JP5636705B2 - Antibacterial functional material - Google Patents

Antibacterial functional material Download PDF

Info

Publication number
JP5636705B2
JP5636705B2 JP2010059421A JP2010059421A JP5636705B2 JP 5636705 B2 JP5636705 B2 JP 5636705B2 JP 2010059421 A JP2010059421 A JP 2010059421A JP 2010059421 A JP2010059421 A JP 2010059421A JP 5636705 B2 JP5636705 B2 JP 5636705B2
Authority
JP
Japan
Prior art keywords
zinc oxide
antibacterial
inorganic binder
conductive zinc
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010059421A
Other languages
Japanese (ja)
Other versions
JP2011190155A (en
Inventor
圭介 山本
圭介 山本
道弘 竹田
道弘 竹田
照男 市野
照男 市野
優希 河村
優希 河村
哲二 大橋
哲二 大橋
嘉洋 加藤
嘉洋 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2010059421A priority Critical patent/JP5636705B2/en
Priority to CN2010106085950A priority patent/CN102190447A/en
Publication of JP2011190155A publication Critical patent/JP2011190155A/en
Application granted granted Critical
Publication of JP5636705B2 publication Critical patent/JP5636705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガラス、釉薬、タイル素地などの基材の表面を抗菌化してなる抗菌機能材に係り、特に抗菌剤として導電性酸化亜鉛を用いた抗菌機能材に関する。   The present invention relates to an antibacterial function material obtained by antibacterial surfaces of substrates such as glass, glaze, and tile base, and more particularly to an antibacterial function material using conductive zinc oxide as an antibacterial agent.

導電性酸化亜鉛が抗菌性を有することは、特開2002−104823号公報などに見られる通り広く知られている。同号公報の0023段落には、導電性酸化亜鉛としてアルミニウム、インジウム又はスズをドープした酸化亜鉛が記載されている。同号公報の0041〜0043段落には、導電性酸化亜鉛を繊維質材料に定着させたり、合成樹脂や塗料中に含有させることが記載されている。   It is widely known that conductive zinc oxide has antibacterial properties as seen in JP-A No. 2002-104823. In paragraph 0023 of the same publication, zinc oxide doped with aluminum, indium or tin is described as conductive zinc oxide. In paragraphs 0041 to 0043 of the publication, it is described that conductive zinc oxide is fixed to a fibrous material or contained in a synthetic resin or paint.

特開2002−104823号公報JP 2002-104823 A

導電性酸化亜鉛を基材表面に定着させただけでは、基材表面の表面に導電性酸化亜鉛粒子が分散状に存在するだけであり、抗菌性能が低い。また、導電性酸化亜鉛粒子が基材表面から脱落し易い。導電性酸化亜鉛等の抗菌剤をタイル表面にショットピーニングすることも知られているが、集塵ロスが多いため、抗菌剤の消費量が多く、経済的でない。   If the conductive zinc oxide is fixed on the substrate surface, the conductive zinc oxide particles are only dispersed on the surface of the substrate surface, and the antibacterial performance is low. Further, the conductive zinc oxide particles are likely to fall off from the substrate surface. It is also known that shot peening is performed on the tile surface with an antibacterial agent such as conductive zinc oxide, but since the dust collection loss is large, the consumption of the antibacterial agent is large and it is not economical.

導電性酸化亜鉛を合成樹脂や塗料中に混入させた場合、基材内部に存在する導電性酸化亜鉛は抗菌作用に全く又は殆ど寄与しない。抗菌作用を強くするためには導電性酸化亜鉛を多量に添加する必要があるが、このように導電性酸化亜鉛を多量に添加したのでは、基材の特性が損なわれるおそれがある。   When conductive zinc oxide is mixed in a synthetic resin or paint, the conductive zinc oxide present inside the substrate does not contribute to the antibacterial action at all. In order to strengthen the antibacterial action, it is necessary to add a large amount of conductive zinc oxide. However, if a large amount of conductive zinc oxide is added in this way, the properties of the substrate may be impaired.

本発明は導電性酸化亜鉛による抗菌が十分に発揮される抗菌機能材を提供することを目的とする。   It is an object of the present invention to provide an antibacterial functional material that can sufficiently exhibit antibacterial effects due to conductive zinc oxide.

本発明(請求項1)の抗菌機能材は、平均粒子径5〜100nmのAl及び/又はGaドープ酸化亜鉛粒子を含有する無機バインダーを基材表面に付着させた後、300〜800℃で焼き付けることによりAl及び/又はGaドープ酸化亜鉛粒子の一部又は全部がイオン化しているものである。
本発明(請求項2)の抗菌機能材は、Al及び/又はGaドープ酸化亜鉛粒子のみを含有する無機バインダーが基材表面に焼き付けられることによりAl及び/又はGaドープ酸化亜鉛粒子の一部又は全部がイオン化しているものである。
The antibacterial functional material of the present invention (Invention 1) is baked at 300 to 800 ° C. after an inorganic binder containing Al and / or Ga doped zinc oxide particles having an average particle diameter of 5 to 100 nm is attached to the substrate surface. Thus, part or all of the Al and / or Ga doped zinc oxide particles are ionized .
Antibacterial function material of the present invention (Claim 2), a part of the Al and / or Ga-doped Al by Rukoto inorganic binder is printed on the substrate surface containing only zinc oxide particles and / or Ga-doped zinc oxide particles Alternatively, all of them are ionized .

請求項の抗菌機能材は、請求項1又は2において、酸化亜鉛がイオン化し、無機バインダー中に拡散していることを特徴とするものである。 Antibacterial function material according to claim 3, in claim 1 or 2, in which zinc oxide is ionized, characterized in that it diffused into the inorganic binder.

請求項の抗菌機能材は、請求項1ないし3のいずれか1項において、酸化亜鉛がイオン化し、該基材表面中に拡散していることを特徴とするものである。 The antibacterial function material according to claim 4 is characterized in that in any one of claims 1 to 3 , zinc oxide is ionized and diffused in the surface of the base material.

請求項の抗菌機能材は、請求項1ないしのいずれか1項において、無機バインダーが水ガラスであることを特徴とするものである。 The antibacterial function material according to claim 5 is the antibacterial function material according to any one of claims 1 to 4 , wherein the inorganic binder is water glass.

本発明の抗菌機能材は、基材表面に導電性酸化亜鉛を無機バインダーによって焼き付けたものである。この抗菌機能材では、導電性酸化亜鉛は無機バインダー中に拡散しており、基材表面に導電性酸化亜鉛が満遍なく存在するので、抗菌作用が良好である。   The antibacterial functional material of the present invention is obtained by baking conductive zinc oxide on the substrate surface with an inorganic binder. In this antibacterial function material, the conductive zinc oxide is diffused in the inorganic binder, and the conductive zinc oxide exists uniformly on the surface of the base material, so that the antibacterial action is good.

本発明では、導電性酸化亜鉛含有無機バインダー層が基材表面に焼き付けられており、導電性酸化亜鉛の剥落等がなく、耐久性も良好である。また、製造時の抗菌剤のロスも少ない。   In the present invention, the conductive zinc oxide-containing inorganic binder layer is baked on the surface of the base material, and the conductive zinc oxide is not peeled off and has good durability. In addition, there is little loss of antibacterial agents during production.

本発明では、導電性酸化亜鉛としてAl及び/又はGaドープ酸化亜鉛を用いる。本発明者の研究結果によると、このAl及び/又はGaドープ酸化亜鉛、特にGaドープ酸化亜鉛は、InやSnをドープした酸化亜鉛に比べて抗菌作用に優れることが認められた。   In the present invention, Al and / or Ga doped zinc oxide is used as the conductive zinc oxide. According to the research results of the present inventors, it was confirmed that this Al and / or Ga doped zinc oxide, particularly Ga doped zinc oxide, is superior in antibacterial action compared to zinc oxide doped with In or Sn.

なお、導電性酸化亜鉛がイオン化して無機バインダー中や、基材表面に拡散している場合には、抗菌作用が良好なものとなる。無機バインダーとして水ガラスを用いた場合には、150〜800℃程度の低温で焼き付けることにより、導電性酸化亜鉛が無機バインダー中にイオン化して拡散する。酸化亜鉛がガラスのネットワーク中に拡散することにより、ガラスネットワークが強化されるという効果も期待できる。   In addition, when the conductive zinc oxide is ionized and diffused in the inorganic binder or on the surface of the base material, the antibacterial action is good. When water glass is used as the inorganic binder, the conductive zinc oxide is ionized and diffused into the inorganic binder by baking at a low temperature of about 150 to 800 ° C. The effect that the glass network is strengthened by the diffusion of zinc oxide into the glass network can also be expected.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

<導電性酸化亜鉛>
本発明で用いる導電性酸化亜鉛は、Al及び/又はGaドープ酸化亜鉛であり、通常はコストの面からAlのみ又はGaのみをドープした酸化亜鉛を用いる。Alのドープ量は酸化亜鉛1gに対し1〜200mg特に10〜70mg程度が好適であり、Gaのドープ量は酸化亜鉛1gに対し1〜200mg特に10〜70mg程度である。
<Conductive zinc oxide>
The conductive zinc oxide used in the present invention is Al and / or Ga-doped zinc oxide, and zinc oxide doped with only Al or Ga is usually used from the viewpoint of cost. The doping amount of Al is preferably about 1 to 200 mg, particularly about 10 to 70 mg, with respect to 1 g of zinc oxide, and the doping amount of Ga is about 1 to 200 mg, particularly about 10 to 70 mg, with respect to 1 g of zinc oxide.

焼き付け前の導電性酸化亜鉛の平均粒径は5〜100nm特に10〜50nm程度が好適である。この平均粒径は、電子顕微鏡の撮像から計測した値である。   The average particle diameter of the conductive zinc oxide before baking is preferably about 5 to 100 nm, particularly about 10 to 50 nm. This average particle diameter is a value measured from an electron microscope image.

<無機バインダー>
無機バインダーとしては水ガラスが好適であり、特に3号〜4号珪酸ナトリウム水ガラスが好適である。
<Inorganic binder>
As the inorganic binder, water glass is preferable, and No. 3 to No. 4 sodium silicate water glass is particularly preferable.

<基材>
基材としては、ガラス製品(ガラス板、ガラス工芸品など)、タイル焼成素地(施釉、無釉)及び無釉タイル未焼成素地などのセラミック質のものが好適である。
<Base material>
As the base material, ceramic materials such as glass products (glass plates, glass crafts, etc.), tile fired substrates (glazed, unglazed), and unglazed tile unfired substrates are suitable.

<導電性酸化亜鉛と無機バインダーとの混合及び焼き付け>
導電性酸化亜鉛と無機バインダー中の水ガラス固形分量との比は、重量比で10/100〜150/100程度、特に25/100〜75/100程度が好適である。
<Mixing and baking of conductive zinc oxide and inorganic binder>
The ratio of the conductive zinc oxide to the water glass solid content in the inorganic binder is preferably about 10/100 to 150/100, particularly about 25/100 to 75/100, by weight.

水ガラスは、0.5〜10wt%特に1〜7wt%程度の水溶液とされることが好ましい。導電性酸化亜鉛は、水に分散させた後、この水溶液に添加されることが好ましい。この導電性酸化亜鉛が分散した水ガラス水溶液は、スプレー法、浸漬法、塗布法、蒸着法、スパッタ法など、特にスプレー法により基材表面に付着されるのが好ましい。この際、導電性酸化亜鉛が基材表面100cm(10cm×10cm)当り0.0001〜1.0mg特に0.05〜0.2mg存在するように付着させるのが好ましい。 The water glass is preferably made into an aqueous solution of about 0.5 to 10 wt%, particularly about 1 to 7 wt%. The conductive zinc oxide is preferably added to this aqueous solution after being dispersed in water. The aqueous water glass solution in which the conductive zinc oxide is dispersed is preferably attached to the substrate surface by a spray method, such as a spray method, a dipping method, a coating method, a vapor deposition method, or a sputtering method. At this time, it is preferable that the conductive zinc oxide is adhered so that 0.0001 to 1.0 mg, particularly 0.05 to 0.2 mg is present per 100 cm 2 (10 cm × 10 cm) of the substrate surface.

その後、必要に応じ乾燥させた後、好ましくは150〜800℃特に好ましくは300〜500℃で1〜200分特に5〜60分程度加熱処理して導電性酸化亜鉛含有無機バインダーを基材表面に焼き付ける。   Then, after drying as necessary, it is preferably 150 to 800 ° C., particularly preferably 300 to 500 ° C. for 1 to 200 minutes, particularly 5 to 60 minutes, and the conductive zinc oxide-containing inorganic binder is applied to the substrate surface. Bake.

無機バインダーが水ガラスの場合、導電性酸化亜鉛がイオン化してガラスのネットワーク中に拡散し、ガラスネットワークが強化されると共に、高い抗菌性能が得られる。   When the inorganic binder is water glass, the conductive zinc oxide is ionized and diffuses into the glass network, whereby the glass network is strengthened and high antibacterial performance is obtained.

水ガラスに顔料を添加しない場合、生成した焼き付け層は無色透明であり、基材表面に外観上の変化は全く又は殆どない。ただし、水ガラスに対し顔料を加えておくことにより焼き付け層に着色を施してもよい。   When no pigment is added to the water glass, the resulting baking layer is colorless and transparent, and there is no or little change in appearance on the surface of the substrate. However, the baking layer may be colored by adding a pigment to water glass.

基材表面がガラスや釉薬、タイル素地などのセラミック質である場合、酸化亜鉛の一部はこれらの基材表面中にも拡散することがある。   When the substrate surface is a ceramic material such as glass, glaze, or tile base, a part of zinc oxide may also diffuse into these substrate surfaces.

このように無機バインダーを用いて導電性酸化亜鉛を基材表面に焼き付けてなる抗菌機能材は、この抗菌機能材の実質的に最表面部分にのみ導電性酸化亜鉛が存在しており、用いた導電性酸化亜鉛のすべて又は大部分が抗菌作用に寄与する。また、導電性酸化亜鉛は無機バインダー中に拡散して基材表面に満遍なく存在するので、抗菌作用が良好である。特に、無機バインダーとして水ガラスを用いると、導電性酸化亜鉛がイオン化して水ガラス由来ガラス層中に拡散するので、少量の導電性酸化亜鉛使用量で十分な抗菌作用が得られる。また、このガラス層の基材表面への付着力が高いと共に、酸化亜鉛がガラスネットワークを強化する作用も有するので、抗菌作用が長期にわたって発揮される。   In this way, the antibacterial functional material obtained by baking conductive zinc oxide on the surface of the base material using an inorganic binder has conductive zinc oxide substantially only on the outermost surface portion of the antibacterial functional material. All or most of the conductive zinc oxide contributes to the antibacterial action. Further, since the conductive zinc oxide diffuses into the inorganic binder and exists uniformly on the surface of the substrate, the antibacterial action is good. In particular, when water glass is used as the inorganic binder, the conductive zinc oxide is ionized and diffuses into the glass layer derived from the water glass, so that a sufficient antibacterial action can be obtained with a small amount of the conductive zinc oxide used. In addition, the adhesion of the glass layer to the substrate surface is high, and since zinc oxide also has an action of strengthening the glass network, an antibacterial action is exhibited over a long period of time.

なお、本発明で用いるAl及び/又はGaドープ酸化亜鉛は、150℃以上の温度で焼き付けられることにより導電性は消失するので、抗菌機能材表面に存在する状態では通常は非導電性酸化亜鉛となっている。   In addition, since Al and / or Ga dope zinc oxide used by this invention lose | disappears electroconductivity by baking at the temperature of 150 degreeC or more, in the state which exists in the antibacterial functional material surface, it is usually nonelectroconductive zinc oxide. It has become.

本発明では、抗菌作用をさらに高めるために、銀などの他の抗菌材を加えて焼き付けを行ってもよい。   In the present invention, in order to further enhance the antibacterial action, baking may be performed by adding another antibacterial material such as silver.

[実施例1]
導電性酸化亜鉛としてGaドープ酸化亜鉛(Ga含有量50mg/g、平均粒径30nm)を用い、無機バインダーとして3号水ガラスを用いた。Gaドープ酸化亜鉛を水に分散させ、これを水ガラス水溶液に添加し、混合してスプレー液を調製した。これを施釉陶器質タイル(100×100×5mm)の表面に常温にてスプレーした。乾燥後、150℃、200℃、300℃、400℃又は700℃で空気雰囲気中で30分加熱して焼き付けを行った。
[Example 1]
Ga-doped zinc oxide (Ga content 50 mg / g, average particle size 30 nm) was used as the conductive zinc oxide, and No. 3 water glass was used as the inorganic binder. Ga-doped zinc oxide was dispersed in water, added to a water glass aqueous solution, and mixed to prepare a spray solution. This was sprayed at room temperature on the surface of a glazed porcelain tile (100 × 100 × 5 mm). After drying, baking was performed by heating at 150 ° C., 200 ° C., 300 ° C., 400 ° C. or 700 ° C. in an air atmosphere for 30 minutes.

その他の主な条件は次の通りである。   Other main conditions are as follows.

スプレー液の組成
珪酸ナトリウム:固形分として2.0wt%
導電性酸化亜鉛:1wt%
残部:水
スプレーによる付着量:酸化亜鉛として10mg/100cm
得られた抗菌性タイルの表面の抗菌活性をJIS Z 2801によって評価した。結果を表1,2に示す。
Composition of spray liquid Sodium silicate: 2.0 wt% as solid content
Conductive zinc oxide: 1wt%
Remaining: Water Amount deposited by spraying: 10 mg / 100 cm 2 as zinc oxide
The antibacterial activity of the surface of the obtained antibacterial tile was evaluated according to JIS Z 2801. The results are shown in Tables 1 and 2.

なお、得られた抗菌性タイル表面についてX線回折測定を行い、ZnOメインピーク(CuKα,2θ=36.159°)の高さを測定した。後述の比較例1の焼付前(塗布後)のピーク高さを100%としたときのデータを表3に示す。   In addition, the X-ray diffraction measurement was performed about the obtained antibacterial tile surface, and the height of the ZnO main peak (CuKα, 2θ = 36.159 °) was measured. Table 3 shows data when the peak height before baking (after coating) in Comparative Example 1 described later is 100%.

[実施例2]
導電性酸化亜鉛としてAlドープ酸化亜鉛(Al含有量50mg/g、平均粒径30nm)を用いたこと以外は実施例1と同様とした。結果を表1〜3に示す。
[Example 2]
The same procedure as in Example 1 was conducted except that Al-doped zinc oxide (Al content 50 mg / g, average particle size 30 nm) was used as the conductive zinc oxide. The results are shown in Tables 1-3.

[比較例1]
導電性酸化亜鉛としてInドープ酸化亜鉛(In含有量50mg/g、平均粒径30nm)を用いたこと以外は実施例1と同様とした。結果を表1〜3に示す。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that In-doped zinc oxide (In content: 50 mg / g, average particle size: 30 nm) was used as the conductive zinc oxide. The results are shown in Tables 1-3.

[比較例2]
導電性酸化亜鉛としてSnドープ酸化亜鉛(Sn含有量50mg/g、平均粒径30nm)を用いたこと以外は実施例1と同様とした。結果を表1〜3に示す。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that Sn-doped zinc oxide (Sn content 50 mg / g, average particle size 30 nm) was used as the conductive zinc oxide. The results are shown in Tables 1-3.

[比較例3]
酸化亜鉛として何もドープしていない酸化亜鉛(平均粒径30nm)を用いたこと以外は実施例1と同様とした。結果を表1〜3に示す。
[Comparative Example 3]
The same procedure as in Example 1 was performed except that zinc oxide (average particle size: 30 nm) that was not doped as zinc oxide was used. The results are shown in Tables 1-3.

Figure 0005636705
Figure 0005636705

Figure 0005636705
Figure 0005636705

Figure 0005636705
Figure 0005636705

[考察]
表1,2の通り、本発明によると、比較例1〜3に比べて高い抗菌活性が得られる。特に、Gaをドープすることにより高い抗菌活性が得られる。
[Discussion]
As shown in Tables 1 and 2, according to the present invention, high antibacterial activity is obtained as compared with Comparative Examples 1 to 3. In particular, high antibacterial activity can be obtained by doping Ga.

なお、焼き付けた酸化亜鉛含有ガラス層の耐水性を調べるために、実施例1及び比較例1のタイルを90℃の温水に16時間浸漬した後、抗菌活性を同様にして測定して結果を表4に示した。   In order to investigate the water resistance of the baked zinc oxide-containing glass layer, the tiles of Example 1 and Comparative Example 1 were immersed in warm water at 90 ° C. for 16 hours, and then the antibacterial activity was measured in the same manner, and the results were shown. This is shown in FIG.

Figure 0005636705
Figure 0005636705

表4の通り、実施例1のタイルは温水浸漬後でも高い抗菌性能を有していることが認められた。   As shown in Table 4, the tile of Example 1 was found to have high antibacterial performance even after immersion in warm water.

Claims (5)

平均粒子径5〜100nmのAl及び/又はGaドープ酸化亜鉛粒子を含有する無機バインダーを基材表面に付着させた後、300〜800℃で焼き付けることによりAl及び/又はGaドープ酸化亜鉛粒子の一部又は全部がイオン化している抗菌機能材。 After depositing the inorganic binder containing Al and / or Ga-doped zinc oxide particles having an average particle diameter 5~100nm the substrate surface, of the Al and / or Ga-doped zinc oxide particles by baking Rukoto at 300 to 800 ° C. Antibacterial functional material that is partially or fully ionized . Al及び/又はGaドープ酸化亜鉛粒子のみを含有する無機バインダーが基材表面に焼き付けられることによりAl及び/又はGaドープ酸化亜鉛粒子の一部又は全部がイオン化している抗菌機能材。 Antibacterial function material in which a part or all of the Al and / or Ga-doped Al by Rukoto inorganic binder is printed on the substrate surface containing only zinc oxide particles and / or Ga-doped zinc oxide particles are ionized. 請求項1又は2において、酸化亜鉛がイオン化し、無機バインダー中に拡散していることを特徴とする抗菌機能材。   3. The antibacterial function material according to claim 1, wherein zinc oxide is ionized and diffused in the inorganic binder. 請求項1ないし3のいずれか1項において、酸化亜鉛がイオン化し、該基材表面中に拡散していることを特徴とする抗菌機能材。   The antibacterial function material according to any one of claims 1 to 3, wherein zinc oxide is ionized and diffused in the surface of the substrate. 請求項1ないし4のいずれか1項において、無機バインダーが水ガラスであることを特徴とする抗菌機能材。   The antibacterial function material according to any one of claims 1 to 4, wherein the inorganic binder is water glass.
JP2010059421A 2010-03-16 2010-03-16 Antibacterial functional material Active JP5636705B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010059421A JP5636705B2 (en) 2010-03-16 2010-03-16 Antibacterial functional material
CN2010106085950A CN102190447A (en) 2010-03-16 2010-12-23 Antibacterial functional material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059421A JP5636705B2 (en) 2010-03-16 2010-03-16 Antibacterial functional material

Publications (2)

Publication Number Publication Date
JP2011190155A JP2011190155A (en) 2011-09-29
JP5636705B2 true JP5636705B2 (en) 2014-12-10

Family

ID=44599427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059421A Active JP5636705B2 (en) 2010-03-16 2010-03-16 Antibacterial functional material

Country Status (2)

Country Link
JP (1) JP5636705B2 (en)
CN (1) CN102190447A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015101609B3 (en) * 2015-02-04 2016-06-30 Duravit Aktiengesellschaft Ceramic article and method of making such
CN106430966B (en) * 2016-08-18 2019-04-12 佛山欧神诺陶瓷有限公司 A kind of preparation method of clear frit and its ceramic tile with anti-static function
DE102019002260A1 (en) * 2019-03-29 2020-10-01 Grohe Ag Method for producing a component for a sanitary fitting
CN113354297A (en) * 2021-06-02 2021-09-07 中国科学院宁波材料技术与工程研究所 Antibacterial compound material, antibacterial glass, and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
CN1102445C (en) * 1993-12-10 2003-03-05 东陶机器株式会社 Multi-functional material having photo-catalytic function and production method therefor
JP2816809B2 (en) * 1994-04-26 1998-10-27 三井金属鉱業株式会社 Photocatalyst and method for producing the same
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2002173404A (en) * 2000-12-07 2002-06-21 Tokiwa Electric Co Ltd Antibacterial and antifungal inorganic structural material
FR2824846B1 (en) * 2001-05-16 2004-04-02 Saint Gobain SUBSTRATE WITH PHOTOCATALYTIC COATING
JP2005021825A (en) * 2003-07-03 2005-01-27 Tadashi Inoue Photocatalyst composition containing inorganic antibacterial agent
JP4479221B2 (en) * 2003-11-05 2010-06-09 株式会社ブリヂストン Thin film processing method
JP2006199986A (en) * 2005-01-19 2006-08-03 Toppan Printing Co Ltd Metal oxide film, solar cell using the oxide film, photocatalyst thin film, and method for manufacturing metal oxide film
JP4525583B2 (en) * 2005-12-15 2010-08-18 東レ・ファインケミカル株式会社 Method for producing zinc oxide dispersed paste
JP2008043829A (en) * 2006-08-10 2008-02-28 Mitsui Chemicals Inc Humidity-adjusting ceramic material containing photocatalyst coated with silicon oxide film
JP3953504B1 (en) * 2006-09-06 2007-08-08 株式会社ティオテクノ Mold control agent and mold removal method
JP4906550B2 (en) * 2007-03-19 2012-03-28 三菱マテリアル株式会社 Zinc oxide functional film production method and zinc oxide functional film obtained by the method
JP5142081B2 (en) * 2008-06-18 2013-02-13 信越化学工業株式会社 Production method of titanium oxide photocatalyst thin film

Also Published As

Publication number Publication date
JP2011190155A (en) 2011-09-29
CN102190447A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
CA2610979A1 (en) Coated article with transparent conductive oxide film doped to adjust fermi level, and method of making same
CN111848223B (en) Highly-antibacterial functional glazed brick and preparation method thereof
JP5636705B2 (en) Antibacterial functional material
US20090233082A1 (en) Glass or glass-ceramic articles with decorative coating
MX2013002450A (en) Glass substrate coated with an anti-reflective layer.
EP3203273B1 (en) Low reflection coated glass plate, glass substrate and photoelectric conversion device
JP7242720B2 (en) Glass plate with coating film and method for producing the same
JP2010134462A (en) Method of depositing porous anti-reflecting layer, and glass having anti-reflecting layer
WO2018162550A1 (en) Coating composition containing metal particles
CN106660863B (en) Low reflectance coating, substrate and photoelectric conversion device with low reflectance coating
WO2016002223A1 (en) Glass plate having low-reflection coating
US9874658B2 (en) Low reflection coating glass sheet and method for producing the same
JPH07331180A (en) Paste for forming thin film pattern
CN106477915A (en) Radiation coated glass capable of being toughened and its manufacture method
CN206244650U (en) Radiation coated glass capable of being toughened
JPH1135342A (en) Polyfunctional glass and its production
JP3410597B2 (en) Coating method with antimicrobial function and its solution
JP4808916B2 (en) Water and oil repellent ceramics
JPH0528450B2 (en)
CN112094134A (en) Natural stone containing antibacterial agent prepared by zinc replacement process and preparation process thereof
US20240101468A1 (en) Decorative composition and utilization thereof
KR101260679B1 (en) Method for manufacturing ge-igzo transparency electrode
JP2004210573A (en) Manufacturing method of glass with iron oxide film
CN112062604A (en) Antibacterial stone protective liquid of silver-copper simple substance colloid and preparation process based on zinc replacement
JPS62183850A (en) Preparation of tin compound sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350