JP5633746B2 - Washing and drying machine - Google Patents

Washing and drying machine Download PDF

Info

Publication number
JP5633746B2
JP5633746B2 JP2011044599A JP2011044599A JP5633746B2 JP 5633746 B2 JP5633746 B2 JP 5633746B2 JP 2011044599 A JP2011044599 A JP 2011044599A JP 2011044599 A JP2011044599 A JP 2011044599A JP 5633746 B2 JP5633746 B2 JP 5633746B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
washing
temperature
drying machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011044599A
Other languages
Japanese (ja)
Other versions
JP2012179266A (en
Inventor
木村 秀行
秀行 木村
金子 哲憲
哲憲 金子
大杉 寛
寛 大杉
剛 川南
剛 川南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Hitachi Appliances Inc
Original Assignee
Kobe University NUC
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Hitachi Appliances Inc filed Critical Kobe University NUC
Priority to JP2011044599A priority Critical patent/JP5633746B2/en
Publication of JP2012179266A publication Critical patent/JP2012179266A/en
Application granted granted Critical
Publication of JP5633746B2 publication Critical patent/JP5633746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Description

本発明は、衣類の洗濯および乾燥を行うための洗濯乾燥機に関する。   The present invention relates to a washing and drying machine for washing and drying clothes.

従来、洗濯乾燥機の乾燥用熱源として電気ヒータを用いるものが知られている。最近では、従来の電気ヒータ式と比べて消費電力量を削減できるとして、ヒートポンプ(冷凍サイクル)を用いた洗濯乾燥機が出現してきた。   Conventionally, what uses an electric heater as a heat source for drying of a washing dryer is known. Recently, a washing / drying machine using a heat pump (refrigeration cycle) has appeared because it can reduce power consumption as compared with a conventional electric heater type.

ヒートポンプ式洗濯乾燥機では、衣類乾燥用空気を、洗濯槽からヒートポンプの蒸発器を通して除湿し、凝縮器で加熱して再び洗濯槽にもどすといった閉ループで循環させる。しかし、凝縮器と蒸発器を含む冷凍サイクルにより具現化されるヒートポンプでは、凝縮器の凝縮熱量Qcは、蒸発器の蒸発熱量Qeに圧縮機の入力分の熱量Qiを加えた値となる(Qc=Qe+Qi)。そのため、閉ループでの循環を繰り返すにつれて乾燥用空気の温度は徐々に上昇していく。すると、冷凍サイクルの凝縮温度と蒸発温度も上昇していく。その結果、ヒートポンプを安定させて運転することができなくなってしまう。   In the heat pump type washing dryer, clothes drying air is dehumidified from the washing tub through the evaporator of the heat pump, heated in the condenser and returned to the washing tub again to circulate in a closed loop. However, in a heat pump embodied by a refrigeration cycle including a condenser and an evaporator, the condensation heat quantity Qc of the condenser is a value obtained by adding the heat quantity Qi of the compressor input to the evaporation heat quantity Qe of the evaporator (Qc = Qe + Qi). Therefore, as the circulation in the closed loop is repeated, the temperature of the drying air gradually increases. Then, the condensation temperature and evaporation temperature of the refrigeration cycle also increase. As a result, the heat pump cannot be stably operated.

こうした課題を解決し、ヒートポンプによる乾燥性能を低下させずに安定運転を行わせるアプローチの一つとして、洗濯槽からヒートポンプに戻す高湿の循環空気の一部を、そのまま排気させるか、または、外気と置換させて排熱させる方法が知られている(たとえば、特許文献1参照)。   One approach to solving these problems and ensuring stable operation without reducing the drying performance of the heat pump is to either exhaust a portion of the high-humidity circulating air that is returned from the washing tub to the heat pump, or There is known a method of exhausting heat by substituting (see, for example, Patent Document 1).

特開2004−215943号公報JP-A-2004-215543

しかしながら、上記特許文献1に係るヒートポンプを搭載した洗濯乾燥機では、乾燥運転中に圧縮機や、洗濯槽やファンの駆動モータ、および外槽やダクトから出る排熱を無駄に捨てており、消費電力量の低減の観点から改良の余地があった。   However, in the washing and drying machine equipped with the heat pump according to Patent Document 1, waste heat exhausted from the compressor, the driving motor of the washing tub and the fan, and the outer tub and duct during the drying operation is wasted. There was room for improvement from the viewpoint of reducing power consumption.

また、ヒートポンプを用いた従来技術では、洗濯槽からヒートポンプに戻す高湿の循環空気の一部を、そのまま排気させるか、または、外気と置換させて排熱させるため、洗濯乾燥機が設置された洗面所室内等の周囲環境を悪化させるという問題もある。   In addition, in the conventional technology using a heat pump, a part of the high-humidity circulating air returned from the washing tub to the heat pump is exhausted as it is, or is replaced with outside air to exhaust heat and a washing dryer is installed. There is also a problem of deteriorating the surrounding environment such as a bathroom.

本発明は、上記実情に鑑みてなされたものであり、高効率で環境に優しい洗濯乾燥機を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a highly efficient and environment-friendly washing and drying machine.

上記目的を達成するために、本発明は、筐体内に、乾燥時に内部が乾燥室となる外槽と、前記外槽内に回転自在に設けられて洗濯物を収容する内槽と、乾燥用空気が循環するダクトと、前記ダクト内に設けられて洗濯物を乾燥させる加熱手段、冷却手段、および送風手段とを備えた洗濯乾燥機において、前記筐体内に、磁気熱量効果を発生させる磁気作業物質およびこの磁気作業物質に磁場を作用させる磁場発生機を有して設けられる磁気冷凍装置を備え、前記筐体内に、磁気熱量効果を発生させる磁気作業物質およびこの磁気作業物質に磁場を作用させる磁場発生機を有して設けられる磁気冷凍装置を備え、前記磁気作業物質および前記磁場発生機の少なくともいずれか一方が移動することによって前記磁気冷凍装置の一方端に比較的高温の高温熱媒体を生成させると共に他方端に前記高温と比べて比較的低温の低温熱媒体を生成させ、前記加熱手段は、前記磁気冷凍装置の前記一方端から送られてきた前記高温熱媒体の熱を放熱し、前記冷却手段は、前記磁気冷凍装置の前記他方端から送られてきた前記低温熱媒体の熱を吸熱し、前記冷却手段は前記内槽の出口側の前記ダクト内に、前記加熱手段は前記内槽の入口側の前記ダクト内にそれぞれ配備され、前記冷却手段による冷却熱量と前記加熱手段による加熱熱量の両方を、前記乾燥用空気の冷却と除湿の両方に同時に利用する、ことを特徴とする。 In order to achieve the above-mentioned object, the present invention provides an outer tub in which a drying chamber becomes a drying chamber when drying, an inner tub that is rotatably provided in the outer tub and stores laundry, and a drying device. a duct through which air circulates, a heating device to dry the laundry is provided in the duct, the cooling means, and in laundry dryer and a blowing means, within the housing, magnetic work generating the magnetocaloric effect a magnetic refrigerating device provided by perforated materials and magnetic field generator for applying a magnetic field to the magnetic working material, in the housing, exerts a magnetic field on the magnetic working material and the magnetic working material to generate the magnetocaloric effect A magnetic refrigeration apparatus provided with a magnetic field generator, and moving at least one of the magnetic working material and the magnetic field generator to a relatively high temperature at one end of the magnetic refrigeration apparatus A high temperature heat medium is generated and a low temperature heat medium having a relatively low temperature compared to the high temperature is generated at the other end, and the heating unit is configured to generate heat of the high temperature heat medium sent from the one end of the magnetic refrigeration apparatus. The cooling means absorbs the heat of the low-temperature heat medium sent from the other end of the magnetic refrigeration apparatus, and the cooling means is placed in the duct on the outlet side of the inner tank. Means are respectively provided in the ducts on the inlet side of the inner tank, and both the cooling heat amount by the cooling means and the heating heat amount by the heating means are used simultaneously for both cooling and dehumidification of the drying air. It is characterized by.

本発明によれば、洗濯乾燥機に磁気熱量効果を利用した磁気冷凍装置を搭載したので、高効率で環境に優しい洗濯乾燥機を得ることができる。   According to the present invention, since the magnetic refrigeration apparatus utilizing the magnetocaloric effect is mounted on the washing / drying machine, a highly efficient and environment-friendly washing / drying machine can be obtained.

本発明のドラム式洗濯乾燥機を左前方から見た斜視図。The perspective view which looked at the drum type washing and drying machine of the present invention from the left front. 底面部に磁気冷凍装置を設置した図1の洗濯乾燥機の内部構造を示す側面断面図。Side surface sectional drawing which shows the internal structure of the washing-drying machine of FIG. 1 which installed the magnetic refrigeration apparatus in the bottom face part. 底面部に磁気冷凍装置を設置した図1の洗濯乾燥機の内部構造を示す背面正面図。The rear front view which shows the internal structure of the washing-drying machine of FIG. 1 which installed the magnetic refrigeration apparatus in the bottom part. 背面部に磁気冷凍装置を設置した図1の洗濯乾燥機の内部構造を示す背面正面図。The rear front view which shows the internal structure of the washing-drying machine of FIG. 1 which installed the magnetic refrigeration apparatus in the back part. 円盤状ケースに収容する磁気冷凍装置の概要を示す斜視図。The perspective view which shows the outline | summary of the magnetic refrigeration apparatus accommodated in a disk shaped case. 円筒状ケースに収容する磁気冷凍装置の概要を示す斜視図。The perspective view which shows the outline | summary of the magnetic refrigeration apparatus accommodated in a cylindrical case. 磁場発生機が回転移動する方式の磁気冷凍装置を図5の矢印A方向から見た断面図。Sectional drawing which looked at the magnetic refrigeration apparatus of the system which a magnetic field generator rotates, and was seen from the arrow A direction of FIG. 図7の磁気冷凍装置の一要素を矢印B方向から見た部分斜視図。The fragmentary perspective view which looked at one element of the magnetic refrigeration apparatus of FIG. 7 from the arrow B direction. 本発明の洗濯乾燥機における磁気熱量効果の取り出しを説明する説明図。Explanatory drawing explaining taking-out of the magnetocaloric effect in the washing-drying machine of this invention. 両端面に継ぎ手を有する管状流路の斜視図。The perspective view of the tubular flow path which has a joint in both end surfaces. 側面端部に垂直な継ぎ手を有する管状流路の斜視図。The perspective view of the tubular flow path which has a joint perpendicular | vertical to a side surface edge part. フィンの短い方向に空気が流れるクロス・フィン・チューブ式熱交換器の斜視図。The perspective view of the cross fin tube type heat exchanger with which air flows in the short direction of a fin. 図7の円盤状ケースに収容する磁気冷凍装置を円盤側面から見た展開図。The expanded view which looked at the magnetic refrigeration apparatus accommodated in the disk shaped case of FIG. 7 from the disk side surface. 図13の磁場発生機を一工程分進ませた円盤側面の展開図。FIG. 14 is a developed view of the side surface of the disk in which the magnetic field generator of FIG. 13 is advanced by one step. 本発明の磁気熱量効果を利用した洗濯乾燥機の全体システム構成図。The whole system block diagram of the washing dryer using the magnetocaloric effect of the present invention. 磁場発生機と磁気作業物質を内包する断面円形状の管状流路の断面図。Sectional drawing of the cross-sectional circular tubular flow path which includes a magnetic field generator and a magnetic working material. 磁場発生機と磁気作業物質を内包する断面角形状の管状流路の断面図。Sectional drawing of the tubular flow path of the cross-sectional square shape containing a magnetic field generator and a magnetic working substance. 磁場発生機と磁気作業物質を内包する断面長円(楕円)形状の管状流路の断面図。Sectional drawing of the tubular flow path of the cross-sectional ellipse shape (oval) shape which includes a magnetic field generator and a magnetic working material. 180度U字形状に折り返した管状流路における磁気熱量効果の取り出しを説明する説明図。Explanatory drawing explaining taking-out of the magnetocaloric effect in the tubular flow path folded in 180 degree U shape. 1台のポンプで熱媒体を送る本発明の磁気熱量効果を利用した洗濯乾燥機の全体システム構成図。The whole system block diagram of the washing dryer using the magnetocaloric effect of the present invention which sends a heat carrier with one pump. 磁場発生機が往復移動する方式の磁気冷凍装置を図5の矢印A方向から見た断面図。Sectional drawing which looked at the magnetic refrigeration apparatus of the system which a magnetic field generator reciprocates from the arrow A direction of FIG. 磁場発生機が電磁石で構成される磁気冷凍装置を図5の矢印A方向から見た断面図。Sectional drawing which looked at the magnetic refrigeration apparatus with which a magnetic field generator is comprised with an electromagnet from the arrow A direction of FIG. 磁場に沿った曲率を有する管状流路で構成される磁気冷凍装置を図5の矢印A方向から見た断面図。Sectional drawing which looked at the magnetic refrigeration apparatus comprised with the tubular flow path which has a curvature along a magnetic field from the arrow A direction of FIG. フィンの長手方向に空気が流れるクロス・フィン・チューブ式熱交換器の斜視図。The perspective view of the cross fin tube type heat exchanger with which air flows into the longitudinal direction of a fin. 底面部に磁気冷凍装置を設置した本発明の縦型洗濯乾燥機の内部構造を示す側面断面図。Side surface sectional drawing which shows the internal structure of the vertical washing dryer of this invention which installed the magnetic refrigeration apparatus in the bottom face part.

まず、本発明がなされた経緯について説明する。高効率で環境に優しい洗濯乾燥機を具現化するために、本発明者らは、気体の圧縮・膨張を応用した従来の冷凍技術とはまったく異なる原理で、磁性体に磁場を作用させることにより高温および低温を生成する磁気熱量効果に注目した。ある種の磁性体(以下、磁気作業物質と言う)には、外部から磁場(磁界)を加えると温度上昇(放熱)し、磁場を取り除くと温度低下(吸熱)するといった可逆的な現象が観測される。これが磁気熱量効果である。   First, how the present invention was made will be described. In order to realize a highly efficient and environmentally friendly washing and drying machine, the present inventors have applied a magnetic field to a magnetic substance on a completely different principle from the conventional refrigeration technology applying gas compression / expansion. We focused on the magnetocaloric effect producing high and low temperatures. Some magnetic materials (hereinafter referred to as magnetic working substances) have a reversible phenomenon in which the temperature rises (dissipates heat) when an external magnetic field (magnetic field) is applied, and the temperature decreases (endothermic) when the magnetic field is removed. Is done. This is the magnetocaloric effect.

磁気熱量効果の原理は以下の通りである。すなわち、磁気作業物質に磁場を加えた状態と取り去った状態とでは、磁気作業物質内部のスピン系の自由度の相違に起因して、電子系のエントロピーが変化する。このエントロピー変化に伴い、磁気作業物質内部では、電子系と格子系との間で瞬時にエネルギーのやりとりが生じる。これによって磁気作業物質の温度(格子振動の度合い)が変化する。これが、磁気熱量効果の原理である。   The principle of the magnetocaloric effect is as follows. That is, the entropy of the electron system changes due to the difference in the degree of freedom of the spin system inside the magnetic working material between the state where the magnetic working material is applied with the magnetic field and the state where the magnetic working material is removed. With this entropy change, energy is instantly exchanged between the electron system and the lattice system inside the magnetic working material. This changes the temperature of the magnetic working material (the degree of lattice vibration). This is the principle of the magnetocaloric effect.

こうした磁気熱量効果を利用して対象物に対して熱交換を行うものを、以下では磁気冷凍装置と呼ぶ。特に、常温付近の温度帯域で磁気熱量効果を利用するものを、常温磁気冷凍装置と呼ぶ。本発明者らは、かかる磁気熱量効果を生じる磁気冷凍装置に着目し、この磁気冷凍装置を、洗濯乾燥機に組み込み適用する際に生じる種々の問題点について検討した。こうした検討を経て、本発明者らは、遂に本発明を完成させた。
以下、本発明の複数の実施形態について、図面を用いて説明する。
A device that performs heat exchange on an object using such a magnetocaloric effect is hereinafter referred to as a magnetic refrigeration apparatus. In particular, a device that uses the magnetocaloric effect in a temperature band near room temperature is called a room temperature magnetic refrigeration apparatus. The present inventors paid attention to a magnetic refrigeration apparatus that produces such a magnetocaloric effect, and examined various problems that occur when this magnetic refrigeration apparatus is incorporated in a washing dryer. Through these studies, the present inventors finally completed the present invention.
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図1は、本発明の実施形態1に係るドラム式洗濯乾燥機1を左前方から見た斜視図、図2は、図1に示すドラム式洗濯乾燥機1の筐体の一部を切断して内部構造を示す側面断面図、図3は、図1に示すドラム式洗濯乾燥機1の背面カバーを外して内部構造を示す背面正面図である。図4は、実施形態1の変形例に係る洗濯乾燥機の内部構造を示す背面正面図である。
[Embodiment 1]
FIG. 1 is a perspective view of a drum-type washing / drying machine 1 according to Embodiment 1 of the present invention as viewed from the left front side, and FIG. 2 is a cross-sectional view of the drum-type washing / drying machine 1 shown in FIG. Fig. 3 is a side sectional view showing the internal structure, and Fig. 3 is a rear front view showing the internal structure by removing the back cover of the drum type washing and drying machine 1 shown in Fig. 1. FIG. 4 is a rear front view showing the internal structure of the washing / drying machine according to the modification of the first embodiment.

ドラム式洗濯乾燥機1の筐体2には、図1に示すように、前面側に衣類(洗濯物)4を出し入れするドア3が、背面側に背面カバー5が、それぞれ設けられている。筐体2の内側には、図2に示すように、回転しない(固定された)円筒状の外槽6が備えられる。外槽6は、筐体2の下部に設けられた複数個のサスペンション7により、筐体2の設置面(床面)に対して浮上支持されている。外槽6の内側には、円筒状の回転ドラム(“内槽”に相当する)8が回転自在に設けられている。この回転ドラム8は、外槽6と相似の形状を有している。回転ドラム8のサイズは、外槽6と比べて小さく設定されている。外槽6および回転ドラム8は、ドア3の開口部に対応する前面側が開放されている。これにより、ドア3を開けて衣類4を回転ドラム8内に投入可能になされている。回転ドラム8の開口部の外周には、脱水時の衣類4のアンバランスによる振動を低減するための流体バランサー9が設けられている。   As shown in FIG. 1, the housing 2 of the drum-type washing / drying machine 1 is provided with a door 3 for putting clothes (laundry) 4 in and out on the front side and a back cover 5 on the back side. As shown in FIG. 2, a cylindrical outer tub 6 that does not rotate (fixed) is provided inside the housing 2. The outer tub 6 is levitated and supported with respect to the installation surface (floor surface) of the housing 2 by a plurality of suspensions 7 provided at the lower portion of the housing 2. A cylindrical rotary drum (corresponding to an “inner tank”) 8 is rotatably provided inside the outer tank 6. The rotating drum 8 has a shape similar to that of the outer tub 6. The size of the rotating drum 8 is set smaller than that of the outer tub 6. The outer tub 6 and the rotating drum 8 are open on the front side corresponding to the opening of the door 3. Thereby, the door 3 can be opened and the clothes 4 can be put into the rotary drum 8. A fluid balancer 9 is provided on the outer periphery of the opening of the rotary drum 8 to reduce vibration due to unbalance of the garment 4 during dehydration.

また、回転ドラム8の内側には、衣類4をかきあげる複数個のリフター10が設けられている。回転ドラム8は、ドラムの後方側に設けられたドラム駆動モータ11に直結されている。このドラム駆動モータ11の駆動によって、回転ドラム8は、その回転軸周りに回転自在になっている。   A plurality of lifters 10 for scooping up the garment 4 are provided inside the rotating drum 8. The rotary drum 8 is directly connected to a drum drive motor 11 provided on the rear side of the drum. By driving the drum drive motor 11, the rotary drum 8 is rotatable around its rotation axis.

外槽6の開口部には、シリコーンゴム等の弾性体からなるパッキン12が取り付けられている。このパッキン12は、外槽6内とドア3との水密性を維持する役割を果たす。これにより、洗い、すすぎ、および脱水時の水漏れの防止が図られている。   A packing 12 made of an elastic material such as silicone rubber is attached to the opening of the outer tub 6. The packing 12 plays a role of maintaining watertightness between the inside of the outer tub 6 and the door 3. This prevents water leakage during washing, rinsing, and dehydration.

回転ドラム8は、図2に示すように、その周側壁に遠心脱水および通風用の小孔38を多数有する。外槽6の底壁に開口した排水口13は、排水ホース14に接続されている。筐体2の前面上部には、図1に示すように、洗濯や乾燥のモード選択等を行う際に用いられる操作部15が設けられている。なお、図2中の符号16は、衣類の乾燥に用いる循環空気流(温風)を表す。循環空気流16は、図3および図4に示すように、送風手段に相当するファン35により送風される。   As shown in FIG. 2, the rotating drum 8 has a large number of small holes 38 for centrifugal dehydration and ventilation on its peripheral side wall. A drain port 13 opened in the bottom wall of the outer tub 6 is connected to a drain hose 14. As shown in FIG. 1, an operation unit 15 that is used when selecting a washing or drying mode or the like is provided on the front upper portion of the housing 2. In addition, the code | symbol 16 in FIG. 2 represents the circulating air flow (warm air) used for drying of clothing. As shown in FIGS. 3 and 4, the circulating air flow 16 is blown by a fan 35 corresponding to a blowing means.

ファン35は、高圧力を出せるターボファンやシロッコファンでもよいし、軸流ファン,プロペラファン等であってもよい。ファン35の設置場所は特に限定されない。循環空気流16の途中(たとえば、後述するドラム入口ダクト25やドラム出口ダクト24等)であれば、ファン35をどこに設けてもよい。   The fan 35 may be a turbo fan or a sirocco fan that can generate a high pressure, an axial fan, a propeller fan, or the like. The installation place of the fan 35 is not particularly limited. The fan 35 may be provided anywhere in the middle of the circulating air flow 16 (for example, a drum inlet duct 25 or a drum outlet duct 24 described later).

筐体2の下部には、図2に示すように、本発明の熱源である磁気冷凍装置17が設けられている。磁気冷凍装置17は、後述するように、磁気作業物質19、および、磁気作業物質19に磁場を加える磁場発生機18を主要な構成部品として有する。図2および図3の例では、磁気冷凍装置17は、筐体2の底面部1aに設けられている。詳しく述べると、磁気冷凍装置17は、図2または図3に示すように、筐体2の底面部1aに設けた筒状空間49に設けられる。円盤状あるいはドーナツ状の筒状空間49は、底面である平面の面積が広く、軸方向である周側面の距離が短い形状を有する。   As shown in FIG. 2, a magnetic refrigeration apparatus 17 that is a heat source of the present invention is provided at the lower part of the housing 2. As will be described later, the magnetic refrigeration apparatus 17 includes a magnetic working material 19 and a magnetic field generator 18 that applies a magnetic field to the magnetic working material 19 as main components. In the example of FIGS. 2 and 3, the magnetic refrigeration apparatus 17 is provided on the bottom surface portion 1 a of the housing 2. Specifically, the magnetic refrigeration apparatus 17 is provided in a cylindrical space 49 provided in the bottom surface portion 1a of the housing 2 as shown in FIG. 2 or FIG. The disk-shaped or donut-shaped cylindrical space 49 has a shape in which the area of the plane as the bottom surface is large and the distance between the peripheral side surfaces in the axial direction is short.

磁気冷凍装置17を筐体2の底面部1aに設置するメリットは、磁気冷凍装置17が重い場合には、重心を低く抑えることができ、洗濯乾燥機1の本体の安定性がよいこと、並びに、磁気冷凍装置17の一部が回転移動(運動)する場合には、洗濯乾燥機1の本体の振動を抑制しやすいことなどがあげられる。   The merit of installing the magnetic refrigeration apparatus 17 on the bottom surface portion 1a of the housing 2 is that when the magnetic refrigeration apparatus 17 is heavy, the center of gravity can be kept low, the stability of the main body of the washing and drying machine 1 is good, and When a part of the magnetic refrigeration apparatus 17 is rotationally moved (moved), the vibration of the main body of the washing / drying machine 1 can be easily suppressed.

ただし、磁気冷凍装置17は、筐体2の底面部1aに代えて、図4に示すように、筐体2の背面部1bに設けた筒状空間(円盤状あるいはドーナツ状空間)49に設けてもよい。磁気冷凍装置17を筐体2の背面部1bに設けるメリットは、ドラム駆動モータ11と後述する磁場発生機駆動モータ39との共用化などがあげられる。要するに、磁気冷凍装置17の主要構成部品である磁気作業物質19および磁場発生機18は、収容スペースさえ許すのであれば、筐体2内のどこに設けてもよい。   However, the magnetic refrigeration apparatus 17 is provided in a cylindrical space (disk-shaped or donut-shaped space) 49 provided in the back surface portion 1b of the housing 2 as shown in FIG. 4 instead of the bottom surface portion 1a of the housing 2. May be. The merit of providing the magnetic refrigeration apparatus 17 on the back surface portion 1b of the housing 2 includes sharing of the drum drive motor 11 and a magnetic field generator drive motor 39 described later. In short, the magnetic working material 19 and the magnetic field generator 18 which are the main components of the magnetic refrigeration apparatus 17 may be provided anywhere in the housing 2 as long as the storage space is allowed.

磁気冷凍装置17には、図3に示すように、磁気作業物質19内に熱媒体を移動させるポンプ等の駆動手段20、湿った空気を除湿冷却する冷却手段21、および衣類4の乾燥時に用いる空気流16の加熱源となる加熱手段22が付加的に設けられている。これは、図4に示す磁気冷凍装置17でも同様である。   As shown in FIG. 3, the magnetic refrigeration apparatus 17 is used when driving the driving means 20 such as a pump for moving the heat medium into the magnetic working material 19, the cooling means 21 for dehumidifying and cooling damp air, and drying the clothes 4. A heating means 22 serving as a heating source for the air flow 16 is additionally provided. The same applies to the magnetic refrigeration apparatus 17 shown in FIG.

衣類4の乾燥時に用いる循環空気流16は、図3に示すように、加熱手段22で高温低湿の空気流16aとなり、ドラム入口ダクト25を通ってドラム入口26から回転ドラム8内に供給される。回転ドラム8内では、高温低湿の空気流16aが衣類4から水分を奪い、高湿の空気流16bとなってドラム出口23からドラム出口ダクト24に送られる。   As shown in FIG. 3, the circulating air flow 16 used when the clothes 4 are dried becomes a high-temperature and low-humidity air flow 16 a by the heating means 22, and is supplied from the drum inlet 26 into the rotary drum 8 through the drum inlet duct 25. . In the rotary drum 8, the high-temperature and low-humidity air flow 16 a takes moisture from the clothing 4 and becomes a high-humidity air flow 16 b and is sent from the drum outlet 23 to the drum outlet duct 24.

そして、冷却手段21で高湿の空気流16bが冷やされて除湿され、低温高湿の空気流16cとなり、再び加熱手段22に送られる。乾燥に利用する空気流16は、以上の循環を繰り返すことで、衣類4から水分を奪って衣類を乾燥させてゆく。   Then, the high-humidity air flow 16 b is cooled and dehumidified by the cooling means 21, becomes a low-temperature high-humidity air flow 16 c, and is sent to the heating means 22 again. The air flow 16 used for drying repeats the above circulation, thereby removing moisture from the clothes 4 and drying the clothes.

本実施形態1の特徴は、外槽6、回転ドラム(内槽)8、磁気作業物質19および磁場発生機18を有する磁気冷凍装置17、加熱手段22、冷却手段21、並びに、ファン等の送風手段35を含む、すべての構成要素が1台の洗濯乾燥機1の筐体2内に実装されている点である。   The feature of the first embodiment is that the outer tub 6, the rotating drum (inner tub) 8, the magnetic refrigeration apparatus 17 having the magnetic working material 19 and the magnetic field generator 18, the heating means 22, the cooling means 21, and the ventilation of a fan or the like. All the components including the means 35 are mounted in the housing 2 of the single washing / drying machine 1.

次に、実施形態1に係るドラム式洗濯乾燥機1に搭載する磁気冷凍装置17の構造を図面に基づいて説明する。図5は、実施形態1に係る洗濯乾燥機1に搭載される磁気冷凍装置17の概要を示す斜視図である。図6は、実施形態1の変形例に係る洗濯乾燥機1に搭載される磁気冷凍装置17の概要を示す斜視図である。   Next, the structure of the magnetic refrigeration apparatus 17 mounted in the drum type washing / drying machine 1 according to Embodiment 1 will be described with reference to the drawings. FIG. 5 is a perspective view showing an outline of the magnetic refrigeration apparatus 17 mounted on the washing / drying machine 1 according to the first embodiment. FIG. 6 is a perspective view showing an outline of the magnetic refrigeration apparatus 17 mounted on the washing / drying machine 1 according to the modification of the first embodiment.

図5に示すように、実施形態1に係るドラム式洗濯乾燥機1に搭載される磁気冷凍装置17は、底面である平面の面積が広く、軸方向である側面が短い筒状空間(円盤状あるいはドーナツ状空間)49に構成されている。磁気作業物質19を内包する管状流路28は、筒状空間49の半径方向に沿って延びるように放射状に複数本(具体的には8本)敷設されている。複数本の管状流路28の両端部を所定間隔で保持するために、筒状空間49の半径方向両端には、その外周側端部に管状流路ホルダ54aが、その内周側端部に管状流路ホルダ54bが、それぞれ設けられている。   As shown in FIG. 5, the magnetic refrigeration apparatus 17 mounted on the drum-type washing and drying machine 1 according to the first embodiment has a cylindrical space (disk shape) with a large area of a plane as a bottom surface and a short side surface in an axial direction. Alternatively, a donut-shaped space) 49 is formed. A plurality (specifically, eight) of the tubular flow paths 28 containing the magnetic working substance 19 are laid radially so as to extend along the radial direction of the cylindrical space 49. In order to hold the both ends of the plurality of tubular channels 28 at a predetermined interval, tubular channel holders 54a are provided at the ends on the outer peripheral side at the ends in the radial direction of the cylindrical space 49, and at the ends on the inner periphery. Tubular flow path holders 54b are respectively provided.

また、図6に示す実施形態1の変形例では、磁気冷凍装置17が、底面である平面の面積が狭く、底面に対して側面が軸方向に長い筒状空間(円筒状あるいは管状空間)49に構成されている。この場合、磁気作業物質19を内包する管状流路28は、筒状空間49の軸方向(長手方向)に長くなるように複数本敷設されている。複数本の管状流路28の両端部を所定間隔で保持するために、筒状空間49の軸方向両端には、その上側端部に管状流路ホルダ54aが、その下側端部に管状流路ホルダ54bが、それぞれ設けられている。   Moreover, in the modification of Embodiment 1 shown in FIG. 6, the magnetic refrigeration apparatus 17 has a cylindrical space (cylindrical or tubular space) 49 in which the area of the plane that is the bottom surface is narrow and the side surface is long in the axial direction with respect to the bottom surface. It is configured. In this case, a plurality of tubular flow paths 28 containing the magnetic working substance 19 are laid so as to be long in the axial direction (longitudinal direction) of the cylindrical space 49. In order to hold both ends of the plurality of tubular channels 28 at a predetermined interval, a tubular channel holder 54a is provided at the upper end of the tubular space 49 at the axial ends thereof, and a tubular stream is provided at the lower end thereof. A path holder 54b is provided.

ここで、本発明で言う筒状空間49は、図5のような薄い円盤状空間でもよいし、図6のような細長い円筒状空間でもよい。また、平面の形状は円形状に限る必要はなく、正方形等の四角形や、六角形あるいは八角形等であってもよい。また、中央に空間を有する環状(中空状)に代えて、円柱や角柱のように柱状(中実状)であってもよい。   Here, the cylindrical space 49 referred to in the present invention may be a thin disk-shaped space as shown in FIG. 5 or an elongated cylindrical space as shown in FIG. The shape of the plane need not be limited to a circular shape, and may be a quadrangle such as a square, a hexagon, an octagon, or the like. Moreover, it may replace with the cyclic | annular form (hollow shape) which has space in the center, and may be columnar shape (solid shape) like a cylinder or a prism.

図5および図6において、符号30aおよび30bは永久磁石を表す。永久磁石30a,30b(“永久磁石30”と総称する場合がある。)の材質は、ネオジム系かフェライト系のいずれかで構成されることが好ましい。ただし、それ以外の材質であっても良く、必要な磁力や実装寸法等に応じて決めればよい。また、一つの磁気冷凍装置17内に、数種類の材質からなる永久磁石30が混在して使われていてもよい。   5 and 6, reference numerals 30a and 30b represent permanent magnets. The material of the permanent magnets 30a, 30b (sometimes collectively referred to as “permanent magnet 30”) is preferably composed of either neodymium or ferrite. However, other materials may be used, and may be determined according to necessary magnetic force, mounting dimensions, and the like. Further, in one magnetic refrigeration apparatus 17, permanent magnets 30 made of several kinds of materials may be used together.

以下では、図5に示す実施形態1に係るドラム式洗濯乾燥機1に搭載される磁気冷凍装置17に沿って説明を進める。ただし、図6に示す実施形態1の変形例に係るドラム式洗濯乾燥機1に搭載される磁気冷凍装置17であっても、基本的な考え方は同じである。   Below, description is advanced along the magnetic refrigeration apparatus 17 mounted in the drum type washing-drying machine 1 which concerns on Embodiment 1 shown in FIG. However, even if it is the magnetic refrigeration apparatus 17 mounted in the drum type washing-drying machine 1 which concerns on the modification of Embodiment 1 shown in FIG. 6, the basic idea is the same.

図7は、図5に示す円盤状の筒状空間49に収容する磁気冷凍装置17を図5の矢印A方向から見た平面をカットした断面図である。また、図8は、図7の磁気冷凍装置17を図7の矢印B方向から見た部分斜視図であり、ひとつの管状流路28が一対の永久磁石30a,30bに挟まれるように位置している状態を部分的に切り取って示している。   FIG. 7 is a cross-sectional view of the magnetic refrigeration apparatus 17 housed in the disc-shaped cylindrical space 49 shown in FIG. 5 as seen from the direction of arrow A in FIG. FIG. 8 is a partial perspective view of the magnetic refrigeration apparatus 17 of FIG. 7 as viewed from the direction of arrow B of FIG. 7, and is positioned so that one tubular flow path 28 is sandwiched between a pair of permanent magnets 30a and 30b. The state of being cut out is shown partially.

図7では、磁気作業物質19を内包する管状流路28を8本(28a〜28h)設置した例を示している。なお、磁気作業物質19を内包する管状流路28の本数は、これより少なくてもよいし、逆に多くてもよい。ただし、図9に示すように、本発明の特徴である磁気冷凍装置17の高温端(“一方端”に相当する)に生成される比較的高温の高温熱媒体27bと、低温端(“他方端”に相当する)に生成される前記高温と比べて比較的低温の低温熱媒体27aの両方を利用する場合には、管状流路28の本数は、偶数本に設定するのが好ましい。特に、高温熱媒体27bと低温熱媒体27aの両方の熱量をほぼ同量必要な場合は、高温熱媒体27bと低温熱媒体27aがそれぞれ生成される管状流路28の本数を半々とすべく、偶数本に設定するのがよい。   FIG. 7 shows an example in which eight tubular channels 28 (28a to 28h) containing the magnetic working substance 19 are installed. In addition, the number of the tubular flow paths 28 containing the magnetic working substance 19 may be smaller than this, or conversely. However, as shown in FIG. 9, a relatively high-temperature high-temperature heat medium 27b generated at the high-temperature end (corresponding to “one end”) of the magnetic refrigeration apparatus 17 that is a feature of the present invention, and the low-temperature end (“the other end”). In the case of using both of the low-temperature heat mediums 27a that are relatively low in temperature compared to the high temperature generated at the end "corresponding to the end", the number of the tubular flow paths 28 is preferably set to an even number. In particular, when almost the same amount of heat is required for both the high-temperature heat medium 27b and the low-temperature heat medium 27a, the number of the tubular channels 28 in which the high-temperature heat medium 27b and the low-temperature heat medium 27a are respectively generated is halved. It should be set to an even number.

磁場発生機18は、図8に示すように、管状流路28の上面(円盤状の筒状空間49の平面部上面)と下面(平面部下面)にそれぞれ設けた一対の永久磁石30a,30b、これら一対の永久磁石30a,30bを所定の間隔を置いて保持するコの字状の磁石ホルダ29、磁石ホルダ29を回転させる磁場発生機駆動モータ39、および、磁石ホルダ29と磁場発生機駆動モータ39との間を連結する連結シャフト40により構成される。図8中の符号53は、永久磁石30a,30bによって発生する磁場(磁界)であり、磁場の向きを波線で示している。   As shown in FIG. 8, the magnetic field generator 18 includes a pair of permanent magnets 30 a and 30 b provided on the upper surface (the upper surface of the flat surface of the disk-shaped cylindrical space 49) and the lower surface (the lower surface of the flat surface portion). The U-shaped magnet holder 29 that holds the pair of permanent magnets 30a and 30b at a predetermined interval, the magnetic field generator drive motor 39 that rotates the magnet holder 29, and the magnet holder 29 and the magnetic field generator drive The connecting shaft 40 is connected to the motor 39. Reference numeral 53 in FIG. 8 denotes a magnetic field (magnetic field) generated by the permanent magnets 30a and 30b, and the direction of the magnetic field is indicated by a wavy line.

ここで、図7に示すように、磁場発生機18は、軸回り方向に均等な間隔を置いて4個設けられており、一つの駆動モータ39で一体となって回転駆動される。図7に示す符号34は、磁場発生機移動方向である。なお、磁場発生機18の数は4個に限定されない。磁場発生機18の数は、例えば6個や8個など、任意の数に設定することができる。   Here, as shown in FIG. 7, four magnetic field generators 18 are provided at equal intervals in the direction around the axis, and are integrally rotated by a single drive motor 39. The code | symbol 34 shown in FIG. 7 is a magnetic field generator moving direction. The number of magnetic field generators 18 is not limited to four. The number of the magnetic field generators 18 can be set to an arbitrary number such as 6 or 8, for example.

以上のように、磁気作業物質19が〔N=8:偶数〕本の管状流路28に分割して充填され、磁場発生機18は管状流路28の数Nの半分、つまり〔N/2=4〕個で構成されている。本実施形態1では前記のように「管状流路の数〔N:偶数〕本に対し磁場発生機の数〔N/2〕個」の関係が望ましい。   As described above, the magnetic working substance 19 is divided and filled into [N = 8: even number] tubular flow paths 28, and the magnetic field generator 18 is half the number N of the tubular flow paths 28, that is, [N / 2. = 4]. In the first embodiment, as described above, a relationship of “the number of magnetic field generators [N / 2] with respect to the number of tubular flow paths [N: even number]” is desirable.

次に、図1から図4で説明した実施形態1に係るドラム式洗濯乾燥機1と、図7から図8で説明した磁気冷凍装置17をもとに、図9から図15を用いて、実施形態1に係るドラム式洗濯乾燥機1に適用する磁気熱量効果の動作原理と使い方を詳細に説明する。図9は、図7のC部を切り出した図である。ここではこれを一組のシステムとして考える。つまり、図7では、4組のシステムが備わっていることになる。図10は、両端面に継ぎ手を有する管状流路の斜視図である。図11は、側面端部に垂直な継ぎ手を有する管状流路の斜視図である。   Next, based on the drum-type washing and drying machine 1 according to the first embodiment described with reference to FIGS. 1 to 4 and the magnetic refrigeration apparatus 17 described with reference to FIGS. The operation principle and usage of the magnetocaloric effect applied to the drum type washer / dryer 1 according to the first embodiment will be described in detail. FIG. 9 is a diagram in which the part C in FIG. 7 is cut out. Here we consider this as a set of systems. That is, in FIG. 7, four sets of systems are provided. FIG. 10 is a perspective view of a tubular flow channel having joints on both end faces. FIG. 11 is a perspective view of a tubular channel having a joint perpendicular to the side edge.

磁気作業物質19は、8本の管状流路28にそれぞれ均等に収納されている(詰め込まれている)。磁気作業物質19の形状は、管状流路28内を流れる熱媒体27の通路抵抗(圧力損失)を極力少なくする目的から、球状(丸粒状)が好ましい。ただし、これに限る必要はなく、粒形が角状(立方体や直方体)や星粒状でもよいし、各種形状の組み合わせであってもよい。さらには、例えば粒形が同じ球状においても、直径の異なる数種類の粒とし、これらを混ぜ合わせて収納してもよい。この場合、大粒の磁気作業物質19の隙間に小粒の磁気作業物質19が入り込み、管状流路28内への磁気作業物質19の収納密度(実装密度)を向上することができ、好都合である。また、磁気作業物質19の形状は、薄く細長い板状(短冊上)などであってもよい。   The magnetic working substance 19 is equally stored (packed) in each of the eight tubular channels 28. The shape of the magnetic working substance 19 is preferably spherical (round) for the purpose of reducing the passage resistance (pressure loss) of the heat medium 27 flowing in the tubular flow path 28 as much as possible. However, the present invention is not limited to this, and the particle shape may be a square shape (cube or rectangular parallelepiped) or a star shape, or a combination of various shapes. Furthermore, for example, even in the same spherical shape, several types of grains having different diameters may be mixed and stored. In this case, the small magnetic working material 19 enters the gaps between the large magnetic working material 19, and the storage density (mounting density) of the magnetic working material 19 in the tubular flow path 28 can be improved. The shape of the magnetic working material 19 may be a thin and long plate (on a strip) or the like.

また、磁気作業物質19の材質としては、常温付近で利用可能なガドリニウム(Gd)およびその合金や、強磁性化合物金属であるMnAs等の強磁性体が望ましい。ただし、本発明はこれらの材質に限る必要はない。洗濯乾燥機で要求される低温端17aおよび高温端17bの温度仕様に応じ、その材質を適宜選択すればよい。なお、状況に応じ、複数の材質を混在させてもよい。   The magnetic working material 19 is preferably made of gadolinium (Gd) that can be used near room temperature and its alloys, or a ferromagnetic material such as MnAs that is a ferromagnetic compound metal. However, the present invention need not be limited to these materials. What is necessary is just to select the material suitably according to the temperature specification of the low temperature end 17a and the high temperature end 17b requested | required with a washing dryer. A plurality of materials may be mixed depending on the situation.

管状流路28としては、熱伝導率が低く磁石に影響されない材質がよい。具体的な管状流路28の材質としては、例えば、ポリカーボネイトやテフロン(登録商標)、シリコーン、アクリルなどの樹脂製がよい。なお、管状流路28は、磁気作業物質19と同じ材質で構成してもよい。   The tubular channel 28 is preferably made of a material that has low thermal conductivity and is not affected by the magnet. As a specific material of the tubular flow path 28, for example, a resin such as polycarbonate, Teflon (registered trademark), silicone, or acrylic is preferable. The tubular channel 28 may be made of the same material as the magnetic working substance 19.

管状流路ホルダ54における磁気作業物質19を内包する管状流路28から加熱手段22および冷却手段21への熱媒体(本実施形態では水)の取り出しは、例えば図10に概念的に示すように、管状流路28の両端面に継ぎ手48をそれぞれ設け、そのまま水流路(ホース等)31に接続すればよい。また、図11に概念的に示すように、管状流路28の側面端部に略垂直に継ぎ手48をそれぞれ設け、水流路(ホース等)31に接続してもよい。もちろん、両方法による継ぎ手48の組み合わせであってもよい。   The extraction of the heat medium (water in this embodiment) from the tubular flow path 28 containing the magnetic working substance 19 in the tubular flow path holder 54 to the heating means 22 and the cooling means 21 is conceptually shown in FIG. The joints 48 may be provided on both end faces of the tubular channel 28 and connected to the water channel (hose etc.) 31 as they are. In addition, as conceptually shown in FIG. 11, joints 48 may be provided substantially perpendicularly to the side end portions of the tubular flow path 28 and connected to the water flow path (hose or the like) 31. Of course, a combination of the joints 48 by both methods may be used.

図9では、管状流路28aが、一対の永久磁石30a,30bに挟まれた状態で磁場発生機18a(図8参照)内に収まっており、管状流路28aの軸方向に直交する方向(紙面と直交する方向)へ磁場が加えられた状態にある。一方、管状流路28bは磁場発生機18aから外れており、磁場が取り去られた状態にある。よって、この場合、後述する磁気熱量効果によって、管状流路28a内の磁気作業物質19が昇温(温度上昇)し、管状流路28b内の磁気作業物質19が降温(温度低下)することになる。   In FIG. 9, the tubular flow path 28 a is contained in the magnetic field generator 18 a (see FIG. 8) sandwiched between the pair of permanent magnets 30 a and 30 b, and is in a direction orthogonal to the axial direction of the tubular flow path 28 a ( A magnetic field is applied in a direction perpendicular to the paper surface. On the other hand, the tubular channel 28b is detached from the magnetic field generator 18a, and the magnetic field is removed. Therefore, in this case, due to the magnetocaloric effect described later, the magnetic working material 19 in the tubular channel 28a is heated (temperature rise), and the magnetic working material 19 in the tubular channel 28b is lowered (temperature lowered). Become.

熱媒体である水27の流れる流路は、図9に示すように、以下の通り構成されている。まず、管状流路28aの継ぎ手48bには水流路31aが接続され、その水流路31aの他端は加熱手段22に接続される。加熱手段22の他端はポンプ20および水流路31bを介して管状流路28bの継ぎ手48dに接続され、管状流路28bの他端の継ぎ手48aは水流路31cに接続される。その水流路31cの他端は冷却手段21に接続され、その冷却手段21の他端は水流路31dに接続される。その水流路31dは管状流路28aの継ぎ手48cに接続されて、これで熱媒体27の流れは一巡する。   As shown in FIG. 9, the flow path through which the water 27 as the heat medium flows is configured as follows. First, the water channel 31 a is connected to the joint 48 b of the tubular channel 28 a, and the other end of the water channel 31 a is connected to the heating means 22. The other end of the heating means 22 is connected to the joint 48d of the tubular channel 28b via the pump 20 and the water channel 31b, and the joint 48a at the other end of the tubular channel 28b is connected to the water channel 31c. The other end of the water flow path 31c is connected to the cooling means 21, and the other end of the cooling means 21 is connected to the water flow path 31d. The water flow path 31d is connected to the joint 48c of the tubular flow path 28a, so that the flow of the heat medium 27 is completed.

ここで用いる水(熱媒体)27は、純水や軟水(硬度成分がゼロか極端に少ない水)であってもよいし、使用状況によっては水道水や井戸水でもよい。さらに、寒冷地等でも利用可能なように不凍液等を混ぜた混合水や、腐食や錆びを防止するために防腐剤や防錆剤を入れた水であってもよい。また、防錆などのために、磁気作業物質19そのものの表面に防錆剤等を塗布あるいはコーティング、メッキを施してもよい。   The water (heat medium) 27 used here may be pure water or soft water (water whose hardness component is zero or extremely small), or may be tap water or well water depending on the use situation. Further, it may be mixed water mixed with antifreeze or the like so that it can be used even in cold districts, or water containing antiseptic or rust preventive agent to prevent corrosion or rust. Further, for the purpose of rust prevention or the like, a rust preventive agent or the like may be applied, coated or plated on the surface of the magnetic working material 19 itself.

ポンプ20は、熱媒体(水)27を常に一方向に移動(循環)させるものではなく、後述するように水流路31内を往復移動させるもので、往復ポンプ,プランジャーポンプ等で構成される。   The pump 20 does not always move (circulate) the heat medium (water) 27 in one direction, but reciprocates in the water flow path 31 as will be described later, and is constituted by a reciprocating pump, a plunger pump, or the like. .

図9の例の場合、管状流路28aは一対の永久磁石30a,30bによる磁場内に位置しているのに対し、管状流路28bは一対の永久磁石30a,30bによる磁場から外にはみ出している。この場合の磁気熱量効果では、管状流路28a内に収納されている磁気作業物質19は磁場の作用により発熱し、管状流路28bに収納されている磁気作業物質19は磁場から外れることにより吸熱する。   In the case of the example of FIG. 9, the tubular flow path 28a is located in the magnetic field by the pair of permanent magnets 30a and 30b, whereas the tubular flow path 28b protrudes from the magnetic field by the pair of permanent magnets 30a and 30b. Yes. In the magnetocaloric effect in this case, the magnetic working material 19 accommodated in the tubular flow path 28a generates heat by the action of the magnetic field, and the magnetic working material 19 accommodated in the tubular flow path 28b desorbs heat by being out of the magnetic field. To do.

このとき、ポンプ20の運転によって、水流路31内の熱媒体(水)27を実線の矢印32,33の方向(いずれも同方向)に流すと、管状流路28bの低温端48aには低温熱媒体27a(冷たい水)が、管状流路28aの高温端48bには高温熱媒体27b(温かい水)がそれぞれ生成され、各熱媒体27a,27bがそれぞれ冷却手段21と加熱手段22に送られる。ここで、図9中の符号32は、管状流路28aで昇温した温かい水(高温熱媒体)の移動方向を前記の実線の矢印で示し、同図中の符号33は、管状流路28bで降温した冷たい水(低温熱媒体)の移動方向を前記の実線の矢印で示している。   At this time, when the heat medium (water) 27 in the water channel 31 is caused to flow in the directions of solid arrows 32 and 33 (both in the same direction) by the operation of the pump 20, the low temperature end 48a of the tubular channel 28b has a low temperature. The heat medium 27a (cold water) is generated at the high temperature end 48b of the tubular flow path 28a, and the heat medium 27b (warm water) is generated and sent to the cooling means 21 and the heating means 22, respectively. . Here, reference numeral 32 in FIG. 9 indicates the moving direction of warm water (high temperature heat medium) heated in the tubular flow path 28a by the solid line arrow, and reference numeral 33 in FIG. 9 indicates the tubular flow path 28b. The moving direction of the cold water (low-temperature heat medium) lowered in temperature is indicated by the solid line arrow.

すると、ドラム出口ダクト24内、あるいはその後方に設けられた冷却手段21において、管状流路28bの低温端48aから水流路31cによって送られてきた低温熱媒体27aは、回転ドラム8から出た高温高湿の空気流16b(図3参照)と熱交換し、空気流16bから熱を奪って昇温したのち冷却手段21を出る。   Then, in the cooling means 21 provided in or behind the drum outlet duct 24, the low-temperature heat medium 27a sent from the low-temperature end 48a of the tubular flow path 28b by the water flow path 31c is the high-temperature output from the rotary drum 8. After exchanging heat with the high-humidity air stream 16b (see FIG. 3), heat is taken from the air stream 16b, and the cooling means 21 is exited.

ここで、冷却手段21および後述する加熱手段22を構成する熱交換器41は、熱媒体である水(液体)27と空気(気体)16を効率良く熱交換させる必要がある。そこで、例えば、クロス・フィン・チューブ式熱交換器を用いるのがよい。図12は、フィンの短い方向に空気が流れるクロス・フィン・チューブ式の熱交換器の斜視図である。クロス・フィン・チューブ式の熱交換器41は、複数枚(多数)の薄いフィン42と、これに貫通する複数本のチューブ43と、チューブ43間をU字形状に連結するU字ベンド44となどから構成される。クロス・フィン・チューブ式の熱交換器41では、フィン42の表面が空気流16と接し、チューブ43の内面が水27と接し、これら両者間で熱交換する。   Here, the heat exchanger 41 that constitutes the cooling means 21 and the heating means 22 described later needs to efficiently exchange heat between water (liquid) 27 and air (gas) 16 that are heat media. Therefore, for example, a cross fin tube type heat exchanger may be used. FIG. 12 is a perspective view of a cross-fin-tube heat exchanger in which air flows in the short direction of the fins. The cross fin tube type heat exchanger 41 includes a plurality of (many) thin fins 42, a plurality of tubes 43 penetrating therethrough, and a U-shaped bend 44 connecting the tubes 43 in a U-shape. Etc. In the cross fin tube type heat exchanger 41, the surface of the fin 42 is in contact with the air flow 16, the inner surface of the tube 43 is in contact with the water 27, and heat is exchanged between them.

フィン42は、熱伝導率のよいアルミニウムかその合金で構成される。チューブ43、U字ベンド44は、同様に熱伝導率のよいアルミニウムか銅、あるいはそれらの合金で構成するのがよい。   The fins 42 are made of aluminum having a good thermal conductivity or an alloy thereof. Similarly, the tube 43 and the U-shaped bend 44 are preferably made of aluminum, copper, or an alloy thereof having good thermal conductivity.

なお、冷却手段21および加熱手段22は、クロス・フィン・チューブ式の熱交換器41に限らず、よりコンパクトなコルゲートフィン式熱交換器等、それ以外の種類で構成される熱交換器であってもよい。   The cooling means 21 and the heating means 22 are not limited to the cross-fin-tube-type heat exchanger 41, but are heat exchangers composed of other types such as a more compact corrugated fin-type heat exchanger. May be.

図12に示すクロス・フィン・チューブ式の熱交換器41では、フィン42の短い方向に空気流16が流れる方式で、空気流16が流れるフィン間流路断面積を広く確保できるので、フィン42間を流れる空気流16の通風抵抗(圧力損失)を小さくできる利点がある。   In the cross fin tube type heat exchanger 41 shown in FIG. 12, the air flow 16 flows in the short direction of the fin 42, and the cross-sectional area between the fins through which the air flow 16 flows can be secured widely. There is an advantage that the ventilation resistance (pressure loss) of the air flow 16 flowing between them can be reduced.

さて、冷却手段21での熱交換により、空気流16側では、熱交換器41の狭いフィン間に送られた高温高湿の空気流16bは、低温熱媒体27aと熱交換し、低温熱媒体27aに熱を奪われて冷却され、空気流16中の水分が凝縮される。その後、水分凝縮で除湿冷却された低温高湿の空気流16c(図3参照)は、冷却手段21である熱交換器41を出る。   Now, by the heat exchange in the cooling means 21, on the air flow 16 side, the high-temperature and high-humidity air flow 16b sent between the narrow fins of the heat exchanger 41 exchanges heat with the low-temperature heat medium 27a. Heat is taken away by 27a and cooled, and moisture in the air stream 16 is condensed. Thereafter, the low-temperature, high-humidity air flow 16c (see FIG. 3) dehumidified and cooled by moisture condensation exits the heat exchanger 41, which is the cooling means 21.

一方、ドラム入口ダクト25内、あるいはその前方に設けられた加熱手段22において、管状流路28aの高温端48bから水流路31aによって送られてきた高温熱媒体27bは、冷却手段21で作られて送られてきた低温高湿の空気流16cと熱交換し、空気流16cに放熱して降温したのち加熱手段22を出る。反対に、加熱手段22である熱交換器のフィン間に送られた低温高湿の空気流16cは、高温熱媒体27bと熱交換し、熱媒体27bから熱を奪って昇温し、高温低湿空気流16aとなって加熱手段22を出る。   On the other hand, in the heating means 22 provided in or in front of the drum inlet duct 25, the high temperature heat medium 27b sent from the high temperature end 48b of the tubular flow path 28a by the water flow path 31a is produced by the cooling means 21. Heat exchange with the low-temperature and high-humidity air stream 16c that has been sent, and heat is released to the air stream 16c to lower the temperature. On the other hand, the low-temperature and high-humidity air flow 16c sent between the fins of the heat exchanger that is the heating means 22 exchanges heat with the high-temperature heat medium 27b, takes heat away from the heat medium 27b, and increases the temperature. The air flow 16a exits the heating means 22.

図13は、図7の側面部を展開した図であり(C部をさらに周方向に延長して展開)、図9に示した管状流路28a,28bに続けて、管状流路28c,28dまで示している。図13に示すように、一方の磁場発生機18aは、管状流路28aの位置に、他方の磁場発生機18bは管状流路28cの位置にあり、それぞれ管状流路28a,28cに磁場を加えている。逆に、管状流路28b,28dの位置には磁場発生機18がなく、磁場が取り去られた状態にある。図13において、管状流路28の内部が網掛けとなっているものは磁場が加わっている状態(磁気作業物質19の磁性を担う電子スピンの向きがそろった状態)を示し、管状流路28の内部が空白となっているものは磁場が加わっていない状態(磁気作業物質19の磁性を担う電子スピンの向きがランダムな状態)を示している。   FIG. 13 is a developed view of the side surface portion of FIG. 7 (expanded by extending the C portion in the circumferential direction), and the tubular flow channels 28c and 28d following the tubular flow channels 28a and 28b shown in FIG. Shows up. As shown in FIG. 13, one magnetic field generator 18a is at the position of the tubular flow path 28a, and the other magnetic field generator 18b is at the position of the tubular flow path 28c, and applies a magnetic field to the tubular flow paths 28a and 28c, respectively. ing. Conversely, there is no magnetic field generator 18 at the positions of the tubular channels 28b, 28d, and the magnetic field is removed. In FIG. 13, the inside of the tubular flow path 28 is shaded to indicate a state in which a magnetic field is applied (a state in which the directions of electron spins responsible for magnetism of the magnetic working material 19 are aligned). A blank inside indicates a state in which no magnetic field is applied (a state in which the direction of the electron spin responsible for the magnetism of the magnetic working material 19 is random).

続いて、磁場発生機駆動モータ39により磁場発生機18をゆっくり面内方向に回転させる(34が磁場発生機移動方向)と、図14に示す状態(位置関係)になる。図14は、図13の磁場発生機を一工程分進ませた円盤側面の展開図である。これは、図9において、磁場発生機が実線位置18から破線位置18a’に移動した状態を示す。すると、今度は、磁場発生機18aは管状流路28bの位置に、磁場発生機18bは管状流路28dの位置にあり、それぞれ管状流路28b,28dに磁場を加え(発熱させ)、逆に、管状流路28a,28cの位置には磁場発生機18がなく、磁場が取り去られた状態(冷却状態)となる。   Subsequently, when the magnetic field generator 18 is slowly rotated in the in-plane direction by the magnetic field generator drive motor 39 (34 is the moving direction of the magnetic field generator), the state (positional relationship) shown in FIG. 14 is obtained. FIG. 14 is a developed view of the side surface of the disk in which the magnetic field generator of FIG. 13 is advanced by one step. This shows a state where the magnetic field generator has moved from the solid line position 18 to the broken line position 18a 'in FIG. Then, this time, the magnetic field generator 18a is at the position of the tubular flow path 28b, and the magnetic field generator 18b is at the position of the tubular flow path 28d, and a magnetic field is applied to the tubular flow paths 28b and 28d (heat generation), respectively. There is no magnetic field generator 18 at the positions of the tubular flow paths 28a, 28c, and the magnetic field is removed (cooled state).

このとき、図9において、ポンプ20によって送水方向を切り替えて、管状流路28と水流路31内の水27の流れを逆(破線矢印方向)にすると、今度は、管状流路28bの高温端48dには高温熱媒体27d(温かい水)が、管状流路28aの低温端48cには低温熱媒体27c(冷たい水)がそれぞれ生成され、その水27c,27dがそれぞれ冷却手段21と加熱手段22に送られる。   At this time, in FIG. 9, when the water supply direction is switched by the pump 20 and the flow of the water 27 in the tubular flow path 28 and the water flow path 31 is reversed (in the direction of the broken line arrow), this time, the high temperature end of the tubular flow path 28 b The high temperature heat medium 27d (warm water) is generated in 48d, and the low temperature heat medium 27c (cold water) is generated in the low temperature end 48c of the tubular flow path 28a. The water 27c and 27d are the cooling means 21 and the heating means 22, respectively. Sent to.

すると、冷却手段21において、管状流路28aの低温端48cから水流路31dによって送られてきた低温熱媒体27cは、回転ドラム8から出た高温高湿の空気流16bと熱交換し、空気流16bから熱を奪って昇温したのち冷却手段21を出る。反対に、冷却手段21での熱交換により、空気流16側では、冷却手段21である熱交換器41の狭いフィン間に送られた高温高湿の空気流16bは、低温熱媒体27cと熱交換し、低温熱媒体27cに熱を奪われて冷却され、空気流16中の水分が凝縮される。その後、水分凝縮で除湿冷却された低温高湿の空気流16cは冷却手段21である熱交換器41を出る。   Then, in the cooling means 21, the low-temperature heat medium 27 c sent from the low-temperature end 48 c of the tubular flow path 28 a by the water flow path 31 d exchanges heat with the high-temperature and high-humidity air flow 16 b that has come out of the rotating drum 8. After taking the heat from 16b and raising the temperature, the cooling means 21 is exited. On the contrary, due to heat exchange in the cooling means 21, on the air flow 16 side, the high-temperature and high-humidity air stream 16b sent between the narrow fins of the heat exchanger 41 that is the cooling means 21 is heated with the low-temperature heat medium 27c. The low temperature heat medium 27c is deprived of heat and cooled, and the moisture in the air stream 16 is condensed. Thereafter, the low-temperature and high-humidity air stream 16 c dehumidified and cooled by moisture condensation exits the heat exchanger 41 that is the cooling means 21.

一方、加熱手段22において、管状流路28bの高温端48dから水流路31bによって送られてきた高温熱媒体27dは、冷却手段21で作られて送られてきた低温高湿の空気流16cと熱交換し、空気流16cに放熱して降温したのち加熱手段22を出る。反対に、加熱手段22である熱交換器のフィン間に送られた低温高湿の空気流16cは、高温熱媒体27dと熱交換し、熱媒体27dから熱を奪って昇温し、高温低湿の空気となって加熱手段22を出る。   On the other hand, in the heating means 22, the high-temperature heat medium 27 d sent from the high-temperature end 48 d of the tubular flow path 28 b through the water flow path 31 b and the low-temperature and high-humidity air stream 16 c sent from the cooling means 21 and the heat After exchanging, heat is released to the air flow 16c and the temperature is lowered, the heating means 22 is exited. On the other hand, the low-temperature and high-humidity air flow 16c sent between the fins of the heat exchanger, which is the heating means 22, exchanges heat with the high-temperature heat medium 27d, deprives the heat from the heat medium 27d, and rises in temperature. And exits the heating means 22.

以上のように、一つの磁場発生機駆動モータ39により4個の磁場発生機18a〜18dをゆっくり面内方向に回転させる(34が磁場発生機移動方向)ことで、常に、磁場発生機18の磁場が加わる場所に位置する管状流路28(磁気作業物質19)は昇温し、管状流路18の高温端には高温熱媒体27b,27d(温かい水)が生成される。   As described above, the four magnetic field generators 18a to 18d are slowly rotated in the in-plane direction by one magnetic field generator drive motor 39 (34 is the magnetic field generator moving direction), so that The temperature of the tubular flow path 28 (magnetic working material 19) located at the place where the magnetic field is applied rises, and high temperature heat media 27b and 27d (warm water) are generated at the high temperature end of the tubular flow path 18.

一方、磁場発生機18から外れた場所に位置する管状流路28(磁気作業物質19)は降温し、管状流路18の低温端には低温熱媒体27a,27c(冷たい水)が生成される。   On the other hand, the temperature of the tubular flow path 28 (magnetic working material 19) located at a place away from the magnetic field generator 18 is lowered, and low temperature heat media 27a and 27c (cold water) are generated at the low temperature end of the tubular flow path 18. .

そして、その熱をポンプ20の一定時間毎の往復移動によって、熱媒体27を介してそれぞれ冷却手段21と加熱手段22に導くことにより、乾燥に利用する空気流16の除湿冷却と加熱の両方を連続して行うことができる。   The heat is guided to the cooling means 21 and the heating means 22 through the heat medium 27 by the reciprocating movement of the pump 20 every predetermined time, respectively, so that both the dehumidifying cooling and heating of the air flow 16 used for drying are performed. Can be done continuously.

図15は、磁気熱量効果を利用した実施形態1に係るドラム式洗濯乾燥機1の全体システム構成図である。このシステム構成例は、2本の管状流路28と一つの磁場発生機18で構成される一組のシステムを4組並べてなる。例えば、管状流路28a,28b、ポンプ20a、冷却手段21aおよび加熱手段22aによって一組のシステムが構成される。   FIG. 15 is an overall system configuration diagram of the drum type washing and drying machine 1 according to the first embodiment using the magnetocaloric effect. In this system configuration example, four sets of a system composed of two tubular channels 28 and one magnetic field generator 18 are arranged. For example, the tubular channels 28a and 28b, the pump 20a, the cooling means 21a, and the heating means 22a constitute a set of systems.

以下、同様の構成部品の組み合わせにより3組のシステムが構成され、4つの冷却手段21a〜21dはドラム出口ダクト24内に、4つの加熱手段22a〜22dはドラム入口ダクト25内に、それぞれ直列に配備されている。もちろん、冷却手段21や加熱手段22の配置は直列ではなく並列になっていてもよいし、それらの組み合わせに係る配列であってもよい。   Hereinafter, three sets of systems are configured by combining similar components, and the four cooling means 21a to 21d are arranged in series in the drum outlet duct 24, and the four heating means 22a to 22d are arranged in series in the drum inlet duct 25. Has been deployed. Of course, the arrangement of the cooling means 21 and the heating means 22 may be arranged in parallel instead of in series, or may be an arrangement according to a combination thereof.

図15のように構成することで、ドラム8から出た高温高湿の空気流16bは、ドラム出口ダクト24内(ドラム出口ダクト後方部も含む)で、4つの冷却手段21d、21c、21b、21aの順に通過することで徐々に冷却除湿され、低温高湿の空気流16cとなり、ドラム入口ダクト25に至る。ドラム入口ダクト25内(ドラム入口ダクト前方部も含む)では、低温高湿の空気流16cは、4つの加熱手段22a、22b、22c、22dの順に通過することで徐々に加熱され、高温低湿の空気流16aとなり回転ドラム8に至る。   By configuring as shown in FIG. 15, the high-temperature and high-humidity air flow 16b that has come out of the drum 8 is provided in the drum outlet duct 24 (including the rear part of the drum outlet duct), with four cooling means 21d, 21c, 21b, By passing in the order of 21a, it is gradually cooled and dehumidified, resulting in a low-temperature and high-humidity air flow 16c and reaching the drum inlet duct 25. In the drum inlet duct 25 (including the front part of the drum inlet duct), the low-temperature and high-humidity air flow 16c is gradually heated by passing through the four heating means 22a, 22b, 22c, and 22d in this order, The air flow 16a is reached to the rotating drum 8.

回転ドラム8内では、高温低湿の空気流16aが衣類4から水分を蒸発させて衣類から水分を奪い、高温高湿の空気流16bとなってドラム出口ダクト24に送られ、乾燥に利用される空気流16は以上の循環を繰り返すことで衣類が乾燥する。   In the rotary drum 8, the high-temperature and low-humidity air flow 16a evaporates moisture from the garment 4 to take away moisture from the garment, and the high-temperature and high-humidity air flow 16b is sent to the drum outlet duct 24 and used for drying. The air flow 16 repeats the above circulation to dry the clothes.

ここで、一例ではあるが、空気流16のそれぞれの乾燥初期時の温度と相対湿度の所望値は、概略以下の通りである。回転ドラム8に入る高温低湿の空気流16aは温度が40〜70℃、相対湿度が0〜20%、回転ドラム8から出る高温高湿の空気流16bは30〜60℃,80〜100%、そして低温高湿の空気流16cは10〜30℃,80〜100%程度である。よって、磁気熱量効果を発揮する本発明の磁気作業物質19は、上記諸数値に対応する性能を有することが最も望ましい。なお、周囲環境(外気の温度,湿度)や乾燥させる衣類容量や種類,乾燥運転のパターン、あるいは利用する磁気作業物質19の制約などにより、前記温度と相対湿度の数値は変化することは言うまでもない。   Here, although it is an example, the desired values of the temperature and relative humidity at the initial stage of drying of the air flow 16 are roughly as follows. The high-temperature and low-humidity air flow 16a entering the rotating drum 8 has a temperature of 40 to 70 ° C. and a relative humidity of 0 to 20%, and the high-temperature and high-humidity air flow 16b exiting the rotating drum 8 is 30 to 60 ° C. and 80 to 100%. The low-temperature and high-humidity air flow 16c is about 10 to 30 ° C. and about 80 to 100%. Therefore, it is most desirable that the magnetic working material 19 of the present invention that exhibits the magnetocaloric effect has performance corresponding to the above-mentioned various values. Needless to say, the values of the temperature and the relative humidity change depending on the surrounding environment (temperature and humidity of the outside air), the capacity and type of clothes to be dried, the pattern of the drying operation, or restrictions on the magnetic working material 19 to be used. .

ここで、熱媒体の移動は連続した緩慢な往復移動でもよいが、低温熱媒体27a,27cの最も低温度帯になっている熱媒体が冷却手段21に到達したとき、および高温熱媒体27b,27dの最も高温度帯になっている熱媒体が加熱手段22に到達したときに、ポンプ20の駆動を一時的に停止し、熱交換器41内での熱媒体の静止期間(時間)を設け、更なる効率よい熱交換を図ってもよい。なお、この場合も、空気流16は流し続けるものとする。   Here, the movement of the heat medium may be a continuous slow reciprocating movement, but when the heat medium in the lowest temperature zone of the low-temperature heat medium 27a, 27c reaches the cooling means 21, and the high-temperature heat medium 27b, When the heat medium in the highest temperature zone of 27d reaches the heating means 22, the drive of the pump 20 is temporarily stopped, and a stationary period (time) of the heat medium in the heat exchanger 41 is provided. Further, more efficient heat exchange may be achieved. In this case as well, the air flow 16 continues to flow.

なお、磁気冷凍装置17や冷却手段21、加熱手段22等の仕様(形状や大きさ等)にもよるが、一例として、磁場発生機駆動モータ39の回転は、1回転10秒程度の低速運転でもよい。   Note that, depending on the specifications (shape, size, etc.) of the magnetic refrigeration apparatus 17, the cooling means 21, the heating means 22, etc., as an example, the rotation of the magnetic field generator drive motor 39 is a low speed operation of about 10 seconds per rotation. But you can.

また、磁気冷凍装置17を、図4のようにドラム式洗濯乾燥機1の本体背面部1bに設置する場合などは、磁場発生機駆動モータ39はドラム駆動モータ11と共用になっていてもよい。つまり、ドラム駆動モータ11を磁場発生機18の回転用に利用してもよい。この場合、回転ドラム8の回転数と磁場発生機18の回転数とが異なることが想定される。しかし、この回転数の違いについては、変速ギヤの組み合わせやベルト駆動にしてプーリー径を変えるなどの対応を施すことにより吸収すればよい。   Further, when the magnetic refrigeration apparatus 17 is installed on the main body rear surface portion 1 b of the drum type washing and drying machine 1 as shown in FIG. 4, the magnetic field generator drive motor 39 may be shared with the drum drive motor 11. . That is, the drum drive motor 11 may be used for rotating the magnetic field generator 18. In this case, it is assumed that the rotational speed of the rotating drum 8 and the rotational speed of the magnetic field generator 18 are different. However, this difference in rotational speed may be absorbed by taking measures such as changing the pulley diameter by combining the transmission gears or driving the belt.

次に、磁気作業物質19を内包する管状流路28と、磁場発生機18に取り付ける一対の永久磁石30a,30bとの大きさ比較について言及する。図16は、実施形態1に係る円形断面の管状流路28の例を示す。図17は、実施形態1の変形例に係る角形状管状流路45(流路断面は、正方形、長方形いずれでも可)の例を示す。図18は、実施形態1の変形例に係る長円形状管状流路46(楕円、あるいは四角に丸みを帯びた長方形断面でも可)の例を示す。いずれの例でも、管状流路28、45,46の横方向の流路幅Wdと永久磁石30の磁石幅Wmの関係は、等磁場過程(磁気作業物質19への励磁開始から終了まで)に要する時間を確保するため、最低でも「Wd<Wm:流路幅Wdより磁石幅Wmの方が大きい」関係が望ましい。さらに、効率良く熱交換させるため、「Wm=2Wd〜3Wd:磁石幅Wmは流路幅Wdの2〜3倍程度」がより望ましいと言える。   Next, the size comparison between the tubular flow path 28 containing the magnetic working substance 19 and the pair of permanent magnets 30a and 30b attached to the magnetic field generator 18 will be described. FIG. 16 shows an example of a tubular channel 28 having a circular cross section according to the first embodiment. FIG. 17 shows an example of a rectangular tubular channel 45 (the channel cross section may be either square or rectangular) according to a modification of the first embodiment. FIG. 18 shows an example of an oval tubular channel 46 (which may be an ellipse or a rectangular section with a rounded square) according to a modification of the first embodiment. In any example, the relationship between the lateral flow path width Wd of the tubular flow paths 28, 45 and 46 and the magnet width Wm of the permanent magnet 30 is the same magnetic field process (from the start to the end of excitation of the magnetic working material 19). In order to secure the time required, the relationship “Wd <Wm: the magnet width Wm is larger than the flow path width Wd” is desirable at least. Furthermore, it can be said that “Wm = 2 Wd to 3 Wd: the magnet width Wm is about 2 to 3 times the flow path width Wd” is more desirable for efficient heat exchange.

以上説明した実施形態1では、図9に示したように、一つの磁場発生機18に収まる管状流路18は曲がり部分のない1本の直管としたが、本発明はこの例に限定されない。図19は、180度U字形状に折り返した管状流路における磁気熱量効果の取り出しを説明する説明図である。一つの磁場発生機18に収まる管状流路18は、図19に示すように、180度U字形状に折り返すヘアピン部を有するU字形状管状流路47であってもよい。この場合、U字形状管状流路47の両端の一対の継ぎ手48(例えば、48aと48b)が相互に隣接する。このため、冷却手段21や加熱手段22への水流路31の接続が容易になる等、便利な場合がある。   In the first embodiment described above, as shown in FIG. 9, the tubular flow path 18 that is accommodated in one magnetic field generator 18 is a single straight pipe without a bent portion, but the present invention is not limited to this example. . FIG. 19 is an explanatory diagram for explaining the extraction of the magnetocaloric effect in the tubular flow path folded back into a 180-degree U shape. As shown in FIG. 19, the tubular flow path 18 that fits in one magnetic field generator 18 may be a U-shaped tubular flow path 47 having a hairpin portion that is folded back into a 180-degree U shape. In this case, a pair of joints 48 (for example, 48a and 48b) at both ends of the U-shaped tubular channel 47 are adjacent to each other. For this reason, there are cases where the water flow path 31 can be easily connected to the cooling means 21 and the heating means 22, for example.

また、実施形態1では、図15に示したように、2本の管状流路28と一つの磁場発生機18で構成される1組のシステム毎に各1つのポンプ20a〜20dをそれぞれ設けることにより、都合4個のポンプを設ける例をあげて説明したが、本発明はこの例に限定されない。図20は、1台のポンプで熱媒体を送る本発明の実施形態1の変形例に係る洗濯乾燥機の全体システム構成図である。1組のシステム毎に各1つのポンプ20a〜20dをそれぞれ設ける実施形態1に代えて、図20に示すように、4個のポンプが分割して担っていた役目を一つの大き目のポンプ20に任せ、そのポンプ20から送水される水流路31を4分割してもよい。この場合、4つのシステムの仕様条件(管状流路28、47や冷却手段21、加熱手段22等の通水時の圧力損失など)が完全に揃っているか、あるいは略同一であることが望ましい。   In the first embodiment, as shown in FIG. 15, one pump 20 a to 20 d is provided for each set of systems including two tubular flow paths 28 and one magnetic field generator 18. Therefore, although an example in which four pumps are provided for convenience has been described, the present invention is not limited to this example. FIG. 20 is an overall system configuration diagram of the washing / drying machine according to the modification of the first embodiment of the present invention in which the heat medium is sent by one pump. In place of the first embodiment in which one pump 20a to 20d is provided for each set of systems, as shown in FIG. 20, the role of four pumps divided into one large pump 20 is assigned. The water flow path 31 fed from the pump 20 may be divided into four. In this case, it is desirable that the specification conditions of the four systems (pressure loss during passage of water through the tubular flow paths 28, 47, the cooling means 21, the heating means 22, etc.) are complete or substantially the same.

また、実施形態1では、磁場発生機18を磁場発生機駆動モータ39により回転移動させる例をあげて説明したが、本来は、管状流路28、47と、磁場発生機18との相対位置関係が順次変化すれば足りるのであり、逆に、磁場発生機18を固定し、管状流路28、47を移動させてもよい。   In the first embodiment, the magnetic field generator 18 is rotationally moved by the magnetic field generator drive motor 39. However, originally, the relative positional relationship between the tubular flow paths 28 and 47 and the magnetic field generator 18 is described. However, it is sufficient that the magnetic field generator 18 is fixed and the tubular flow paths 28 and 47 may be moved.

また、実施形態1では、熱媒体27として液体、特に利用しやすい水を用いたが、熱媒体27としては気体,特に空気を用いてもよい。この場合、冷却手段21や加熱手段22に用いる熱交換器としては、図12に示したようなクロス・フィン・チューブ式の熱交換器41(フィンチューブ熱交換器)でもよいが、気体(空気)は液体(水)に比べ熱伝達性が悪いので、熱媒体27側の熱交換面積も広くするようにしたい。例えば、フィンプレート熱交換器やプレート熱交換器などの採用が考えられる。熱媒体27として水等の液体を用いると、万が一の漏れ等の対策が必要になるが、空気等の気体を熱媒体27として用いた場合、漏れ等が許容される点で有利となる。   In the first embodiment, a liquid, particularly easily usable water, is used as the heat medium 27, but a gas, particularly air, may be used as the heat medium 27. In this case, the heat exchanger used for the cooling means 21 and the heating means 22 may be a cross fin tube type heat exchanger 41 (fin tube heat exchanger) as shown in FIG. ) Has a lower heat transferability than liquid (water), so it is desirable to increase the heat exchange area on the heat medium 27 side. For example, adoption of a fin plate heat exchanger, a plate heat exchanger, etc. can be considered. When a liquid such as water is used as the heat medium 27, it is necessary to take countermeasures such as leakage, but when a gas such as air is used as the heat medium 27, it is advantageous in that leakage is allowed.

以上説明した実施形態1では、主に、図7に示した磁場発生機18が一方向に回転移動34する方式の磁気冷凍装置17について説明したが、以下に、別の実施形態について幾つか説明する。   In the first embodiment described above, the magnetic refrigeration apparatus 17 in which the magnetic field generator 18 shown in FIG. 7 is rotationally moved 34 in one direction has been mainly described. However, some other embodiments will be described below. To do.

図21は、磁場発生機18が中央の磁場発生機駆動モータ39の回転により、周方向の一定距離間を往復移動34する方式の磁気冷凍装置17の例である。基本的な構成は図7と同じである。図7では中央の磁場発生機駆動モータ39により磁場発生機18(18a、18b、18c、18d)がゆっくりと一方向に回転移動するのに対し、図21では往復移動34する点が大きく相違している。   FIG. 21 shows an example of a magnetic refrigeration apparatus 17 in which the magnetic field generator 18 reciprocates 34 a certain distance in the circumferential direction by the rotation of the central magnetic field generator drive motor 39. The basic configuration is the same as in FIG. In FIG. 7, the magnetic field generator 18 (18a, 18b, 18c, 18d) is slowly rotated in one direction by the central magnetic field generator drive motor 39, whereas in FIG. ing.

図21に示すように、例えば、磁場発生機18aは管状流路28aと28b間を往復移動34するし、磁場発生機18cは管状流路28eと28f間を往復移動34する。他の磁場発生機18b、18dも同様である。この場合の効果(磁気熱量効果の取り出しなど)も前記(図7など)と同様である。   As shown in FIG. 21, for example, the magnetic field generator 18a reciprocates 34 between the tubular flow paths 28a and 28b, and the magnetic field generator 18c reciprocates 34 between the tubular flow paths 28e and 28f. The same applies to the other magnetic field generators 18b and 18d. The effect in this case (extraction of magnetocaloric effect, etc.) is the same as that described above (FIG. 7 and the like).

また、図22は、磁場発生機18が電磁石51で構成される磁気冷凍装置17の例を示す。つまり、図8において、永久磁石30a,30bが電磁石51aと51bに置き換わることになり、図22に示すように、一つの管状流路28に一つの磁場発生機18(電磁石51)が配置されることになる。図22において、符号52は状況に応じて電磁石51のONとOFFを制御する制御装置で、符号50はその制御装置52と電磁石51を結ぶ信号線である。   FIG. 22 shows an example of the magnetic refrigeration apparatus 17 in which the magnetic field generator 18 includes an electromagnet 51. That is, in FIG. 8, the permanent magnets 30a and 30b are replaced with electromagnets 51a and 51b, and one magnetic field generator 18 (electromagnet 51) is arranged in one tubular flow path 28 as shown in FIG. It will be. In FIG. 22, reference numeral 52 denotes a control device that controls ON and OFF of the electromagnet 51 according to the situation, and reference numeral 50 denotes a signal line that connects the control device 52 and the electromagnet 51.

図22に示すように、例えば、管状流路28aには磁場発生機18aが配置され、その横の管状流路28bには磁場発生機18bが配置され、磁場発生機18aの電磁石51がON時には、磁場発生機18bの電磁石51はOFF状態となり、管状流路28aには高温の熱媒体27が生成され、管状流路28bには低温の熱媒体27が生成される。   As shown in FIG. 22, for example, the magnetic field generator 18a is disposed in the tubular flow path 28a, the magnetic field generator 18b is disposed in the lateral tubular flow path 28b, and when the electromagnet 51 of the magnetic field generator 18a is ON. The electromagnet 51 of the magnetic field generator 18b is turned off, the high-temperature heat medium 27 is generated in the tubular flow path 28a, and the low-temperature heat medium 27 is generated in the tubular flow path 28b.

逆に、磁場発生機18aの電磁石51がOFF時には、図22に示すように、磁場発生機18bの電磁石51はON状態となり、管状流路28aには低温の熱媒体27が生成され、管状流路28bには高温の熱媒体27が生成される。   Conversely, when the electromagnet 51 of the magnetic field generator 18a is OFF, as shown in FIG. 22, the electromagnet 51 of the magnetic field generator 18b is in the ON state, and the low-temperature heat medium 27 is generated in the tubular flow path 28a. A high-temperature heat medium 27 is generated in the path 28b.

他の磁場発生機18や管状流路28の動作も同様である。また、前記した説明では、隣同士(管状流路28aと28b)で一対(高温熱媒体27と低温熱媒体27の生成)と考えたが、組み合わせは自由であり、例えば、管状流路28a〜28dが高温熱媒体27を生成時に、管状流路28e〜28hが低温熱媒体27を生成するように構成してもよい。   The operations of the other magnetic field generators 18 and the tubular channel 28 are the same. Further, in the above description, it is considered that a pair (generation of the high-temperature heat medium 27 and the low-temperature heat medium 27) is adjacent to each other (tubular flow paths 28a and 28b), but the combination is free. The tubular channels 28e to 28h may be configured to generate the low temperature heat medium 27 when the high temperature heat medium 27 is generated by 28d.

図22に示す実施形態1の変形例の場合、図7や図21に示した例のような磁場発生機駆動モータ39は不要となるが、各磁場発生機18には電気によりON・OFFする電磁石51が必要となるので、両方の系全体の実装性や消費電力量などを比較するなどして、どちらを選択するかを考えればよい。   In the modification of the first embodiment shown in FIG. 22, the magnetic field generator drive motor 39 as in the examples shown in FIG. 7 and FIG. 21 is not necessary, but each magnetic field generator 18 is turned ON / OFF by electricity. Since the electromagnet 51 is required, it is only necessary to consider which one to select by comparing the mountability and power consumption of both systems as a whole.

また、図23は、磁場に沿った曲率を有する管状流路で構成される磁気冷凍装置を示す断面図である。図23に示すように、例えば、一対の永久磁石30a,30bの磁場(磁界)53に沿って曲率を有する管状流路28aが構成されている。ここでも、中央の磁場発生機駆動モータ39により、一対の永久磁石30a,30bを搭載した磁場発生機18が一方向34に回転する。   FIG. 23 is a cross-sectional view showing a magnetic refrigeration apparatus including a tubular channel having a curvature along a magnetic field. As shown in FIG. 23, for example, a tubular flow path 28a having a curvature is formed along a magnetic field (magnetic field) 53 of a pair of permanent magnets 30a and 30b. Again, the magnetic field generator 18 equipped with a pair of permanent magnets 30a, 30b is rotated in one direction 34 by the central magnetic field generator drive motor 39.

また、図24は、図12の(クロス・フィン・チューブ式)熱交換器41の他の実施形態である。図12では、フィン42の短い方向に沿って空気流16が流れるのに対し、図24では、フィン42の長手方向に沿って空気流16が流れる。図24では、空気流16が流れる方向にチューブ43を多数並べることができるので、チューブ43内を流れる熱媒体27の温度をそれぞれ変化させれば、フィン42間を流れる空気流16の温度変化幅を大きくすることも可能である。一方、図12の方式では、フィン42間を流れる空気流16の通風抵抗を小さくできる利点があるので、採用するシステムにより使い分ければよい。   FIG. 24 shows another embodiment of the (cross fin tube type) heat exchanger 41 of FIG. In FIG. 12, the air flow 16 flows along the short direction of the fin 42, whereas in FIG. 24, the air flow 16 flows along the longitudinal direction of the fin 42. In FIG. 24, since many tubes 43 can be arranged in the direction in which the air flow 16 flows, if the temperature of the heat medium 27 flowing in the tubes 43 is changed, the temperature change width of the air flow 16 flowing between the fins 42 is changed. Can be increased. On the other hand, the method shown in FIG. 12 has an advantage that the airflow resistance of the air flow 16 flowing between the fins 42 can be reduced.

さらに、洗濯乾燥機から室内への無駄な排熱を減らして消費電力量を低減する方法として、ドラム式洗濯乾燥機1のドラム駆動モータ11やファン35用モータから熱損失として洗濯乾燥機本体内部に放出される熱(発熱)を、それぞれのモータ周囲を流れる本体内部空気で回収し、その温まった本体内部空気を空気流16に導いてもよい。   Furthermore, as a method of reducing wasteful heat exhausted from the washing / drying room to the room and reducing the power consumption, the inside of the washing / drying machine main body as heat loss from the drum drive motor 11 and the fan 35 motor of the drum type washing / drying machine 1 The heat (heat generation) released to each of the motors may be collected by air inside the main body flowing around each motor, and the warmed main body internal air may be guided to the air flow 16.

本実施形態1によれば、筐体2内に、乾燥時に内部が乾燥室となる外槽6と、外槽6内に回転自在に設けられて洗濯物を収容する回転ドラム(内槽)8と、乾燥用空気が循環するダクト24,25と、ダクト24,25内に設けられて洗濯物を乾燥させる加熱手段22、冷却手段21、およびファン(送風手段)35とを備えた洗濯乾燥機1において、筐体2内に設けられた筒状空間49と、磁気熱量効果を発生させる磁気作業物質19およびこの磁気作業物質19に磁場を作用させる磁場発生機18を有して筒状空間49に設けられる磁気冷凍装置17と、を備える。磁気作業物質19および磁場発生機18の少なくともいずれか一方が移動することによって磁気冷凍装置17の高温端に高温熱媒体を生成させると共に低温端に低温熱媒体を生成させる。加熱手段22は、磁気冷凍装置17の高温端から送られてきた熱媒体の熱を放熱し、冷却手段21は、磁気冷凍装置17の低温端から送られてきた熱媒体の熱を吸熱し、乾燥用空気を、加熱手段22、外槽6、冷却手段21、そして加熱手段22の順序で順次循環させることで洗濯物を乾燥させる。これにより、電気ヒータ式の洗濯乾燥機と比べて消費電力量を削減でき、洗濯乾燥機1内または室内に高湿あるいは高温の空気を放出して周囲環境を悪化させず、さらに、洗濯乾燥機1から室内への無駄な排熱を減らして消費電力量を低減することができる。   According to the first embodiment, an outer tub 6 whose inside becomes a drying chamber when drying is provided in the housing 2, and a rotary drum (inner tub) 8 that is rotatably provided in the outer tub 6 and accommodates laundry. A washing / drying device including ducts 24 and 25 through which drying air circulates, heating means 22 provided in the ducts 24 and 25 for drying laundry, cooling means 21, and a fan (air blowing means) 35. 1 includes a cylindrical space 49 provided in the housing 2, a magnetic working material 19 that generates a magnetocaloric effect, and a magnetic field generator 18 that applies a magnetic field to the magnetic working material 19. And a magnetic refrigeration apparatus 17 provided in the apparatus. By moving at least one of the magnetic working material 19 and the magnetic field generator 18, a high temperature heat medium is generated at the high temperature end of the magnetic refrigeration apparatus 17 and a low temperature heat medium is generated at the low temperature end. The heating means 22 dissipates the heat of the heat medium sent from the high temperature end of the magnetic refrigeration apparatus 17, and the cooling means 21 absorbs the heat of the heat medium sent from the low temperature end of the magnetic refrigeration apparatus 17, The laundry is dried by sequentially circulating the drying air in the order of the heating means 22, the outer tub 6, the cooling means 21, and the heating means 22. As a result, the power consumption can be reduced as compared with an electric heater type washing and drying machine, and high humidity or high temperature air is not discharged into the washing and drying machine 1 or indoors, and the surrounding environment is not deteriorated. It is possible to reduce the amount of power consumption by reducing waste heat exhausted from 1 to the room.

また、従来の電気ヒータ式洗濯乾燥機に比べると、成績係数COP(熱出力/電気入力)として1以上の値が得られ、省エネルギー性能が良好である(消費電力量の低減が可能)。磁気冷凍装置の両端で得られる加熱手段による加熱熱量Qcと冷却手段による冷却熱量Qeの両方を、循環空気(温風)の加熱と冷却(除湿)の両方に同時に利用することができるので、一方の熱を無駄に捨てることがない。   In addition, a coefficient of performance COP (heat output / electrical input) of 1 or more is obtained as compared with the conventional electric heater type washing and drying machine, and the energy saving performance is good (the power consumption can be reduced). Since both the heating heat quantity Qc by the heating means obtained at both ends of the magnetic refrigeration apparatus and the cooling heat quantity Qe by the cooling means can be used simultaneously for both heating and cooling (dehumidification) of the circulating air (warm air), Don't waste your heat.

また、従来のヒートポンプ式洗濯乾燥機に比べると、地球温暖化係数(GWP)が1300程度の冷媒R134aなどフロン系冷媒を全く使わないので、環境負荷が非常に小さい。また、加熱手段による加熱熱量Qcと冷却手段による冷却熱量Qeがほぼ同じ熱量なので、乾燥に利用する循環空気の一部を洗濯乾燥機の周囲に排熱あるいは排気させる必要がない。さらに、システムの性質上、高速回転する圧縮機を用いないため、低振動、低騒音化も実現可能である。   In addition, compared to conventional heat pump type washing and drying machines, the environmental load is very small because no fluorocarbon refrigerant such as refrigerant R134a having a global warming potential (GWP) of about 1300 is used. Further, since the heating heat quantity Qc by the heating means and the cooling heat quantity Qe by the cooling means are substantially the same heat quantity, it is not necessary to exhaust or exhaust a part of the circulating air used for drying around the washing dryer. Furthermore, because of the nature of the system, a compressor that rotates at high speed is not used, so that low vibration and low noise can be realized.

[実施形態2]
図25は、本発明の実施形態2に係るもので、縦型洗濯乾燥機36の筐体の一部を切断して内部構造を示す側面断面図である。図25中、実施形態1に係るドラム式洗濯乾燥機1と同じ符号は同じ役割をする部品であり、内槽8の下部に位置する符号37は衣類を撹拌する回転翼である。
[Embodiment 2]
FIG. 25 relates to Embodiment 2 of the present invention, and is a side sectional view showing an internal structure by cutting a part of the casing of the vertical washer-dryer 36. In FIG. 25, the same reference numerals as those of the drum-type washing / drying machine 1 according to the first embodiment are parts having the same role, and the reference numeral 37 located at the lower part of the inner tub 8 is a rotor blade for stirring clothes.

本実施形態2では、磁気冷凍装置17を構成する磁場発生機18は、縦型洗濯乾燥機36の底面部36aに設置されているが、磁気冷凍装置17の設置場所は底面部36aではなく、背面部36b等であってもよい。本実施形態2に係る縦型洗濯乾燥機36においても、前記と同様に、磁気熱量効果を利用できる。   In the second embodiment, the magnetic field generator 18 constituting the magnetic refrigeration apparatus 17 is installed on the bottom surface portion 36a of the vertical washing dryer 36, but the installation location of the magnetic refrigeration apparatus 17 is not the bottom surface portion 36a. The back part 36b etc. may be sufficient. In the vertical washer / dryer 36 according to the second embodiment, the magnetocaloric effect can be used as described above.

[実施形態3]
最後に、磁気熱量効果を利用した磁気冷凍装置17(磁気作業物質19、管状流路28、47)の高温端と低温端の両方にそれぞれ発生される熱源(加熱源と冷却源)を同時に/一緒に有効に使える機器として、本発明のように、衣類(洗濯物)を洗濯から乾燥まで1台でできるドラム式洗濯乾燥機や縦型洗濯乾燥機を含むいわゆる洗濯乾燥機以外に、衣類の乾燥のみを行う衣類乾燥機や、その他の乾燥機能(たとえば、食器乾燥,食品乾燥,木材乾燥、塗装や染料乾燥など)を有する機器、および除湿機などがある。本発明の実施形態3では、こうした機器への適用を想定している。
これらの機器においても、高温端と低温端の両方にそれぞれ発生される熱源(加熱源と冷却源)のいずれか一方のみを利用するシステムであってもよい。
[Embodiment 3]
Finally, heat sources (heating sources and cooling sources) generated at both the high temperature end and the low temperature end of the magnetic refrigeration apparatus 17 (magnetic working material 19, tubular flow paths 28, 47) using the magnetocaloric effect are simultaneously / As a device that can be used effectively together, as in the present invention, in addition to a so-called washing / drying machine including a drum-type washing / drying machine and a vertical washing / drying machine that can wash and dry clothes (laundry) in a single machine, There are clothes dryers that perform only drying, devices having other drying functions (for example, tableware drying, food drying, wood drying, painting and dye drying), and dehumidifiers. Embodiment 3 of the present invention assumes application to such a device.
In these devices, a system that uses only one of the heat sources (heating source and cooling source) generated at both the high temperature end and the low temperature end may be used.

1 ドラム式洗濯乾燥機
2 筐体
3 ドア
4 衣類(洗濯物)
5 背面カバー
6 外槽
7 サスペンション
8 回転ドラム(内槽)
9 流体バランサー
10 リフター
11 ドラム駆動モータ
12 パッキン
13 排水口
14 排水ホース
15 操作部
16 空気流(温風)
17 磁気冷凍装置
18 磁場発生機
19 磁気作業物質
20 ポンプ
21 冷却手段
22 加熱手段
23 ドラム出口
24 ドラム出口ダクト(ダクト)
25 ドラム入口ダクト(ダクト)
26 ドラム入口
27 水(熱媒体)
27a 低温熱媒体
27b 高温熱媒体
28 管状流路
29 磁石ホルダ
30 永久磁石
31 水流路
32 温熱(高温)媒体移動方向
33 冷熱(低温)媒体移動方向
34 磁場発生機移動方向
35 ファン
36 縦型洗濯乾燥機
37 回転翼
38 小孔
39 磁場発生機駆動モータ
40 連結シャフト
41 熱交換器(クロス・フィン・チューブ式)
42 フィン
43 チューブ
44 U字ベンド
45 角形状管状流路
46 長円形状管状流路
47 U字形状管状流路
48 継ぎ手
49 筒状空間
50 信号線
51 電磁石
52 制御回路
53 磁場(磁界)
54 管状流路ホルダ
DESCRIPTION OF SYMBOLS 1 Drum-type washing dryer 2 Case 3 Door 4 Clothes (laundry)
5 Back cover 6 Outer tank 7 Suspension 8 Rotating drum (inner tank)
9 Fluid balancer 10 Lifter 11 Drum drive motor 12 Packing 13 Drain port 14 Drain hose 15 Operation unit 16 Air flow (warm air)
17 Magnetic refrigeration apparatus 18 Magnetic field generator 19 Magnetic working substance 20 Pump 21 Cooling means 22 Heating means 23 Drum outlet 24 Drum outlet duct (duct)
25 Drum inlet duct (duct)
26 Drum inlet 27 Water (heat medium)
27a Low temperature heat medium 27b High temperature heat medium 28 Tubular flow path 29 Magnet holder 30 Permanent magnet 31 Water flow path 32 Hot (high temperature) medium moving direction 33 Cold (low temperature) medium moving direction 34 Magnetic field generator moving direction 35 Fan 36 Vertical laundry drying Machine 37 Rotary blade 38 Small hole 39 Magnetic field generator drive motor 40 Connecting shaft 41 Heat exchanger (Cross fin tube type)
42 Fin 43 Tube 44 U-shaped Bend 45 Square Tubular Channel 46 Oval Tubular Channel 47 U-Shaped Tubular Channel 48 Joint 49 Cylindrical Space 50 Signal Line 51 Electromagnet 52 Control Circuit 53 Magnetic Field (Magnetic Field)
54 Tubular channel holder

Claims (7)

筐体内に、乾燥時に内部が乾燥室となる外槽と、前記外槽内に回転自在に設けられて洗濯物を収容する内槽と、乾燥用空気が循環するダクトと、前記ダクト内に設けられて洗濯物を乾燥させる加熱手段、冷却手段、および送風手段とを備えた洗濯乾燥機において、
前記筐体内に、磁気熱量効果を発生させる磁気作業物質およびこの磁気作業物質に磁場を作用させる磁場発生機を有して設けられる磁気冷凍装置を備え、
前記磁気作業物質および前記磁場発生機の少なくともいずれか一方が移動することによって前記磁気冷凍装置の一方端に比較的高温の高温熱媒体を生成させると共に他方端に前記高温と比べて比較的低温の低温熱媒体を生成させ、
前記加熱手段は、前記磁気冷凍装置の前記一方端から送られてきた前記高温熱媒体の熱を放熱し、
前記冷却手段は、前記磁気冷凍装置の前記他方端から送られてきた前記低温熱媒体の熱を吸熱し、
前記冷却手段は前記内槽の出口側の前記ダクト内に、前記加熱手段は前記内槽の入口側の前記ダクト内にそれぞれ配備され、前記冷却手段による冷却熱量と前記加熱手段による加熱熱量の両方を、前記乾燥用空気の冷却と除湿の両方に同時に利用する、
ことを特徴とする洗濯乾燥機。
An outer tub whose inside is a drying chamber when drying, an inner tub that is rotatably provided in the outer tub to store laundry, a duct through which drying air circulates, and a duct provided in the casing. In the washing and drying machine provided with a heating means, a cooling means, and a blowing means for drying the laundry,
Wherein the housing includes a magnetic refrigeration apparatus provided have a magnetic working substance and magnetic field generator for applying a magnetic field to the magnetic working material to generate the magnetocaloric effect,
By moving at least one of the magnetic working material and the magnetic field generator, a high-temperature heat medium having a relatively high temperature is generated at one end of the magnetic refrigeration apparatus, and the temperature at the other end is relatively low compared to the high temperature. Producing a low-temperature heat medium,
The heating means radiates heat of the high-temperature heat medium sent from the one end of the magnetic refrigeration apparatus,
The cooling means absorbs the heat of the low-temperature heat medium sent from the other end of the magnetic refrigeration apparatus,
The cooling means is provided in the duct on the outlet side of the inner tank, and the heating means is provided in the duct on the inlet side of the inner tank, both of the cooling heat amount by the cooling means and the heating heat amount by the heating means. At the same time for both cooling and dehumidification of the drying air,
A washing dryer characterized by that.
前記筒状空間の半径方向に前記磁気作業物質を設けた、
ことを特徴とする請求項1に記載の洗濯乾燥機。
The magnetic working material is provided in the radial direction of the cylindrical space,
The washing / drying machine according to claim 1.
前記筒状空間の軸方向に前記磁気作業物質を設けた、
ことを特徴とする請求項1に記載の洗濯乾燥機。
The magnetic working material is provided in the axial direction of the cylindrical space,
The washing / drying machine according to claim 1.
前記磁気作業物質および前記磁場発生機の少なくともいずれか一方の前記移動は、一方向の回転移動である、
ことを特徴とする請求項1〜3のいずれか一項に記載の洗濯乾燥機。
The movement of at least one of the magnetic working material and the magnetic field generator is a rotational movement in one direction.
The washing / drying machine according to any one of claims 1 to 3, wherein the washing / drying machine is provided.
前記磁気作業物質および前記磁場発生機の少なくともいずれか一方の前記移動は、所定距離間の往復移動である、
ことを特徴とする請求項1〜3のいずれか一項に記載の洗濯乾燥機。
The movement of at least one of the magnetic working substance and the magnetic field generator is a reciprocating movement between a predetermined distance.
The washing / drying machine according to any one of claims 1 to 3, wherein the washing / drying machine is provided.
前記内槽の回転軸は、前記筐体の設置面に略平行に設けられている、
ことを特徴とする請求項1〜5のいずれか一項に記載の洗濯乾燥機。
The rotation axis of the inner tub is provided substantially parallel to the installation surface of the housing.
The washing / drying machine according to any one of claims 1 to 5, wherein
前記内槽の回転軸は、前記筐体の設置面に略垂直に設けられている、
ことを特徴とする請求項1〜5のいずれか一項に記載の洗濯乾燥機。
The rotation axis of the inner tub is provided substantially perpendicular to the installation surface of the housing,
The washing / drying machine according to any one of claims 1 to 5, wherein
JP2011044599A 2011-03-02 2011-03-02 Washing and drying machine Expired - Fee Related JP5633746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011044599A JP5633746B2 (en) 2011-03-02 2011-03-02 Washing and drying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011044599A JP5633746B2 (en) 2011-03-02 2011-03-02 Washing and drying machine

Publications (2)

Publication Number Publication Date
JP2012179266A JP2012179266A (en) 2012-09-20
JP5633746B2 true JP5633746B2 (en) 2014-12-03

Family

ID=47011053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044599A Expired - Fee Related JP5633746B2 (en) 2011-03-02 2011-03-02 Washing and drying machine

Country Status (1)

Country Link
JP (1) JP5633746B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106754A1 (en) * 2014-05-14 2015-11-19 Miele & Cie. Kg Dryer device with a magnetocaloric unit
JP6545967B2 (en) * 2015-01-28 2019-07-17 東芝ライフスタイル株式会社 Clothes dryer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223972A (en) * 1984-04-20 1985-11-08 株式会社日立製作所 Rotary type magnetic refrigerator
JPS6294771A (en) * 1985-10-21 1987-05-01 株式会社日立製作所 Magnetic refrigerator
JPS63129265A (en) * 1986-11-18 1988-06-01 株式会社東芝 Reciprocating type magnetic refrigerator
ES2284683T3 (en) * 2000-08-09 2007-11-16 Astronautics Corporation Of America ROTATE SUBSTRATE MAGNETIC COOLING DEVICE.
JP4303879B2 (en) * 2000-10-02 2009-07-29 株式会社東芝 Magnetic refrigeration equipment
JP3956825B2 (en) * 2002-10-16 2007-08-08 松下電器産業株式会社 Washing and drying machine
CH695837A5 (en) * 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Method and cold generation device and heat by magnetic effect.
JP4387892B2 (en) * 2004-08-17 2009-12-24 財団法人鉄道総合技術研究所 Railway vehicle air conditioning system
KR100684521B1 (en) * 2005-12-21 2007-02-20 주식회사 대우일렉트로닉스 Magnetic refrigerator
JP4660412B2 (en) * 2006-03-30 2011-03-30 株式会社東芝 refrigerator
JP2009273488A (en) * 2008-05-12 2009-11-26 Toshiba Corp Washing/drying machine
JP2010043775A (en) * 2008-08-11 2010-02-25 Shikoku Electric Power Co Inc Heat pump applying magneto-caloric effect
JP2010196914A (en) * 2009-02-23 2010-09-09 Toyota Industries Corp Magnetic refrigerator using swash plate type piston drive

Also Published As

Publication number Publication date
JP2012179266A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US7866061B2 (en) Clothes dryer
EP3027800B1 (en) Laundry machine
BR102013026926B1 (en) WASHING CLOTHING MACHINE
US10184206B2 (en) Clothes treating apparatus and control method thereof
KR100640787B1 (en) Laundry device combining washing machine having thermoelectric module-type condensing device
JP2008067742A (en) Clothes dryer
EP3294943B1 (en) Laundry treatment apparatus
JP5633746B2 (en) Washing and drying machine
WO2018123845A1 (en) Clothes drying machine
JP2010069079A (en) Washing and drying machine
JP4026451B2 (en) Clothes dryer
JP2006204656A (en) Washing and drying machine
JP5228337B2 (en) Hybrid dehumidifier
JP2005304988A (en) Washing and drying machine
KR20160037387A (en) Hybrid dehumidification system using supplying water of Indirect-Evaporation device in heat pump
JP5427631B2 (en) Washing and drying machine
JP2012161355A (en) Clothes dryer
JP5253883B2 (en) Magnetic refrigeration equipment
JP2011244924A (en) Clothes dryer
JP2008062025A (en) Dryer
JP2008062024A (en) Heating dehumidifier
JP2005027734A (en) Clothes dryer
JP7164287B2 (en) clothes dryer
JP2010194027A (en) Clothes dryer
CN106702659A (en) Clothes washing and drying machine and and clothes drying method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5633746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees