JP7065755B2 - Goods inspection equipment - Google Patents

Goods inspection equipment Download PDF

Info

Publication number
JP7065755B2
JP7065755B2 JP2018219332A JP2018219332A JP7065755B2 JP 7065755 B2 JP7065755 B2 JP 7065755B2 JP 2018219332 A JP2018219332 A JP 2018219332A JP 2018219332 A JP2018219332 A JP 2018219332A JP 7065755 B2 JP7065755 B2 JP 7065755B2
Authority
JP
Japan
Prior art keywords
light
data
unit
light source
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018219332A
Other languages
Japanese (ja)
Other versions
JP2020085622A (en
Inventor
健 塩入
隆生 谷本
匡章 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70907622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7065755(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2018219332A priority Critical patent/JP7065755B2/en
Publication of JP2020085622A publication Critical patent/JP2020085622A/en
Application granted granted Critical
Publication of JP7065755B2 publication Critical patent/JP7065755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の異なる波長の狭帯域光イメージング(NBI: Narrow Band Imaging)画像を取得することができる物品検査装置に関する。 The present invention relates to an article inspection device capable of acquiring a plurality of different wavelength Narrow Band Imaging (NBI) images.

光(紫外線、可視光線、近赤外線、赤外線など)を試料に通過させ、各波数における試料による吸収スペクトルを測定する分光法(紫外分光法,可視分光法,近赤外分光法,赤外分光法など)がある。この吸収スペクトルの吸収波長と強度は、対象とする物質の化学構造によって定まることから、物質の成分特定や定量に用いることができる。この方法は、トマトのリコペンの含量評価や熟度の評価、青果物の鮮度や糖度や酸度や変色の評価、化粧品の評価、医薬品の成分分析などに用いられている。 Spectroscopy (ultraviolet spectroscopy, visible spectroscopy, near-infrared spectroscopy, infrared spectroscopy) that allows light (ultraviolet, visible, near-infrared, infrared, etc.) to pass through a sample and measures the absorption spectrum of the sample at each wave number. and so on. Since the absorption wavelength and intensity of this absorption spectrum are determined by the chemical structure of the target substance, it can be used for specifying and quantifying the components of the substance. This method is used for evaluation of the content and maturity of tomato lycopene, evaluation of freshness, sugar content, acidity and discoloration of fruits and vegetables, evaluation of cosmetics, and component analysis of pharmaceutical products.

近年、スペクトル画像の取得を目的として種々の技術が検討されている。例えば下記特許文献1では、被写体からの光を分光器によって複数の波長領域に分光し各波長領域ごとの光を撮像素子に受光させる技術が開示されている。 In recent years, various techniques have been studied for the purpose of acquiring spectral images. For example, Patent Document 1 below discloses a technique in which light from a subject is separated into a plurality of wavelength regions by a spectroscope and the light in each wavelength region is received by an image sensor.

さらに説明すると、特許文献1のハイパースペクトルカメラは、被写体からの光を分光器によって複数の波長領域に分光し、各波長領域ごとの光を撮像素子に受光させることにより、被写体の2次元画像を構成する各ピクセルごとにスペクトル情報を対応付けてなるハイパースペクトルデータを取得するものであり、被写体からの光を反射させるとともに、当該反射された光を所定の方向に沿って走査させるスキャン機構と、スキャン機構と分光器との間に設けられ、スキャン機構によって走査された光の焦点位置を調整する補正レンズと、補正レンズの焦点位置に配置されて分光器に光を入射させるとともに、スキャン機構の走査方向と略垂直な方向に沿って長手方向が形成されているスリットと有している。 Further, the hyperspectral camera of Patent Document 1 disperses the light from the subject into a plurality of wavelength regions by a spectroscope, and causes the image pickup element to receive the light for each wavelength region to obtain a two-dimensional image of the subject. It acquires hyperspectral data in which spectral information is associated with each constituent pixel, and has a scanning mechanism that reflects light from the subject and scans the reflected light along a predetermined direction. A correction lens provided between the scan mechanism and the spectroscope that adjusts the focal position of the light scanned by the scan mechanism, and a correction lens that is placed at the focal position of the correction lens to inject light into the spectroscope and of the scan mechanism. It has a slit formed in the longitudinal direction along a direction substantially perpendicular to the scanning direction.

また、下記特許文献2には、入射光を特定の波長を選択する第1領域と、光学特性を変更させない第2領域とを有し、1つのカメラで光学特性を変更させないリアル画像と、光学特性を変更させた光スペクトル画像の両方を同時に取得する技術が開示されている。 Further, Patent Document 2 below includes a real image having a first region for selecting a specific wavelength for incident light and a second region for not changing the optical characteristics, and an optical image in which the optical characteristics are not changed by one camera. A technique for simultaneously acquiring both optical spectrum images with changed characteristics is disclosed.

さらに説明すると、特許文献2は、対物レンズからの光を、光学特性変更部を介して撮像素子で受光し、光学特性変更部は複数の分割部を有すると共に分割部の1つを選択的に光路に配置させる。分割部は、特定の波長を選択する第1領域と、光学特性を変更させない第2領域とを有し、光学特性変更部により1つのカメラで光学特性を変更させないリアル画像と、光学特性を変更させた光スペクトル画像の両方を同時に取得することができる。 Further, in Patent Document 2, the light from the objective lens is received by the image sensor via the optical characteristic changing portion, and the optical characteristic changing portion has a plurality of divided portions and selectively selects one of the divided portions. Place it in the optical path. The dividing unit has a first region for selecting a specific wavelength and a second region for not changing the optical characteristics, and the optical characteristics changing unit changes the optical characteristics to a real image in which the optical characteristics are not changed by one camera. Both of the optical spectrum images that have been made can be acquired at the same time.

さらに、下記特許文献3には、予め選択された複数の波長帯について、光路を変更することにより波長選択フィルタ切替え複数の波長帯の光を波長選択フィルタにおいてそれぞれ透過して複数の撮像素子へ照射する技術が開示されている。 Further, in Patent Document 3 below, for a plurality of wavelength bands selected in advance, the wavelength selection filter is switched by changing the optical path. The technology to be used is disclosed.

さらに説明すると、特許文献3は、検出対象の物性に応じて予め選択された複数の波長帯について、2次元画像を撮像し、2次元画像の各画素における物質を検出する。2次元画像を撮像するステップにおいては、受けた光を反射し、かつ反射光の光路を変更することにより反射光の照射先の波長選択フィルタを切り替え、複数の波長帯の光を波長選択フィルタにおいてそれぞれ透過して複数の撮像素子へ照射する。 Further, Patent Document 3 captures a two-dimensional image of a plurality of wavelength bands selected in advance according to the physical properties of the detection target, and detects a substance in each pixel of the two-dimensional image. In the step of capturing a two-dimensional image, the wavelength selection filter of the irradiation destination of the reflected light is switched by reflecting the received light and changing the optical path of the reflected light, and the light of a plurality of wavelength bands is transferred to the wavelength selection filter. Each of them is transmitted and irradiated to a plurality of image pickup elements.

また、下記特許文献4には、画像カメラ(フレーム画像)とスペクトルカメラ(光スペクトル画像)から構成され、スペクトルカメラは設定された波長を順次切替えることで測定対象の光スペクトル画像を複数取得する技術が開示されている。 Further, Patent Document 4 below includes a technique of acquiring a plurality of optical spectrum images to be measured by sequentially switching a set wavelength, which is composed of an image camera (frame image) and a spectrum camera (optical spectrum image). Is disclosed.

さらに説明すると、特許文献4は、第2カメラで光スペクトル画像の取得し、それに同期して第1カメラでフレーム画像を取得し、1つのフレーム画像から複数の特徴点を抽出し、特徴点を時系列に連続するフレーム画像中に順次特定し、複数の光スペクトル画像と対応するフレーム画像について特徴点に基づきフレーム画像間の画像マッチングを行い、画像マッチングで得られた条件に基づき複数の光スペクトル画像を合成し、ハイパースペクトル画像を生成する。 Further, in Patent Document 4, the optical spectrum image is acquired by the second camera, the frame image is acquired by the first camera in synchronization with the acquisition, and a plurality of feature points are extracted from one frame image to obtain the feature points. Multiple optical spectra are sequentially specified in the frame images that are continuous in time series, image matching is performed between the frame images based on the feature points for the multiple optical spectrum images and the corresponding frame images, and multiple optical spectra are performed based on the conditions obtained by the image matching. Images are combined to generate a hyperspectral image.

特許第5632060号公報Japanese Patent No. 5632060 特許第5802516号公報Japanese Patent No. 58025216 特許第5845858号公報Japanese Patent No. 5845858 特許第6188750号公報Japanese Patent No. 6188750

しかしながら、上述した従来の装置は、いづれも、大規模かつ高価で、しかも測定に時間を要するという問題がある。 However, all of the above-mentioned conventional devices have a problem that they are large-scale, expensive, and take a long time to measure.

そこで、本発明は上記問題点に鑑みてなされたものであって、安価かつシンプルな構成で、測定に時間を要することなく被検査物の特性を検出して検査を行うことができる物品検査装置を提供することを目的としている。 Therefore, the present invention has been made in view of the above problems, and is an article inspection device capable of detecting and inspecting the characteristics of an object to be inspected without requiring time for measurement with an inexpensive and simple configuration. Is intended to provide.

上記目的を達成するため、本発明に係る物品検査装置は、被検査物Wを所定の搬送経路に沿って搬送する搬送手段3を有し、前記搬送手段によって搬送される前記被検査物を順次検査する物品検査装置において、
異なる波長の光を出力して被検査物Wに照射するための複数の任意の狭い波長成分を有する光源2a,2b,2cを有する光源部2と、
所定のパターンで配列し、前記複数の光源それぞれに対応して該複数の光源の波長を透過する異なる透過波長帯の複数のカラーフィルタ4aと、前記複数のカラーフィルタを通過した前記複数の光源の波長帯毎の光に応じた光強度データを出力する2次元イメージセンサ4bとを有する受光部4と、
前記受光部が出力する前記光強度データを取得して記憶するデータ取得部5と、
前記データ取得部が記憶する光強度データから前記複数の光源の波長帯毎の2次元画像データを生成する画像データ生成部6と、
前記複数の光源に対応する前記光強度データと物品の特性を表す特性データを記憶する特性データ記憶部7aと、
前記特性データ記憶部に記憶された特性データと、前記画像データ生成部にて生成した前記複数の光源の波長帯毎の2次元画像データの各画素の強度データに基づいて前記被検査物の特性を検出する特性検出部8と、
を備えたことを特徴とする。
In order to achieve the above object, the article inspection apparatus according to the present invention has a transport means 3 for transporting the inspected object W along a predetermined transport path, and sequentially transports the inspected object to be conveyed by the transport means. In the article inspection device to be inspected
A light source unit 2 having light sources 2a, 2b, 2c having a plurality of arbitrary narrow wavelength components for outputting light having different wavelengths and irradiating the object W to be inspected.
A plurality of color filters 4a having different transmission wavelength bands that are arranged in a predetermined pattern and transmit the wavelengths of the plurality of light sources corresponding to each of the plurality of light sources, and the plurality of light sources that have passed through the plurality of color filters. A light source unit 4 having a two-dimensional image sensor 4b that outputs light intensity data corresponding to light in each wavelength band, and
A data acquisition unit 5 that acquires and stores the light intensity data output by the light receiving unit, and
An image data generation unit 6 that generates two-dimensional image data for each wavelength band of the plurality of light sources from the light intensity data stored in the data acquisition unit.
The characteristic data storage unit 7a for storing the light intensity data corresponding to the plurality of light sources and the characteristic data representing the characteristics of the article, and the characteristic data storage unit 7a.
Characteristics of the inspected object based on the characteristic data stored in the characteristic data storage unit and the intensity data of each pixel of the two-dimensional image data for each wavelength band of the plurality of light sources generated by the image data generation unit. The characteristic detection unit 8 that detects
It is characterized by being equipped with.

また、本発明に係る物品検査装置は、前記複数の光源2a,2b,2cのそれぞれに対し、前記複数の光源それぞれについて光源1つのみを点灯させた状態で、点灯させた光源の波長に対応するカラーフィルタを通過した光強度データとそれ以外のカラーフィルタを通過した光強度データとの比を予め補正データとして記憶する補正データ記憶部7bを備え、
前記データ取得部5で読み込んだ光強度データを前記補正データで補正し、前記複数の光源の波長帯毎の2次元画像データを生成するようにしてもよい。
Further, the article inspection apparatus according to the present invention corresponds to the wavelength of the light source turned on with only one light source turned on for each of the plurality of light sources 2a, 2b, 2c. It is provided with a correction data storage unit 7b that stores in advance the ratio of the light intensity data that has passed through the color filter to be corrected and the light intensity data that has passed through other color filters as correction data.
The light intensity data read by the data acquisition unit 5 may be corrected by the correction data to generate two-dimensional image data for each wavelength band of the plurality of light sources.

本発明によれば、安価かつシンプルな構成で、しかも高速に複数の異なる波長(狭い帯域の波長)の光によるイメージング画像を取得して被検査物の特性を検出することができる。 According to the present invention, it is possible to detect the characteristics of an inspected object by acquiring an imaging image of light having a plurality of different wavelengths (wavelengths in a narrow band) at high speed with an inexpensive and simple configuration.

本発明に係る物品検査装置の概略構成を示す図である。It is a figure which shows the schematic structure of the article inspection apparatus which concerns on this invention. (a)複数の波長の光を被検査物に同時に照射する場合の概略構成図、(b)複数の波長の光の出射タイミングを示す図である。(A) is a schematic configuration diagram when light of a plurality of wavelengths is simultaneously irradiated to an object to be inspected, and (b) is a diagram showing the emission timing of light of a plurality of wavelengths. (a)トマトのリコペンの含量毎の吸収スペクトル特性を示す図、(b)カラーフィルタ通過後の2次元イメージセンサの波長感度特性を示す図である。(A) It is a figure which shows the absorption spectrum characteristic for each content of lycopene of tomato, and (b) is a figure which shows the wavelength sensitivity characteristic of a two-dimensional image sensor after passing through a color filter. トマトの糖度毎の吸収スペクトル特性を示す図である。It is a figure which shows the absorption spectrum characteristic for each sugar content of tomato. 牛肉の経過時間毎の反射スペクトル特性を示す図である。It is a figure which shows the reflection spectrum characteristic for each elapsed time of beef. マグロの経過時間毎の反射スペクトル特性を示す図である。It is a figure which shows the reflection spectrum characteristic for each elapsed time of tuna. 葉もの野菜の経過時間毎の反射スペクトル特性を示す図である。It is a figure which shows the reflection spectrum characteristic by the elapsed time of a leaf vegetable. (a)複数の波長の光を被検査物に時分割的に照射する場合の概略構成図、(b)複数の波長の光の出射タイミングを示す図である。(A) is a schematic configuration diagram in the case of irradiating an object to be inspected with light of a plurality of wavelengths in a time-division manner, and (b) is a diagram showing the emission timing of light of a plurality of wavelengths.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the attached drawings.

図1に示すように、本実施の形態の物品検査装置1は、光源部2、搬送部3、受光部4、データ取得部5、画像データ生成部6、記憶部7、特性検出部8を備えて概略構成される。 As shown in FIG. 1, the article inspection device 1 of the present embodiment includes a light source unit 2, a transport unit 3, a light receiving unit 4, a data acquisition unit 5, an image data generation unit 6, a storage unit 7, and a characteristic detection unit 8. It is roughly configured in preparation for.

光源部2は、異なる波長の光を発光する複数の光源2a,2b,2cと、複数の光源2a,2b,2cからの光を被検査物Wに照射する照射部2bとを備える。 The light source unit 2 includes a plurality of light sources 2a, 2b, 2c that emit light of different wavelengths, and an irradiation unit 2b that irradiates the object W with light from the plurality of light sources 2a, 2b, 2c.

本例における複数の光源は、例えば図3(b)に示すように、矢印Aの青(450nm)の光を発光する光源2a、矢印Bの緑(550nm)の光を発光する光源2b、矢印Cの赤(680nm)の光を発光する光源2cからなる。 As shown in FIG. 3B, for example, the plurality of light sources in this example are a light source 2a that emits blue (450 nm) light of arrow A, a light source 2b that emits green (550 nm) light of arrow B, and an arrow. It is composed of a light source 2c that emits red (680 nm) light of C.

光源部2は、レーザダイオード(LD)による青、緑、赤の出力光、発光ダイオード(LED)による青、緑、赤の出力光を光バンドパスフィルタに通過させた光、スーパールミネッセントダイオード(SLD)による青、緑、赤の出力光を光バンドパスフィルタに通過させた光の何れかを出力する。 The light source unit 2 is a super luminescent diode, which is light obtained by passing blue, green, and red output light from a laser diode (LD) and blue, green, and red output light from a light emitting diode (LED) through an optical band path filter. The blue, green, and red output light produced by (SLD) is output as one of the light passed through the optical band path filter.

なお、各光源(第1光源2a、第2光源2b、第3光源2c)としては、例えばレーザダイオードの出力光、発光ダイオード(LED:Light Emitting Diode)の出力光を光バンドパスフィルタに通過させた光、スーパールミネッセントダイオード(SLD:Super Luminescent Diode )の出力光を光バンドパスフィルタに通過させた光などを適宜選択的に用いることができる。 As each light source (first light source 2a, second light source 2b, third light source 2c), for example, the output light of a laser diode or the output light of a light emitting diode (LED: Light Emitting Diode) is passed through an optical bandpath filter. Light, light obtained by passing the output light of a super luminescent diode (SLD) through an optical band path filter, or the like can be selectively used.

照射部2dは、複数の光源2a,2b,2cからの異なる複数の波長(青、緑、赤)の光を被検査物Wに照射する。 The irradiation unit 2d irradiates the object W with light of a plurality of different wavelengths (blue, green, red) from the plurality of light sources 2a, 2b, and 2c.

搬送部3は、被検査物Wを搬送路上で所定間隔おきに順次搬送するもので、例えば装置本体に対して水平に配置されたベルトコンベアで構成される。 The transport unit 3 sequentially transports the object W to be inspected on the transport path at predetermined intervals, and is composed of, for example, a belt conveyor arranged horizontally with respect to the main body of the apparatus.

搬送部としてのベルトコンベア3は、搬送ベルトが照射部2dにて照射される複数の光源2a,2b,2cからの光を透過する光透過性ベルトで形成され、被検査物Wの検査を行う際に、予め設定された搬送速度により駆動制御される。これにより、被検査物Wは、ベルトコンベア4上を図1の搬送方向Xに所定間隔おきに搬送される。 The belt conveyor 3 as a transport unit is formed of a light transmitting belt that transmits light from a plurality of light sources 2a, 2b, 2c to which the transport belt is irradiated by the irradiation unit 2d, and inspects the object W to be inspected. At that time, the drive is controlled by a preset transfer speed. As a result, the object W to be inspected is conveyed on the belt conveyor 4 in the conveying direction X in FIG. 1 at predetermined intervals.

受光部4は、図2(a)に示すように、カラーフィルタ4aと2次元イメージセンサ4bを備えて構成される。受光部4は、光源部2の青、緑、赤の波長の複数の光源2a,2b,2cそれぞれに対応し、それぞれ青、緑、赤の波長を透過する複数のカラーフィルタ4aが所定のパターンで2次元イメージセンサ4bの受光面に配列される。具体的には、R,G,Bの3種類のカラーフィルタ4aが例えばR:G:B=1:2:1の比率になる所定のパターンで2次元イメージセンサ4bの受光面に配列される。受光部4は、光源部2からの青、緑、赤の波長の光が照射部2dにて被検査物Wに照射されると、被検査物Wからの透過光を受光し、受光した光強度に比例した光強度データを出力する。 As shown in FIG. 2A, the light receiving unit 4 includes a color filter 4a and a two-dimensional image sensor 4b. The light receiving unit 4 corresponds to each of the plurality of light sources 2a, 2b, and 2c having the wavelengths of blue, green, and red of the light source unit 2, and a plurality of color filters 4a that transmit the wavelengths of blue, green, and red, respectively, have a predetermined pattern. Is arranged on the light receiving surface of the two-dimensional image sensor 4b. Specifically, three types of color filters 4a of R, G, and B are arranged on the light receiving surface of the two-dimensional image sensor 4b in a predetermined pattern having a ratio of, for example, R: G: B = 1: 2: 1. .. When the light receiving unit 4 irradiates the object W with blue, green, and red wavelengths of light from the light source unit 2 with the irradiation unit 2d, the light receiving unit 4 receives the transmitted light from the object W to be inspected and receives the light. Outputs light intensity data proportional to the intensity.

なお、受光部4は、被検査物Wからの透過光を受光しているが、被検査物Wからの反射光を受光するようにしてもよい。この場合、搬送部としてのベルトコンベア3は、光源部2の複数の光源2a,2b,2cからの光を反射する材料で搬送ベルトを形成するのが好ましい。 Although the light receiving unit 4 receives the transmitted light from the inspected object W, the light receiving unit 4 may receive the reflected light from the inspected object W. In this case, it is preferable that the belt conveyor 3 as the transport unit is made of a material that reflects light from a plurality of light sources 2a, 2b, 2c of the light source unit 2.

データ取得部5は、受光部4から出力される光強度データを読み込んで取得し、この取得した光強度データを記憶する。 The data acquisition unit 5 reads and acquires the light intensity data output from the light receiving unit 4, and stores the acquired light intensity data.

画像データ生成部6は、データ取得部5にて読み込んだ光強度データから複数の光源2a,2b,2cの青、緑、赤の波長帯毎の2次元画像データ生成する。 The image data generation unit 6 generates two-dimensional image data for each of the blue, green, and red wavelength bands of the plurality of light sources 2a, 2b, and 2c from the light intensity data read by the data acquisition unit 5.

記憶部7は、特性データ記憶部7aと補正データ記憶部7bを備える。特性データ記憶部7aは、複数の光源2,2b,2cからの光を照射したときの既知の物品毎の特性(例えば含量、糖度、鮮度など)に応じたスペクトル特性(例えば図3(a)や図4の吸収スペクトル特性、図5、図6、図7などの反射スペクトル特性など)のデータを特性データとして記憶する。 The storage unit 7 includes a characteristic data storage unit 7a and a correction data storage unit 7b. The characteristic data storage unit 7a has spectral characteristics (for example, FIG. 3A) according to the characteristics (for example, content, sugar content, freshness, etc.) of each known article when irradiated with light from a plurality of light sources 2, 2b, 2c. And the absorption spectrum characteristics of FIG. 4, the reflection spectrum characteristics of FIGS. 5, 6, 7, etc.) are stored as characteristic data.

なお、特性データは、物品の特性(例えば含量、糖度、鮮度など)の変化が少ない波長と、特性の変化が特徴的な波長付近の吸光度(吸収量)や反射率(反射量)のデータを少なくとも含んでいればよい。 The characteristic data includes data on the absorbance (absorption amount) and reflectance (reflection amount) near the wavelength where the characteristic change of the article (for example, content, sugar content, freshness, etc.) is small and the characteristic change is characteristic. At least it should be included.

補正データ記憶部7bは、波長が異なる複数の光源2a,2b,2cのそれぞれに対し、複数の光源2a,2b,2cそれぞれについて1つの光源(2a,2b,2cの何れか)のみを点灯させた状態で、点灯させた光源の波長に対応するカラーフィルタを通過した光強度データとそれ以外のカラーフィルタを通過した光強度データとの比を予め補正データとして記憶する。 The correction data storage unit 7b lights only one light source (any of 2a, 2b, 2c) for each of the plurality of light sources 2a, 2b, 2c for each of the plurality of light sources 2a, 2b, 2c having different wavelengths. In this state, the ratio of the light intensity data that has passed through the color filter corresponding to the wavelength of the lit light source and the light intensity data that has passed through the other color filters is stored in advance as correction data.

特性検出部8は、被検査物Wに対応する物品の特性データを特性データ記憶部7aから読み出し、読み出した物品の特性データと、画像データ生成部6にて生成した複数の2次元画像データの各画素の強度データとに基づいて被検査物Wの特性を検出する。 The characteristic detection unit 8 reads the characteristic data of the article corresponding to the object W to be inspected from the characteristic data storage unit 7a, and the characteristic data of the read article and a plurality of two-dimensional image data generated by the image data generation unit 6 The characteristics of the inspected object W are detected based on the intensity data of each pixel.

ここで、本実施の形態における受光部4は、光源部2の複数の光源2a,2b,2cそれぞれに対応し、複数の光源2a,2b,2cの波長を透過する異なる透過波長帯の複数のカラーフィルタ4a、すなわち青、緑、赤の波長帯の複数の光源2a,2b,2cに対応した青、緑、赤のカラーフィルタ4aを配置した2次元イメージセンサ4bを有する。 Here, the light receiving unit 4 in the present embodiment corresponds to each of the plurality of light sources 2a, 2b, 2c of the light source unit 2, and a plurality of different transmission wavelength bands that transmit the wavelengths of the plurality of light sources 2a, 2b, 2c. It has a color filter 4a, that is, a two-dimensional image sensor 4b in which a blue, green, and red color filters 4a corresponding to a plurality of light sources 2a, 2b, and 2c in the blue, green, and red wavelength bands are arranged.

しかし、2次元イメージセンサ4bの青のカラーフィルタに緑や赤の光が漏れ込んだ場合や2次元イメージセンサ4bの緑のカラーフィルタに青や赤の光が漏れ込んだ場合には誤差を生じる。 However, an error occurs when green or red light leaks into the blue color filter of the two-dimensional image sensor 4b or when blue or red light leaks into the green color filter of the two-dimensional image sensor 4b. ..

そこで、本実施の形態では、光源部2の複数の光源2a,2b,2cの1つのみを点灯させ、点灯させた光源の波長に対応する2次元イメージセンサ4bのカラーフィルタを通過した光強度データと他のカラーフィルタを通過した光強度データとの比を予め補正データとして補正データ記憶部7bに記憶しておき、データ取得部5で読み込んだ光強度データを補正データ記憶部7bに記憶した補正データで補正することで誤差を解消している。以下、具体的に説明する。 Therefore, in the present embodiment, only one of the plurality of light sources 2a, 2b, and 2c of the light source unit 2 is turned on, and the light intensity that has passed through the color filter of the two-dimensional image sensor 4b corresponding to the wavelength of the turned on light source. The ratio of the data to the light intensity data that has passed through another color filter is stored in the correction data storage unit 7b in advance as correction data, and the light intensity data read by the data acquisition unit 5 is stored in the correction data storage unit 7b. The error is eliminated by correcting with the correction data. Hereinafter, a specific description will be given.

(1)予め、赤(R)、緑(G)、青(B)の各検出素子に漏れ込む他の色の光からの漏れ込み比率を求め、補正データとする。 (1) In advance, the leakage ratio from the light of other colors leaking into each of the red (R), green (G), and blue (B) detection elements is obtained and used as correction data.

a)青光源のみを点灯させた場合
・緑(G)検出素子の検出強度と青(B)検出素子の検出強度を測定し、その比を、補正データ(Cal(Gb)=緑(G)検出強度/青(B)検出強度)とする。
・赤(R)検出素子の検出強度と青(B)検出素子の検出強度を測定し、その比を、補正データ(Cal(Rb)=赤(R)検出強度/青(B)検出強度)とする。
a) When only the blue light source is turned on-The detection intensity of the green (G) detection element and the detection intensity of the blue (B) detection element are measured, and the ratio is corrected data (Cal (Gb) = green (G)). Detection intensity / blue (B) detection intensity).
-Measure the detection intensity of the red (R) detection element and the detection intensity of the blue (B) detection element, and measure the ratio to the correction data (Cal (Rb) = red (R) detection intensity / blue (B) detection intensity). And.

b)緑光源のみを点灯させた場合
・青(B)検出素子の検出強度と緑(G)検出素子の検出強度を測定し、その比を、補正データ(Cal(Bg)=青(B)検出強度/緑(G)検出強度)とする。
・赤(R)検出素子の検出強度と緑(G)検出素子の検出強度を測定し、その比を、補正データ(Cal(Rg)=赤(R)検出強度/緑(G)検出強度)とする。
b) When only the green light source is turned on-The detection intensity of the blue (B) detection element and the detection intensity of the green (G) detection element are measured, and the ratio is corrected data (Cal (Bg) = blue (B)). Detection intensity / green (G) detection intensity).
-Measure the detection intensity of the red (R) detection element and the detection intensity of the green (G) detection element, and measure the ratio to the correction data (Cal (Rg) = red (R) detection intensity / green (G) detection intensity). And.

c)赤光源のみを点灯させた場合
・青(B)検出素子の検出強度と赤(R)検出素子の検出強度を測定し、その比を、補正データ(Cal(Br)=青(B)検出強度/赤(R)検出強度)とする。
・緑(G)検出素子の検出強度と赤(R)検出素子の検出強度を測定し、その比を、補正データ(Cal(Gr)=緑(G)検出強度/赤(R)検出強度)とする。
c) When only the red light source is turned on-The detection intensity of the blue (B) detection element and the detection intensity of the red (R) detection element are measured, and the ratio is corrected data (Cal (Br) = blue (B)). Detection intensity / red (R) detection intensity).
-Measure the detection intensity of the green (G) detection element and the detection intensity of the red (R) detection element, and measure the ratio to the correction data (Cal (Gr) = green (G) detection intensity / red (R) detection intensity). And.

次に、実際の測定(赤光源、緑光源、青光源を同時に点灯させた状態)における光強度データの補正方法について説明する。 Next, a method for correcting light intensity data in an actual measurement (a state in which the red light source, the green light source, and the blue light source are turned on at the same time) will be described.

青(R)、緑(G)、青(B)の各検出素子で検出される光強度データをM(R),M(G),M(B)とし、赤光源の真の光強度をT(R),緑光源の真の光強度をT(G),青光源の真の光強度をT(B)とすると、下式(1),(2),(3)で表される。 The light intensity data detected by each of the blue (R), green (G), and blue (B) detection elements is M (R), M (G), and M (B), and the true light intensity of the red light source is set. Assuming that the true light intensity of T (R) and the green light source is T (G) and the true light intensity of the blue light source is T (B), it is expressed by the following equations (1), (2) and (3). ..

M(R)={T(R)-T(R)×Cal(Br)-T(R)×Cal(Gr)}+T(B)×Cal(Rb)+T(G)×Cal(Rg)…式(1) M (R) = {T (R) -T (R) x Cal (Br) -T (R) x Cal (Gr)} + T (B) x Cal (Rb) + T (G) x Cal (Rg) ... Equation (1)

M(G)={T(G)-T(G)×Cal(Bg)-T(G)×Cal(Rg)}+T(B)×Cal(Gb)+T(R)×Cal(Gr)…式(2) M (G) = {T (G) -T (G) x Cal (Bg) -T (G) x Cal (Rg)} + T (B) x Cal (Gb) + T (R) x Cal (Gr) ... Equation (2)

M(B)={T(B)-T(B)×Cal(Rb)-T(B)×Cal(Gb)}+T(G)×Cal(Bg)+T(R)×Cal(Br)…式(3) M (B) = {T (B) -T (B) x Cal (Rb) -T (B) x Cal (Gb)} + T (G) x Cal (Bg) + T (R) x Cal (Br) ... Equation (3)

従って、赤(R)、緑(G)、青(B)の各検出素子で検出される光強度データと、予め赤(R)、緑(G)、青(B)の各検出素子に漏れ込む他の色の光からの漏れ込み比率Cal(Gb),Cal(Rb),Cal(Bg),Cal(Rg),Cal(Br),Cal(Gr)を求めておくことで、式(1)~(3)の連立方程式から光源の真の光強度T(R),T(G),T(B)を求めることができる。 Therefore, the light intensity data detected by each of the red (R), green (G), and blue (B) detection elements leaks to each of the red (R), green (G), and blue (B) detection elements in advance. Leakage ratio from light of other colors to enter Cal (Gb), Cal (Rb), Cal (Bg), Cal (Rg), Cal (Br), Cal (Gr) by obtaining the equation (1). )-(3), the true light intensities T (R), T (G), and T (B) of the light source can be obtained.

次に、上記のように構成され物品検査装置1を用いた被検査物Wの特性の検出方法について説明する。 Next, a method for detecting the characteristics of the object to be inspected W, which is configured as described above and uses the article inspection device 1, will be described.

まず、第1光源2a、第2光源2b、第3光源2cのそれぞれに対し、それぞれについて光源1つのみを点灯させた状態で、点灯させた光源の波長に対応するカラーフィルタを通過した光強度データとそれ以外のカラーフィルタを通過した光強度データとの比を予め補正データとして補正データ記憶部7bに記憶しておく。 First, for each of the first light source 2a, the second light source 2b, and the third light source 2c, with only one light source lit, the light intensity passed through the color filter corresponding to the wavelength of the lit light source. The ratio between the data and the light intensity data that has passed through the other color filters is stored in advance in the correction data storage unit 7b as correction data.

そして、検査対象となる被検査物Wを搬送部3にて搬送方向Xに搬送し、この被検査物Wに対し、ピーク波長が異なる第1光源2a、第2光源2b、第3光源2cから照射部2dを介して光を照射する。 Then, the object W to be inspected is transported in the transport direction X by the transport unit 3, and the first light source 2a, the second light source 2b, and the third light source 2c having different peak wavelengths with respect to the subject W to be inspected. Light is irradiated through the irradiation unit 2d.

各光源2a,2b,2cからの光が照射部2dを介して被検査物Wに照射されると、被検査物Wからの透過光または反射光がカラーフィルタ4aを介して2次元イメージセンサ4bに入力される。 When the light from the light sources 2a, 2b, 2c is applied to the inspected object W via the irradiation unit 2d, the transmitted light or the reflected light from the inspected object W passes through the color filter 4a and is a two-dimensional image sensor 4b. Is entered in.

2次元イメージセンサ4bは、各光源2a,2b,2cそれぞれに対応し、各光源2a,2b,2cの波長を透過する異なる透過波長帯の複数のカラーフィルタ4aが所定のパターンで配列されており、被検査物Wからの透過光または反射光に応じた光強度データを出力する。この2次元イメジセンサ4bから出力される光強度データは、データ取得部5が読み込んで記憶する。 The two-dimensional image sensor 4b corresponds to each of the light sources 2a, 2b, and 2c, and a plurality of color filters 4a having different transmission wavelength bands that transmit the wavelengths of the light sources 2a, 2b, and 2c are arranged in a predetermined pattern. , Outputs light intensity data according to the transmitted light or reflected light from the object W to be inspected. The light intensity data output from the two-dimensional image sensor 4b is read and stored by the data acquisition unit 5.

そして、画像データ生成部6は、データ取得部5で読み込んだ光強度データを補正データ記憶部7bに記憶された補正データで補正し、第1光源2a、第2光源2b、第3光源2cの波長帯毎の2次元画像データを生成する。 Then, the image data generation unit 6 corrects the light intensity data read by the data acquisition unit 5 with the correction data stored in the correction data storage unit 7b, and the first light source 2a, the second light source 2b, and the third light source 2c Generates two-dimensional image data for each wavelength band.

そして、特性検出部8は、特性データ記憶部7aから読み出した被検査物Wに対応する物品の特性データと、画像データ生成部6にて生成した複数の2次元画像データの各画素の強度データとに基づいて被検査物Wの特性を検出する。 Then, the characteristic detection unit 8 has the characteristic data of the article corresponding to the object W to be inspected read from the characteristic data storage unit 7a, and the intensity data of each pixel of the plurality of two-dimensional image data generated by the image data generation unit 6. The characteristics of the inspected object W are detected based on the above.

[具体例]
次に、上述した物品検査装置1にて検出する特性(含量、糖度、鮮度)の評価の具体例について図3~図7を参照しながら説明する。
[Concrete example]
Next, specific examples of evaluation of the characteristics (content, sugar content, freshness) detected by the above-mentioned article inspection device 1 will be described with reference to FIGS. 3 to 7.

まず、トマトのリコペンの含量評価の一例として、図3(a)はトマトのリコペンの含量毎の吸収スペクトル特性、図3(b)はカラーフィルタ通過後の2次元イメージセンサ4bの波長感度特性を示す。なお、図3(a)において、リコペン含量9.1mg/100gの吸収スペクトルを太線、リコペン含量7.5mg/100gの吸収スペクトルを点線、リコペン含量0mg/100gの吸収スペクトルを細線で示している。 First, as an example of the content evaluation of tomato lycopene, FIG. 3 (a) shows the absorption spectrum characteristics for each tomato lycopene content, and FIG. 3 (b) shows the wavelength sensitivity characteristics of the two-dimensional image sensor 4b after passing through the color filter. show. In FIG. 3A, the absorption spectrum having a lycopene content of 9.1 mg / 100 g is shown by a thick line, the absorption spectrum having a lycopene content of 7.5 mg / 100 g is shown by a dotted line, and the absorption spectrum having a lycopene content of 0 mg / 100 g is shown by a thin line.

図3(a)に示すように、トマトのリコペンの含量に対する吸収スペクトルの関係には、550nm付近と、680nm付近の吸収特性の特徴がある。すなわち、リコペンの含量が多い程、550nm付近の吸収は大きく、680nm付近の吸収は小さいという特徴がある。 As shown in FIG. 3A, the relationship of the absorption spectrum with respect to the content of lycopene in tomato is characterized by absorption characteristics near 550 nm and around 680 nm. That is, the larger the content of lycopene, the larger the absorption near 550 nm and the smaller the absorption around 680 nm.

そこで、予めトマトのリコペンの含量による吸収量の変化が少ない500nm以下の波長と550nm付近と680nm付近のリコペンの含量に対する吸収量を測定し、測定したデータを特性データとして特性データ記憶部7aに記憶しておく。そして、500nm以下の波長の吸収量を基準とした時の550nm付近(図3(b)の矢印B)と680nm付近(図3(b)の矢印C)のリコペンの含量に対する吸収量と、予め記憶した特性データとに基づいてトマトのリコペンの含量を検出して評価を行うことができる。 Therefore, the amount of absorption with respect to the content of lycopene in the vicinity of 550 nm and 680 nm and the wavelength of 500 nm or less where the change in the amount of absorption due to the content of lycopene in tomato is small is measured in advance, and the measured data is stored in the characteristic data storage unit 7a as characteristic data. I'll do it. Then, the absorption amount with respect to the content of lycopene in the vicinity of 550 nm (arrow B in FIG. 3B) and around 680 nm (arrow C in FIG. 3B) when the absorption amount of the wavelength of 500 nm or less is used as a reference, and in advance. The content of lycopene in tomato can be detected and evaluated based on the stored characteristic data.

次に、トマトの糖度評価の一例として、図4はトマトの糖度毎の吸収スペクトル特性を示す。なお、図4において、糖度9.4の吸収スペクトルを太線、糖度6.6の吸収スペクトルを点線、糖度3.9の吸収スペクトルを細線で示している。 Next, as an example of the sugar content evaluation of tomato, FIG. 4 shows the absorption spectrum characteristics for each sugar content of tomato. In FIG. 4, the absorption spectrum having a sugar content of 9.4 is shown by a thick line, the absorption spectrum having a sugar content of 6.6 is shown by a dotted line, and the absorption spectrum having a sugar content of 3.9 is shown by a thin line.

上述したトマトのリコペンの含量と同様に、吸収スペクトルが特徴的な、550nm付近および680nm付近の吸収量の関係から糖度を判断することができる。そこで、予めトマトの糖度による吸収量の変化が少ない500nm以下の波長と550nm付近と680nm付近のトマトの糖度に対する吸収量を測定し、測定したデータを特性データとして特性データ記憶部7aに記憶しておく。そして、500nm以下の波長の吸収量を基準とした時の550nm付近と680nm付近の糖度に対する吸収量と、予め記憶した特性データとに基づいてトマトの糖度を検出して評価を行うことができる。 Similar to the above-mentioned content of lycopene in tomato, the sugar content can be determined from the relationship between the absorption amounts near 550 nm and around 680 nm, which have a characteristic absorption spectrum. Therefore, the absorption amount for the sugar content of tomatoes at a wavelength of 500 nm or less and around 550 nm and 680 nm, in which the change in the absorption amount due to the sugar content of the tomato is small, is measured in advance, and the measured data is stored in the characteristic data storage unit 7a as characteristic data. back. Then, the sugar content of tomato can be detected and evaluated based on the absorption amount for the sugar content in the vicinity of 550 nm and 680 nm based on the absorption amount in the wavelength of 500 nm or less and the characteristic data stored in advance.

次に、牛肉やマグロの鮮度評価の一例として、図5は牛肉の経過時間毎の反射スペクトル特性、図6はマグロの時間経過毎の反射スペクトル特性を示す。なお、図5において、0時間後の反射スペクトルを太線、1時間後の反射スペクトルを点線、5時間後の反射スペクトルを細線で示している。また、図6において、0分後の反射スペクトルを点線、60分後の反射スペクトルを実線で示している。 Next, as an example of evaluation of freshness of beef and tuna, FIG. 5 shows the reflection spectrum characteristics of beef for each elapsed time, and FIG. 6 shows the reflection spectrum characteristics of tuna for each elapsed time. In FIG. 5, the reflection spectrum after 0 hours is shown by a thick line, the reflection spectrum after 1 hour is shown by a dotted line, and the reflection spectrum after 5 hours is shown by a thin line. Further, in FIG. 6, the reflection spectrum after 0 minutes is shown by a dotted line, and the reflection spectrum after 60 minutes is shown by a solid line.

図5や図6に示すように、鮮度によって反射スペクトル強度の変化する領域(600-630nm)と、鮮度によって反射スペクトル強度の変化しない領域(550-560nm)から鮮度を判断することができる。そこで、予め牛肉やマグロの鮮度による反射量の変化が少ない500nm以下の波長と550nm付近と630nm付近の牛肉やマグロの鮮度に対する反射量を測定し、測定したデータを特性データとして特性データ記憶部7aに記憶しておく。そして、500nm以下の反射量を基準とした時の550nm付近と630nm付近の鮮度に対する反射量と、予め記憶した特性データとに基づいて牛肉やマグロの鮮度を検出して評価を行うことができる。 As shown in FIGS. 5 and 6, the freshness can be determined from the region where the reflection spectrum intensity changes depending on the freshness (600-630 nm) and the region where the reflection spectrum intensity does not change depending on the freshness (550-560 nm). Therefore, the reflection amount for the freshness of beef and tuna around 550 nm and 630 nm and the wavelength of 500 nm or less where the change in the reflection amount due to the freshness of beef and tuna is small is measured in advance, and the measured data is used as characteristic data in the characteristic data storage unit 7a. Remember in. Then, the freshness of beef and tuna can be detected and evaluated based on the reflection amount for freshness near 550 nm and 630 nm when the reflection amount of 500 nm or less is used as a reference, and the characteristic data stored in advance.

次に、図7は葉もの野菜の鮮度評価の一例として、葉もの野菜の経過時間毎の反射スペクトル特性を示す。なお、図7において、0分後の反射スペクトルを点線、30分後の反射スペクトルを実線で示している。 Next, FIG. 7 shows the reflection spectral characteristics of the leafy vegetables for each elapsed time as an example of the freshness evaluation of the leafy vegetables. In FIG. 7, the reflection spectrum after 0 minutes is shown by a dotted line, and the reflection spectrum after 30 minutes is shown by a solid line.

植物の表皮構造の最も外側は光沢のあるクチクラ層である。クチクラ層は細胞壁の外側のクチン(不飽和脂肪酸の重合物質)とワックス(高級脂肪酸と高級アルコールのエステル化合物)でできた透明で水を通さない層である。植物の葉、茎、果実、種子の表面が水をはじくのは、この層のためで体内への水の侵入および水分蒸発を防ぐ役割を果たしている。時間がたつにつれてクチクラ層は劣化していき、反射率特性も変化する。 The outermost part of the epidermal structure of the plant is the glossy cuticle layer. The Kuchikura layer is a transparent, water-impermeable layer made of cutin (a polymerized substance of unsaturated fatty acids) and wax (an ester compound of higher fatty acids and higher alcohols) on the outside of the cell wall. The surface of plant leaves, stems, fruits and seeds repels water because of this layer, which helps prevent water ingress and evaporation of water. As time goes by, the cuticle layer deteriorates and the reflectance characteristics also change.

例えば葉もの野菜の場合には、図7に示すように、時間の経過に伴ってクロロフィルによる光吸収が減少し、680nm付近の反射率が上昇すると共に、700~800nmの近赤外反射率が徐々に低下する傾向を示しめす。この変化に伴って、NDVI(Normalized Difference Vegetation Index:正規化植生指数)は時間の経過と共に減少する。そして、680nm付近の反射率が上昇することにより、葉の緑色に対する赤色の比率が大きくなることから、見た目の色は徐々に黄色く変化することになる。 For example, in the case of leafy vegetables, as shown in FIG. 7, the light absorption by chlorophyll decreases with the passage of time, the reflectance near 680 nm increases, and the near-infrared reflectance at 700 to 800 nm increases. It shows a tendency to gradually decrease. With this change, the NDVI (Normalized Difference Vegetation Index) decreases over time. Then, as the reflectance near 680 nm increases, the ratio of red to green of the leaves increases, so that the apparent color gradually changes to yellow.

そこで、予め葉もの野菜の鮮度による反射量の変化が少ない500nm以下の波長と450nm付近と680nm付近の葉もの野菜の鮮度に対する反射量を測定し、測定したデータを特性データとして特性データ記憶部7aに記憶しておく。そして、500nm以下の反射量を基準とした時の450nm付近と680nm付近の鮮度に対する反射量と、予め記憶した特性データとに基づいて葉もの野菜の鮮度を検出して評価を行うことができる。 Therefore, the reflection amount for the freshness of the leafy vegetables is measured in advance at a wavelength of 500 nm or less and the freshness of the leafy vegetables around 450 nm and 680 nm, and the measured data is used as characteristic data in the characteristic data storage unit 7a. Remember in. Then, the freshness of the leafy vegetables can be detected and evaluated based on the reflection amount for the freshness around 450 nm and 680 nm when the reflection amount of 500 nm or less is used as a reference and the characteristic data stored in advance.

このように、本実施の形態によれば、安価かつシンプルな構成で、しかも高速に複数の異なる波長(狭い帯域の波長)の光によるイメージング画像を取得することができる。また、取得したイメージング画像により計測したい特徴とする波長の強度を正確に測定することができる。 As described above, according to the present embodiment, it is possible to acquire an imaging image by light of a plurality of different wavelengths (wavelengths in a narrow band) at high speed with an inexpensive and simple configuration. In addition, the intensity of the characteristic wavelength to be measured can be accurately measured from the acquired imaging image.

ところで、上述した実施の形態では、第1光源2a、第2光源2b、第3光源2cから異なる複数の波長(λ1,λ2,λ3)を同時に出力して測定する場合を例にとって説明したが、図8(a),(b)に示すように、異なる波長(λ1,λ2,λ3)の光源2a,2b,2cをオン/オフ制御し、異なる複数の波長(λ1,λ2,λ3)を被検査物Wに対して順次に断続光として照射し、被検査物Wからの透過光(または反射光)を検出する時分割測定方式を採用することもできる。 By the way, in the above-described embodiment, a case where a plurality of different wavelengths (λ1, λ2, λ3) are simultaneously output from the first light source 2a, the second light source 2b, and the third light source 2c and measured is described as an example. As shown in FIGS. 8A and 8B, the light sources 2a, 2b, and 2c having different wavelengths (λ1, λ2, λ3) are controlled to be turned on / off, and a plurality of different wavelengths (λ1, λ2, λ3) are covered. It is also possible to adopt a time-divided measurement method in which the inspection object W is sequentially irradiated as intermittent light and the transmitted light (or reflected light) from the inspection object W is detected.

以上、本発明に係る物品検査装置の最良の形態について説明したが、この形態による記述および図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例および運用技術などはすべて本発明の範疇に含まれることは勿論である。 Although the best form of the article inspection apparatus according to the present invention has been described above, the present invention is not limited by the description and drawings in this form. That is, it goes without saying that all other forms, examples, operational techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.

1 物品検査装置
2 光源部
2a,2b,2c 光源
2d 照射部
3 搬送部
4 受光部
4a カラーフィルタ
4b 2次元イメージセンサ
5 データ取得部
6 画像データ生成部
7 記憶部
7a 特性データ記憶部
7b 補正データ記憶部
8 特性検出部
W 被検査物
X 搬送方向
1 Article inspection device 2 Light source 2a, 2b, 2c Light source 2d Irradiation 3 Transport 4 Light receiving 4a Color filter 4b 2D image sensor 5 Data acquisition 6 Image data generation 7 Storage 7a Characteristic data storage 7b Correction data Storage unit 8 Characteristic detection unit W Inspected object X Transport direction

Claims (2)

被検査物(W)を所定の搬送経路に沿って搬送する搬送手段(3)を有し、前記搬送手段によって搬送される前記被検査物を順次検査する物品検査装置において、
異なる波長の光を出力して被検査物(W)に照射するための複数の任意の狭い波長成分を有する光源(2a,2b,2c)を有する光源部(2)と、
所定のパターンで配列し、前記複数の光源それぞれに対応して該複数の光源の波長を透過する異なる透過波長帯の複数のカラーフィルタ(4a)と、前記複数のカラーフィルタを通過した前記複数の光源の波長帯毎の光に応じた光強度データを出力する2次元イメージセンサ(4b)とを有する受光部(4)と、
前記受光部が出力する前記光強度データを取得して記憶するデータ取得部(5)と、
前記データ取得部が記憶する光強度データから前記複数の光源の波長帯毎の2次元画像データを生成する画像データ生成部(6)と、
前記複数の光源に対応する前記光強度データと物品の特性を表す特性データを記憶する特性データ記憶部(7a)と、
前記特性データ記憶部に記憶された特性データと、前記画像データ生成部にて生成した前記複数の光源の波長帯毎の2次元画像データの各画素の強度データに基づいて前記被検査物の特性を検出する特性検出部(8)と、
を備えたことを特徴とする物品検査装置。
In an article inspection device having a transport means (3) for transporting an object to be inspected (W) along a predetermined transport path and sequentially inspecting the object to be inspected to be conveyed by the transport means.
A light source unit (2) having a light source (2a, 2b, 2c) having a plurality of arbitrary narrow wavelength components for outputting light of different wavelengths and irradiating the object (W) to be inspected.
A plurality of color filters (4a) having different transmission wavelength bands that are arranged in a predetermined pattern and transmit the wavelengths of the plurality of light sources corresponding to each of the plurality of light sources, and the plurality of color filters that have passed through the plurality of color filters. A light receiving unit (4) having a two-dimensional image sensor (4b) that outputs light intensity data corresponding to light in each wavelength band of a light source, and
A data acquisition unit (5) that acquires and stores the light intensity data output by the light receiving unit, and
An image data generation unit (6) that generates two-dimensional image data for each wavelength band of the plurality of light sources from the light intensity data stored in the data acquisition unit, and
A characteristic data storage unit (7a) that stores the light intensity data corresponding to the plurality of light sources and characteristic data representing the characteristics of the article, and
Characteristics of the inspected object based on the characteristic data stored in the characteristic data storage unit and the intensity data of each pixel of the two-dimensional image data for each wavelength band of the plurality of light sources generated by the image data generation unit. The characteristic detection unit (8) that detects
An article inspection device characterized by being equipped with.
前記複数の光源(2a,2b,2c)のそれぞれに対し、前記複数の光源それぞれについて光源1つのみを点灯させた状態で、点灯させた光源の波長に対応するカラーフィルタを通過した光強度データとそれ以外のカラーフィルタを通過した光強度データとの比を予め補正データとして記憶する補正データ記憶部(7b)を備え、
前記データ取得部(5)で読み込んだ光強度データを前記補正データで補正し、前記複数の光源の波長帯毎の2次元画像データを生成することを特徴とする請求項1に記載の物品検査装置。
Light intensity data that has passed through a color filter corresponding to the wavelength of the lit light source with only one light source lit for each of the plurality of light sources (2a, 2b, 2c). It is equipped with a correction data storage unit (7b) that stores in advance the ratio of light intensity data that has passed through other color filters to the light intensity data as correction data.
The article inspection according to claim 1, wherein the light intensity data read by the data acquisition unit (5) is corrected by the correction data, and two-dimensional image data for each wavelength band of the plurality of light sources is generated. Device.
JP2018219332A 2018-11-22 2018-11-22 Goods inspection equipment Active JP7065755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018219332A JP7065755B2 (en) 2018-11-22 2018-11-22 Goods inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219332A JP7065755B2 (en) 2018-11-22 2018-11-22 Goods inspection equipment

Publications (2)

Publication Number Publication Date
JP2020085622A JP2020085622A (en) 2020-06-04
JP7065755B2 true JP7065755B2 (en) 2022-05-12

Family

ID=70907622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219332A Active JP7065755B2 (en) 2018-11-22 2018-11-22 Goods inspection equipment

Country Status (1)

Country Link
JP (1) JP7065755B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023130226A (en) * 2022-03-07 2023-09-20 東レエンジニアリング株式会社 Fluorescence inspection device
JP2023136102A (en) * 2022-03-16 2023-09-29 株式会社サタケ Measuring device and sorting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214135A (en) 2001-01-17 2002-07-31 Kubota Corp Internal quality measuring device
JP2013181912A (en) 2012-03-02 2013-09-12 Seiko Epson Corp Component analyzer
JP2016045175A (en) 2014-08-26 2016-04-04 株式会社Jvcケンウッド Sensor circuit, correction method, and projector device
JP2016156801A (en) 2014-11-19 2016-09-01 パナソニックIpマネジメント株式会社 Imaging device and spectroscopy system
JP2018004646A (en) 2016-07-05 2018-01-11 シャープ株式会社 Determination device of degree of ripeness, and method for determining degree of ripeness
US20180085003A1 (en) 2016-07-27 2018-03-29 Verifood, Ltd. Spectrometry systems, methods, and applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214135A (en) 2001-01-17 2002-07-31 Kubota Corp Internal quality measuring device
JP2013181912A (en) 2012-03-02 2013-09-12 Seiko Epson Corp Component analyzer
JP2016045175A (en) 2014-08-26 2016-04-04 株式会社Jvcケンウッド Sensor circuit, correction method, and projector device
JP2016156801A (en) 2014-11-19 2016-09-01 パナソニックIpマネジメント株式会社 Imaging device and spectroscopy system
JP2018004646A (en) 2016-07-05 2018-01-11 シャープ株式会社 Determination device of degree of ripeness, and method for determining degree of ripeness
US20180085003A1 (en) 2016-07-27 2018-03-29 Verifood, Ltd. Spectrometry systems, methods, and applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔦瑞樹、他2名,ハイパースペクトルシステムによる近赤外分光イメージング手法~メロン糖度の可視化事例~,映像情報メディア学会誌,2002年,Vol.56, No.12, (2002),Pages 2037-2040

Also Published As

Publication number Publication date
JP2020085622A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US9575005B2 (en) Inspection apparatus
ES2746882T3 (en) Procedure, harvesting unit and machine to detect defects of "sugar tips" in potatoes
AU2001245710B2 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
EP3063531B1 (en) Method and apparatus for detecting matter
CA2686501C (en) Method and device for characterising biological tissue
US9107567B2 (en) Spectral imaging with a color wheel
US20020011567A1 (en) Apparatus and method and techniques for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
JP3792175B2 (en) Internal quality inspection method and apparatus for core fruits and vegetables
JP2006170669A (en) Quality inspection device of vegetables and fruits
JP7065755B2 (en) Goods inspection equipment
JP2008209211A (en) Foreign matter inspection apparatus and method
JP2000111473A (en) Inspection system for vegetables and fruits
LT5858B (en) Method and device for diagnosing of plant growing conditions
WO2011122584A1 (en) Food quality inspection device and method of inspecting food quality
EP2179270B1 (en) Method and system for characterizing a pigmented biological tissue.
JP6439295B2 (en) Plant inspection apparatus and inspection method
JP6403872B2 (en) Fruit and vegetable inspection equipment
JPH0618329A (en) Spectroscopic method for object image and its device
Kim et al. Hyperspectral imaging system for food safety: Detection of fecal contamination on apples
WO2018044327A1 (en) Food inspection systems and methods
WO2015174073A1 (en) Food analysis device
JP6323749B2 (en) Plant inspection apparatus and inspection method
WO2024034261A1 (en) Solid-state imaging device and solid-state imaging system
JP2016130667A (en) Optical measurement method and optical measurement device
Oertel et al. Applications of spectral imaging using a tunable laser source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7065755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157