, and the accumulation start and accumulation end timings calculated from the conveyance speed are shifted. Even if there is no saturation in the data, there is a problem that the spectrum accuracy of the measurement unnecessary portion and the measurement required portion is added and the measurement accuracy deteriorates.

また、オンライン型非破壊分光分析測定装置において、その透過型分光光度計は微弱光(10-6〜10-7程度)の測定が必要であり、一般に受光センサであるフォトダイオード群は、大きなダイナミックレンジを得るために電荷蓄積方式で駆動し、被測定物と測定方法によってはサイズに応じて蓄積時間を伸縮している。
したがって、被測定物にひげ根又は表皮等の光の透過光強度が高い部位がある場合には、スペクトルデータに飽和が生じて測定不能になるという問題点がある。
その上、測定中に被測定物から一瞬でも強い透過光があった際には受光センサ及び増幅回路が飽和し、次の測定に備えたフォトダイオードの電荷の放電に時間がかかるため、小さい被測定物が高速に搬送される場合には、これらの被測定物を連続して測定することができなくなるという問題点がある。
Further, in an on-line type nondestructive spectroscopic measurement apparatus, the transmission spectrophotometer needs to measure faint light (about 10 −6 to 10 −7 ). In order to obtain a range, it is driven by a charge accumulation method, and the accumulation time is expanded or contracted depending on the object to be measured and the measurement method.
Therefore, when there is a portion having a high transmitted light intensity of light such as a root of hair or an epidermis in the object to be measured, there is a problem that measurement is impossible due to saturation in spectrum data.
In addition, when there is strong transmitted light from the object under measurement for a moment during measurement, the light receiving sensor and the amplifier circuit are saturated, and it takes time to discharge the photodiode charge for the next measurement. When the measurement object is conveyed at a high speed, there is a problem in that these measurement objects cannot be continuously measured.

さらに、光線遮断方式では、測定不要部位がある被測定物において、被測定物の測定必要部位に対して正確なサイズ測定ができないため、測定不要部位を測定しないようにするための工夫として、分光測定の蓄積開始タイミングを遅く、蓄積終了タイミングを早くセットして余裕を持たせた測定を行なっているが、このような測定では、受光素子群の光電荷の蓄積時間が短くなってしまうことや測定データに測定必要部位の両端付近の情報が含まれなくなること等の問題点がある。
さらにまた、被測定物の種類によっては透過型分光光度計の投受光部の高さの変更を行う必要があり、その度にサイズ計測器の投受光器の光軸の高さを変えるか、透過型分光光度計の投受光部に上流側のサイズ計測器の投受光器を機械的に直結する必要があり、特にごぼう又は大根等の長尺の被測定物においてはサイズ計測器と透過型分光光度計の距離が長くなり、透過型分光光度計のコンピュータ等からの指令により、透過型分光光度計の投受光部とサイズ計測器の投受光器とを安定かつ高精度に平行に昇降させるためには、駆動系や機械系の構造が複雑にかつ大掛かりになってしまうという問題点がある。
また、カメラを透過型分光光度計の上流側に設置する構成(例えば図1及び図2参照。)では、カメラを跨いで平行に昇降する機構が必要となるため非現実的である。
Furthermore, in the light blocking method, an object with a measurement-unnecessary part cannot be accurately measured for the measurement-required part of the object to be measured. Although the measurement accumulation start timing is delayed and the accumulation end timing is set earlier to give a margin, in such measurement, the photocharge accumulation time of the light receiving element group is shortened. There is a problem that the measurement data does not include information near both ends of the measurement-required part.
Furthermore, depending on the type of the object to be measured, it is necessary to change the height of the light projecting / receiving unit of the transmission spectrophotometer. It is necessary to mechanically connect an upstream size measuring and measuring unit to the transmitting and receiving unit of the transmission spectrophotometer. Especially for long objects such as burdock or radish, the size measuring instrument and the transmission type The distance of the spectrophotometer becomes longer, and the transmission / reception unit of the transmission spectrophotometer and the light emitter / receiver of the size measuring instrument are moved up and down in a stable and highly accurate manner in response to a command from a computer of the transmission spectrophotometer. Therefore, there is a problem that the structure of the drive system and the mechanical system becomes complicated and large.
In addition, the configuration in which the camera is installed on the upstream side of the transmission spectrophotometer (see, for example, FIGS. 1 and 2) is not realistic because a mechanism for moving up and down in parallel across the camera is required.

また、カメラにより被測定物を撮像し、被測定物のサイズ測定及び形状判定を行って蓄積開始タイミングを算出することも考えられるが、このような方式では、例えば大きな葉、大きな表皮の付着、長い芽等がある農作物が被測定物であり、このような被測定物を姿勢が不揃いな状態で搬送する場合には、測定必要部位の位置がカメラの画像エリアから外れ、解析ができなくなるという問題点がある。
さらに、例えば、被測定物によっては測定必要部位が葉等により隠れているものや、玉ねぎのように、その表皮による膨らみが玉ねぎの形状を保っているものもあり、被測定物からの反射光によるカメラ撮像による形状判定には無理がある。
さらにまた、多種類の被測定物に対して、あるいは同種類でも大小の差が大きく、複雑な形状の葉、根及び芽等並びに包装容器及び包装フイルム等の測定不要部位が含まれる被測定物に対しては、一般の反射光によるカメラ画像解析での形状判定では測定必要部位の算出の精度が悪く誤判定をしやすいため、このようなカメラ画像解析での形状判定は実用に値しないものである。
It is also conceivable to take an image of the object to be measured by the camera, perform size measurement and shape determination of the object to be measured, and calculate the accumulation start timing, but in such a system, for example, attachment of large leaves, large epidermis, Agricultural crops with long shoots are objects to be measured, and when such objects to be measured are transported in an uneven posture, the position of the measurement required part is out of the image area of the camera, making analysis impossible. There is a problem.
Furthermore, for example, depending on the object to be measured, there is a part where the measurement required part is hidden by a leaf or the like, and a bulge by the epidermis keeps the shape of the onion like an onion, and the reflected light from the object to be measured It is impossible to determine the shape by camera imaging.
Furthermore, for various types of objects to be measured, or for the same type, there are large differences in size, and the objects to be measured include complex shapes of leaves, roots, buds, etc., and measurement unnecessary parts such as packaging containers and films On the other hand, the shape determination in the camera image analysis using general reflected light is inaccurate because the accuracy of calculation of the measurement required part is poor and the determination in the camera image analysis is not practical. It is.

また、形状判定に2次元イメージセンサ又はラインセンサを使用して強い光での透過光を撮像することも考えられるが、例えば玉ねぎの重なった表皮、ひげ根等の測定不要部位を透過するような強い光が、搬送される被測定物の周囲の遮光されない領域、及び次に搬送される被測定物の間隙で、2次元イメージセンサやラインセンサのフォトダイオードに照射されることになり、その結果、フォトダイオード接合容量は有限であるため、飽和電荷量以上の信号電荷を蓄積できずに外に溢れ出し、溢れ出した電荷が隣接フォトダイオードやビデオラインにも影響を及ぼすブルーミング現象が生じて測定不能になるという問題点があり、一般のアンチブルーミング対策を行ったイメージセンサあるいはラインセンサを用いたとしても、上述した強い光の条件下では実用に値しない。   It is also conceivable to use a two-dimensional image sensor or a line sensor for shape determination to image transmitted light with strong light. For example, it may pass through a measurement-unnecessary site such as an epidermis or a root of hair on which onions overlap. As a result, intense light is irradiated to the photodiode of the two-dimensional image sensor or line sensor in the unshielded area around the object to be transported and the gap between the objects to be transported next. Because the photodiode junction capacitance is finite, the signal charge exceeding the saturation charge cannot be accumulated and overflows outside, and the overflowing charge causes a blooming phenomenon that affects the adjacent photodiode and video line. Even if an image sensor or line sensor with general anti-blooming measures is used, the above-mentioned strong It does not deserve to practical use under the conditions of light.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、測定不要部位を含む被測定物を姿勢が不揃いな状態で搬送しながら内部性状の測定を行う場合であっても、被測定物のサイズ計測における誤差を小さく抑えることができ、測定範囲が広くかつ測定精度が高く、透過型分光光度計の投受光部の高さ変更にも容易に対応することができる、オンライン型非破壊分光分析装置を提供する点にある。
Therefore, in view of the above-described situation, the present invention intends to solve the problem even when measuring an internal property while transporting an object to be measured including a measurement-unnecessary portion in an uneven posture. On-line non-destructive that can minimize errors in size measurement of objects, has a wide measurement range, high measurement accuracy, and can easily respond to changes in the height of the transmission / reception unit of a transmission spectrophotometer It is in providing a spectroscopic analyzer.

本発明に係るオンライン型非破壊分光分析装置は、前記課題解決のために、搬送装置により姿勢が不揃いな状態で順次搬送されてくる、測定不要部位を含む被測定物の内部性状の測定を透過型分光光度計により行うオンライン型非破壊分光分析装置であって、前記搬送装置は搬送に同期したクロック信号を出力するものであり、前記被測定物の透過光強度分布を2次元的に測定するために前記透過型分光光度計よりも搬送方向上流側に設置した発光素子群及び該発光素子群により照射された光を受光する受光素子群を有する透過型光ゲート部を備え、該透過型光ゲート部により、所定閾値よりも透過光強度が高い前記被測定物の第1測定不要部位を検出するとともに、透過光強度だけでは検出できない前記被測定物の第2測定不要部位を透過光強度及び形状判定により検出し、前記第1測定不要部位及び第2測定不要部位を除いて前記被測定物の測定必要部位のサイズ及び有効測定領域を算出し、前記透過型分光光度計に対して、前記有効蓄積領域の画素の透過光強度を積算した、スペクトルの飽和を制御するための積算透過光強度信号、並びに、前記クロック信号に同期した蓄積開始点及び蓄積時間を出力するものである。
On-Line nondestructive spectrometer according to the present invention, the transmission for the problem solving, orientation come sequentially conveyed in a irregular state by conveying device, the measurement of the internal condition of the object to be measured including the measurement unnecessary site A non-destructive on-line spectrophotometer using a spectrophotometer, wherein the carrier device outputs a clock signal synchronized with the carrier, and two-dimensionally measures the transmitted light intensity distribution of the object to be measured. For this purpose, the transmission type light gate section includes a light emitting element group installed upstream of the transmission type spectrophotometer and a light receiving element group for receiving the light emitted by the light emitting element group, and the transmission type light gate unit. The gate portion detects the first measurement unnecessary portion of the measured object whose transmitted light intensity is higher than a predetermined threshold, and transmits the second measurement unnecessary portion of the measured object that cannot be detected only by the transmitted light intensity. Detecting by intensity and shape determination, calculating the size and effective measurement area of the measurement target part of the object to be measured, excluding the first measurement unnecessary part and the second measurement unnecessary part, and for the transmission spectrophotometer The integrated transmitted light intensity signal for controlling the saturation of the spectrum obtained by integrating the transmitted light intensity of the pixels in the effective accumulation region, and the accumulation start point and accumulation time synchronized with the clock signal are output.

このような構成によれば、透過型光ゲート部により被測定物の測定不要部位を除去することができ、このように測定不要部位を除去して被測定物の測定必要部位のサイズ及び有効測定領域を算出していることから、測定必要部位の他に測定不要部位がある被測定物を姿勢が不揃いな状態で搬送する場合においても、被測定物のサイズ計測における誤差を非常に小さくすることができ、搬送装置により搬送される被測定物の搬送速度から算出する蓄積開始及び蓄積終了のタイミング(透過型分光光度計の測定開始タイミング及びラインセンサが光電荷を蓄積するための蓄積時間)のずれを抑制することができるため、測定精度が高くなる。   According to such a configuration, the measurement unnecessary part of the object to be measured can be removed by the transmission type optical gate part, and the measurement unnecessary part size and effective measurement of the object to be measured can be removed in this way. Since the area is calculated, the error in measuring the size of the object to be measured can be made extremely small even when the object to be measured that has a measurement unnecessary part in addition to the part to be measured is transported in an uneven posture. Of the accumulation start and accumulation end timing calculated from the conveyance speed of the object to be measured conveyed by the conveyance device (measurement start timing of the transmission spectrophotometer and accumulation time for the line sensor to accumulate the photocharge). Since the deviation can be suppressed, the measurement accuracy is increased.

その上、透過型光ゲート部により透過型分光光度計に対してスペクトルの飽和を制御するための積算透過光強度信号を出力していることから、この積算透過光強度信号を用いた分光光度計の光学絞りの制御等によりスペクトルデータに飽和が生じないようにすることができる。
よって、飽和のない最適な光量で計測することができるとともに、透過型分光光度計に照度の強い光源を使用することにより総合的に高いダイナミックレンジを得ることができるため、測定精度を高くすることができるとともに測定範囲を広くすることができる。
In addition, since the transmission light gate unit outputs an integrated transmitted light intensity signal for controlling the saturation of the spectrum to the transmission spectrophotometer, the spectrophotometer using this integrated transmitted light intensity signal is output. It is possible to prevent the spectral data from being saturated by controlling the optical aperture.
Therefore, it is possible to measure with the optimal amount of light without saturation, and to obtain a high dynamic range comprehensively by using a light source with strong illuminance in the transmission spectrophotometer, so that the measurement accuracy is increased. As well as a wide measurement range.

その上さらに、有効蓄積領域内での透過光の積算を行う工程で、強い光による飽和のチェックを行い、透過型分光光度計ではその被測定物の測定を行わないこと、分割測定時の被測定物で飽和の部分があれば、透過型分光光度計では、そのタイミングで高速シャターを閉じて前記部分の測定を行なわないことにより測定作業効率を上げることができる。
その上、透過型分光光度計の投受光部の高さの変更を行った場合においても、透過型光ゲート部において、その高さ方向の受光素子の個数を多くして最大サイズの被測定物をカバーすることができるようにしておくことにより、従来におけるサイズ計測器の投受光器の光軸の高さを機械的に変更する構成のように駆動系や機械系の構造が複雑にかつ大掛かりになることはなく、構成の簡素化を図ることができる。
Furthermore, in the process of integrating transmitted light within the effective accumulation area, saturation check by strong light is performed, and the transmission spectrophotometer does not measure the object to be measured. If there is a saturated portion in the measurement object, the transmission spectrophotometer can increase the measurement work efficiency by closing the high-speed shutter at that timing and not performing the measurement of the portion.
In addition, even when the height of the light projecting / receiving part of the transmission spectrophotometer is changed, the maximum size of the object to be measured can be obtained by increasing the number of light receiving elements in the height direction in the transmission light gate part. The structure of the drive system and the mechanical system is complicated and large as in the conventional configuration in which the height of the optical axis of the light emitter / receiver of the size measuring instrument is mechanically changed. Therefore, the configuration can be simplified.

ここで、前記透過型光ゲート部の発光素子群及び受光素子群よりも搬送方向下流側で、前記透過型分光光度計よりも搬送方向上流側又は下流側に、前記被測定物の表面異状を計測するために前記被測定物を撮像するカメラ及び前記被測定物を照らす投光器を有する表面撮像装置を備え、該表面撮像装置に対して前記透過型光ゲート部から、前記被測定物の画像中心付近が前記カメラの画像エリアの中央に位置するように、前記クロック信号に同期した撮像開始トリガー信号及びサイズを出力すると好ましい。
このような構成によれば、透過型光ゲート部から表面撮像装置に対して、被測定物の画像中心付近がカメラの画像エリアの中央に位置するように、搬送装置のクロック信号に同期した撮像開始トリガー信号及びサイズが出力されるため、測定必要部位の位置がカメラの画像エリアから外れて画像解析が不能になることがない。
その上、表面撮像装置の画像解析による被測定物の表面異状の判定結果と透過型分光光度計による被測定物の内部性状の判定結果との合成である総合判定出力により被測定物の良否の判定選別を行うことができるため、被測定物の良否の判定精度を向上することができる。
なお、表面撮像装置を透過型分光光度計の下流側に設置した場合、透過型光ゲート部の発光素子群及び受光素子群と透過型分光光度計との距離が短くなるため、被測定物の揺れ等による誤差の影響が少なくなるが、その反面、透過型分光光度計と表面撮像装置との間の搬送装置上にある被測定物のスペクトルデータ分のバッファーメモリが必要になるとともに、タイミング的にアルゴリズムが複雑になる。
Here, the surface abnormality of the object to be measured is formed on the downstream side in the transport direction with respect to the light emitting element group and the light receiving element group of the transmission type optical gate unit and on the upstream side or the downstream side in the transport direction with respect to the transmission type spectrophotometer. A surface imaging device having a camera for imaging the object to be measured and a projector for illuminating the object to be measured, the image center of the object to be measured from the transmission type optical gate unit to the surface imaging device It is preferable to output an imaging start trigger signal and a size synchronized with the clock signal so that the vicinity is located at the center of the image area of the camera.
According to such a configuration, imaging synchronized with the clock signal of the transport device so that the vicinity of the image center of the object to be measured is located in the center of the image area of the camera from the transmission type optical gate unit to the surface imaging device. Since the start trigger signal and the size are output, the position of the measurement-required part does not deviate from the image area of the camera and image analysis is not disabled.
In addition, the overall judgment output, which is a combination of the determination result of the surface abnormality of the measurement object by the image analysis of the surface imaging device and the determination result of the internal property of the measurement object by the transmission spectrophotometer, determines whether the measurement object is good or bad. Since determination and selection can be performed, it is possible to improve the accuracy of determining the quality of the object to be measured.
When the surface imaging device is installed on the downstream side of the transmission spectrophotometer, the distance between the light emitting element group and the light receiving element group of the transmission optical gate section and the transmission spectrophotometer is shortened. The effect of errors due to shaking is reduced, but on the other hand, a buffer memory for the spectral data of the object to be measured on the transport device between the transmission spectrophotometer and the surface imaging device is required, and the timing The algorithm becomes complicated.

以上のように、本発明に係るオンライン型非破壊分光分析装置によれば、測定不要部位を含む被測定物を姿勢が不揃いな状態で搬送しながら内部性状の測定を行う場合であっても、被測定物のサイズ計測における誤差を小さく抑えることができ、測定範囲が広くかつ測定精度が高く、透過型分光光度計の投受光部の高さ変更にも容易に対応することができ、表面撮像装置を用いて被測定物の表面異状を計測する際の画像解析を有効に行うことができ、被測定物の良否の判定精度を向上することができるという顕著な効果を奏する。
As described above, according to the on-line type nondestructive spectroscopic analysis apparatus according to the present invention, even when measuring an internal property while transporting an object to be measured including a measurement unnecessary portion in a state where the posture is not uniform, Error in measuring the size of the object to be measured can be kept small, the measurement range is wide, the measurement accuracy is high, the height of the light transmission / reception part of the transmission spectrophotometer can be easily adjusted, and surface imaging It is possible to effectively perform image analysis when measuring the surface abnormality of the object to be measured using the apparatus, and it is possible to improve the accuracy of determining the quality of the object to be measured.

本発明の実施の形態に係るオンライン型非破壊分光分析装置の平面図である。It is a top view of the on-line type nondestructive spectroscopy analyzer concerning an embodiment of the invention. 同オンライン型非破壊分光分析装置の構成の概要を示すブロック図である。It is a block diagram which shows the outline | summary of a structure of the same online type | mold nondestructive spectroscopy analyzer. 透過型光ゲート部を前方から見た図である。It is the figure which looked at the transmission type optical gate part from the front. 透過型光ゲート部による信号処理を示すブロック図である。It is a block diagram which shows the signal processing by a transmissive | pervious optical gate part. 透過型光ゲート部の回路構成図である。It is a circuit block diagram of a transmissive | pervious optical gate part. タイミングを示す図である。It is a figure which shows a timing. 透過型光ゲート部のバリエーションを示す概略図であり、(a)は発光素子群と受光素子群を略中央で焦点を結ぶように配列する構成例を、(b)は上下方向に投受光を行う構成例を示している。It is the schematic which shows the variation of a transmissive | pervious optical gate part, (a) is the example of a structure which arranges a light emitting element group and a light receiving element group so that a focus may be formed in the approximate center, (b) is light projection / reception in an up-down direction The example of a structure to perform is shown.

次に本発明の実施の形態を添付図面に基づき詳細に説明するが、本発明は、添付図面に示された形態に限定されず特許請求の範囲に記載の要件を満たす実施形態の全てを含むものである。なお、本明細書においては、被測定物の搬送方向(図中矢印A参照。)を前、その反対側を後とし、左右は前方に向かっていうものとする。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments shown in the accompanying drawings, and includes all the embodiments that satisfy the requirements described in the claims. It is a waste. In this specification, the transport direction of the object to be measured (see arrow A in the figure) is the front, the opposite side is the rear, and the left and right are the front.

図1及び図2に示すように、本発明の実施の形態に係るオンライン型非破壊分光分析装置は、搬送装置Cにより順次搬送されてくる被測定物の内部性状の測定をオンラインでかつ非破壊で行うものであり、搬送方向(図中矢印A参照。)の上流側から下流側に向かって、透過型光ゲート部1の発光素子群P及び発光素子群Pにより照射された光を受光する受光素子群R、表面撮像装置2並びに透過型分光光度計3が配設される。
本実施の形態では、被測定物の一例として、剥がれかけた表皮、葉、芽、ひげ根(細いひげ状の根)等の測定不要部位がある玉ねぎGを主に示しており、サイズの差が大きく、表皮、芽等が不規則な方向(姿勢が不揃いな状態)で高速で搬送される玉ねぎGの外部又は内部の腐れ等の良否の測定は、規格化され包装等がされた加工食品とは異なり、非常に難しいものである。
As shown in FIGS. 1 and 2, on-line non-destructive spectroscopic analyzer according to the embodiment of the present invention, a sequential line measurement of internal condition of the conveyed object to be measured and non-destructive by the transfer device C The light emitted from the light emitting element group P and the light emitting element group P of the transmissive optical gate unit 1 is received from the upstream side to the downstream side in the transport direction (see arrow A in the figure). A light receiving element group R, a surface imaging device 2 and a transmission spectrophotometer 3 are arranged.
In the present embodiment, as an example of an object to be measured, an onion G having a measurement unnecessary portion such as a peeled skin, a leaf, a bud, a root of a beard (thin beard-like root) is mainly shown, and a difference in size is shown. Processed food that has been standardized and packaged, etc., to measure the quality of rot, etc., on or outside of the onion G that is transported at high speed in irregular directions (in an irregular posture) with large epidermis, buds, etc. Unlike, it is very difficult.

透過型光ゲート部1は、発光素子群Pから投射光L1を投射し、受光素子群Rにより受光光L2を受光することにより、後述するように、被測定物である玉ねぎGの各部位における光が透過したレベルと形状判定により測定必要部位と測定不要部位とを判別して測定不要部位を除去し、玉ねぎGの径及び有効蓄積領域を算出し、透過型分光光度計3に対して、有効蓄積領域の画素の透過光強度を積算した、スペクトルの飽和を制御するための積算透過光強度信号B、及び、分光光度計測定タイミング・サイズTである蓄積開始点と蓄積時間を出力し、表面撮像装置2に対して、カメラ用測定タイミング・サイズTCを出力するものである。   The transmissive optical gate unit 1 projects the projection light L1 from the light emitting element group P, and receives the received light L2 by the light receiving element group R. As will be described later, in each part of the onion G that is the object to be measured. By determining the level of light transmission and the shape determination, the measurement unnecessary part and the measurement unnecessary part are removed, the measurement unnecessary part is removed, the diameter and effective accumulation area of the onion G are calculated, and the transmission spectrophotometer 3 is Accumulated transmitted light intensity signal B for controlling the saturation of the spectrum obtained by integrating the transmitted light intensity of the pixels in the effective accumulation region, and the accumulation start point and accumulation time that are the spectrophotometer measurement timing size T are output, The camera measurement timing and size TC are output to the surface imaging device 2.

また、表面撮像装置2は、玉ねぎGの表面異状の計測を行うものであり、玉ねぎGを上側から撮像するカメラ21、玉ねぎGを照らす照明である投光器22、搬送路の左右に設置された反射用側面ミラー23,23及びカメラインターフェース24等を備えている。
さらに、透過型分光光度計3は、玉ねぎGの内部性状の計測等を行うものであり、玉ねぎGに所定波長の光(例えば近赤外光)を照射するハロゲンランプ38等からなる光源37、玉ねぎGからの透過光を受光する受光器33、光量の調整を行う光学絞り34及び光学絞り34を駆動する光絞りアクチュエータ35(液晶等を用いた電子光学絞りであってもよい。)、光を伝送する光ファイバー36、玉ねぎGからの透過光を分光処理する分光器及び制御部31、玉ねぎVの内部性状を評価するための検量線(判別式)を用いて演算処理するとともに表面撮像装置2によるカメラ画像を解析する分光器演算部及びカメラ画像解析部32等からなる。
なお、図1に示すように、側面ミラー23,23は左右に配置され、光源37及び受光器33も左右に配置されるものであるが、図2においては、これらを見やすくするための便宜上、前後方向に配置している。
Moreover, the surface imaging device 2 measures the surface abnormality of the onion G, the camera 21 that images the onion G from above, the projector 22 that illuminates the onion G, and the reflections installed on the left and right of the conveyance path. Side mirrors 23 and 23, a camera interface 24, and the like.
Further, the transmission spectrophotometer 3 measures the internal properties of the onion G and the like, and includes a light source 37 including a halogen lamp 38 that irradiates the onion G with light of a predetermined wavelength (for example, near infrared light), A light receiver 33 that receives the transmitted light from the onion G, an optical aperture 34 that adjusts the amount of light, and an optical aperture actuator 35 that drives the optical aperture 34 (may be an electro-optical aperture using liquid crystal or the like), light. The optical imaging device 36 for transmitting the light, the spectroscope for spectrally processing the transmitted light from the onion G and the control unit 31, and the calibration curve (discriminant) for evaluating the internal properties of the onion V are used for arithmetic processing and the surface imaging device 2 The spectroscope calculation unit for analyzing the camera image and the camera image analysis unit 32 and the like.
As shown in FIG. 1, the side mirrors 23 and 23 are arranged on the left and right sides, and the light source 37 and the light receiver 33 are also arranged on the left and right sides. However, in FIG. It is arranged in the front-rear direction.

図3に示す透過型光ゲート部1において、その発光素子群Pは上下方向直列に並設された発光素子P1,P2,…,P20により、その受光素子群Rは発光素子P1,P2,…,P20にそれぞれ対向する受光素子R1,R2,…,R20により構成され、発光素子P1,P2,…,P20により照射されるパルス変調光が、埃対策を行ったフード6及びコリメーターレンズ5を通り、狭指向角で対向する受光素子R1,R2,…,R20に各々照射される。
なお、発光素子P1,P2,…及び受光素子R1,R2,…の個数は、図3に示す例のような20個に限定されるものではなく、後述するように2個以上であればよく、発光素子P1,P2,…及び受光素子R1,R2,…の個数は同数である必要はない。
In the transmissive optical gate section 1 shown in FIG. 3, the light emitting element group P is formed by light emitting elements P1, P2,..., P20 arranged in series in the vertical direction, and the light receiving element group R is light emitting elements P1, P2,. , P20, which are respectively opposed to P20, and the pulse-modulated light emitted by the light-emitting elements P1, P2,. The light receiving elements R1, R2,..., R20 facing each other with a narrow directivity angle are respectively irradiated.
The number of light emitting elements P1, P2,... And light receiving elements R1, R2,... Is not limited to 20 as in the example shown in FIG. The light emitting elements P1, P2,... And the light receiving elements R1, R2,.

ここで、発光素子P1,P2,…として、例えば発光ダイオード又はレーザーダイオードを用いており、例えば玉ねぎGでは水分の減衰の少ない820nm程度の波長帯を選んでいるが、被測定物の測定不要部位の判定に最適な波長を選んでもよい。
また、発光素子P1,P2,…として強い光のレーザーダイオードを用いる場合には、受光素子R1,R2,…の増幅回路のゲインを低くできるが、この場合においては、発光素子P1,P2,…と受光素子R1,R2,…との光軸の位置を若干ずらして直接光を避けるようにするとよい。
Here, as the light emitting elements P1, P2,..., For example, light emitting diodes or laser diodes are used. For example, the onion G selects a wavelength band of about 820 nm with little moisture attenuation. It is also possible to select the optimum wavelength for the determination.
In addition, when a strong laser diode is used as the light emitting elements P1, P2,..., The gain of the light receiving elements R1, R2,... Can be reduced, but in this case, the light emitting elements P1, P2,. And the light receiving elements R1, R2,... May be shifted slightly to avoid direct light.

図4は、玉ねぎGが、その芽の突起部分が透過型分光光度計3の受光器33の受光面を通過する方向で、搬送同期クロック信号(クロックパルス)CLに同期しながら搬送装置C上を搬送される状態を模式的に示しており、搬送方向をX軸、透過型光ゲート部1の発光素子群P及び受光素子群Rの位置をX=0、受光素子群R(受光素子R1〜Rn)の配列方向をY軸、搬送装置Cの表面高さをY=0とする。
透過型光ゲート部1により、X軸の搬送同期クロック信号CLとY軸の受光素子群R(受光素子R1〜Rn)による出力波形S1〜Snを、ワンチップCPU20のアナログマルチプレクサ16を介してA/D変換器17,18によりデジタル化し、後述するように透過光強度で表わす2次元画像を得ることができる。
FIG. 4 shows the onion G on the conveying device C in a direction in which the protruding portion of the bud passes through the light receiving surface of the light receiver 33 of the transmission spectrophotometer 3 while synchronizing with the carrier synchronizing clock signal (clock pulse) CL. The transport direction is schematically illustrated, the transport direction is the X axis, the positions of the light emitting element group P and the light receiving element group R of the transmissive optical gate unit 1 are X = 0, and the light receiving element group R (light receiving element R1). ˜Rn) is the Y axis, and the surface height of the conveying device C is Y = 0.
The transmissive optical gate unit 1 outputs the output waveforms S1 to Sn from the X-axis carrier synchronization clock signal CL and the Y-axis light receiving element group R (light receiving elements R1 to Rn) via the analog multiplexer 16 of the one-chip CPU 20 to A. It can be digitized by the / D converters 17 and 18 to obtain a two-dimensional image represented by transmitted light intensity as will be described later.

次に、透過型光ゲート部1の回路構成例について説明する。
図5に示すように、投光部回路7の発光素子駆動回路9に、ワンチップCPU20により、例えば100μsec周期で20μsecの発光素子駆動パルス14を加え、1/5のデューティ比で輝度を上げるため定常電流の5倍程度の電流を発光素子P1,P2,…(図3も参照。)に流して駆動する。
パルス駆動によりパルス変調された光は、受光部回路8の受光素子R1,R2,…(図3も参照。)に入射し、光起電力効果により前置増幅器10の入力電流となり前置増幅器10により電圧に変換される。
NPN型のアンチ飽和FET11は前置増幅器10の入力(−)にドレーン、出力側にソースを接続しゲートにアンチ飽和バイアス電圧V1を与える。
Next, a circuit configuration example of the transmissive optical gate unit 1 will be described.
As shown in FIG. 5, in order to increase the luminance with a duty ratio of 1/5, the light emitting element driving circuit 9 of the light projecting unit circuit 7 is applied with a light emitting element driving pulse 14 of, for example, 20 μsec at a cycle of 100 μsec. Driving is performed by supplying a current about five times the steady current to the light emitting elements P1, P2,... (See also FIG. 3).
The light pulse-modulated by the pulse drive is incident on the light receiving elements R1, R2,... (See also FIG. 3) of the light receiving unit circuit 8, and becomes an input current of the preamplifier 10 due to the photovoltaic effect. Is converted into a voltage.
The NPN type anti-saturation FET 11 has a drain connected to the input (−) of the preamplifier 10, a source connected to the output side, and an anti-saturation bias voltage V1 applied to the gate.

入射光が強く、前置増幅器10の負電圧出力がアンチ飽和FET11のソース電位を下げてゲート電圧の閾値に近づくと、アンチ飽和FET11のドレーンとソース間が導通を始め、前置増幅器10のゲインが下がり一定のレベルでクランプされる。
被測定物(例えば玉ねぎG)による光の遮断がなく強い入射光において、アンチ飽和バイアス電圧V1の調整により適切な出力を得ることができる。
When the incident light is strong and the negative voltage output of the pre-amplifier 10 lowers the source potential of the anti-saturation FET 11 and approaches the threshold of the gate voltage, the drain and the source of the anti-saturation FET 11 begin to conduct, and the gain of the pre-amplifier 10 Is lowered and clamped at a certain level.
In strong incident light without light being blocked by the device under test (eg, onion G), an appropriate output can be obtained by adjusting the anti-saturation bias voltage V1.

零点補正回路13は、零点補正パルス15により発光素子駆動パルス14の直前で前置増幅器10の出力を零にするものであり、外乱光、受光素子R1,R2,…を含めた前置増幅器10の揺らぎのノイズをキャンセルしており、零点補正パルス15と発光素子駆動パルス14の和以上のパルス幅を持つノイズ、すなわちそれ以下の周波数のノイズ成分をキャンセルしている。
後段増幅器12は前置増幅器10の出力を増幅するもので、直接の入射光による前置増幅器10の出力レベルに対し、後段増幅器12の増幅領域の上限をレベルシフトバイアス電圧V2により設定する。
The zero point correction circuit 13 makes the output of the preamplifier 10 zero immediately before the light emitting element driving pulse 14 by the zero point correction pulse 15, and the preamplifier 10 including disturbance light, light receiving elements R1, R2,. The noise having the pulse width equal to or larger than the sum of the zero point correction pulse 15 and the light emitting element driving pulse 14, that is, the noise component having a frequency equal to or lower than that is canceled.
The post-stage amplifier 12 amplifies the output of the preamplifier 10, and the upper limit of the amplification area of the post-stage amplifier 12 is set by the level shift bias voltage V2 with respect to the output level of the preamplifier 10 by direct incident light.

ここで、アンチ飽和バイアス電圧V1、レベルシフトバイアス電圧V2、発光素子電流制御電圧V3は、それぞれワンチップCPU20のPWM変調した出力を積分したDC電圧により可変にでき、分光器及び制御部31のコンピュータの指令により設定することができる。
また、後段増幅器12の出力(S1〜Sn)は、ワンチップCPU20のアナログマルチプレクサ16に接続され、A/D変換器17,18により12Bitデジタル変換され、搬送同期クロック信号CL(X軸)に同期した透過光強度(Y軸)で表わす2次元画像としてワンチップCPU20のRAMに格納される。
Here, the anti-saturation bias voltage V1, the level shift bias voltage V2, and the light emitting element current control voltage V3 can be made variable by a DC voltage obtained by integrating the PWM-modulated output of the one-chip CPU 20, respectively. Can be set by the command.
Further, the output (S1 to Sn) of the post-stage amplifier 12 is connected to the analog multiplexer 16 of the one-chip CPU 20, and is 12-bit digitally converted by the A / D converters 17 and 18, and is synchronized with the carrier synchronization clock signal CL (X axis). The two-dimensional image represented by the transmitted light intensity (Y axis) is stored in the RAM of the one-chip CPU 20.

透過型光ゲート部1の必要なパラメータと相互の伝達は、図2、図4及び図5に示す指令信号データ線19を通じて送受され、カメラ用測定タイミング・サイズTC、分光光度計測定タイミング・サイズT、積算透過光強度信号Bの信号が分光器及び制御部31(図2及び図4参照。)を経て、表面撮像装置2に送られる。
なお、透過型光ゲート部1の投光部回路7及び受光部回路8等の回路は、光ファイバーで光を導くことにより発光素子群P及び受光素子群Rから離した位置に配置してもよく、このようにすることにより、被測定物に応じた光学的に自由度の高い投受光部を持つ透過型光ゲート部1を構成することができる。
Necessary parameters of the transmissive optical gate unit 1 and mutual communication are transmitted and received through the command signal data line 19 shown in FIGS. 2, 4 and 5, and the camera measurement timing size TC, spectrophotometer measurement timing size. T and the signal of the integrated transmitted light intensity signal B are sent to the surface imaging device 2 via the spectroscope and the control unit 31 (see FIGS. 2 and 4).
It should be noted that circuits such as the light projecting circuit 7 and the light receiving circuit 8 of the transmissive optical gate unit 1 may be arranged at positions separated from the light emitting element group P and the light receiving element group R by guiding light through an optical fiber. By doing so, it is possible to configure the transmissive optical gate unit 1 having a light projecting / receiving unit having a high degree of optical freedom according to the object to be measured.

また、図4及び図5のワンチップCPU20のRAM上に記録された透過光強度で表わす2次元画像から、表面撮像装置2には、光ゲート画像解析部4により、後述する判定で得た、表皮等を除去したカメラ用タイミング・サイズTCにおける玉ねぎGの全長(玉ねぎの芽を含むサイズ)L/2より、玉ねぎGの画像中央付近がカメラ21の画像エリアの中央に来るよう搬送同期クロック信号CLをカウントしてカメラ用測定タイミング・サイズTCである撮像開始トリガーを出力する(図6に示すタイミング図も参照。)。
さらに、透過型分光光度計3には、光ゲート画像解析部4により、有効蓄積領域の画素の透過光強度を積算した積算透過光強度信号B、分光光度計測定タイミング・サイズTを算出し、搬送同期クロック信号CLをカウントして、光学絞り34の応答遅れを見込んで早いタイミングで透過光強度信号Bのデータを出力し、次に分光光度計測定タイミング・サイズTを透過型分光光度計3に与え、透過型分光光度計3の受光器33の受光面に十分到達した瞬間から蓄積を開始し、玉ねぎGの測定必要部位長(サイズ)LNから時間換算することにより蓄積時間としている(図6に示すタイミング図も参照。)。
Further, from the two-dimensional image represented by the transmitted light intensity recorded on the RAM of the one-chip CPU 20 in FIGS. 4 and 5, the surface imaging device 2 was obtained by the optical gate image analysis unit 4 by the determination described later. From the total length of the onion G (including the size of the onion sprout) L / 2 at the camera timing size TC from which the skin and the like have been removed, the carrier synchronization clock signal so that the center of the onion G image is in the center of the image area of the camera 21 CL is counted and an imaging start trigger which is a camera measurement timing and size TC is output (see also the timing diagram shown in FIG. 6).
Further, the transmission type spectrophotometer 3 calculates an integrated transmitted light intensity signal B obtained by integrating the transmitted light intensity of the pixels in the effective accumulation region, a spectrophotometer measurement timing size T by the optical gate image analysis unit 4, The carrier synchronization clock signal CL is counted, the data of the transmitted light intensity signal B is output at an early timing in anticipation of the response delay of the optical aperture 34, and then the spectrophotometer measurement timing size T is set to the transmission spectrophotometer 3 And the accumulation is started from the moment when it sufficiently reaches the light receiving surface of the light receiver 33 of the transmission spectrophotometer 3, and the time is converted from the length (size) LN necessary to measure the onion G to obtain the accumulation time (see FIG. (See also timing diagram 6).

ここで、強い透過光強度では光学絞り34により光学的絞りを行い、スペクトルデータに飽和が生じないようにするが、光学絞り34が装備されていない場合、被測定物によっては、蓄積時間を短くすること、分割測定の回数を多くすること、分割測定時の休止時間(電荷蓄積型センサの放電時間)を長くすること等により、分光器の受光センサの蓄積電荷量を少なくしてスペクトルデータに飽和が生じないようにすることができる。   Here, in the case of strong transmitted light intensity, optical aperture is performed by the optical aperture 34 so that the spectral data is not saturated, but when the optical aperture 34 is not equipped, depending on the object to be measured, the accumulation time is shortened. The amount of accumulated charge in the light receiving sensor of the spectroscope can be reduced to the spectral data by increasing the number of divided measurements, increasing the pause time during the divided measurement (discharge time of the charge accumulation sensor), etc. Saturation can be avoided.

ワンチップCPU20のRAMに格納されると同時に玉ねぎGの2次元透過光強度データ(透過光強度で表わす2次元画像データ)は、指令信号データ線19を通じ、分光器及び制御部31に送られ、分光器演算部・カメラ画像解析部32により分光分析とカメラ画像解析のパラメータ一の一部とし、表面撮像装置2の画像解析による玉ねぎGの表面異状の判定結果と透過型分光光度計3による玉ねぎGの内部性状の判定結果との合成である総合判定出力D(図2及び図4参照。)を通じて、図示しない仕分け装置及び撰果装置に指令信号データが送られ、玉ねぎGの良否の判定選別が行われる。   Simultaneously stored in the RAM of the one-chip CPU 20, the two-dimensional transmitted light intensity data (two-dimensional image data represented by transmitted light intensity) of the onion G is sent to the spectroscope and control unit 31 through the command signal data line 19. The spectroscope calculation unit / camera image analysis unit 32 sets a part of the parameters of the spectral analysis and the camera image analysis. The determination result of the surface abnormality of the onion G by the image analysis of the surface imaging device 2 and the onion by the transmission spectrophotometer 3 Through a comprehensive judgment output D (see FIGS. 2 and 4), which is a combination of the judgment results of the internal properties of G, command signal data is sent to a sorting device and a fruiting device (not shown), and the onion G quality judgment selection Is done.

次に、玉ねぎGの外部異状(腐り、傷)及び内部異状(腐り)並びに内部性状(糖度)等の測定をおこなうための透過型光ゲート部1の動作について述べる。
ここで、玉ねぎGの部位名称と測定必要部位及び測定不要部位について、鱗葉が測定必要部位であり、第1測定不要部位を保護葉(葉、表皮(図3及び図4のUN1参照。))及びひげ根とし、第2測定不要部位を首部(芽(図3及び図4のUN2参照。))及び根とする。なお、剥がれかけた表皮及び鱗葉から浮いた表皮を表皮としている。
例えば、透過型光ゲート部1による玉ねぎGの各部位の透過光強度のレベルをIとし、
予め設定した閾値をTa>Tbとして、以下の(a)〜(c)の不等式により規定される条件を設定する。
Next, the operation of the transmissive optical gate unit 1 for measuring the external abnormalities (rots, scratches), internal abnormalities (rots) and internal properties (sugar content) of the onion G will be described.
Here, with respect to the part name of the onion G, the measurement-required part, and the measurement-unnecessary part, the scale leaf is the measurement-necessary part, and the first measurement-unnecessary part is the protective leaf (leaf, epidermis (see UN1 in FIGS. 3 and 4). ) And the root of the whiskers, and the second measurement unnecessary part is the neck (see the bud (see UN2 in FIGS. 3 and 4)) and the root. In addition, the epidermis which peeled off from the epidermis and scales is used as the epidermis.
For example, let I be the transmitted light intensity level of each part of the onion G by the transmissive light gate portion 1,
A condition defined by the following inequalities (a) to (c) is set with a preset threshold value Ta> Tb.

(a)玉ねぎGのない時(I>Ta)
(b)保護葉又はひげ根の時(Ta>I>Tb)
(c)首部(芽)若しくは根又は鱗葉等の時(Tb>I)
(A) When there is no onion G (I> Ta)
(B) When protecting leaves or roots (Ta>I> Tb)
(C) Neck (bud) or root or scale leaf (Tb> I)

(1)被測定物の有無、保護葉及びひげ根の検出
玉ねぎGがない状態で、透過光強度レベルIがTaよりも低くなった場合(Ta>I)は、透過型光ゲート部1の発光素子P1,P2,…及び受光素子R1,R2,…への埃等の付着又は発光素子P1,P2,…の劣化等を意味する。
また、玉ねぎGがある状態で、透過光強度レベルIがTaよりも低い場合(Ta>I)に、保護葉又はひげ根を検出することができる。
(2)光の透過による保護葉及びひげ根の部位の除去
保護葉又はひげ根を光が透過する透過光強度レベルIがI>Tb、すなわちTbよりも高い透過光は除去する。
(3)玉ねぎ本体の形状の検出
透過光強度レベルIが、Tb>I、すなわちTbよりも低い透過光である場合に遮光とみなす。
(1) Presence / absence of object to be measured, detection of protective leaves and hair roots When there is no onion G and the transmitted light intensity level I is lower than Ta (Ta> I), the transmission type optical gate 1 It means adhesion of dust or the like to the light emitting elements P1, P2,... And the light receiving elements R1, R2,.
Further, when the transmitted light intensity level I is lower than Ta (Ta> I) in the state where there is the onion G, the protective leaf or the root of the hair can be detected.
(2) Removal of Protective Leaf and Beard Root Parts by Light Transmission Transmitted light intensity level I that transmits light through the protective leaf or hair root is I> Tb, that is, transmitted light higher than Tb is removed.
(3) Detection of the shape of the onion body When the transmitted light intensity level I is Tb> I, that is, transmitted light lower than Tb, it is regarded as light shielding.

以上のように、第1測定不要部位は、上記(b)の条件を満たすことにより判別される。
また、第2測定不要部位は、上記(c)の条件を満たし、かつ、以下の追加条件をみたすときに判別される。
追加条件の一例として、玉ねぎGの2値化画像(上記(c)の条件を満たす部分と、上記(c)の条件を満たさない上記(a)及び(b)の条件を満たす部分)からその輪郭を得て該輪郭線をフーリエ記述子により記述し、高周波成分を除去する。この低周波成分は、前記輪郭の凹凸をならした円形に近くなる。
別の追加条件の例として、予め定めた玉ねぎGの形状に対する解析幾何学的モデル(円や楕円等)に対し、玉ねぎGの2値化画像からその輪郭を得て、その各座標を最小自乗法によりフィッティングする。
As described above, the first measurement unnecessary part is determined by satisfying the condition (b).
The second measurement unnecessary portion is determined when the above condition (c) is satisfied and the following additional conditions are satisfied.
As an example of the additional condition, the binarized image of the onion G (part satisfying the condition (c) above and part satisfying the conditions (a) and (b) not satisfying the condition (c)) A contour is obtained and the contour line is described by a Fourier descriptor to remove high frequency components. This low frequency component is close to a circular shape with uneven contours.
As an example of another additional condition, an outline is obtained from a binarized image of an onion G with respect to an analytical geometric model (circle, ellipse, etc.) for a predetermined shape of the onion G, and the coordinates thereof are minimized. Fitting by multiplication.

上記手法は公知の形状判定アルゴリズムであり、芽等の突起部を除去するのであるが、径の小さな玉ねぎGでは、その周辺領域を光が通過する距離も径に比例して小さくなり、透過光強度レベルIも高くなる。したがって、実際の玉ねぎGの測定必要部位の径よりも過少に評価される。
特に、径の小さな玉ねぎGは透過型分光光度計3の受光器33の受光面に対し遮光度合が小さくなるため、このような問題を解消するために、測定された玉ねぎGの径は、これに径補正係数を乗じて径を修正する必要があるが、この径補正係数は予め実験で得ておくことができる。
The above method is a known shape determination algorithm, and removes protrusions such as sprouts. However, in the onion G having a small diameter, the distance that light passes through the peripheral region is also reduced in proportion to the diameter, and the transmitted light is reduced. The intensity level I is also increased. Therefore, the actual onion G is evaluated to be less than the diameter of the measurement-required part.
In particular, since the onion G having a small diameter has a low light shielding degree with respect to the light receiving surface of the light receiver 33 of the transmission spectrophotometer 3, in order to solve such a problem, the measured diameter of the onion G is The diameter needs to be multiplied by a diameter correction coefficient to correct the diameter, but this diameter correction coefficient can be obtained in advance by experiments.

透過型光ゲート部1は、上記手法等により測定不要部位を除去し、玉ねぎGの径を算出し、透過型分光光度計3の受光器33の受光面の高さの位置でのサイズより有効蓄積領域を算出し、透過型分光光度計3に対して、有効蓄積領域の画素の透過光強度を積算した、スペクトルの飽和を制御するための積算透過光強度信号B、分光光度計測定タイミング・サイズTである蓄積開始点と蓄積時間を出力し、表面撮像装置に対して、カメラ用測定タイミング・サイズTCを出力する。   The transmission type optical gate unit 1 removes unnecessary portions by the above method, calculates the diameter of the onion G, and is more effective than the size at the height of the light receiving surface of the light receiver 33 of the transmission type spectrophotometer 3. The accumulated area is calculated and the transmitted light intensity of the pixels in the effective accumulation area is integrated with the transmission spectrophotometer 3, and the accumulated transmitted light intensity signal B for controlling the saturation of the spectrum, the spectrophotometer measurement timing, The accumulation start point and the accumulation time as size T are output, and the camera measurement timing and size TC are output to the surface imaging device.

上記は公知の形状判定アルゴリズム等により、芽等の突起部を除去するのであるが、例えば図4の透過型光ゲート部1による信号処理を示すブロック図は、玉ねぎGが透過型光ゲート部1の発光素子群P及び受光素子群Rの位置を通過するとY軸である透過光強度(S1〜Sn)とX軸の搬送に同期したクロック信号CLによって、玉ねぎGの2次元透過光強度データを得ている。
しかし、透過型分光光度計3の受光器33の受光面の縦幅(以下において、「受光面縦幅」という。)Hと同じ縦幅に対応する受光素子はR2〜R5であり、透過光強度を示す受光素子出力波形はS2〜S5である。
例えば受光素子出力波形S2〜S5の周辺を含めS1〜S6について、この領域のフィルタリングにより、芽等の突起を除去して、有効蓄積領域を算出すると処理速度も速くなる。
有効蓄積領域を算出し、透過型分光光度計3に対し、有効蓄積領域の画素の透過光強度を積算したスペクトルの飽和を制御する積算透過光強度信号B、分光光度計測定タイミング・サイズTである蓄積開始点と蓄積時間を出力する。
In the above, protrusions such as buds are removed by a known shape determination algorithm or the like. For example, in the block diagram showing the signal processing by the transmission type optical gate unit 1 in FIG. When passing through the positions of the light emitting element group P and the light receiving element group R, the two-dimensional transmitted light intensity data of the onion G is obtained by the transmitted light intensity (S1 to Sn) which is the Y axis and the clock signal CL synchronized with the conveyance of the X axis. It has gained.
However, the light receiving elements corresponding to the same vertical width of the light receiving surface of the light receiver 33 of the transmission spectrophotometer 3 (hereinafter referred to as “light receiving surface vertical width”) H are R2 to R5, and transmitted light. The light receiving element output waveform indicating the intensity is S2 to S5.
For example, with respect to S1 to S6 including the periphery of the light receiving element output waveforms S2 to S5, if the effective accumulation region is calculated by removing projections such as buds by filtering of this region, the processing speed is increased.
An effective accumulation region is calculated, and the transmission spectrophotometer 3 is integrated with the transmitted light intensity signal B for controlling the saturation of the spectrum obtained by integrating the transmitted light intensities of the pixels in the effective accumulation region, and the spectrophotometer measurement timing size T Output a certain accumulation start point and accumulation time.

(サイズ及び形状が比較的均一な玉ねぎGの計測判定)
図4において受光面縦幅Hと同じ縦幅に対応する受光素子はR2〜R5であり、受光素子出力波形S2〜S5である。
選別基準最大の玉ねぎGの芽UN2の幅が、搬送される過程で上記S2からS5の間隙の中に入り(b)の条件を満たし、X軸上のS2,S3,S4,S5のすべてが(c)の条件を満たした瞬間が蓄積開始点となり、そのすべてが(c)の期間が有効蓄積領域であり蓄積時間となる。
(Measurement judgment of onion G with relatively uniform size and shape)
In FIG. 4, the light receiving elements corresponding to the same vertical width as the light receiving surface vertical width H are R2 to R5, and are the light receiving element output waveforms S2 to S5.
The width of the bud UN2 of the onion G having the maximum selection criterion enters the gap S2 to S5 in the process of being conveyed and satisfies the condition (b), and all of S2, S3, S4 and S5 on the X axis The moment when the condition (c) is satisfied becomes the accumulation start point, and all of them become the effective accumulation area and the accumulation time during the period (c).

(受光素子間隙による玉ねぎの計測判定)
透過型光ゲート部1のY軸としての最小単位は2個の受光素子で構成でき、例えば玉ねぎGの芽の部分の最大幅が、搬送時に通過するよう透過型光ゲート部1の2個の素子間隙を、受光面縦幅Hの両端とほぼ等しい間隙で配置し、2個の素子出力信号の両方が(c)の条件を満たすとき、すなわち2個の論理積をとり、上記2つの受光素子を玉ねぎが遮光している間を、X軸の搬送に同期したクロック信号CLをカウントすることにより玉ねぎGのサイズが得られる、クロックCLの速さから算出した蓄積開始タイミングと有効蓄積時間を透過型分光光度計3にセットすることにより、測定不要部位を除去した内部異状、内部性状の計測判定を行うことができる。
上記手法は被測定物の種類が固定化した専用機としてのオンライン型非破壊分光分析測定装置では透過型光ゲート部1が小規模になる利点がある。
しかし、被測定物の種類や多様な形状に対して敏速に対応するためは、受光素子R1,R2,…の間隙を小さくするとともに個数を多くしてY軸の分解能を上げた透過型光ゲート部1とした方が有利となる。
(Measurement judgment of onion by light receiving element gap)
The minimum unit as the Y-axis of the transmission type optical gate unit 1 can be constituted by two light receiving elements. For example, the two units of the transmission type optical gate unit 1 can pass so that the maximum width of the onion G buds can be transferred. The element gap is arranged with a gap substantially equal to both ends of the light receiving surface vertical width H, and when both of the two element output signals satisfy the condition (c), that is, two logical products are obtained, The onion G size is obtained by counting the clock signal CL synchronized with the X-axis transport while the onion is shielded from the element. The accumulation start timing and effective accumulation time calculated from the speed of the clock CL are obtained. By setting it in the transmission spectrophotometer 3, it is possible to perform measurement judgment of internal abnormalities and internal properties from which a measurement unnecessary portion has been removed.
The above-described method has an advantage that the transmission type optical gate unit 1 becomes small in an on-line type non-destructive spectroscopic measurement apparatus as a dedicated machine in which the type of object to be measured is fixed.
However, in order to respond quickly to the types of objects to be measured and various shapes, a transmission type optical gate in which the gap between the light receiving elements R1, R2,. The portion 1 is more advantageous.

(分光光度計投受光部の高さ合わせ)
良品として選別される最小サイズの玉ねぎGを、搬送装置Cにより透過型光ゲート部1の発光素子群P及び受光素子群Rの位置を通過させ、玉ねぎGの2値化画像から得た輪郭からY軸上で玉ねぎGの中心の高さを算出し、図4に示す投受光エレベーション部39により透過型分光光度計3の受光器33の受光面の光軸中心を玉ねぎGの中心高さに合わせて自動でセットすることにより、最小サイズから最大サイズまでの玉ねぎGの全ての分光分析測定を行うこともできる。
これは、照射した分光光度計光源37からの光が玉ねぎGを透過すると、玉ねぎGの内部で乱反射をして外部(受光部側)に出てくることから、玉ねぎGの大小に拘わらず透過した光は内部情報を含んでいるため、多変量解析手法等を用いて内部性状を計測判定するものである。
(Specify the height of the spectrophotometer light emitting and receiving part)
From the contour obtained from the binarized image of the onion G by passing the position of the light emitting element group P and the light receiving element group R of the transmission type optical gate unit 1 by the conveying device C, the onion G of the minimum size selected as a non-defective product The height of the center of the onion G is calculated on the Y-axis, and the center height of the onion G is set to the center of the optical axis of the light receiving surface of the light receiving device 33 of the transmission spectrophotometer 3 by the light projection / reception elevation unit 39 shown in FIG. By automatically setting according to the above, it is possible to perform all spectroscopic measurement of the onion G from the minimum size to the maximum size.
This is because, when the light from the irradiated spectrophotometer light source 37 passes through the onion G, it is diffusely reflected inside the onion G and comes out to the outside (light receiving part side), so that it is transmitted regardless of the size of the onion G. Since the light contains internal information, the internal properties are measured and determined using a multivariate analysis method or the like.

このように投受光エレベーション部39により透過型分光光度計3の投受光部の高さの変更を行った場合においても、透過型光ゲート部1を、例えば図3及び図4に示すようにY軸(高さ方向)の受光素子R1,R2,…の個数を多くして最大サイズの被測定物をカバーすることができるようにしておくことにより、従来におけるサイズ計測器の投受光器の光軸の高さを機械的に変更する構成のように駆動系や機械系の構造が複雑にかつ大掛かりになることはなく、構成の簡素化を図ることができる。   Even when the height of the light projecting / receiving unit of the transmission spectrophotometer 3 is changed by the light projecting / receiving elevation unit 39 as described above, the transmission light gate unit 1 is configured as shown in FIGS. 3 and 4, for example. By increasing the number of light receiving elements R1, R2,... On the Y axis (height direction) so as to cover the object to be measured of the maximum size, The structure of the drive system and the mechanical system does not become complicated and large like the configuration in which the height of the optical axis is mechanically changed, and the configuration can be simplified.

(房付き葡萄の計測測定)
被測定物が玉ねぎGではない場合の一例として房付き葡萄の糖度の測定について説明する。
透過型分光光度計3によるオンライン測定では、搬送装置Cとして急峻なスペクトル特性を持たないテフロン(登録商標)系のコンベア等を使用し、透過型光ゲート部1及び透過型分光光度計3の投受光部を搬送方向に対して垂直方向(左右)に設置して、その透過光によるスペクトル解析により計測判定を行っている。
測定は、葡萄の房の茎を搬送装置Cの中央に進行方向に向け、房の広い部分を透過型分光光度計3で10回程度の分割測定を行うのであるが、房によっては葡萄の実の間隙から強い光の漏れがあるものがあり、これを透過型光ゲート部1で事前に測定しておき、透過型分光光度計3の読み込みに際して分割測定の何番目に当たるかを定め、透過型分光光度計3の高速シャッターを閉じてスペクトル特性が飽和しないようにして読み込みを行うことができる。
このようにすると、高速シャッターを閉じた部分の測定は行われないことになるが、葡萄の房全体から見れば支障はない。
(Measurement and measurement of wrinkles with tufts)
As an example of the case where the object to be measured is not the onion G, measurement of the sugar content of the wrinkled rice cake will be described.
In online measurement using the transmission spectrophotometer 3, a Teflon (registered trademark) conveyor or the like that does not have steep spectral characteristics is used as the transport device C, and the transmission optical gate unit 1 and the transmission spectrophotometer 3 are loaded. A light receiving unit is installed in a direction perpendicular to the conveyance direction (left and right), and measurement determination is performed by spectrum analysis using transmitted light.
In the measurement, the stem of the tuft is directed to the center of the conveying device C in the direction of travel, and the wide part of the tuft is divided and measured about 10 times with the transmission spectrophotometer 3, but depending on the tuft, In some cases, there is a strong light leak from the gap, and this is measured in advance by the transmission type optical gate 1 to determine the number of divisional measurement when the transmission type spectrophotometer 3 is read. Reading can be performed by closing the high-speed shutter of the spectrophotometer 3 so that the spectral characteristics are not saturated.
In this way, the measurement of the portion where the high-speed shutter is closed is not performed, but there is no problem when viewed from the whole cocoon.

飽和回数/分割測定回数(%)は葡萄の房の密度を表し、一定値を上回るとその葡萄の房はエラーとして排除する。
例えば房付き葡萄の茎の部分の除去は、受光面縦幅Hに対応する受光素子群がR3〜R8とすると、葡萄の茎は細く、R3〜R8の範囲で1個か2個の受光素子の光を遮るだけであり、葡萄の実により出力回路波形S3,S4,S5,S6,S7,S8の遮光したことを(真)としてその論理積をとることにより房付き葡萄の茎は除去できる。
X軸上でS3,S4,S5,S6,S7,S8のすべてが(真)になった時点が蓄積開始点となり、そのすべてが(真)の期間が有効蓄積領域であり蓄積時間となる。
The number of saturations / number of divided measurements (%) represents the density of the cocoon bunches.
For example, when removing the stem portion of the tuft with a tuft, if the light receiving element group corresponding to the vertical width H of the light receiving surface is R3 to R8, the stem of the straw is thin, and one or two light receiving elements in the range of R3 to R8 The stem of the tufted cocoon can be removed by taking the logical product of the fact that the output circuit waveforms S3, S4, S5, S6, S7, and S8 are shielded by the fruit of the cocoon (true). .
The point in time when all of S3, S4, S5, S6, S7, and S8 on the X-axis become (true) is the accumulation start point, and the period of all (true) is the effective accumulation region and the accumulation time.

このように、有効蓄積領域内での透過光の積算を行う工程で、強い光による飽和のチェックを行い、透過型分光光度計3ではその被測定物の測定を行わないこと、分割測定時の被測定物で飽和の部分があれば、透過型分光光度計3では、そのタイミングで高速シャターを閉じ、その部分の測定を行なわないことにより測定作業効率を上げることができる。   In this way, in the step of integrating the transmitted light within the effective accumulation region, a check for saturation by strong light is performed, and the transmission spectrophotometer 3 does not measure the object to be measured. If there is a saturated portion in the object to be measured, the transmission spectrophotometer 3 can increase the measurement work efficiency by closing the high-speed shutter at that timing and not measuring that portion.

次に、透過型光ゲート部1のバリエーションの例について説明する。
透過型光ゲート部1は図3に示す構成に限定されるものではなく、透過型光ゲート部1は、例えば、図7(a)に示すように発光素子群Pと受光素子群Rを略中央で焦点を結ぶように配列する構成、図7(b)に示すように上下方向に投受光を行う構成等であってもよく、必要に応じて搬送方向に対する発光素子群P及びと受光素子群Rの配置を定めて使用することができる。また、発光素子群Pに発光波長が2波長以上の素子を光学的に並列に使用し、波長ごとに時分割で受光信号を取得し、其々の2次元画像から被測定物の形状判定を行ってもよく、搬送装置C上に、発光素子群Pの波長が異なる透過型光ゲート部1を波長ごとに密に配置し、其々の2次元画像を判定して、被測定物の形状判定を行ってもよい。
Next, an example of variations of the transmissive optical gate unit 1 will be described.
The transmission type optical gate unit 1 is not limited to the configuration shown in FIG. 3, and the transmission type optical gate unit 1 includes, for example, a light emitting element group P and a light receiving element group R as shown in FIG. A configuration in which the focal points are arranged at the center, a configuration in which light is projected and received in the vertical direction as shown in FIG. 7B, and the like may be used. The arrangement of the group R can be determined and used. In addition, an element having a light emission wavelength of two or more wavelengths is optically used in parallel in the light emitting element group P, and a light reception signal is obtained by time division for each wavelength, and the shape of the object to be measured is determined from each two-dimensional image. The transmissive optical gate portions 1 having different wavelengths of the light emitting element group P are densely arranged on the transport device C for each wavelength, and each two-dimensional image is determined to determine the shape of the object to be measured. A determination may be made.

また、透過型光ゲート部1は、その複数台を設置してもよく、例えば発光波長の異なる発光素子群P及び受光素子群Rを透過型分光光度計3よりも搬送方向上流側に複数設置してなる複数台の透過型光ゲート部1,1,…を用い、被測定物に対し最適な波長の画像解析部4からの信号を選択したり、或いはそのすべての情報から、分光器演算部及びカメラ画像解析部32により演算を行い総合判定出力をすることもできる。このような複数台の透過型光ゲート部1,1,…は、一つの筺体内にまとめて配設し、発光波長の異なる発光素子、受光素子を有用に配列した透過型光ゲート部としてもよい。   A plurality of transmission optical gate units 1 may be installed. For example, a plurality of light emitting element groups P and light receiving element groups R having different emission wavelengths are installed upstream of the transmission spectrophotometer 3 in the transport direction. Are used to select a signal from the image analysis unit 4 having the optimum wavelength for the object to be measured, or to calculate the spectroscope from all the information. And the camera image analysis unit 32 can perform computation and output a comprehensive determination. The plurality of transmission type optical gate portions 1, 1,... Are arranged in a single casing, and can be used as a transmission type optical gate portion in which light emitting elements and light receiving elements having different emission wavelengths are effectively arranged. Good.

以上のように、本発明のオンライン型非破壊分光分析装置は、図4に示すようにS1〜Snに示す被測定物の透過光強度分布を2次元的に測定し、図5に示すように受光部回路8においてFETによる飽和対策を行い、透過型光ゲート部1の発光素子群P及び受光素子群Rを表面撮像装置2及び透過型分光光度計3の上流側に設置して、透過光強度のレベルと形状に対し、予め定めた被測定物の形状パターンにより論理フィルター処理を行い、測定不要部位を除去して、2次元透過光強度データより測定必要部位の有効測定領域を算出し、表面撮像装置2に対して、カメラ用測定タイミング・サイズTCを出力し、透過型分光光度計3に対して、有効蓄積領域の画素の透過光強度を積算したスペクトルの飽和を制御する積算透過光強度信号B及び分光光度計測定タイミング・サイズTを出力することにより、判別精度を向上するものである。   As described above, the on-line nondestructive spectroscopic analyzer of the present invention measures the transmitted light intensity distribution of the object to be measured shown in S1 to Sn as shown in FIG. 4 in a two-dimensional manner, as shown in FIG. In the light receiving unit circuit 8, saturation countermeasures are performed by FETs, and the light emitting element group P and the light receiving element group R of the transmission type optical gate unit 1 are installed on the upstream side of the surface imaging device 2 and the transmission type spectrophotometer 3 to transmit the transmitted light. For the intensity level and shape, logical filtering is performed with a predetermined shape pattern of the object to be measured, the measurement unnecessary part is removed, and the effective measurement area of the measurement necessary part is calculated from the two-dimensional transmitted light intensity data, Accumulated transmitted light that outputs the camera measurement timing and size TC to the surface imaging device 2 and controls the saturation of the spectrum obtained by integrating the transmitted light intensity of the pixels in the effective accumulation region to the transmission spectrophotometer 3. Intensity signal B By outputting fine spectrophotometer measurement timing size T, it is to improve the determination accuracy.

また、透過型光ゲート部1は強い光源と受光部の飽和処理により実用的には埃などの影響を低減でき、受光素子群Rの出力波形(S1〜Sn)は被測定物を透過した透過光強度として扱っているが、既知の減衰特性を持つNDフイルター板を例えば受光素子群Rの前で切り替え、被測定物のないときにサンプルングしてリファレンスデータとして記録することにより、透過度(S1〜Sn)=被測定物データ/(NDフイルタデータ×減衰率(実数表記))として発光素子(P1〜Pn)の波長における被測定物の2次元透過度特性が得られる。
これにより、発光素子(P1〜Pn)の経時的劣化、光学系の汚れ、個々の発光素子、受光素子の光学及び電子回路の感度の補正もできる。
さらに、より高精度な測定をする必要があれば、透過光強度を透過度にして演算処理を行なえばよい。
Further, the transmission type optical gate unit 1 can practically reduce the influence of dust and the like by a strong light source and saturation processing of the light receiving unit, and the output waveform (S1 to Sn) of the light receiving element group R is transmitted through the object to be measured. Although handled as light intensity, an ND filter plate having a known attenuation characteristic is switched in front of, for example, the light receiving element group R, sampled when there is no object to be measured, and recorded as reference data. The two-dimensional transmittance characteristics of the measurement object at the wavelength of the light emitting elements (P1 to Pn) are obtained as S1 to Sn) = measurement object data / (ND filter data × attenuation rate (real number notation)).
As a result, the deterioration of the light emitting elements (P1 to Pn) with time, the contamination of the optical system, the individual light emitting elements, the optics of the light receiving elements and the sensitivity of the electronic circuit can be corrected.
Furthermore, if it is necessary to perform measurement with higher accuracy, calculation processing may be performed with the transmitted light intensity as the transmittance.

A 被測定物搬送方向
B 積算透過光強度信号
C 搬送装置
CL クロック信号
D 総合判定出力
G 玉ねぎ(被測定物)
H 受光面縦幅
I 透過光強度
L 全長(玉ねぎの芽を含むサイズ)
LN 測定必要部位長
L1 投射光
L2 受光光
P 発光素子群
R 受光素子群
P1,P2,P3,…,P20 発光素子
R1,R2,R3,…,R20 受光素子
S1,S2,S3,…,S20 受光素子出力波形
Ta,Tb 閾値
T 分光光度計測定タイミング・サイズ
TC カメラ用タイミング・サイズ
UN1 表皮(第1測定不要部位)
UN2 芽(第2測定不要部位)
V1 アンチ飽和バイアス電圧
V2 レベルシフトバイアス電圧
V3 発光素子電流制御電圧
1 透過型光ゲート部
2 表面撮像装置
3 透過型分光光度計
4 光ゲート画像解析部
5 コリメーターレンズ
6 フード
7 投光部回路
8 受光部回路
9 発光素子駆動回路
10 前置増幅器
11 アンチ飽和FET
12 後段増幅器
13 零点補正回路
14 発光素子駆動パルス
15 零点補正パルス
16 アナログマルチプレクサ
17,18 A/D変換器
19 指令信号データ線
20 ワンチップCPU
21 カメラ
22 投光器
23 側面ミラー
24 カメラインターフェース
31 分光器及び制御部
32 分光器演算部及びカメラ画像解析部
33 受光器
34 光学絞り
35 光絞りアクチュエータ
36 光ファイバー
37 光源
38 ハロゲンランプ
39 投受光エレベーション部
A Measuring object conveyance direction B Integrated transmitted light intensity signal C Conveying device CL Clock signal D Comprehensive judgment output G Onion (measurement object)
H Light receiving surface length I Transmitted light intensity L Total length (including onion buds)
LN measurement required part length L1 projection light L2 received light P light emitting element group R light receiving element group P1, P2, P3,..., P20 light emitting elements R1, R2, R3,..., R20 light receiving elements S1, S2, S3,. Light receiving element output waveform Ta, Tb Threshold value T Spectrophotometer measurement timing size TC Camera timing size UN1 Epidermis (first measurement unnecessary part)
UN2 bud (second measurement unnecessary site)
V1 Anti-saturation bias voltage V2 Level shift bias voltage V3 Light emitting element current control voltage 1 Transmission type optical gate unit 2 Surface imaging device 3 Transmission type spectrophotometer 4 Optical gate image analysis unit 5 Collimator lens 6 Hood 7 Projection unit circuit 8 Light-receiving unit circuit 9 Light-emitting element drive circuit 10 Preamplifier 11 Anti-saturation FET
12 Subsequent amplifier 13 Zero point correction circuit 14 Light-emitting element drive pulse 15 Zero point correction pulse 16 Analog multiplexer 17, 18 A / D converter 19 Command signal data line 20 One-chip CPU
21 Camera 22 Projector 23 Side mirror 24 Camera interface 31 Spectrometer and control unit 32 Spectrometer calculation unit and camera image analysis unit 33 Light receiver 34 Optical aperture 35 Optical aperture actuator 36 Optical fiber 37 Light source 38 Halogen lamp 39 Light projection and reception elevation unit

Claims (2)

搬送装置により姿勢が不揃いな状態で順次搬送されてくる、測定不要部位を含む被測定物の内部性状の測定を透過型分光光度計により行うオンライン型非破壊分光分析装置であって、
前記搬送装置は搬送に同期したクロック信号を出力するものであり、
前記被測定物の透過光強度分布を2次元的に測定するために前記透過型分光光度計よりも搬送方向上流側に設置した発光素子群及び該発光素子群により照射された光を受光する受光素子群を有する透過型光ゲート部を備え、該透過型光ゲート部により、所定閾値よりも透過光強度が高い前記被測定物の第1測定不要部位を検出するとともに、透過光強度だけでは検出できない前記被測定物の第2測定不要部位を透過光強度及び形状判定により検出し、前記第1測定不要部位及び第2測定不要部位を除いて前記被測定物の測定必要部位のサイズ及び有効測定領域を算出し、前記透過型分光光度計に対して、前記有効蓄積領域の画素の透過光強度を積算した、スペクトルの飽和を制御するための積算透過光強度信号、並びに、前記クロック信号に同期した蓄積開始点及び蓄積時間を出力するオンライン型非破壊分光分析装置。
An on-line nondestructive spectrophotometer that uses a transmission spectrophotometer to measure the internal properties of an object to be measured , including parts that do not require measurement, which are sequentially transported in a state of unevenness by a transport device,
The transport device outputs a clock signal synchronized with transport,
A light emitting element group installed on the upstream side of the transmission spectrophotometer in order to measure the transmitted light intensity distribution of the object to be measured two-dimensionally, and light reception for receiving light emitted by the light emitting element group A transmission type optical gate unit having an element group is provided. The transmission type optical gate unit detects a first measurement unnecessary portion of the measurement object whose transmitted light intensity is higher than a predetermined threshold, and detects only by the transmitted light intensity. The second measurement-unnecessary part of the object to be measured that is not detected is detected by transmitted light intensity and shape determination, and the size and effective measurement of the measurement-required part of the object to be measured are excluded except for the first measurement-unnecessary part and the second measurement-unnecessary part. The integrated transmission light intensity signal for controlling the saturation of the spectrum obtained by calculating the area and integrating the transmission light intensity of the pixels in the effective accumulation area to the transmission spectrophotometer, and the clock signal On-Line nondestructive spectrometer for outputting an accumulation starting point and the storage time synchronized.
前記透過型光ゲート部の発光素子群及び受光素子群よりも搬送方向下流側で、前記透過型分光光度計よりも搬送方向上流側又は下流側に、前記被測定物の表面異状を計測するために前記被測定物を撮像するカメラ及び前記被測定物を照らす投光器を有する表面撮像装置を備え、該表面撮像装置に対して前記透過型光ゲート部から、前記被測定物の画像中心付近が前記カメラの画像エリアの中央に位置するように、前記クロック信号に同期した撮像開始トリガー信号及びサイズを出力する請求項1記載のオンライン型非破壊分光分析装置。
In order to measure the surface abnormality of the object to be measured on the downstream side in the transport direction with respect to the light emitting element group and the light receiving element group of the transmission type optical gate unit and on the upstream side or downstream side in the transport direction with respect to the transmission type spectrophotometer. A surface imaging device having a camera for imaging the object to be measured and a projector for illuminating the object to be measured, wherein the vicinity of the image center of the object to be measured is from the transmission type optical gate unit to the surface imaging device. The on-line type nondestructive spectroscopic analysis apparatus according to claim 1, wherein an imaging start trigger signal and a size synchronized with the clock signal are output so as to be positioned at a center of an image area of the camera.
JP2010236960A 2009-10-28 2010-10-22 Online nondestructive spectrometer Expired - Fee Related JP5636870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236960A JP5636870B2 (en) 2009-10-28 2010-10-22 Online nondestructive spectrometer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009247678 2009-10-28
JP2009247678 2009-10-28
JP2010236960A JP5636870B2 (en) 2009-10-28 2010-10-22 Online nondestructive spectrometer

Publications (2)

Publication Number Publication Date
JP2011117942A JP2011117942A (en) 2011-06-16
JP5636870B2 true JP5636870B2 (en) 2014-12-10

Family

ID=44283425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236960A Expired - Fee Related JP5636870B2 (en) 2009-10-28 2010-10-22 Online nondestructive spectrometer

Country Status (1)

Country Link
JP (1) JP5636870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743715B2 (en) 2011-05-26 2015-07-01 キヤノン株式会社 Acoustic signal receiver
JP6282086B2 (en) * 2013-08-20 2018-02-21 三井金属計測機工株式会社 Evaluation apparatus for bulb vegetables and evaluation method for bulb vegetables
JP2017189748A (en) * 2016-04-14 2017-10-19 シブヤ精機株式会社 Onion selector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188978A (en) * 1989-12-20 1991-08-16 Iseki & Co Ltd Device for deciding maturity degree of fruits
JP2004219375A (en) * 2003-01-17 2004-08-05 Kubota Corp Apparatus for evaluating quality of fruits and vegetables
JP3931875B2 (en) * 2003-10-29 2007-06-20 財団法人雑賀技術研究所 Spectrophotometer
JP2006003134A (en) * 2004-06-16 2006-01-05 Maki Mfg Co Ltd Visual inspection system of agricultural products

Also Published As

Publication number Publication date
JP2011117942A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5103736B2 (en) Heterogeneous product detection device using a planar spectrometer
US11913880B2 (en) Spectrometer device
KR20090061007A (en) Ultraviolet ray detection device and ultraviolet ray protection effect evaluating device
JP3931875B2 (en) Spectrophotometer
JP5636870B2 (en) Online nondestructive spectrometer
US20060118726A1 (en) Fruit-vegetable quality evaluation device
US20220268627A1 (en) Spectrometer device
JPH07229840A (en) Method and apparatus for optical measurement
JP2881201B2 (en) Method and apparatus for measuring sugar content of citrus fruit
JP2000111473A (en) Inspection system for vegetables and fruits
KR102165091B1 (en) 3 dimensional distance measuring camera
FR2710564A1 (en) Device for recognizing and / or sorting fruits or vegetables, method and use thereof.
JP2012008098A (en) Device for inspecting inside of fruit and vegetable
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP7065755B2 (en) Goods inspection equipment
JP5386114B2 (en) Fruit and vegetable quality judgment device
US20230375465A1 (en) Tablet spectroscopic measurement method
JPH1082739A (en) Method and apparatus for inspecting internal quality of vegetables and fruits or the like
JP2004264130A (en) Quality evaluating device and equipment for measuring quality
JP3611519B2 (en) Agricultural product internal quality evaluation system
WO2018044327A1 (en) Food inspection systems and methods
JP2004004077A (en) System for measuring internal quality of agricultural product
JP3576158B2 (en) Agricultural product internal quality evaluation device
JP7473546B2 (en) Analysis equipment
CN118119831A (en) Method for calibrating a spectrometer arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees