JP5633483B2 - Prediction method of cross tensile strength in spot welding of quenched steel sheet and spot welding method using the prediction method - Google Patents

Prediction method of cross tensile strength in spot welding of quenched steel sheet and spot welding method using the prediction method Download PDF

Info

Publication number
JP5633483B2
JP5633483B2 JP2011162339A JP2011162339A JP5633483B2 JP 5633483 B2 JP5633483 B2 JP 5633483B2 JP 2011162339 A JP2011162339 A JP 2011162339A JP 2011162339 A JP2011162339 A JP 2011162339A JP 5633483 B2 JP5633483 B2 JP 5633483B2
Authority
JP
Japan
Prior art keywords
softening
cts
tensile strength
spot welding
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011162339A
Other languages
Japanese (ja)
Other versions
JP2013022637A (en
Inventor
史徳 渡辺
史徳 渡辺
秀樹 濱谷
秀樹 濱谷
康信 宮崎
康信 宮崎
及川 初彦
初彦 及川
野瀬 哲郎
哲郎 野瀬
真木 純
純 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011162339A priority Critical patent/JP5633483B2/en
Publication of JP2013022637A publication Critical patent/JP2013022637A/en
Application granted granted Critical
Publication of JP5633483B2 publication Critical patent/JP5633483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、自動車分野等で使用される焼き入れ処理された鋼板のスポット溶接に関するものである。   The present invention relates to spot welding of a quenched steel plate used in the automotive field and the like.

自動車業界では、燃費向上のため、車体などの鋼板により高強度の鋼板を適用し、その板厚を薄くして車体の軽量化が図られている。一方、自動車の衝突時においても安全性をより確保する観点から、車体を軽量化しつつ、高い車体強度を維持する必要性も出てきている。
しかし、鋼板の高強度化はプレス成形性の低下を招き、特にスプリングバック等により製品精度の確保がより難しくなってくる。
In the automobile industry, in order to improve fuel efficiency, a high-strength steel plate is applied to a steel plate such as a vehicle body, and the plate thickness is reduced to reduce the weight of the vehicle body. On the other hand, from the viewpoint of ensuring safety even in the event of a car collision, there is a need to maintain high vehicle body strength while reducing the weight of the vehicle body.
However, increasing the strength of the steel sheet causes a decrease in press formability, and in particular, it becomes more difficult to ensure product accuracy due to springback or the like.

このような要求を満たすために、鋼板の高強度化と加工性、製品精度を同時に満足する手法として、加熱した鋼板をプレス成形する熱間プレス法(プレスクエンチ法)が開発され、それに適する鋼板も、特許文献1に示すように開発されている。   In order to satisfy such requirements, a hot press method (press quench method) that press-forms heated steel plates has been developed as a method that satisfies the requirements of high strength, workability, and product accuracy of steel plates at the same time. Has also been developed as shown in Patent Document 1.

この熱間プレス法は、鋼板を約800℃以上のオーステナイト域まで加熱した後、プレス成形し、同時に成形後の冷却により焼き入れを行い高強度の材質を得るものである。この熱間プレス法では、鋼板が高温で軟質、高延性になっているため、成形時の割れ発生等の加工性が改善され、かつ、比較的良好な製品精度を有する部品の製造が可能となる。   In this hot pressing method, a steel sheet is heated to an austenite region of about 800 ° C. or higher, then press-formed, and at the same time, quenched by cooling after forming to obtain a high-strength material. In this hot pressing method, the steel sheet is soft and highly ductile at high temperatures, so that workability such as cracking during molding is improved, and parts with relatively good product accuracy can be manufactured. Become.

ところで、プレス成形された部材の接合には、スポット溶接が使用される場合が多い。熱間プレス法で所定形状に成形された鋼板は、焼入れ組織により高強度化されているため、スポット溶接時の入熱条件によっては、熱影響部(HAZ)が焼き戻され、熱間プレス・焼入れ後の母材硬度よりも硬度が低い軟化部が熱影響部に形成される場合がある。
そのような軟化部が形成されると、スポット溶接部の引張強さに影響を与えることが予想される。
By the way, spot welding is often used for joining press-formed members. Since the steel sheet formed into a predetermined shape by the hot pressing method is strengthened by the quenching structure, the heat affected zone (HAZ) may be tempered depending on the heat input conditions during spot welding, A softened portion having a lower hardness than the base material hardness after quenching may be formed in the heat affected zone.
When such a softened portion is formed, it is expected to affect the tensile strength of the spot welded portion.

スポット溶接部の引張強さは、せん断方向に引張荷重を負荷して測定する引張せん断強さ(TSS)と、剥離方向に引張荷重を負荷して測定する十字引張強さ(CTS)によって評価されているが、熱間プレス法で成形され、焼入れ処理された鋼板のような引張強度が980MPa以上の高強度鋼板をスポット溶接した場合には、溶接継手部において溶接端部への力学的拘束が強まることでの応力集中と、靱性の低下が生じやすい。そのような溶接継手部における靱性の不足はCTSの試験で顕著に現れるため、高強度鋼板のスポット溶接継手においては、CTSが設定した値を超えるように管理されている。
しかし、焼入れ処理された鋼板で形成される上記軟化部の軟化度合とCTSとの関連については十分に明らかにされていない。
The tensile strength of spot welds is evaluated by the tensile shear strength (TSS) measured by applying a tensile load in the shear direction and the cross tensile strength (CTS) measured by applying a tensile load in the peeling direction. However, when spot-welding a high-strength steel sheet having a tensile strength of 980 MPa or more, such as a steel sheet formed by a hot press method and quenched, there is a mechanical constraint on the weld end at the weld joint. Stress concentration due to strengthening and a decrease in toughness are likely to occur. Since such a lack of toughness in the welded joint portion appears remarkably in the CTS test, the spot welded joint of the high-strength steel sheet is managed so that the CTS exceeds the set value.
However, the relation between the degree of softening of the softened portion formed of the quenched steel plate and CTS has not been sufficiently clarified.

特開2007−113100号公報JP 2007-113100 A

上記軟化部の軟化度合は、素材の強度やスポット溶接の通電条件によって、様々に変化するため、従来は溶接後の硬さ測定でしかわからなかった。
そこで、本発明では、熱間プレス法などの適用によって焼き入れ処理された鋼材や鋼板(以下、「焼入鋼板」と記載する。)のスポット溶接において、熱影響部に生じる軟化部のCTSに対する影響を評価して、溶接条件から軟化部の軟化度合(軟化度)を予測し、軟化度からCTSを予測できるようにして、CTSの予測値に基づいて溶接条件を変更し、CTSが設定した値を超えることができるようにすることを課題とする。
Since the degree of softening of the softened portion varies depending on the strength of the material and the energization conditions of spot welding, conventionally, it has been known only by measuring the hardness after welding.
Therefore, in the present invention, in spot welding of a steel material or a steel plate (hereinafter referred to as “quenched steel plate”) that has been quenched by application of a hot press method or the like, the CTS of a softened portion that occurs in a heat-affected zone. The impact was evaluated, the degree of softening of the softened part (softening degree) was predicted from the welding conditions, the CTS was predicted from the softening degree, the welding conditions were changed based on the predicted value of CTS, and CTS was set The problem is to be able to exceed the value.

本発明者らは、スポット溶接の際の溶接熱影響部の温度履歴について検討した。温度履歴の数値解析の結果、溶接時の入熱によっては、ナゲットの溶融境界線(FL)近傍でA3点を超えて加熱される領域が存在するのに対し、FLからの距離によってはA1点以下の温度までしか加熱されない領域が存在することが知見された。
A3点を超えて加熱される領域では冷却の際に再度焼きが入って硬化するが、A1点以下の温度までしか加熱されない領域では焼入相の焼戻しが起こり軟化することが予想される。
そこで、熱影響部の軟化量を、焼戻しパラメータで評価することを試みた。そして、スポット溶接の際の温度履歴の数値解析を行い、その結果から熱影響部の焼きが入らない領域における焼き戻しパラメータを導出し、焼き戻しパラメータから軟化量を予測できること見出した。また、実際に測定した軟化量と十字引張強さCTSの関係から、溶接条件毎にCTSを予測できることを見出した。
The present inventors examined the temperature history of the weld heat affected zone during spot welding. As a result of numerical analysis of temperature history, depending on the heat input during welding, there is a region heated beyond the A3 point in the vicinity of the nugget melting boundary line (FL), whereas depending on the distance from the FL, the A1 point It has been found that there are regions that can only be heated to the following temperatures.
In the region heated beyond the A3 point, it is rebaked and hardened during cooling, but in the region heated only to a temperature below the A1 point, it is expected that the tempered phase will be tempered and softened.
Therefore, an attempt was made to evaluate the amount of softening of the heat-affected zone using tempering parameters. Then, numerical analysis of the temperature history at the time of spot welding was performed, and from the results, a tempering parameter in a region where the heat-affected zone was not tempered was derived, and the softening amount was predicted from the tempering parameter. Moreover, it discovered that CTS was predictable for every welding condition from the relationship between the softening amount actually measured and the cross tensile strength CTS.

そのような知見に基づいてなされた本発明の要旨は次のとおりである。
(1) 焼き入れ処理された鋼板のスポット溶接において、
(A)本溶接の前に、あらかじめ、
(a1)板厚sの焼き入れ処理された鋼板を種々の通電条件でスポット溶接し、通電条件毎に、ナゲット径Lと溶接熱影響部に発生する軟化部の軟化量ΔHvと溶接継手の十字引張強さCTSを測定し、
(a2)前記の通電条件毎に溶接熱影響部の温度履歴を計算し、該温度履歴から焼戻しパラメータλを計算して、焼戻しパラメータλと軟化量ΔHvとの関係を求め、
(a3)軟化量ΔHvから下記(1)式を用いて通電条件毎の軟化度合Nを計算し、
(a4)十字引張強さCTSを、下記(2)式を用いて軟化度合Nと板厚sとナゲット径Lの関数として予測しておき、
(B)ついで、板厚sの鋼板の本溶接にあたり、
(b1)設定した本溶接の通電条件から前記(a2)と同様にして焼戻しパラメータλを計算し、
(b2)焼戻しパラメータλから前記(a2)で求めた関係を用いて軟化量ΔHvを求め、
(b3)軟化量ΔHvから下記(1)式を用いて軟化度合Nを求め、
(b4)軟化度合Nから下記(2)式を用いて設定した通電条件で溶接したスポット溶接継手の十字引張強さCTSを求める、
ことを特徴とする焼き入れ処理された鋼板のスポット溶接における十字引張強さCTSの予測方法。

Figure 0005633483
CTS=A・Nα・sβ・L ・・・(2)
ここで、A、α、β、γは定数であり、それぞれ0.10≦A≦0.15、0.6≦α≦0.7、β=0.5である。 The gist of the present invention made based on such knowledge is as follows.
(1) In spot welding of quenched steel plates,
(A) Before the main welding,
(A1) A steel sheet having a thickness s that has been quenched is spot-welded under various energization conditions, and for each energization condition, the nugget diameter L, the softening amount ΔHv of the softened portion generated in the weld heat affected zone, and the cross of the welded joint Measure the tensile strength CTS,
(A2) Calculate the temperature history of the welding heat-affected zone for each energization condition, calculate the tempering parameter λ from the temperature history, and obtain the relationship between the tempering parameter λ and the softening amount ΔHv,
(A3) The softening degree N for each energization condition is calculated from the softening amount ΔHv using the following equation (1),
(A4) The cross tensile strength CTS is predicted as a function of the softening degree N, the plate thickness s, and the nugget diameter L using the following equation (2).
(B) Next, in the main welding of the steel sheet having a thickness of s,
(B1) The tempering parameter λ is calculated in the same manner as in (a2) from the set current-carrying conditions,
(B2) The softening amount ΔHv is obtained from the tempering parameter λ using the relationship obtained in (a2) above,
(B3) The softening degree N is obtained from the softening amount ΔHv using the following equation (1),
(B4) Obtain the cross tensile strength CTS of the spot welded joint welded from the softening degree N under the energization conditions set using the following equation (2).
A method for predicting a cross tensile strength CTS in spot welding of a quenched steel sheet.
Figure 0005633483
CTS = A · N α · s β · L 2 (2)
Here, A, α, β, and γ are constants, and 0.10 ≦ A ≦ 0.15, 0.6 ≦ α ≦ 0.7, and β = 0.5, respectively.

(2) 焼き入れ処理された鋼板のスポット溶接において、鋼板の板厚と設定した通電条件から請求項1に記載の予測方法によって十字引張強さCTSを予測し、予測された十字引張強さCTSの値があらかじめ設定した基準値を下回るときは、再度通電条件を設定して十字引張強さCTSの値を予測し、その予測値が基準値を上回る通電条件でスポット溶接を実施することを特徴とする焼き入れ処理された鋼板のスポット溶接方法。 (2) In spot welding of a quenched steel plate, the cross tensile strength CTS is predicted by the prediction method according to claim 1 from the plate thickness of the steel plate and the set energization conditions, and the predicted cross tensile strength CTS. When the value of the value falls below a preset reference value, the energization condition is set again to predict the value of the cross tensile strength CTS, and spot welding is performed under the energization condition where the predicted value exceeds the reference value. A spot welding method for a steel sheet that has been quenched.

本発明によれば、焼入鋼板のスポット溶接において、溶接条件から溶接継手のCTSを予測することができるので、必要なCTSの値に応じた溶接条件を採用してスポット溶接することができる。このため、設定されたCTSの値を満たす継手強度を有し、信頼性の高いスポット溶接継手を得ることができる。   According to the present invention, in spot welding of a hardened steel plate, the CTS of a welded joint can be predicted from the welding conditions, so that it is possible to perform spot welding by employing welding conditions according to the required CTS value. For this reason, it is possible to obtain a spot-welded joint having a joint strength satisfying the set CTS value and having high reliability.

本発明のCTSの予測方法を説明するための模式図である。It is a schematic diagram for demonstrating the prediction method of CTS of this invention. スポット溶接継手の熱影響部の硬度を測定する方法を説明するための図である。It is a figure for demonstrating the method to measure the hardness of the heat affected zone of a spot welded joint. 実施例で用いたスポット溶接の条件1〜3の通電パターンを示す図である。It is a figure which shows the electricity supply pattern of the conditions 1-3 of spot welding used in the Example. 条件1の通電パターンによるスポット溶接における温度履歴を示す図である。It is a figure which shows the temperature history in the spot welding by the electricity supply pattern of the conditions 1. 条件2の通電パターンによるスポット溶接における温度履歴を示す図である。It is a figure which shows the temperature history in the spot welding by the electricity supply pattern of the conditions 2. 条件3の通電パターンによるスポット溶接における温度履歴を示す図である。It is a figure which shows the temperature history in the spot welding by the electricity supply pattern of the conditions 3. 実施例において得られたビッカース硬さの変化を示す図である。It is a figure which shows the change of the Vickers hardness obtained in the Example. 実施例において得られた軟化量ΔHvと焼戻しパラメータλとの関係を示す図である。It is a figure which shows the relationship between softening amount (DELTA) Hv obtained in the Example, and tempering parameter (lambda). 実施例において得られた、板厚2mmの場合の軟化度合NとCTSの関係を示す図である。It is a figure which shows the relationship between the softening degree N and CTS in the case of plate | board thickness 2mm obtained in the Example. 実施例において得られた、板厚1.6mmの場合の軟化度とCTSの関係を示す図である。It is a figure which shows the relationship between the softening degree and CTS in the case of plate | board thickness 1.6mm obtained in the Example. CTSのNと板厚sについての回帰分析結果を示す図である。It is a figure which shows the regression analysis result about N of CTS and plate | board thickness s.

以下、添付の図面を参照して本発明の実施の形態を説明する。
本発明では、本溶接の前に、種々の組成や強度を有する焼入鋼板を用いて溶接試験を行い、様々なサンプルを得て、そのサンプルの熱影響部の硬さ分布及びCTSなどを測定し、用いた溶接条件の温度履歴から、焼入鋼板ごとに軟化部の軟化量ΔHvと溶接継手の十字引張強さCTSの関係をあらかじめ求めておき、実際の本溶接に当たり、用いる溶接条件の温度履歴から、その溶接条件で溶接して得られる溶接継手のCTSを溶接前に予測できるようにする。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the present invention, prior to the main welding, a welding test is performed using hardened steel sheets having various compositions and strengths, various samples are obtained, and the hardness distribution and CTS of the heat affected zone of the samples are measured. Then, from the temperature history of the welding conditions used, the relationship between the softening amount ΔHv of the softened portion and the cross tensile strength CTS of the welded joint is obtained in advance for each quenched steel sheet, and the temperature of the welding conditions used in actual actual welding. From the history, the CTS of the welded joint obtained by welding under the welding conditions can be predicted before welding.

そのような軟化部の軟化量ΔHvと溶接継手の十字引張強さCTSを予測する手順について、図1、2を参照して詳細に説明する。
(A)板厚sの焼き入れ処理された鋼板のスポット溶接において、本溶接の前に、あらかじめ、((a1)軟化部の軟化量ΔHvと溶接継手の十字引張強さCTSを測定し、(a2)溶接熱影響部の温度履歴から焼戻しパラメータλを計算して、焼戻しパラメータλと軟化量ΔHvとの関係を求め、(a3)軟化量ΔHvから通電条件毎の軟化度合Nを計算し、十字引張強さCTSと軟化度合Nの関係を求め、さらに(a4)軟化度合Nと板厚sと通電条件から決め合うナゲット径Lの関数としてのCTS予測式の作成しておく。
これら(a1)〜(a4)のステップについて、次に説明する。
A procedure for predicting the softening amount ΔHv of the softened portion and the cross tensile strength CTS of the welded joint will be described in detail with reference to FIGS.
(A) In spot welding of a steel sheet having a thickness s that has been quenched, prior to the main welding, ((a1) the softening amount ΔHv of the softened portion and the cross tensile strength CTS of the welded joint are measured, a2) Calculate the tempering parameter λ from the temperature history of the weld heat affected zone to determine the relationship between the tempering parameter λ and the softening amount ΔHv. (a3) Calculate the softening degree N for each energizing condition from the softening amount ΔHv, The relationship between the tensile strength CTS and the softening degree N is obtained, and (a4) a CTS prediction formula as a function of the nugget diameter L determined from the softening degree N, the plate thickness s, and the energization conditions is prepared.
Next, the steps (a1) to (a4) will be described.

(a1)軟化部の軟化量ΔHvと溶接継手の十字引張強さCTSの測定
種々の板厚sの焼き入れ処理された鋼板を種々の通電条件でスポット溶接し、多数のスポット溶接継手のサンプルを作成し、得られたサンプルからナゲットを含む試験片を採取し、通電条件毎に、溶接熱影響部に発生する軟化部の軟化量ΔHvと溶接継手の十字引張強さCTSを測定する。
溶接部の硬度は、得られたサンプルからナゲットを含む断面を切り出し、図2に示すように、鋼板の圧接面より0.2mmずれた線に沿って、ナゲットの境界(溶融境界線FL)からほとんど軟化しない位置までのビッカース硬度Hvを測定して求める。そして、図1(a)に示すようなFLからの距離に対するHvの変化の図を作成し、図1(b)に示すように、焼入部平均硬さ(母材平均硬さ)と測定した硬さの差を軟化量ΔHvとして求める。
また、CTSは、得られたサンプルからJIS Z 3137に基づく引張り試験を実施して求める。
(A1) Measurement of softening amount ΔHv of softened part and cross tensile strength CTS of welded joint Spot-welded steel sheets with various thicknesses s were spot-welded under various energizing conditions, and a number of spot welded joint samples were obtained. A test piece including a nugget is collected from the prepared sample, and the softening amount ΔHv of the softened portion generated in the weld heat affected zone and the cross tensile strength CTS of the welded joint are measured for each energization condition.
The hardness of the welded portion is obtained by cutting a cross-section including the nugget from the obtained sample and, as shown in FIG. 2, from the nugget boundary (melting boundary line FL) along a line shifted by 0.2 mm from the pressure contact surface of the steel plate. The Vickers hardness Hv up to a position where it hardly softens is determined by measurement. And the figure of the change of Hv with respect to the distance from FL as shown to Fig.1 (a) was created, and as shown in FIG.1 (b), it was measured with the quenching part average hardness (base material average hardness). The difference in hardness is obtained as the softening amount ΔHv.
CTS is obtained by conducting a tensile test based on JIS Z 3137 from the obtained sample.

(a2)焼戻しパラメータλと軟化量ΔHvとの関係の算出
焼戻しパラメータλと軟化量ΔHvとの関係を求めるには、
(i)前記の通電条件毎に溶接熱影響部の温度履歴を計算し、
(ii)該温度履歴から通電条件毎の焼戻しパラメータλを計算し、
(iii)焼戻しパラメータλと前記(a1)で求めた通電条件毎の軟化量ΔHvから、焼戻しパラメータλと軟化量ΔHvとの関係を求める。
(A2) Calculation of the relationship between the tempering parameter λ and the softening amount ΔHv To obtain the relationship between the tempering parameter λ and the softening amount ΔHv,
(I) Calculate the temperature history of the weld heat affected zone for each of the energization conditions,
(Ii) calculating a tempering parameter λ for each energization condition from the temperature history;
(Iii) The relationship between the tempering parameter λ and the softening amount ΔHv is obtained from the tempering parameter λ and the softening amount ΔHv for each energization condition obtained in the above (a1).

通電条件毎の溶接熱影響部の温度履歴の計算は、例えば次のように行う。
スポット溶接時の温度履歴解析は、市販ソフト、例えばQucik Spot(商品名)を用いて行うことができる。この解析では、まず、スポット溶接しようとする焼入鋼板の物性値(抵抗値、熱伝導率、高温強度)を、焼入鋼板を用いて予め実測しておき、その物性値に基づいて電磁場解析を行なう。そして、その結果から得られる電流分布による抵抗発熱を熱源とした熱伝導解析を行ない、その結果から得られる温度分布による熱膨張と電極加圧とについての弾塑性解析を行ない、さらに、これらの解析結果に対応するように物性値を書き換えるというステップを指定した時間刻み毎に実行し、溶接時の温度履歴を導出する。その際、1500℃に達した領域をナゲットとみなして計算を行う。
数値解析は、スポット溶接の通電パターンを設定し、鋼板圧接面より0.2mmずれた線上の、ナゲット中心、FL内側0.5mmから外側3.0mmまでの位置において行い、図1(c)に示すような各位置での溶接時の温度履歴を導出する。
Calculation of the temperature history of the welding heat affected zone for each energization condition is performed as follows, for example.
The temperature history analysis at the time of spot welding can be performed using commercially available software such as Qucik Spot (trade name). In this analysis, first, the physical properties (resistance value, thermal conductivity, high temperature strength) of a hardened steel plate to be spot welded are measured in advance using a hardened steel plate, and an electromagnetic field analysis is performed based on the physical property values. To do. Then, heat conduction analysis was performed using resistance heat generation due to the current distribution obtained from the results as a heat source, and elastoplastic analysis was performed on the thermal expansion and electrode pressurization based on the temperature distribution obtained from the results. The step of rewriting the physical property value so as to correspond to the result is executed at every specified time step, and the temperature history at the time of welding is derived. At that time, the calculation is performed by regarding the region reaching 1500 ° C. as a nugget.
Numerical analysis is performed by setting a spot welding current pattern, and is performed at a position from the nugget center, 0.5 mm inside FL to 3.0 mm outside, on a line shifted 0.2 mm from the steel plate pressure contact surface, as shown in FIG. The temperature history during welding at each position as shown is derived.

求めた温度履歴から焼戻しパラメータλを求める計算は次のように行う。
軟化領域は、焼き戻しにより軟化していると考えられる。焼き戻しによる軟化の程度を表わすパラメータとして、式(3)で定義される焼き戻しパラメータが用いられている。
そこで、焼戻しパラメータλを計算して、焼戻しパラメータλと軟化量ΔHvとの関係を求めるようにする。
λ = T(logt+D) ・・・(3)
なお、Tは絶対温度で表される温度、tは加熱時間であり、Dは定数であり、通常は20が用いられる。
Calculation for obtaining the tempering parameter λ from the obtained temperature history is performed as follows.
It is considered that the softened region is softened by tempering. As a parameter representing the degree of softening due to tempering, the tempering parameter defined by equation (3) is used.
Therefore, the tempering parameter λ is calculated to obtain the relationship between the tempering parameter λ and the softening amount ΔHv.
λ = T (logt + D) (3)
T is a temperature expressed in absolute temperature, t is a heating time, D is a constant, and 20 is usually used.

式(3)は一定温度での焼戻しについてのものであり、焼き戻しパラメータに時間tはlogの形で寄与するため、スポット溶接のような時間で変化する温度履歴においては、そのまま加算して適用することはできない。そこで、土山の提案した一定温度での焼き戻しに換算する方法(「熱処理」Vol.42, No.3, 163-168頁(2002.06.28)参照)を用いる。   Equation (3) is for tempering at a constant temperature, and since time t contributes to the tempering parameter in the form of log, it is applied as it is in the temperature history that changes with time such as spot welding. I can't do it. Therefore, a method of conversion to tempering at a constant temperature proposed by Tsuchiyama (see “Heat Treatment” Vol. 42, No. 3, pp. 163-168 (2002.06.28)) is used.

例として、まず2段階の温度履歴を考える。t0からt1の時間までを温度T1で、続けてt1からt2の時間までを温度T2で焼き戻すことを考える。
この場合、前半だけの焼き戻しにおける焼き戻しパラメータは、
λ1= T1{log(t1−t0)+D} ・・・(3a)
になり、温度T2で同等の焼き戻しを加えるには、式(3b)を満たす時間t2´が必要になる。
λ1= T2(logt'2 +D) ・・・(3b)
そこで、この2段の焼き戻しを、時間(t2−t1+t'2 )の一定温度T2での焼き戻しとして、式(3C)のように決定することができる。
λ= T2{log(t2−t1+t'2 )+D} ・・・(3c)
この論法を逐次繰り返し、温度履歴の計算結果から得られるn点の時間と温度の系列を温度変化をn段階(n>1)の焼き戻しとして、k番目(k>1)での焼き戻しパラメータλ
λ=Tk{log(tk−tk-1+t'k-1)+D} ・・・(3d)
を逐次計算し、温度履歴全体に対する焼き戻しパラメータを、最終温度Tnにおける一定温度での焼き戻しに換算して焼き戻しパラメータλとして以下の式(3e)のように決定する。
λ=λn=Tn{log(tn−tn-1+t'n-1)+D} ・・・(3e)
As an example, first consider a two-stage temperature history. at a temperature T 1 until the time t 1 from t 0, consider that the tempering at a temperature T 2 from t 1 to time t 2 to continue.
In this case, the tempering parameters in the tempering only in the first half are
λ 1 = T 1 {log (t 1 −t 0 ) + D} (3a)
Thus, in order to perform the same tempering at the temperature T 2 , a time t 2 ′ satisfying the expression (3b) is required.
λ 1 = T 2 (logt ′ 2 + D) (3b)
Therefore, this two-stage tempering can be determined as shown in Expression (3C) as tempering at a constant temperature T 2 for a time (t 2 −t 1 + t ′ 2 ).
λ = T 2 {log (t 2 −t 1 + t ′ 2 ) + D} (3c)
Repeating this theory sequentially, the n-point time and temperature series obtained from the temperature history calculation results are tempered at the nth stage (n> 1), and the tempering parameters at the kth (k> 1) λ k
λ k = T k {log (t k −t k−1 + t ′ k−1 ) + D} (3d)
Sequentially calculates the tempering parameter for the entire temperature history is determined by the following equation (3e) as a parameter λ tempering in terms of tempering at a constant temperature at the final temperature T n.
λ = λ n = T n {log (t n −t n−1 + t ′ n−1 ) + D} (3e)

そして、温度履歴の数値解析の結果から上記式(3e)に基づいて求めた焼き戻しパラメータλと前記(a1)のステップで求めた軟化量ΔHvとから、図1(d)に示されるような軟化量ΔHvと焼き戻しパラメータλとの間の関係を求める。   Then, from the result of numerical analysis of the temperature history, the tempering parameter λ obtained based on the above equation (3e) and the softening amount ΔHv obtained in the step (a1) as shown in FIG. A relationship between the softening amount ΔHv and the tempering parameter λ is obtained.

(a3)軟化量ΔHvから軟化度合Nの算出
軟化部の軟化度合Nを、図1(b)に示すように、FLからの距離に対するHvの変化を表す線における焼入部平均硬さより硬さが低い部分の占める面積と定義する。そして、軟化量ΔHvから下記(1)式を用いて通電条件毎の軟化度合Nを計算し、前記(a1)のステップで得られた通電条件毎の十字引張強さCTSの値を用いて十字引張強さCTSと軟化度合Nの関係を求める。
なお、(1)式の積分はナゲット中心から母材方向へ向かう硬さ測定経路上において、ほとんど軟化せずに焼入母材の硬さに一致するところまで行なう。

Figure 0005633483
(A3) Calculation of softening degree N from softening amount ΔHv As shown in FIG. 1 (b), the softening degree N of the softened part is determined to be harder than the average hardness of the hardened part in the line representing the change in Hv with respect to the distance from FL. It is defined as the area occupied by the lower part. Then, the degree of softening N for each energization condition is calculated from the softening amount ΔHv using the following equation (1), and the value of the cross tensile strength CTS for each energization condition obtained in the step (a1) is used to calculate the cross. The relationship between the tensile strength CTS and the softening degree N is obtained.
It should be noted that the integration of equation (1) is performed up to the hardness of the hardened base material with almost no softening on the hardness measurement path from the nugget center toward the base material.
Figure 0005633483

(a4)軟化度合Nと板厚sとナゲット径Lの関数としてのCTS予測式の作成
以上の結果を種々の板厚で得て、軟化度合Nと板厚sとを関数として回帰分析を行ない、CTSと軟化度合Nと板厚sとの関係を式(4)の形で得る。
CTS=A・Nα・tβ ・・・(4)
ここで、A、α、βは定数であり、以上のような溶接試験結果から実験的に決定される値である。
(A4) Creation of CTS prediction formula as a function of softening degree N, thickness s, and nugget diameter L The above results are obtained with various thicknesses, and regression analysis is performed with softening degree N and thickness s as functions. The relationship among CTS, softening degree N and plate thickness s is obtained in the form of equation (4).
CTS = A · N α · t β (4)
Here, A, α, and β are constants, and are values determined experimentally from the above-described welding test results.

通電条件から決められるナゲット径LはCTSに二乗で効くと考えられるので、CTSを軟化度合Nと板厚sとナゲット径Lの関数として、式(2)から予測できる。
CTS=A・Nα・sβ・L ・・・(2)
本発明らは、複数の板厚sの鋼板を、ナゲット径L=5√(s)の複数の通電条件で溶接試験を実施し、得られたCTSと軟化度合Nの値から、それぞれ0.10≦A≦0.15、0.6≦α≦0.7、β=0.5であると決定した。
Since the nugget diameter L determined from the energization condition is considered to be effective in the square of the CTS, the CTS can be predicted from the equation (2) as a function of the softening degree N, the plate thickness s, and the nugget diameter L.
CTS = A · N α · s β · L 2 (2)
The present inventors conducted welding tests on steel sheets having a plurality of thicknesses s under a plurality of energizing conditions with a nugget diameter L = 5√ (s), and from the obtained values of CTS and softening degree N, 0. It was determined that 10 ≦ A ≦ 0.15, 0.6 ≦ α ≦ 0.7, and β = 0.5.

(B)ついで、板厚sの焼入鋼板を本溶接するにあたり、(b1)設定した本溶接の通電条件から焼戻しパラメータλを計算し、(b2)焼戻しパラメータλから前記(a2)のステップで求めた関係を用いて軟化量ΔHvを求め、(b3)軟化量ΔHvから軟化度合Nを求め、(b4)軟化度合Nから前記(a3)のステップで求めた関係を用いて設定した通電条件で溶接したスポット溶接継手のCTSを求めるようにする。
これら(b1)〜(b4)のステップについて、次に説明する。
(B) Next, in the main welding of the hardened steel sheet having a thickness of s, (b1) the tempering parameter λ is calculated from the set current welding conditions, and (b2) the tempering parameter λ is used in the step (a2). Using the obtained relationship, the softening amount ΔHv is obtained, (b3) the softening degree N is obtained from the softening amount ΔHv, and (b4) the energization condition set by using the relation obtained in the step (a3) from the softening degree N. The CTS of the welded spot welded joint is obtained.
Next, the steps (b1) to (b4) will be described.

(b1)設定した本溶接の通電条件から焼戻しパラメータλの算出
設定した本溶接の通電条件から前記(a2)のステップと同様にして焼戻しパラメータλを計算する。
(b2)焼戻しパラメータλから軟化量ΔHvの算出
焼戻しパラメータλから前記(a2)のステップで求めた図1(d)で示すような関係を用いて軟化量ΔHvを求める。
(B1) Calculation of the tempering parameter λ from the set current welding energization condition The tempering parameter λ is calculated from the set current welding energization condition in the same manner as in the step (a2).
(B2) Calculation of the softening amount ΔHv from the tempering parameter λ The softening amount ΔHv is obtained from the tempering parameter λ using the relationship shown in FIG. 1 (d) obtained in the step (a2).

(b3)軟化量ΔHvから軟化度合Nの算出
前記(b2)で求めた軟化量ΔHvから下記(1)式を用いて軟化度合Nを求める。

Figure 0005633483
(B3) Calculation of softening degree N from softening amount ΔHv The softening degree N is obtained from the softening amount ΔHv obtained in (b2) using the following equation (1).
Figure 0005633483

(b4)設定した通電条件で溶接したスポット溶接継手のCTSの算出
上記(b3)で得られた軟化度合N、鋼板板厚s、設定した通電条件から決定されるナゲット径Lを用いて、前記(a4)のステップで求めた、下記(2)式を用いて設定した通電条件で溶接したスポット溶接継手のCTSを求める。
CTS=A・Nα・sβ・L ・・・(2)
(B4) Calculation of CTS of spot welded joint welded under set energization condition Using the nugget diameter L determined from the softening degree N, the steel plate thickness s, and the set energization condition obtained in (b3) above, The CTS of the spot welded joint welded under the energization conditions set by using the following equation (2) obtained in the step (a4) is obtained.
CTS = A · N α · s β · L 2 (2)

(C)焼き入れ処理された鋼板のスポット溶接において、設定した通電条件から上記(A)及び(B)の方法に基づいて予測された十字引張強さCTSの値があらかじめ設定した基準値を下回るときは、設定されたCTSの値から、そのCTSを満たす軟化度合Nの条件を求め、再度通電条件を設定してその通電条件での温度履歴解析を行って、焼戻しパラメータを求め、焼戻しパラメータから上記(b2)及び(b3)のステップを通じて軟化度合Nを求め、その軟化度合Nが前述の条件を満たしているかどうかを判断し、最終的に、設定されたCTSの基準値を上回ることができる通電条件を得て、その条件でスポット溶接を実施するようにする。 (C) In spot welding of a steel sheet that has been quenched, the value of the cross tensile strength CTS predicted based on the set energization conditions based on the above methods (A) and (B) is lower than a preset reference value. When the value of the softening degree N satisfying the CTS is obtained from the set CTS value, the energization condition is set again, the temperature history analysis is performed under the energization condition, the tempering parameter is obtained, and the tempering parameter is obtained. The degree of softening N can be obtained through the steps (b2) and (b3) above, and it can be determined whether the degree of softening N satisfies the above-mentioned conditions. Finally, it can exceed the set reference value of CTS. Obtain the energization conditions and perform spot welding under those conditions.

本発明は、以上説明したように構成されるものであるが、以下、実施例を用いて、本発明の実施可能性及び効果についてさらに説明する。   Although the present invention is configured as described above, the feasibility and effects of the present invention will be further described below using examples.

板厚2mmの1470MPa級焼入鋼板において、図3(a)〜(c)に示す通電パターン条件1〜3を用いてナゲット径5√(2.0)=7.1mmのスポット溶接継手を作成し、作成したスポット溶接継手から、JIS Z 3137に基づく引張り試験を実施してそれぞれのCTSを測定した。
通電パターン条件1〜3における溶接時の温度履歴の解析結果をそれぞれ図4〜6に示す。なお、図4において、1 Centerはナゲット中心、2 FLin0.5mmはFL内側0.5mmの位置、3 FLはFLの位置、4〜9 FLout0.5〜3.0mmはFL外側0.5〜3.0mmの位置での解析結果を示している。図5、6も同様である。
A spot welded joint with a nugget diameter of 5√ (2.0) = 7.1 mm is prepared using the energization pattern conditions 1 to 3 shown in FIGS. 3A to 3C in a 1470 MPa class hardened steel plate having a thickness of 2 mm. Then, from the created spot welded joint, a tensile test based on JIS Z 3137 was performed to measure each CTS.
The analysis results of the temperature history during welding under the energization pattern conditions 1 to 3 are shown in FIGS. In FIG. 4, 1 Center is the nugget center, 2 FLin 0.5 mm is the position 0.5 mm inside the FL, 3 FL is the position FL, 4-9 FLout 0.5-3.0 mm is the position 0.5-3.0 mm outside the FL The analysis results are shown. The same applies to FIGS.

図4〜6の温度履歴において、中心からFLより0.5mm外側の領域はAC3点を超え、焼きが入る温度履歴になる。また、FLから1.0mm外側の領域の最高加熱温度はAC1点程度であり、一部は焼きが入り、残りは焼き戻しが起こり軟化する可能性がある。FLから1.5mmより外側では焼きが入らないため、溶接時の熱履歴により焼き戻しを受けるのみになると考えられる。 In the temperature history shown in FIGS. 4 to 6, the region 0.5 mm outside the FL from the center exceeds the AC3 point, and becomes a temperature history at which baking occurs. In addition, the maximum heating temperature in the area 1.0 mm outside the FL is about AC1 point, part of which is baked and the rest may be tempered and softened. It is considered that since tempering does not occur outside the FL from 1.5 mm, only tempering is performed due to the thermal history during welding.

作成したスポット溶接継手をナゲットの中心を通るように切断し、断面のビッカース硬さHvを前述のようにして測定した。その結果を図7に示す。図7から条件1〜3の通電パターンでの軟化量ΔHvを求め、前記の温度履歴解析の結果明らかになったFLから1.5mm以上外側の軟化領域で、前述のようにして焼戻しパラメータλを導出した。
その結果、図8に示すように、焼き戻しパラメータλと軟化量ΔHvはほぼ比例関係にある結果が得られた。
The prepared spot welded joint was cut so as to pass through the center of the nugget, and the Vickers hardness Hv of the cross section was measured as described above. The result is shown in FIG. The softening amount ΔHv in the energization pattern of conditions 1 to 3 is obtained from FIG. 7, and the tempering parameter λ is set as described above in the softening region that is 1.5 mm or more outside from the FL that is revealed as a result of the temperature history analysis. Derived.
As a result, as shown in FIG. 8, the result that the tempering parameter λ and the softening amount ΔHv are in a substantially proportional relationship was obtained.

したがって、焼きが入らない領域での軟化量は、通電パターンに基づく温度履歴解析により推定できることが確認された。
また、図7に基づき前記式(1)を用いて軟化度合N(長さはmm単位で計算)を計算し、スポット溶接部CTSの関係を調べると、図9に示すように、Nが大きいほうがCTSは高くなっており、図に付記した関係式で近似できる結果が得られた。
Therefore, it was confirmed that the amount of softening in the region where no quenching can be estimated by temperature history analysis based on the energization pattern.
Further, when the degree of softening N (length is calculated in mm) is calculated based on FIG. 7 and the relationship between the spot welds CTS is examined, N is large as shown in FIG. The CTS was higher, and a result that could be approximated by the relational expression attached to the figure was obtained.

次に、板厚1.6mmの1470MPa級焼入鋼板において、4種類の通電パターンについて、ナゲット径5√(1.6)=6.3mmのスポット溶接スポット溶接継手を作成し、板厚2mmの場合と同様に、通電パターンごとに温度履歴解析と軟化度合Nを導出し、作成したスポット溶接継手から、JIS Z 3137に基づく引張り試験を実施してそれぞれのCTSを測定した。
その結果、図10に示すように、軟化度合Nが大きくなると、CTSが大きくなる結果が得られた。
Next, a spot weld spot welded joint with a nugget diameter of 5√ (1.6) = 6.3 mm was prepared for four kinds of energization patterns in a 1470 MPa class hardened steel plate with a plate thickness of 1.6 mm. Similarly to the case, a temperature history analysis and a softening degree N were derived for each energization pattern, and a tensile test based on JIS Z 3137 was performed from the created spot welded joint to measure each CTS.
As a result, as shown in FIG. 10, when the degree of softening N increases, the result that CTS increases is obtained.

以上の板厚2.0mmと板厚1.6mmのスポット溶接結果から得られた軟化度合NとCTSの関係を、軟化度合Nと板厚sとの関数として回帰分析を行なった。その結果、図11に示すように上記(4)式の具体的な形として、下記の式(4)’が得られた。
CTS=0.32N0.64・s1.5 ・・・(4)’
The relationship between the softening degree N and CTS obtained from the spot welding results of the above plate thickness 2.0 mm and plate thickness 1.6 mm was subjected to regression analysis as a function of the softening degree N and the plate thickness s. As a result, as shown in FIG. 11, the following formula (4) ′ was obtained as a specific form of the above formula (4).
CTS = 0.32N 0.64 · s 1.5 (4) '

さらに、両板厚ともナゲット径L=5√(s)で試験を行なったことから、CTSを軟化度合Nと板厚sとナゲット径Lの関数として上記(2)式の具体的な形として、下記式(2)’から予測できることが確認された。

Figure 0005633483
Further, since both the plate thicknesses were tested with a nugget diameter L = 5√ (s), CTS was expressed as a function of the softening degree N, the plate thickness s, and the nugget diameter L as a specific form of the above equation (2). From the following formula (2) ′, it was confirmed that it can be predicted.
Figure 0005633483

Claims (2)

焼き入れ処理された鋼板のスポット溶接において、
(A)本溶接の前に、あらかじめ、
(a1)板厚sの焼き入れ処理された鋼板を種々の通電条件でスポット溶接し、通電条件毎に、ナゲット径Lと溶接熱影響部に発生する軟化部の軟化量ΔHvと溶接継手の十字引張強さCTSを測定し、
(a2)通電条件毎に溶接熱影響部の温度履歴を計算し、該温度履歴から焼戻しパラメータλを計算して、焼戻しパラメータλと軟化量ΔHvとの関係を求め、
(a3)軟化量ΔHvから下記(1)式を用いて通電条件毎の軟化度合Nを計算し、
(a4)十字引張強さCTSを、下記(2)式を用いて軟化度合Nと板厚sとナゲット径Lの関数として予測しておき、
(B)ついで、本溶接にあたり、
(b1)設定した本溶接の通電条件から前記(a2)と同様にして焼戻しパラメータλを計算し、
(b2)焼戻しパラメータλから前記(a2)で求めた関係を用いて軟化量ΔHvを求め、
(b3)軟化量ΔHvから下記(1)式を用いて軟化度合Nを求め、
(b4)軟化度合Nから下記(2)式を用いて設定した通電条件で溶接したスポット溶接継手の十字引張強さCTSを求める、
ことを特徴とする焼き入れ処理された鋼板のスポット溶接における十字引張強さCTSの予測方法。
Figure 0005633483
CTS=A・Nα・sβ・L ・・・(2)
ここで、A、α、β、γは定数であり、それぞれ0.10≦A≦0.15、0.6≦α≦0.7、β=0.5である。
In spot welding of quenched steel plates,
(A) Before the main welding,
(A1) A steel sheet having a thickness s that has been quenched is spot-welded under various energization conditions, and for each energization condition, the nugget diameter L, the softening amount ΔHv of the softened portion generated in the weld heat affected zone, and the cross of the welded joint Measure the tensile strength CTS,
(A2) Calculate the temperature history of the weld heat affected zone for each energization condition, calculate the tempering parameter λ from the temperature history, and obtain the relationship between the tempering parameter λ and the softening amount ΔHv,
(A3) The softening degree N for each energization condition is calculated from the softening amount ΔHv using the following equation (1),
(A4) The cross tensile strength CTS is predicted as a function of the softening degree N, the plate thickness s, and the nugget diameter L using the following equation (2).
(B) Next, in the main welding,
(B1) The tempering parameter λ is calculated in the same manner as in (a2) from the set current-carrying conditions,
(B2) The softening amount ΔHv is obtained from the tempering parameter λ using the relationship obtained in (a2) above,
(B3) The softening degree N is obtained from the softening amount ΔHv using the following equation (1),
(B4) Obtain the cross tensile strength CTS of the spot welded joint welded from the softening degree N under the energization conditions set using the following equation (2).
A method for predicting a cross tensile strength CTS in spot welding of a quenched steel sheet.
Figure 0005633483
CTS = A · N α · s β · L 2 (2)
Here, A, α, β, and γ are constants, and 0.10 ≦ A ≦ 0.15, 0.6 ≦ α ≦ 0.7, and β = 0.5, respectively.
焼き入れ処理された鋼板のスポット溶接において、鋼板の板厚と設定した通電条件から請求項1に記載の予測方法によって十字引張強さCTSを予測し、予測された十字引張強さCTSの値があらかじめ設定した基準値を下回るときは、再度通電条件を設定して十字引張強さCTSの値を予測し、その予測値が基準値を上回る通電条件でスポット溶接を実施することを特徴とする焼き入れ処理された鋼板のスポット溶接方法。   In spot welding of a quenched steel plate, the cross tensile strength CTS is predicted by the prediction method according to claim 1 from the plate thickness of the steel plate and the set energization conditions, and the predicted value of the cross tensile strength CTS is When the value falls below a preset reference value, the energization condition is set again to predict the value of the cross tensile strength CTS, and spot welding is performed under the energization condition where the predicted value exceeds the reference value. A method of spot welding steel sheets that have been subjected to insertion processing.
JP2011162339A 2011-07-25 2011-07-25 Prediction method of cross tensile strength in spot welding of quenched steel sheet and spot welding method using the prediction method Active JP5633483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162339A JP5633483B2 (en) 2011-07-25 2011-07-25 Prediction method of cross tensile strength in spot welding of quenched steel sheet and spot welding method using the prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162339A JP5633483B2 (en) 2011-07-25 2011-07-25 Prediction method of cross tensile strength in spot welding of quenched steel sheet and spot welding method using the prediction method

Publications (2)

Publication Number Publication Date
JP2013022637A JP2013022637A (en) 2013-02-04
JP5633483B2 true JP5633483B2 (en) 2014-12-03

Family

ID=47781571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162339A Active JP5633483B2 (en) 2011-07-25 2011-07-25 Prediction method of cross tensile strength in spot welding of quenched steel sheet and spot welding method using the prediction method

Country Status (1)

Country Link
JP (1) JP5633483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607713B2 (en) * 2015-06-26 2019-11-20 高周波熱錬株式会社 Simulation program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716791B2 (en) * 1990-11-08 1995-03-01 欽一 松山 Resistance spot welding method
JPH07214375A (en) * 1994-02-09 1995-08-15 Nippon Steel Corp Method for executing submerged arc welding
JP2003236674A (en) * 2002-02-15 2003-08-26 Mazda Motor Corp Method and equipment of spot welding of high tensile steel
JP4150383B2 (en) * 2004-04-13 2008-09-17 新日本製鐵株式会社 Fracture prediction apparatus, method, computer program, and computer-readable recording medium for spot welds
JP4748131B2 (en) * 2006-09-29 2011-08-17 住友金属工業株式会社 Calculation method for fracture strain of spot welds, calculation method for standard fracture strain
JP5640410B2 (en) * 2009-03-17 2014-12-17 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint

Also Published As

Publication number Publication date
JP2013022637A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
Lin et al. Shear strength of CMT brazed lap joints between aluminum and zinc-coated steel
US9957584B2 (en) Method and system for enhancing rivetability
Haque et al. Strength prediction of self-pierce riveted joint in cross-tension and lap-shear
Hyde et al. Creep crack growth data and prediction for a P91 weld at 650 C
JP4865112B1 (en) Welded joint manufacturing method and welded joint
JP5210552B2 (en) High strength spot welded joint
Kang et al. Fatigue strength evaluation of self-piercing riveted Al-5052 joints under different specimen configurations
Chung et al. Practical failure analysis of resistance spot welded advanced high-strength steel sheets
JP6179356B2 (en) Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
Vignesh et al. Resistance spot welding of AISI-316L SS and 2205 DSS for predicting parametric influences on weld strength—experimental and FEM approach
Mirsalehi et al. Fatigue life estimation of spot welds using a crack propagation-based method with consideration of residual stresses effect
Lee et al. Overload failure curve and fatigue behavior of spot-welded specimens
Sahota et al. Study of effect of parameters on resistance spot weld of ASS316 material
Krajcarz et al. Fracture toughness of the molten zone of resistance spot welds
Ghazali et al. Effect of process parameters on the mechanical properties and failure behavior of spot welded low carbon steel
JP5633483B2 (en) Prediction method of cross tensile strength in spot welding of quenched steel sheet and spot welding method using the prediction method
Benasciutti et al. Microstructural and mechanical characterisation of laser-welded lap joints with linear and circular beads in thin low carbon steel sheets
Leitner et al. Fatigue strength of HFMI-treated and stress-relief annealed high-strength steel weld joints
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
Wang et al. Stress intensity factor expression for center-cracked butt joint considering the effect of joint shape
Lacki et al. Strength evaluation of the beam made of the titanium sheets Grade 2 and Grade 5 welded by Resistance Spot Welding
Önal et al. Effect and optimization of resistance spot welding parameters on the strength of welded hot-stamped parts
Costa et al. Residual stresses analysis of ND-YAG laser welded joints
Duran Comparative Multi-Axial High-Cycle Fatigue Analysis of Spot Weld Models Using Findley’s Damage Criteria
Costa et al. Fracture toughness of the heat affected zone on Nd-YAG laser welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R151 Written notification of patent or utility model registration

Ref document number: 5633483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350