JP5632940B2 - Silica particles and resin composition containing the same - Google Patents

Silica particles and resin composition containing the same Download PDF

Info

Publication number
JP5632940B2
JP5632940B2 JP2013141213A JP2013141213A JP5632940B2 JP 5632940 B2 JP5632940 B2 JP 5632940B2 JP 2013141213 A JP2013141213 A JP 2013141213A JP 2013141213 A JP2013141213 A JP 2013141213A JP 5632940 B2 JP5632940 B2 JP 5632940B2
Authority
JP
Japan
Prior art keywords
particles
particle size
silica particles
silica
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013141213A
Other languages
Japanese (ja)
Other versions
JP2013209290A (en
Inventor
佐藤 裕
佐藤  裕
正徳 阿江
正徳 阿江
澤野 清志
清志 澤野
道太 斉藤
道太 斉藤
睦人 田中
睦人 田中
栄二 村田
栄二 村田
尚三 徳田
尚三 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2013141213A priority Critical patent/JP5632940B2/en
Publication of JP2013209290A publication Critical patent/JP2013209290A/en
Application granted granted Critical
Publication of JP5632940B2 publication Critical patent/JP5632940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明はシリカ粒子、およびこれを含有する半導体封止材料に用いられる樹脂組成物に関する。   The present invention relates to silica particles and a resin composition used for a semiconductor sealing material containing the same.

ICやCPUなどの半導体パッケージの小型化、薄型化が進んでおり、これに伴いボンディングワイヤの細径化、狭ピッチ化へのニーズが高まっている。一方、半導体素子の高性能化に伴う発熱量の増大により、半導体パッケージの放熱性の向上がより重要となっている。半導体パッケージに用いられる封止材料に対するニーズも、狭小部への充填性を高めるため、より高流動の封止材が求められるとともに、高熱伝導化が要求されている。半導体パッケージの封止材として、エポキシ樹脂にシリカ粒子をフィラーとして充填した樹脂組成物が用いられているが、近年高流動へのニーズが高まったことから、フィラーとして用いられるシリカ粒子に球状粒子が多く用いられている。この球状のシリカ粒子を用いることにより、従来の破砕状のシリカに比べて、封止材の流動性を著しく向上することが可能となった。   As semiconductor packages such as ICs and CPUs are becoming smaller and thinner, there is a growing need for smaller bonding wires and smaller pitches. On the other hand, due to an increase in the amount of heat generated with higher performance of the semiconductor element, it is more important to improve the heat dissipation of the semiconductor package. The need for a sealing material used in a semiconductor package also requires a higher-fluid sealing material and higher thermal conductivity in order to improve the filling property in a narrow portion. As a sealing material for semiconductor packages, a resin composition in which silica particles are filled as a filler into an epoxy resin is used. However, since the need for high flow has increased in recent years, spherical particles are used as silica particles as fillers. Many are used. By using these spherical silica particles, the fluidity of the sealing material can be remarkably improved as compared with conventional crushed silica.

しかしながら、封止材の高熱伝導化のニーズが高まるに伴い、樹脂に比べて熱伝導率が高いフィラーの充填率を高くして、封止材の熱伝導率を高くすることが必要となっている。また、封止材の強度を高めるとともに熱膨張率を低くすることを目的とした場合もフィラーの充填率を上げることが必要となる。しかしながら、フィラーの充填率を上げると流動性が低下してしまうため、粒度分布を最適化するなどの試みがなされている。また、フィラー粒子の空間充填率を上げるために数種類の粒度分布をもつ粒子を配合する方法が一般に用いられている。   However, as the need for higher thermal conductivity of the sealing material increases, it is necessary to increase the filling rate of the filler, which has higher thermal conductivity than the resin, and to increase the thermal conductivity of the sealing material. Yes. In addition, it is necessary to increase the filler filling rate in order to increase the strength of the sealing material and reduce the coefficient of thermal expansion. However, when the filling rate of the filler is increased, the fluidity is lowered, so an attempt has been made to optimize the particle size distribution. Further, a method of blending particles having several kinds of particle size distributions is generally used in order to increase the space filling rate of filler particles.

特許文献1には、3種類の粒度の粒子を配合する方法が開示されている。この方法は、平均粒径30〜60μmの粗粒子粉末と、平均粒径1〜2μmの微粒子粉末に加えて、平均粒径0.1μm以上で1μm未満の超微粒子粉末を5〜20質量%含ませることで、フィラーの充填率を上げている。しかしながら、超微粒子粉末を多く添加すると、超微粒子粉末の樹脂への均一分散が難しくなるため、封止材の流動性を著しく損なう原因となる。   Patent Document 1 discloses a method of blending particles of three types of particle sizes. This method includes 5 to 20% by mass of an ultrafine particle powder having an average particle size of 0.1 μm or more and less than 1 μm in addition to a coarse particle powder having an average particle size of 30 to 60 μm and a fine particle powder having an average particle size of 1 to 2 μm. By doing so, the filler filling rate is increased. However, when a large amount of ultrafine particle powder is added, it becomes difficult to uniformly disperse the ultrafine particle powder in the resin, and this causes the fluidity of the sealing material to be significantly impaired.

特許文献2には、超微粒子粉末を分散させる方法として、平均粒径0.1〜3μmの微粉末シリカに、平均粒径0.1μm未満の微粉末シリカを1〜30重量%混合する方法が開示されている。しかしながら、より微細な0.1μm未満の粒子、特にアエロジルに代表される不定形の粒子を多く添加すると、封止材の流動性を大きく低下させてしまう問題がある。   In Patent Document 2, as a method of dispersing the ultrafine particle powder, there is a method of mixing 1 to 30% by weight of fine powder silica having an average particle size of less than 0.1 μm with fine powder silica having an average particle size of 0.1 to 3 μm. It is disclosed. However, when a larger amount of finer particles having a size of less than 0.1 μm, particularly amorphous particles typified by aerosil, is added, there is a problem that the fluidity of the sealing material is greatly reduced.

このようにフィラーの充填率を上げるためには、1μm未満の超微粒子を添加することが必要となるが、これにより封止材の流動性を低下させてしまう問題があった。   Thus, in order to increase the filling rate of the filler, it is necessary to add ultrafine particles of less than 1 μm. However, there is a problem that the fluidity of the sealing material is thereby lowered.

特開2007−153969号公報JP 2007-153969 A 特開平6−1605号公報JP-A-6-1605

前述したように、従来の技術では、樹脂に充填するフィラーの充填率を高くすると、流動性が低下してしまう等の問題があった。本発明は、樹脂組成物における充填率が高くても、樹脂組成物の高流動性を維持できるフィラーとしてのシリカ粒子を提供することを目的とする。   As described above, in the conventional technique, there is a problem that, when the filling rate of the filler filled in the resin is increased, the fluidity is lowered. An object of this invention is to provide the silica particle as a filler which can maintain the high fluidity | liquidity of a resin composition, even if the filling rate in a resin composition is high.

本発明の要旨は、以下の通りである。
(1)粒径範囲500nm〜75μmのシリカ粒子(X)を90質量%以上含有し、かつ
粒径50nm〜300nmの範囲に粒度分布の極大値をもち、かつその95質量%以上が粒径範囲30nm〜500nmのシリカ超微粒子(Y)を0.5〜10質量%含有し、
前記シリカ粒子(X)が、粒径15μm〜70μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X1)と、粒径2μm〜10μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X2)とを含有し、
前記シリカ粒子(X)が、粒径500nm超〜1μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X3)をさらに含有し、
前記シリカ超微粒子(Y)における、30nm〜50nmの範囲および300nm〜500nmの範囲にある粒子の個数割合が0.5〜10%であることを特徴とするシリカ粒子。
(2)前記シリカ超微粒子(Y)の粒子の形状が球状であることを特徴とする、(1)に記載のシリカ粒子。
(3)前記(1)または(2)に記載のシリカ粒子を、樹脂中に50〜96質量%混合して構成される樹脂組成物であって、かつ
前記シリカ超微粒子(Y)が、前記樹脂に対して2〜30体積%含まれることを特徴とする樹脂組成物。
The gist of the present invention is as follows.
(1) 90% by mass or more of silica particles (X) having a particle size range of 500 nm to 75 μm, a maximum value of the particle size distribution in the particle size range of 50 nm to 300 nm, and 95% by mass or more of the particle size range Containing 0.5 to 10% by mass of silica ultrafine particles (Y) of 30 nm to 500 nm,
The silica particles (X) are spherical silica particles (X1) having a maximum particle size distribution in a particle size range of 15 μm to 70 μm, and spherical silica particles (X1) having a maximum particle size distribution in a particle size range of 2 μm to 10 μm ( X2) and
The silica particles (X) further contain spherical silica particles (X3) having a maximum value of the particle size distribution in a particle size range of more than 500 nm to 1 μm,
The silica particles, wherein the number ratio of the particles in the range of 30 nm to 50 nm and the range of 300 nm to 500 nm in the silica ultrafine particles (Y) is 0.5 to 10%.
(2) The silica particles according to (1), wherein the silica ultrafine particles (Y) have a spherical shape.
(3) A resin composition comprising the silica particles according to (1) or (2) mixed in a resin in an amount of 50 to 96% by mass, and the silica ultrafine particles (Y) are 2-30 volume% is contained with respect to resin, The resin composition characterized by the above-mentioned.

本発明によると、樹脂組成物の流動性を損なうことなく、フィラーとしてのシリカ粒子の充填率を高めることができる。このようなフィラーを含む樹脂組成物は、特に、半導体封止材等で有用であり;つまり、狭小部まで欠陥がなく充填可能であり、高熱伝導性、高強度、低熱膨張率を有する。   According to the present invention, the filling rate of the silica particles as the filler can be increased without impairing the fluidity of the resin composition. A resin composition containing such a filler is particularly useful for a semiconductor encapsulant or the like; that is, it can be filled without defects up to a narrow portion, and has high thermal conductivity, high strength, and low thermal expansion coefficient.

本発明のシリカ粒子および樹脂組成物を詳細に説明する。本発明のシリカ粒子は、粒径範囲500nm〜75μmのシリカ粒子(本発明において「シリカ粒子(X)」と称する)と、粒径50nm〜300nmの範囲に粒度分布の極大値をもち、かつその95質量%以上が粒径範囲30nm〜500nmのシリカ超微粒子(本発明において「シリカ超微粒子(Y)」と称する)とを含むことを特徴とする。   The silica particles and resin composition of the present invention will be described in detail. The silica particles of the present invention have silica particle having a particle size range of 500 nm to 75 μm (referred to as “silica particle (X)” in the present invention), a maximum particle size distribution in the particle size range of 50 nm to 300 nm, and 95 mass% or more contains silica ultrafine particles having a particle size range of 30 nm to 500 nm (referred to as “silica ultrafine particles (Y)” in the present invention).

本発明者らは実験を通して、粒径50nm〜300nmの範囲に粒度分布の極大値をもつシリカ超微粒子(Y)は、樹脂に添加されると樹脂と一体化して流動することができること、特に樹脂中に均一に混合されているシリカ超微粒子(Y)は、樹脂と一体化して流動すること;したがって、このようなシリカ超微粒子(Y)を用いれば、樹脂組成物の流動性を損なうことなく、シリカ粒子の樹脂への充填率を上げることが可能であることを見だした。一方、粒径300nm超に粒度分布の極大値をもつシリカ粒子は、樹脂と一体化して流動できないため、粒子表面と樹脂との間に剪断応力が働き、全体の流動性を損ねる原因となることもわかった。   Through experiments, the present inventors have found that silica ultrafine particles (Y) having a maximum value of particle size distribution in a particle size range of 50 nm to 300 nm can flow integrally with the resin when added to the resin. The silica ultrafine particles (Y) uniformly mixed therein must flow integrally with the resin; therefore, if such silica ultrafine particles (Y) are used, the fluidity of the resin composition is not impaired. The present inventors have found that it is possible to increase the filling rate of the silica particles into the resin. On the other hand, silica particles having a maximum particle size distribution of more than 300 nm cannot be flowed integrally with the resin, so that a shear stress acts between the particle surface and the resin, causing a loss of overall fluidity. I understand.

シリカ超微粒子(Y)の粒度分布は、50nm〜300nmの範囲に極大値をもつことが必要である。粒度分布の極大値が50nmより小さいシリカ超微粒子は凝集しやすく、樹脂中に均一に分散して混合することが困難となるため、流動性を低下させてしまう。また、粒度分布の極大値が300nmより大きいシリカ粒子は、樹脂と一体化しないため、高流動性の樹脂組成物を得ることができない。   The particle size distribution of the ultrafine silica particles (Y) needs to have a maximum value in the range of 50 nm to 300 nm. Silica ultrafine particles having a maximum particle size distribution smaller than 50 nm tend to aggregate, and it becomes difficult to uniformly disperse and mix in the resin, resulting in a decrease in fluidity. In addition, silica particles having a maximum particle size distribution greater than 300 nm are not integrated with the resin, and thus a highly fluid resin composition cannot be obtained.

さらに、シリカ超微粒子(Y)のうちの95質量%以上が粒径30nm〜500nmの粒子であると、より本発明の効果が得られる。   Furthermore, the effect of this invention is acquired more as 95 mass% or more of silica ultrafine particles (Y) are particles with a particle size of 30 nm-500 nm.

本発明のシリカ粒子における、シリカ超微粒子(Y)の含有割合は、0.5〜10質量%であることが必要である。シリカ超微粒子(Y)の含有割合が0.5質量%より少ないと、本発明のシリカ粒子の樹脂組成物への充填率を上げたときに、樹脂に高流動性を付与することができない。一方、シリカ超微粒子(Y)の含有割合が10質量%より多いと、超微粒子(Y)が凝集しやすくなるため、本発明のシリカ粒子を樹脂中に均一に分散することが困難となり、樹脂の流動性が低下する原因となる。また、シリカ超微粒子(Y)の含有割合が多くなると、超微粒子(Y)と樹脂との混合により樹脂組成物の粘度が著しく上昇したりすることがあるため、全体の流動性を低下させてしまう。   The content of the ultrafine silica particles (Y) in the silica particles of the present invention needs to be 0.5 to 10% by mass. If the content of the ultrafine silica particles (Y) is less than 0.5% by mass, the resin cannot be provided with high fluidity when the filling rate of the silica particles of the present invention into the resin composition is increased. On the other hand, when the content of the ultrafine silica particles (Y) is more than 10% by mass, the ultrafine particles (Y) are likely to aggregate, making it difficult to uniformly disperse the silica particles of the present invention in the resin. This causes the fluidity of the liquid to decrease. Moreover, since the viscosity of a resin composition may raise remarkably by mixing with ultrafine particles (Y) and resin when the content rate of a silica ultrafine particle (Y) increases, the whole fluidity | liquidity is reduced. End up.

流動性のより高い樹脂組成物を得るため、シリカ超微粒子(Y)の粒度分布は、100nm〜200nmの範囲に極大値をもつことが望ましい。粒径100nm〜200nmの範囲に粒度分布の極大値をもつ超微粒子(Y)は、粒度分布の極大値が100nmより小さい超微粒子に比べて凝集しにくいため、樹脂中に均一に分散または混合させることができ;また、粒度分布の極大値が200nmより大きい粒子に比べて、樹脂と一体化して流動しやすいため、樹脂と混合した場合の粘度が低く抑えられ、樹脂組成物の流動性を高めることができる。   In order to obtain a resin composition with higher fluidity, it is desirable that the particle size distribution of the ultrafine silica particles (Y) has a maximum value in the range of 100 nm to 200 nm. Ultrafine particles (Y) having a maximum value of the particle size distribution in the particle size range of 100 nm to 200 nm are less likely to agglomerate than ultrafine particles having a maximum value of the particle size distribution of less than 100 nm, so that they are uniformly dispersed or mixed in the resin. In addition, since the maximum value of the particle size distribution is easier to flow integrally with the resin than particles having a particle size distribution larger than 200 nm, the viscosity when mixed with the resin is kept low, and the fluidity of the resin composition is increased. be able to.

シリカ超微粒子(Y)の粒径が過剰に均一に揃っていると、樹脂組成物における充填効率が低下する。そのため、樹脂と超微粒子が一体化した混合部分の粘度が高くなり、流動性を低下させてしまうため、シリカ超微粒子(Y)の粒度分布の範囲は、ある程度広いことが望ましい。具体的に、シリカ超微粒子(Y)の粒度分布は、粒度分布の両端である30nm〜50nmの範囲および300nm〜500nmの範囲にある粒子の個数割合が0.5〜10%となるような、広い粒度分布であることが望ましい。   When the particle diameters of the ultrafine silica particles (Y) are excessively uniform, the filling efficiency in the resin composition is lowered. For this reason, the viscosity of the mixed portion where the resin and the ultrafine particles are integrated is increased and the fluidity is lowered. Therefore, it is desirable that the range of the particle size distribution of the silica ultrafine particles (Y) is somewhat wide. Specifically, the particle size distribution of the silica ultrafine particles (Y) is such that the number ratio of particles in the range of 30 nm to 50 nm and the range of 300 nm to 500 nm which are both ends of the particle size distribution is 0.5 to 10%. A wide particle size distribution is desirable.

粒径50nm〜300nmの範囲に粒度分布の極大値をもつシリカ超微粒子(Y)の粒径は、一般的な赤色レーザーを用いたレーザー回折散乱法などの方法では測定できない。そこで超微粒子(Y)の粒度分布は、電気移動度分級装置(DMA)により超微粒子を分級し、分級された粒子の数を凝縮粒子カウンターで計測する方法により求める。具体的な測定手順は、まず超微粒子を水などの溶媒中に均一分散させ;この分散液をアトマイザーで飛散させ;気流中で粒子を乾燥、帯電させて捕集する。粒子の帯電量は、粒子サイズによって異なるため、捕集器の電圧を変えて捕集することにより、粒子を分級することができる。捕集した粒子数を粒子カウンターで計測して、粒度分布を求める。この方法により、超微粒子を単一粒子に分散して粒径を測定できるため、正確な粒度分布を測定することが可能である。   The particle size of the ultrafine silica particles (Y) having the maximum particle size distribution in the particle size range of 50 nm to 300 nm cannot be measured by a method such as a general laser diffraction scattering method using a red laser. Therefore, the particle size distribution of the ultrafine particles (Y) is obtained by a method of classifying the ultrafine particles with an electric mobility classifier (DMA) and measuring the number of classified particles with a condensed particle counter. Specifically, ultrafine particles are first uniformly dispersed in a solvent such as water; the dispersion is scattered with an atomizer; the particles are dried and charged in an air stream and collected. Since the charge amount of the particles varies depending on the particle size, the particles can be classified by collecting by changing the voltage of the collector. The number of collected particles is measured with a particle counter to determine the particle size distribution. By this method, it is possible to measure the particle size by dispersing ultrafine particles into a single particle, and therefore it is possible to measure an accurate particle size distribution.

シリカ超微粒子(Y)の粒度分布は、電気移動度分級装置による測定方法以外に、従来の赤外レーザーの代わりに短波長の青色LED等を用いた回折散乱式粒度分布測定方法によって測定することも可能である。レーザー回折散乱法で測定する場合には、超微粒子を溶媒中で均一に分離・分散させることが重要である。500nm以下の超微粒子は凝集性が高く溶媒中で分散させにくいが、十分に分散されていないと、凝集粒子の粒径を単一粒子の粒径として測定してしまうため、正確な粒度分布を測定することができない。凝集粒子を完全に分散させるために、ヘキサメタリン酸塩等の分散剤を使用して、かつ超音波照射を十分に行い、正確な粒度分布を測定する必要がある。   The particle size distribution of the ultrafine silica particles (Y) should be measured by a diffraction scattering type particle size distribution measurement method using a short-wavelength blue LED or the like instead of the conventional infrared laser, in addition to the measurement method using an electric mobility classifier. Is also possible. When measuring by the laser diffraction scattering method, it is important to uniformly separate and disperse ultrafine particles in a solvent. Ultrafine particles of 500 nm or less have high agglomeration properties and are difficult to disperse in a solvent. However, if they are not sufficiently dispersed, the particle size of the agglomerated particles is measured as the particle size of a single particle. It cannot be measured. In order to completely disperse the agglomerated particles, it is necessary to use a dispersant such as hexametaphosphate and sufficiently perform ultrasonic irradiation to measure an accurate particle size distribution.

また、シリカ超微粒子(Y)の粒度分布は、高分解能走査型電子顕微鏡や透過型電子顕微鏡を用いた直接観察により、粒径および個数を計測して測定することもできる。この方法を用いる場合には、正確に粒度分布を測定するために、測定する粒子の個数を100個以上、望ましくは500個以上とする。   The particle size distribution of the ultrafine silica particles (Y) can also be measured by measuring the particle size and number by direct observation using a high-resolution scanning electron microscope or transmission electron microscope. When this method is used, in order to accurately measure the particle size distribution, the number of particles to be measured is 100 or more, preferably 500 or more.

本発明のシリカ粒子におけるシリカ超微粒子(Y)の含有割合は、以下の方法でシリカ粒子からシリカ超微粒子(Y)を分離して求める。まず本発明のシリカ粒子を水中で超音波照射して、シリカ超微粒子(Y)と他の粒子とを分離して、かつ分散させる。分散液を一定時間静置した後、上澄みに残った超微粒子と、沈降した他の粒子とを分離回収し、それぞれ乾燥する。乾燥後の、上澄みに残った超微粒子の重量を測定して、超微粒子(Y)の量とする。この分離方法は、粒子の水中での沈降速度が、粒径によって異なる性質を利用している。粒子の沈降速度(v)は、以下のStokesの式により計算することができる。   The content ratio of the ultrafine silica particles (Y) in the silica particles of the present invention is determined by separating the ultrafine silica particles (Y) from the silica particles by the following method. First, the silica particles of the present invention are irradiated with ultrasonic waves in water to separate and disperse the ultrafine silica particles (Y) and other particles. After allowing the dispersion to stand for a certain period of time, the ultrafine particles remaining in the supernatant and the other particles that have settled are separated and recovered, and each is dried. The weight of the ultrafine particles remaining in the supernatant after drying is measured to obtain the amount of ultrafine particles (Y). This separation method utilizes the property that the sedimentation rate of particles in water varies depending on the particle size. The sedimentation velocity (v) of the particles can be calculated by the following Stokes equation.

Figure 0005632940
ただし、ρs:固体粒子の密度、ρ:水の密度、η:水の粘度、g:重力の加速度、d:ストークス径
Figure 0005632940
Where ρs: density of solid particles, ρ: density of water, η: viscosity of water, g: acceleration of gravity, d: Stokes diameter

この式から、粒径500nm以下のシリカ超微粒子は、水中に24時間静置しても、ほとんど沈降せず上澄みに残ることがわかる。そのため前述の通り、粒径500nm以下のシリカ超微粒子が残っている上澄みと、粒径500nmより大きい沈降したシリカ粒子を分離回収することができる。具体的には、粒径500nmのシリカ超微粒子の沈降距離は、24時間で16mmと計算される。そこで、シリカ超微粒子を含むシリカ粒子と水の混合物を、容器の16.8mmの深さにまで入れて24時間静置すると、超微粒子の95%以上が上澄みに残る。上澄みに残った粒子の乾燥重量を測定することで、シリカ粒子中の粒径500nm以下の超微粒子の量を求めることができる。   From this formula, it can be seen that the ultrafine silica particles having a particle size of 500 nm or less are hardly settled and remain in the supernatant even when left in water for 24 hours. Therefore, as described above, the supernatant in which ultrafine silica particles having a particle diameter of 500 nm or less remain and the precipitated silica particles having a particle diameter of more than 500 nm can be separated and recovered. Specifically, the sedimentation distance of ultrafine silica particles having a particle size of 500 nm is calculated to be 16 mm in 24 hours. Therefore, when a mixture of silica particles containing silica ultrafine particles and water is put to a depth of 16.8 mm in the container and allowed to stand for 24 hours, 95% or more of the ultrafine particles remain in the supernatant. By measuring the dry weight of the particles remaining in the supernatant, the amount of ultrafine particles having a particle size of 500 nm or less in the silica particles can be determined.

この測定手法により求めたシリカ超微粒子(Y)の含有割合と、電気移動度分級および粒子カウンター計測により求めたシリカ超微粒子(Y)の粒度分布から、本発明のシリカ粒子に含まれるシリカ超微粒子(Y)の状態を確認することができる。   From the content ratio of the ultrafine silica particles (Y) obtained by this measuring method and the particle size distribution of the ultrafine silica particles (Y) obtained by electromobility classification and particle counter measurement, the ultrafine silica particles contained in the silica particles of the present invention are used. The state of (Y) can be confirmed.

また、粒径50nm〜300nmの範囲に粒度分布の極大値をもつシリカ超微粒子(Y)は、球状粒子であることが望ましい。球状の超微粒子は、不定形の超微粒子と比べて樹脂と混合しやすいため、樹脂中に均一に分散することが可能である。また、球状の超微粒子を混合した樹脂の粘性は低く抑えることができ、流動性の高い樹脂混合物を得ることができる。   Moreover, it is desirable that the ultrafine silica particles (Y) having the maximum value of the particle size distribution in the particle size range of 50 nm to 300 nm are spherical particles. Since spherical ultrafine particles are easier to mix with the resin than amorphous ultrafine particles, they can be uniformly dispersed in the resin. Further, the viscosity of the resin mixed with spherical ultrafine particles can be kept low, and a resin mixture with high fluidity can be obtained.

シリカ超微粒子(Y)は、その製造方法は特に限定されるものではないが、例えば溶射法によれば低コストで製造可能である。封止材用の樹脂組成物等に用いられる球状シリカ粒子は、シリカ原料を2000℃以上の高温で溶射する方法により製造されうる。2000℃以上の高温でシリカ原料を溶射するとシリカの一部が蒸発し、かつ蒸発したシリカが冷却されて凝固し、50nm〜300nmの範囲に極大値をもつシリカ超微粒子(Y)が得られる。得られるシリカ超微粒子の量は、シリカ原料となるシリカ粒子の粒径や、溶射温度等の溶射条件により変化するが、他の超微粒子の製造方法に比べて安価な原料から製造可能であり、低コストで超微粒子を得ることができる。   The production method of the ultrafine silica particles (Y) is not particularly limited, but can be produced at a low cost by, for example, a thermal spraying method. The spherical silica particles used in the resin composition for a sealing material can be produced by a method in which a silica raw material is sprayed at a high temperature of 2000 ° C. or higher. When the silica raw material is sprayed at a high temperature of 2000 ° C. or higher, a part of the silica evaporates, and the evaporated silica is cooled and solidified to obtain ultrafine silica particles (Y) having a maximum value in the range of 50 nm to 300 nm. The amount of silica ultrafine particles obtained varies depending on the particle size of the silica particles used as the silica raw material and the spraying conditions such as the spraying temperature, but can be manufactured from an inexpensive raw material compared to other ultrafine particle manufacturing methods, Ultrafine particles can be obtained at low cost.

溶射法により得られるシリカ超微粒子は、バグフィルターなどを用いて捕集する。所望の粒径とは異なる粒径のシリカ粒子も含まれているため、超微粒子を分級して捕集することが望ましい。分級方法としては、風力分級、水ひ分級などを用いることができる。生産性、コストの点から風力分級を用いることが望ましい。   Silica ultrafine particles obtained by the thermal spraying method are collected using a bag filter or the like. Since silica particles having a particle size different from the desired particle size are also included, it is desirable to classify and collect ultrafine particles. As a classification method, an air classification, a water tank classification, or the like can be used. It is desirable to use air classification from the viewpoint of productivity and cost.

本発明のシリカ粒子は、粒径50nm〜300nmの範囲に粒度分布の極大値をもつシリカ超微粒子(Y)とともに;粒径範囲500nm〜75μmのシリカ粒子(X)を含む。シリカ粒子(X)は、粒径15μm〜70μmの範囲に粒度分布の極大値をもつシリカ粒子(本発明において「シリカ粒子(X1)」と称する)と、粒径2μm〜10μmの範囲に粒度分布の極大値をもつシリカ粒子(本発明において「シリカ粒子(X2)」と称する)とを含むことが好ましく、それにより樹脂の高い流動性を得ることが可能となる。つまり、粒径15〜70μmの範囲に粒度分布の極大値をもつシリカ粒子(X1)同士の間隙に、粒径2〜10μmの範囲に粒度分布の極大値をもつシリカ粒子(X2)が配置されるので、樹脂組成物におけるシリカの充填率を上げても、シリカ粒子同士の接触による流動性の低下を抑制することができる。そのため、高充填率で流動性の高い樹脂混合物を得ることが可能となる。   The silica particles of the present invention include silica ultrafine particles (Y) having a maximum value of the particle size distribution in a particle size range of 50 nm to 300 nm; and silica particles (X) having a particle size range of 500 nm to 75 μm. The silica particles (X) are silica particles having a maximum particle size distribution in the range of 15 μm to 70 μm (referred to as “silica particles (X1)” in the present invention) and particle size distribution in the range of 2 μm to 10 μm. It is preferable to include silica particles having a maximum value of (referred to as “silica particles (X2)” in the present invention), whereby high fluidity of the resin can be obtained. That is, the silica particles (X2) having the maximum value of the particle size distribution in the range of 2 to 10 μm are arranged in the gap between the silica particles (X1) having the maximum value of the particle size distribution in the range of 15 to 70 μm. Therefore, even if the filling rate of the silica in the resin composition is increased, a decrease in fluidity due to contact between the silica particles can be suppressed. Therefore, it becomes possible to obtain a resin mixture having a high filling rate and high fluidity.

また、シリカ粒子(X1)およびシリカ粒子(X2)は、いずれも球状であることが望ましく;それにより、樹脂の流動性をより高くすることができる。   Moreover, it is desirable that both the silica particles (X1) and the silica particles (X2) are spherical; thereby, the fluidity of the resin can be further increased.

前記の通り本発明のシリカ粒子は、粒径15μm〜70μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X1)を含有することが望ましい。粒径15μm未満に粒度分布の極大値をもつ球状シリカ粒子は、粒径が小さすぎるために樹脂と混合したときに粒子同士の接触が多くなり、樹脂組成物の流動性を低下させてしまう。また、粒径70μm超に粒度分布の極大値をもつ球状シリカ粒子を含む樹脂組成物を、半導体封止材として用いると、半導体素子の狭小部に樹脂組成物が侵入しにくくなるとともに、ボンディングワイヤ間を通過する際にワイヤに接触して、ワイヤを屈曲させる原因となる。   As described above, it is desirable that the silica particles of the present invention contain spherical silica particles (X1) having a maximum value of the particle size distribution in a particle size range of 15 μm to 70 μm. Since spherical silica particles having a maximum value of particle size distribution with a particle size of less than 15 μm are too small in size, the particles are brought into contact with each other when mixed with a resin, and the fluidity of the resin composition is lowered. Moreover, when a resin composition containing spherical silica particles having a particle size distribution exceeding 70 μm and having a maximum particle size distribution is used as a semiconductor sealing material, the resin composition is less likely to enter a narrow portion of a semiconductor element, and a bonding wire When passing between them, the wire comes into contact with the wire and causes the wire to bend.

また、前記の通り本発明のシリカ粒子は、粒径が2μm〜10μmに粒度分布の極大値をもつ球状シリカ粒子(X2)を含有することが望ましい。粒径2μm未満に粒度分布の極大値をもつ球状シリカ粒子は、粒径が小さすぎるために、充填率を上げるために添加する粒子の個数を多くする必要がある。粒子の個数を過剰に多くすると、粒子同士の接触が起こりやすくなるので、樹脂と混合した際に樹脂組成物の流動性を低下させてしまう。粒径2μm〜10μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X2)が、粒径15μm〜70μmの範囲粒度分布の極大値をもつ球状シリカ粒子(X1)同士の間隙に位置することにより、充填率を上げることが可能となる。しかし、粒径10μm超に粒度分布の極大値をもつ球状シリカ粒子は、球状シリカ粒子(X1)同士の間隙に対して粒径が大きすぎるため、球状シリカ粒子(X1)同士の間隙に位置したときに他の粒子と接触してしまい、高充填としたときに樹脂組成物の流動性低下の原因となる。   Further, as described above, the silica particles of the present invention preferably contain spherical silica particles (X2) having a maximum particle size distribution in a particle size of 2 μm to 10 μm. The spherical silica particles having a maximum value of the particle size distribution with a particle size of less than 2 μm are too small in size, so that it is necessary to increase the number of particles to be added in order to increase the filling rate. If the number of particles is excessively large, contact between the particles tends to occur, so that the fluidity of the resin composition is lowered when mixed with the resin. Spherical silica particles (X2) having a maximum value of the particle size distribution in the particle size range of 2 μm to 10 μm are positioned in the gap between the spherical silica particles (X1) having the maximum value of the particle size distribution in the range of particle size of 15 μm to 70 μm. As a result, the filling rate can be increased. However, the spherical silica particles having the maximum value of the particle size distribution exceeding the particle diameter of 10 μm are located in the gap between the spherical silica particles (X1) because the particle diameter is too large with respect to the gap between the spherical silica particles (X1). Sometimes it comes into contact with other particles and causes a decrease in the fluidity of the resin composition when it is highly filled.

粒径2μm〜10μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X2)の粒径は、粒径15μm〜70μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X1)の粒径に対して、1/2以下であることが更に望ましい。前記比率が1/2より大きいと、球状シリカ粒子(X1)同士の間隙に対して、球状シリカ粒子(X2)の粒径が大きく、粒子同士の接触が生じて流動性を低下させてしまう。球状シリカ粒子(X1)および(X2)の粒径とは、それぞれの粒度分布の極大値に対応する粒径をいう。   The particle size of the spherical silica particles (X2) having the maximum value of the particle size distribution in the range of 2 μm to 10 μm is the particle size of the spherical silica particles (X1) having the maximum value of the particle size distribution in the range of 15 μm to 70 μm. On the other hand, it is more desirable to be 1/2 or less. When the ratio is larger than ½, the spherical silica particles (X2) have a large particle size with respect to the gap between the spherical silica particles (X1), and the particles are brought into contact with each other, thereby reducing fluidity. The particle size of the spherical silica particles (X1) and (X2) refers to the particle size corresponding to the maximum value of each particle size distribution.

本発明のシリカ粒子の0.5〜10質量%が、粒径50nm〜300nmの範囲に粒度分布の極大値をもつシリカ超微粒子(Y)であり;本発明のシリカ粒子の90質量%以上が、球状シリカ粒子(X1)と球状シリカ粒子(X2)とを含むシリカ粒子(X)とする。それにより本発明のシリカ粒子は、樹脂中に高充填されても樹脂組成物の高流動性を損なわないフィラーとなる。   0.5 to 10% by mass of the silica particles of the present invention is ultrafine silica particles (Y) having a maximum value of the particle size distribution in the particle size range of 50 to 300 nm; 90% by mass or more of the silica particles of the present invention And silica particles (X) containing spherical silica particles (X1) and spherical silica particles (X2). Thereby, the silica particles of the present invention become a filler that does not impair the high fluidity of the resin composition even when highly filled in the resin.

粒径50nm〜300nmに極大値をもつシリカ超微粒子(Y)とともに、本発明のシリカ粒子に含まれるシリカ粒子(X)は、球状シリカ粒子(X1)と、球状シリカ粒子(X2)と、さらに粒径0.5μm〜1μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(本発明において「シリカ粒子(X3)」と称する)を含んでいてもよい。それにより、本発明のシリカ粒子は、樹脂組成物により高い流動性を付与することができる。また、球状シリカ粒子(X3)を添加した本発明のシリカ粒子を含む樹脂組成物を用いて半導体封止をすると、金型の隙間で発生するバリを低減する効果も得られる。   The silica particles (X) contained in the silica particles of the present invention together with the silica ultrafine particles (Y) having a maximum value in the particle size of 50 nm to 300 nm are spherical silica particles (X1), spherical silica particles (X2), and Spherical silica particles having a maximum particle size distribution in the range of 0.5 μm to 1 μm (referred to as “silica particles (X3)” in the present invention) may be included. Thereby, the silica particle of this invention can provide high fluidity | liquidity with a resin composition. Moreover, when the semiconductor sealing is performed using the resin composition containing the silica particles of the present invention to which the spherical silica particles (X3) are added, an effect of reducing burrs generated in the gaps in the mold can be obtained.

球状シリカ粒子(X3)は、粒径15μm〜70μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X1)と、粒径2μm〜10μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X2)との間隙に位置することで、同種の粒子同士の接触を抑制する。それにより、本発明のシリカ粒子を含む樹脂組成物は、高流動性が得られる。   The spherical silica particles (X3) are spherical silica particles (X1) having a maximum particle size distribution in a particle size range of 15 μm to 70 μm, and spherical silica particles (X1) having a maximum particle size distribution in a particle size range of 2 μm to 10 μm ( Positioning in the gap with X2) suppresses contact between the same kind of particles. Thereby, the resin composition containing the silica particles of the present invention has high fluidity.

粒径0.5μm未満に粒度分布の極大値をもつシリカ粒子は、粒径50nm〜300nmの範囲に粒度分布の極大値をもつシリカ超微粒子(Y)とともに、樹脂と一体化して流動する。そのため、球状シリカ粒子(X1)と球状シリカ粒子(X2)との間隙に位置して粒子充填率を高めるという利点が得られず、また樹脂組成物の粘度を上昇させて高流動性が得られない。また、粒径1μm超に粒度分布の極大値をもつシリカ粒子は、球状シリカ粒子(X1)と球状シリカ粒子(X2)との間隙に対して大きいため、粒子同士の接触が起こりやすくなり、流動性が低下してしまうとともに、バリを低減する効果も十分に得ることができない。   Silica particles having a maximum value of the particle size distribution with a particle size of less than 0.5 μm flow together with the silica ultrafine particles (Y) having a maximum value of the particle size distribution in the particle size range of 50 nm to 300 nm in an integrated manner with the resin. For this reason, the advantage of increasing the particle filling rate by being located in the gap between the spherical silica particles (X1) and the spherical silica particles (X2) cannot be obtained, and the viscosity of the resin composition is increased to obtain high fluidity. Absent. In addition, silica particles having a particle size distribution maximum value exceeding 1 μm are large with respect to the gap between the spherical silica particles (X1) and the spherical silica particles (X2). As a result, the effect of reducing burrs cannot be obtained sufficiently.

本発明のシリカ粒子は、フィラーとして樹脂組成物に含有されてもよい。樹脂組成物を封止材として用いる場合、樹脂はo'−クレゾールノボラック樹脂、ビフェニル樹脂などを用いることができるが、樹脂の種類は特にこれらに限定されるものではない。   The silica particles of the present invention may be contained in the resin composition as a filler. When using a resin composition as a sealing material, o'-cresol novolak resin, biphenyl resin, etc. can be used for resin, However, The kind of resin is not specifically limited to these.

本発明のシリカ粒子の、樹脂組成物における含有量は、50質量%〜96質量%であることが好ましい。シリカ粒子の含有量が50質量%より少ない樹脂組成物は、例えば封止材として使用する際、熱伝導性、強度、熱膨張率等の、フィラーとしてのシリカ粒子に求められる特性が十分に得られない。一方、シリカ粒子の含有量が96質量%より多くなると、シリカ粒子同士が接触してしまうために、著しく流動性が低下してしまう。   The content of the silica particles of the present invention in the resin composition is preferably 50% by mass to 96% by mass. When the resin composition having a silica particle content of less than 50% by mass is used as, for example, a sealing material, the characteristics required for silica particles as a filler, such as thermal conductivity, strength, and coefficient of thermal expansion, are sufficiently obtained. I can't. On the other hand, when the content of the silica particles exceeds 96% by mass, the silica particles come into contact with each other, so that the fluidity is remarkably lowered.

さらに、樹脂組成物におけるシリカ超微粒子(Y)の含有量も重要である。具体的に、本発明のシリカ粒子に含まれるシリカ超微粒子(Y)の、樹脂組成物における含有量は、樹脂に対して2〜30体積%であることが好ましい。前述したように、シリカ超微粒子(Y)は樹脂と一体となって流動することができる。シリカ超微粒子(Y)の樹脂に対する含有量が2体積%より少ないと、シリカ粒子の充填率を上げるために、他の粒径のシリカ粒子(例えば、シリカ粒子(X))の添加量を上げなければいけないため、シリカ粒子の充填率を上げた樹脂組成物に高い流動性を付与することができない。一方、シリカ超微粒子(Y)の樹脂に対する含有量が30体積%より多いと、樹脂との混合により急激に樹脂組成物の粘度が上昇するために、流動性が著しく低下してしまう   Furthermore, the content of the ultrafine silica particles (Y) in the resin composition is also important. Specifically, the content of the silica ultrafine particles (Y) contained in the silica particles of the present invention in the resin composition is preferably 2 to 30% by volume with respect to the resin. As described above, the silica ultrafine particles (Y) can flow together with the resin. When the content of the ultrafine silica particles (Y) with respect to the resin is less than 2% by volume, the addition amount of silica particles having other particle sizes (for example, silica particles (X)) is increased in order to increase the packing rate of the silica particles. Therefore, high fluidity cannot be imparted to the resin composition having an increased packing rate of silica particles. On the other hand, when the content of the ultrafine silica particles (Y) with respect to the resin is more than 30% by volume, the viscosity of the resin composition is rapidly increased by mixing with the resin, so that the fluidity is remarkably lowered.

樹脂組成物における樹脂に対するシリカ超微粒子(Y)の含有量(体積%)は、「シリカ超微粒子(Y)の体積/(シリカ超微粒子(Y)の体積+樹脂の体積)」で求めればよい。シリカ超微粒子(Y)の含有量(体積%)は、樹脂と超微粒子(Y)が一体化した混合物とみなし、この混合物中の超微粒子(Y)の体積%を規定したものである。具体的には、樹脂組成物全体に対する樹脂の質量%およびシリカ超微粒子(Y)の質量%と、それぞれの比重から算出することができる。   The content (volume%) of the silica ultrafine particles (Y) with respect to the resin in the resin composition may be determined by “volume of silica ultrafine particles (Y) / (volume of silica ultrafine particles (Y) + resin volume)”. . The content (volume%) of the silica ultrafine particles (Y) is regarded as a mixture in which the resin and the ultrafine particles (Y) are integrated, and defines the volume% of the ultrafine particles (Y) in the mixture. Specifically, it can be calculated from the mass% of the resin and the mass% of the ultrafine silica particles (Y) with respect to the entire resin composition and the specific gravity thereof.

以上述べたように、本発明のシリカ粒子は、樹脂組成物に高流動性を付与するフィラーとして用いることができる。つまり、本発明のシリカ粒子を樹脂と混合することにより、高流動性、高熱伝導率、低熱膨張率の樹脂混合物を得ることが可能となる。   As described above, the silica particles of the present invention can be used as a filler that imparts high fluidity to the resin composition. That is, by mixing the silica particles of the present invention with a resin, it becomes possible to obtain a resin mixture having high fluidity, high thermal conductivity, and low thermal expansion coefficient.

以下に、本発明の実施例および比較例を示す。本発明の範囲は、これらの実施例または比較例によって限定して解釈されることはない。   Examples of the present invention and comparative examples are shown below. The scope of the present invention is not construed as being limited by these Examples or Comparative Examples.

(実施例1)
表1に示すサンプルNo.1〜9の樹脂組成物を得た。
まず、粒度分布の極大値が30μmである球状シリカ粒子Aと、粒度分布の極大値が9μmである球状シリカ粒子Bと、粒度分布の極大値が0.8μmである球状シリカ粒子Cと、粒度分布の極大値が150nmの不定形シリカ超微粒子Dとを、表1に示す割合で混合してシリカ粒子を得た。
Example 1
Sample No. shown in Table 1 1-9 resin compositions were obtained.
First, spherical silica particles A having a maximum particle size distribution of 30 μm, spherical silica particles B having a maximum particle size distribution of 9 μm, spherical silica particles C having a maximum particle size distribution of 0.8 μm, Silica particles were obtained by mixing amorphous silica ultrafine particles D having a distribution maximum of 150 nm at the ratio shown in Table 1.

次に、o’−クレゾールノボラック樹脂に対して、硬化剤(ノボラックフェノール樹脂)32.5質量%、硬化促進剤(トリフェニルホスフィン)1.3質量%、カルナバワックス1.3質量%、カーボンブラック0.3質量%を加えた樹脂混合物に、前記シリカ粒子を混合して、シリカ粒子の充填率を85質量%として、サンプルNo.1〜9の樹脂組成物を得た。   Next, with respect to o′-cresol novolac resin, 32.5% by mass of a curing agent (novolak phenol resin), 1.3% by mass of a curing accelerator (triphenylphosphine), 1.3% by mass of carnauba wax, carbon black The silica particles were mixed with the resin mixture to which 0.3% by mass was added, so that the packing rate of the silica particles was 85% by mass. 1-9 resin compositions were obtained.

樹脂に対する超微粒子Dの含有量(体積%)は、樹脂組成物における樹脂の質量%(15質量%)と樹脂の比重とから樹脂の体積を算出し;一方、樹脂組成物における超微粒子Dの質量%(「シリカ粒子における超微粒子Dの質量%×0.85」である)と、シリカの比重とから超微粒子Dの体積を算出した。算出した体積から、樹脂に対する超微粒子Dの含有量(体積%)を求めた(表1)。   The content (volume%) of the ultrafine particles D with respect to the resin is calculated by calculating the volume of the resin from the mass% (15 mass%) of the resin in the resin composition and the specific gravity of the resin; The volume of the ultrafine particles D was calculated from mass% (“mass% of ultrafine particles D in silica particles × 0.85”) and the specific gravity of silica. From the calculated volume, the content (volume%) of the ultrafine particles D relative to the resin was determined (Table 1).

サンプルNo.1〜9の樹脂組成物をそれぞれ、二軸押出混練機で100℃の温度で加熱して溶融させながら混練した。得られた混練物を冷却ロールで圧延、冷却した後、粉砕して樹脂材料を得た。得られた樹脂材料のスパイラルフロー値を測定し、流動性を評価した結果を表1に示す。スパイラルフロー値は、EIMS(電気機能材料工業会規格)T−901に準拠したスパイラルフロー測定用金型を取り付けたトランスファー成形機を用いて、温度175℃、成形圧力6.9MPa、保圧時間180秒の条件で測定した。   Sample No. Each of the resin compositions 1 to 9 was kneaded while being heated and melted at a temperature of 100 ° C. with a twin-screw extrusion kneader. The obtained kneaded product was rolled with a cooling roll, cooled, and then pulverized to obtain a resin material. Table 1 shows the results of measuring the spiral flow value of the obtained resin material and evaluating the fluidity. The spiral flow value was measured at a temperature of 175 ° C., a molding pressure of 6.9 MPa, and a pressure holding time of 180 using a transfer molding machine equipped with a spiral flow measurement mold in accordance with EIMS (Electrical Functional Materials Association) T-901. The measurement was performed under the condition of seconds.

表1に示されるように、シリカ粒子全体における不定形シリカ超微粒子Dの含有量が、0.5〜10質量%の範囲内にある実施例(サンプルNo.1,2,5および6)では、スパイラルフロー値が95cm以上であり、高い流動性が得られた。一方、シリカ粒子全体における超微粒子Dの含有量が10質量%を超えるか、あるいは超微粒子Dを含まない比較例(サンプルNo.3,4,7,8および9)では、実施例に比べて相対的に流動性が低かった。   As shown in Table 1, in Examples (Sample Nos. 1, 2, 5, and 6) in which the content of the amorphous silica ultrafine particles D in the entire silica particles is in the range of 0.5 to 10% by mass. The spiral flow value was 95 cm or more, and high fluidity was obtained. On the other hand, in the comparative examples (sample Nos. 3, 4, 7, 8 and 9) in which the content of the ultrafine particles D in the entire silica particles exceeds 10% by mass or does not contain the ultrafine particles D, compared to the examples. The liquidity was relatively low.

また、粒度分布の極大値が0.8μmの球状シリカ粒子Cを含む例(サンプルNo.5〜9)では、球状シリカ粒子Cを含まない例(サンプルNo.1〜4)と比較して流動性が高い。特に、サンプルNo.5および6では、適当量のシリカ超微粒子Dを含み、かつ球状シリカ粒子Cを含むため、極めて高い流動性が得られた。   Moreover, in the example (sample Nos. 5 to 9) including the spherical silica particles C having a maximum value of the particle size distribution of 0.8 μm, the flow is compared with the examples not including the spherical silica particles C (samples No. 1 to 4). High nature. In particular, sample no. In Nos. 5 and 6, since an appropriate amount of silica ultrafine particles D and spherical silica particles C were contained, extremely high fluidity was obtained.

さらに表中に示されてはいないが、粒度分布の極大値が150nmの不定形シリカ超微粒子Dの代わりに、粒度分布の極大値が40nmの不定形シリカ超微粒子を用いたこと以外は、サンプルNo.1およびサンプルNo.2と同様の樹脂組成物を製造し、スパイラルフロー値を求めた。それぞれのスパイラルフロー値は87cm、65cmとなり、サンプルNo.1およびサンプルNo.2と比較して、著しく流動性が低下した。   Further, although not shown in the table, a sample other than the amorphous silica ultrafine particles having a maximum particle size distribution of 40 nm was used instead of the amorphous silica ultrafine particles D having a maximum particle size distribution of 150 nm. No. 1 and sample no. The resin composition similar to 2 was produced, and the spiral flow value was determined. The spiral flow values are 87 cm and 65 cm, respectively. 1 and sample no. Compared with 2, the fluidity was significantly reduced.

Figure 0005632940
Figure 0005632940

(実施例2)
表2に示すサンプルNo.10〜18の樹脂組成物を得た。
まず、粒度分布の極大値が30μmである球状シリカ粒子Aと、粒度分布の極大値が9μmである球状シリカ粒子Bと、粒度分布の極大値が0.8μmである球状シリカ粒子Cと、粒度分布の極大値が150nmの球状シリカ超微粒子D'を、表2に示す割合で混合してシリカ粒子を得た。
(Example 2)
Sample No. shown in Table 2 10-18 resin compositions were obtained.
First, spherical silica particles A having a maximum particle size distribution of 30 μm, spherical silica particles B having a maximum particle size distribution of 9 μm, spherical silica particles C having a maximum particle size distribution of 0.8 μm, Spherical silica ultrafine particles D ′ having a distribution maximum of 150 nm were mixed at a ratio shown in Table 2 to obtain silica particles.

次に、o'−クレゾールノボラック樹脂に対して、硬化剤(ノボラックフェノール樹脂)32.5質量%、硬化促進剤(トリフェニルホスフィン)1.3質量%、カルナバワックス1.3質量%、カーボンブラック0.3質量%を加えた樹脂混合物に、前記シリカ粒子を混合して、シリカ粒子の充填率を85質量%として、サンプルNo.10〜18の樹脂組成物を得た。   Next, with respect to o′-cresol novolac resin, 32.5% by mass of a curing agent (novolak phenol resin), 1.3% by mass of a curing accelerator (triphenylphosphine), 1.3% by mass of carnauba wax, carbon black The silica particles were mixed with the resin mixture to which 0.3% by mass was added, so that the packing rate of the silica particles was 85% by mass. 10-18 resin compositions were obtained.

サンプルNo.10〜18の樹脂組成物をそれぞれ、二軸押出混練機で100℃の温度で加熱して溶融させながら混練した。得られた混練物を冷却ロールで圧延、冷却した後、粉砕して樹脂材料を得た。得られた樹脂材料のスパイラルフロー値を測定し、流動性を評価した結果を表2に示す。スパイラルフロー値は、実施例1と同様の条件で測定した。   Sample No. Each of the 10-18 resin compositions was kneaded while being melted by heating at a temperature of 100 ° C. with a twin-screw extrusion kneader. The obtained kneaded product was rolled with a cooling roll, cooled, and then pulverized to obtain a resin material. Table 2 shows the results of measuring the spiral flow value of the obtained resin material and evaluating the fluidity. The spiral flow value was measured under the same conditions as in Example 1.

表2に示されるように、シリカ粒子全体における超微粒子D'の含有量が、0.5〜10質量%の範囲内にある実施例(サンプルNo.10,11,14および15)では、スパイラルフロー値が100cmを超え、高流動性が得られた。一方、シリカ粒子全体における超微粒子D'の含有量が10質量%を超えるか、あるいは超微粒子D'を含まない比較例(サンプルNo.12,13,16,17および18)では、実施例に比べて相対的に流動性が低かった。   As shown in Table 2, in Examples (Sample Nos. 10, 11, 14, and 15) in which the content of the ultrafine particles D ′ in the entire silica particles is in the range of 0.5 to 10% by mass, spiral The flow value exceeded 100 cm, and high fluidity was obtained. On the other hand, in the comparative examples (sample Nos. 12, 13, 16, 17 and 18) in which the content of the ultrafine particles D ′ in the entire silica particles exceeds 10% by mass or does not contain the ultrafine particles D ′, The liquidity was relatively low.

また、粒度分布の極大値が0.8μmの球状シリカ粒子Cを含む例(サンプルNo.14〜18)は、球状シリカ粒子Cを含まない例(サンプルNo.10〜13)と比較して流動性が高い。特に、サンプルNo14および15では、適当量のシリカ超微粒子D’を含み、かつシリカ粒子Cを含むため、極めて高い流動性が得られた。   Moreover, the example (sample No. 14-18) containing the spherical silica particle C whose maximum value of a particle size distribution is 0.8 micrometer flows compared with the example (sample No. 10-13) which does not contain the spherical silica particle C. High nature. In particular, Samples Nos. 14 and 15 contained an appropriate amount of silica ultrafine particles D ′ and contained silica particles C, and therefore extremely high fluidity was obtained.

Figure 0005632940
Figure 0005632940

(実施例3)
表3に示すサンプルNo.19〜26の樹脂組成物を得た。
まず、粒度分布の極大値が30μmである球状シリカ粒子Aと、粒度分布の極大値が9μmである球状シリカ粒子Bと、粒度分布の極大値が0.8μmである球状シリカ粒子Cと、粒度分布の極大値が150nmのシリカ超微粒子D''を、表3に示す割合で混合してシリカ粒子を得た。
Example 3
Sample No. shown in Table 3 19 to 26 resin compositions were obtained.
First, spherical silica particles A having a maximum particle size distribution of 30 μm, spherical silica particles B having a maximum particle size distribution of 9 μm, spherical silica particles C having a maximum particle size distribution of 0.8 μm, Silica ultrafine particles D ″ having a distribution maximum of 150 nm were mixed at a ratio shown in Table 3 to obtain silica particles.

次に、o'−クレゾールノボラック樹脂に対して、硬化剤(ノボラックフェノール樹脂)34.1質量%、硬化促進剤(トリフェニルホスフィン)1.3質量%、カルナバワックス1.3質量%、カーボンブラック0.3質量%を加えた樹脂混合物に、前記シリカ粒子を混合して、シリカ粒子の充填率を90質量%として、サンプルNo.19〜26の樹脂組成物を得た。   Next, 34.1% by mass of a curing agent (novolak phenol resin), 1.3% by mass of a curing accelerator (triphenylphosphine), 1.3% by mass of carnauba wax, carbon black with respect to o′-cresol novolac resin. The silica particles were mixed with the resin mixture to which 0.3% by mass was added, so that the packing rate of the silica particles was 90% by mass. 19 to 26 resin compositions were obtained.

サンプルNo.19〜26の樹脂組成物をそれぞれ、実施例1と同様の方法で混合、冷却、粉砕して樹脂材料を得た。得られた樹脂材料のスパイラルフロー値を実施例1と同様の方法で測定した結果を表3に示す。   Sample No. The resin compositions 19 to 26 were mixed, cooled and ground in the same manner as in Example 1 to obtain resin materials. Table 3 shows the result of measuring the spiral flow value of the obtained resin material by the same method as in Example 1.

表3に示されるように、実施例1および2の場合と同様に、シリカ粒子全体における超微粒子D’’の含有量が、0.5〜10質量%の範囲内にある実施例(サンプルNo.19,20,23および24)では、いずれもスパイラルフロー値が110cmを超え、高流動性が得られた。一方、シリカ粒子全体における超微粒子D’’の含有量が10質量%を超えるか、あるいは超微粒子D'を含まない比較例(サンプルNo.21,22,25,26)では、実施例に比べて流動性が低い。   As shown in Table 3, in the same manner as in Examples 1 and 2, an example (sample No.) in which the content of ultrafine particles D ″ in the entire silica particles is in the range of 0.5 to 10% by mass. 19, 20, 23 and 24), the spiral flow value exceeded 110 cm, and high fluidity was obtained. On the other hand, in the comparative example (sample No. 21, 22, 25, 26) in which the content of the ultrafine particles D ″ in the entire silica particles exceeds 10% by mass or does not contain the ultrafine particles D ′, compared to the examples. The fluidity is low.

Figure 0005632940
Figure 0005632940

本発明のシリカ粒子は、樹脂組成物に高充填率に添加されても、樹脂組成物の流動性を低下させにくい。よって本発明のシリカ粒子を含む樹脂組成物は、高熱伝導性、高強度、低熱膨張率を有し、半導体封止用などの樹脂組成物として有効に用いられる。
Even if the silica particles of the present invention are added to the resin composition at a high filling rate, it is difficult to lower the fluidity of the resin composition. Therefore, the resin composition containing the silica particles of the present invention has high thermal conductivity, high strength, and low coefficient of thermal expansion, and is effectively used as a resin composition for semiconductor encapsulation.

Claims (3)

粒径範囲500nm〜75μmのシリカ粒子(X)を90質量%以上含有し、かつ
粒径50nm〜300nmの範囲に粒度分布の極大値をもち、かつその95質量%以上が粒径範囲30nm〜500nmのシリカ超微粒子(Y)を0.5〜10質量%含有し、
前記シリカ粒子(X)が、粒径15μm〜70μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X1)と、粒径2μm〜10μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X2)とを含有し、
前記シリカ粒子(X)が、粒径500nm超〜1μmの範囲に粒度分布の極大値をもつ球状シリカ粒子(X3)をさらに含有し、
前記シリカ超微粒子(Y)における、30nm〜50nmの範囲および300nm〜500nmの範囲にある粒子の個数割合が0.5〜10%であることを特徴とするシリカ粒子。
90% by mass or more of silica particles (X) having a particle size range of 500 nm to 75 μm, a maximum value of the particle size distribution in the particle size range of 50 nm to 300 nm, and 95% by mass or more of the particle size range of 30 nm to 500 nm 0.5 to 10% by mass of silica ultrafine particles (Y)
The silica particles (X) are spherical silica particles (X1) having a maximum particle size distribution in a particle size range of 15 μm to 70 μm, and spherical silica particles (X1) having a maximum particle size distribution in a particle size range of 2 μm to 10 μm ( X2) and
The silica particles (X) further contain spherical silica particles (X3) having a maximum value of the particle size distribution in a particle size range of more than 500 nm to 1 μm,
The silica particles, wherein the number ratio of the particles in the range of 30 nm to 50 nm and the range of 300 nm to 500 nm in the silica ultrafine particles (Y) is 0.5 to 10%.
前記シリカ超微粒子(Y)の粒子の形状が球状であることを特徴とする、請求項1に記載のシリカ粒子。   The silica particles according to claim 1, wherein the silica ultrafine particles (Y) have a spherical shape. 請求項1または2に記載のシリカ粒子を、樹脂中に50〜96質量%混合して構成される樹脂組成物であって、かつ
前記シリカ超微粒子(Y)が、前記樹脂に対して2〜30体積%含まれることを特徴とする樹脂組成物。
It is a resin composition comprised by mixing 50-96 mass% of silica particles of Claim 1 or 2 in resin, and the said silica ultrafine particle (Y) is 2-2 with respect to the said resin. A resin composition comprising 30% by volume.
JP2013141213A 2013-07-05 2013-07-05 Silica particles and resin composition containing the same Active JP5632940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013141213A JP5632940B2 (en) 2013-07-05 2013-07-05 Silica particles and resin composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141213A JP5632940B2 (en) 2013-07-05 2013-07-05 Silica particles and resin composition containing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009127805A Division JP5551385B2 (en) 2009-05-27 2009-05-27 Silica particles and resin composition containing the same

Publications (2)

Publication Number Publication Date
JP2013209290A JP2013209290A (en) 2013-10-10
JP5632940B2 true JP5632940B2 (en) 2014-11-26

Family

ID=49527521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141213A Active JP5632940B2 (en) 2013-07-05 2013-07-05 Silica particles and resin composition containing the same

Country Status (1)

Country Link
JP (1) JP5632940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015114956A1 (en) * 2014-01-29 2017-03-23 三菱マテリアル株式会社 Synthetic amorphous silica powder and method for producing the same
JP6526451B2 (en) * 2015-03-12 2019-06-05 株式会社トクヤマ Composite filler and resin composition containing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155719B2 (en) * 2001-02-27 2008-09-24 電気化学工業株式会社 Spherical inorganic powder and its use
JP3868347B2 (en) * 2002-07-25 2007-01-17 電気化学工業株式会社 Inorganic powder and resin composition filled therewith
JP2005306923A (en) * 2004-04-19 2005-11-04 Denki Kagaku Kogyo Kk Inorganic powder and composition containing the same

Also Published As

Publication number Publication date
JP2013209290A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
CN107922743B (en) Heat conductive resin composition
JP6092806B2 (en) Zinc oxide powder, heat dissipating filler, resin composition, heat dissipating grease and heat dissipating coating composition
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
JP2016135730A5 (en)
TWI637989B (en) Spherical fertilizer iron powder, resin composition containing the spherical fertilizer iron powder, and molded body using the resin composition
KR20110008199A (en) Alumina powder, process for production of the same, and resin compositions containing the same
JP5507984B2 (en) Epoxy resin composition for semiconductor encapsulation, semiconductor device using this epoxy resin composition, and method for producing this epoxy resin composition
KR20120049181A (en) Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
JP2016522299A (en) Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds to produce such components, and uses thereof
JP5551385B2 (en) Silica particles and resin composition containing the same
JP2015086120A (en) Spherical silica fine powder and production method thereof
JP6305007B2 (en) Spherical amorphous silica particles, method for producing the same, and resin composition containing the same
JP5632940B2 (en) Silica particles and resin composition containing the same
CN101472841A (en) Ceramic powder and method of using the same
JP6694412B2 (en) Method for producing composite resin particles, resin molded body, and composite resin particles
KR20200139158A (en) Resin powder, encapsulant, electronic component, and method of manufacturing resin powder
KR20090104000A (en) Amorphous silica powder, method for production thereof, and semiconductor sealing material
CN105778252A (en) Filler particles, resin composition, grease, and coating composition
KR20110038624A (en) Amorphous siliceous powder, process for production thereof, resin composition, and semiconductor encapsulation material
JP3986154B2 (en) Silicon nitride filler and semiconductor sealing resin composition
TWI443689B (en) A composite magnetic powder, and a powder magnetic core using the composite magnetic powder
JP4973325B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
CN110475751A (en) Mixture of powders
JP6347653B2 (en) Method for producing spherical particles
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141010

R150 Certificate of patent or registration of utility model

Ref document number: 5632940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250