JP5630861B2 - Disturbance magnetic field measurement sensor and active magnetic shield system - Google Patents

Disturbance magnetic field measurement sensor and active magnetic shield system Download PDF

Info

Publication number
JP5630861B2
JP5630861B2 JP2010218816A JP2010218816A JP5630861B2 JP 5630861 B2 JP5630861 B2 JP 5630861B2 JP 2010218816 A JP2010218816 A JP 2010218816A JP 2010218816 A JP2010218816 A JP 2010218816A JP 5630861 B2 JP5630861 B2 JP 5630861B2
Authority
JP
Japan
Prior art keywords
magnetic field
probe
disturbance
soft magnetic
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010218816A
Other languages
Japanese (ja)
Other versions
JP2012073146A (en
Inventor
智 宇治川
智 宇治川
敏文 新納
敏文 新納
裕之 平野
裕之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2010218816A priority Critical patent/JP5630861B2/en
Publication of JP2012073146A publication Critical patent/JP2012073146A/en
Application granted granted Critical
Publication of JP5630861B2 publication Critical patent/JP5630861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は外乱磁場計測センサ及びアクティブ型磁気シールドシステムに関し、とく変動する外乱磁場から嫌磁気装置を保護するためのアクティブ型磁気シールドシステム及びそのシステムに適した外乱磁場計測センサに関する。   The present invention relates to a disturbance magnetic field measurement sensor and an active magnetic shield system, and more particularly to an active magnetic shield system for protecting a magnetoless device from a fluctuating magnetic field and a disturbance magnetic field measurement sensor suitable for the system.

半導体製造施設等に電子顕微鏡、EB露光装置、EBステッパー等の電子ビーム応用装置等を設置する場合に、施設内外の鉄道、自動車、エレベータ、電気室等から生じる外乱磁場(環境磁場)の影響によって装置本来の仕様性能が確保できない磁気障害の問題が生じる。例えばEB装置のひとつである電子顕微鏡等は、変動する外乱磁場の影響によって電子軌道が乱されて映像の解像度(分解能)が劣化する。また、医療施設等にMRI装置、NMR装置、脳磁計や心磁計等のSQUID(超電導量子干渉素子)応用装置等を設置する場合にも、微小な磁場変動に対する装置の感度が高いために、同様に装置の磁気障害が問題となる。このような磁場の影響を嫌う装置(嫌磁気装置)の磁気障害を抑制・低減して正常な動作を保証するため、施設内に磁気シールド空間(シールド室)を設けることが求められる。   When installing electron beam application devices such as electron microscopes, EB exposure devices, and EB steppers in semiconductor manufacturing facilities, etc., due to the influence of disturbance magnetic fields (environmental magnetic fields) generated from railways, automobiles, elevators, electrical rooms, etc. inside and outside the facilities There arises a problem of magnetic disturbance in which the original specification performance cannot be secured. For example, an electron microscope or the like, which is one of the EB devices, disturbs the electron trajectory due to the influence of a fluctuating disturbance magnetic field and degrades the resolution (resolution) of the image. In addition, when a SQUID (superconducting quantum interference device) application device such as an MRI apparatus, NMR apparatus, magnetoencephalograph or magnetocardiograph is installed in a medical facility, etc., the same applies because of the high sensitivity of the apparatus to minute magnetic field fluctuations. In addition, the magnetic disturbance of the device becomes a problem. In order to assure normal operation by suppressing / reducing magnetic disturbance of a device that hates the influence of such a magnetic field (magnetomagnetic device), it is required to provide a magnetic shield space (shield room) in the facility.

磁気シールド空間は、パッシブ型磁気シールドシステム(以下、単にパッシブ型システムということがある)とアクティブ型磁気シールドシステム(以下、単にアクティブ型システムということがある)とに大別することができる。パッシブ型システムは、一般的に空間周囲を透磁率μの高いパーマロイ、電磁鋼板等の軟磁性材(強磁性材)で覆い、その軟磁性材が外乱磁界を捕捉して迂回させる効果や、軟磁性材に誘起される電磁誘導(渦電流)の遮蔽効果によって空間内への外乱磁場の進入を防ぐ磁気シールドシステムであり、比較的広い周波数範囲の外乱磁場を遮蔽できる点で優れているが、軟磁性材の材料費が嵩む問題点がある。これに対しアクティブ型システムは、空間周囲に補償磁場発生用のコイル(以下、補償コイルということがある)を配置し、外乱磁場の変動に応じて補償コイルに適切な補償磁場を発生させて空間内の外乱磁場を打ち消す磁気シールドシステムであり、遮蔽できる外乱磁場の周波数帯は限定されるが、比較的安価に磁気シールド空間を実現できる利点がある。このため費用対効果の観点から磁気シールド空間をパッシブ型とアクティブ型とを組み合わせた複合型とすることもしばしばあり、シールド性能の高い複合型磁気シールドシステム(以下、単に複合型システムということがある)の研究開発が進められている(特許文献1及び非特許文献1、2参照)。   The magnetic shield space can be broadly classified into a passive magnetic shield system (hereinafter simply referred to as a passive system) and an active magnetic shield system (hereinafter sometimes simply referred to as an active system). In passive systems, the space is generally covered with a soft magnetic material (ferromagnetic material) such as permalloy or magnetic steel sheet with a high permeability μ, and the soft magnetic material captures and detours the disturbance magnetic field. It is a magnetic shield system that prevents the disturbance magnetic field from entering the space by the shielding effect of electromagnetic induction (eddy current) induced by the magnetic material, and is excellent in that it can shield the disturbance magnetic field in a relatively wide frequency range. There is a problem that the material cost of the soft magnetic material increases. On the other hand, in an active system, a coil for generating a compensation magnetic field (hereinafter sometimes referred to as a compensation coil) is arranged around the space, and an appropriate compensation magnetic field is generated in the compensation coil in accordance with the fluctuation of the disturbance magnetic field. This is a magnetic shield system that cancels out the disturbance magnetic field, and the frequency band of the disturbance magnetic field that can be shielded is limited, but there is an advantage that a magnetic shield space can be realized at a relatively low cost. For this reason, from the viewpoint of cost effectiveness, the magnetic shield space is often combined with a passive type and an active type, and a composite type magnetic shield system with high shielding performance (hereinafter, simply referred to as a composite type system). (See Patent Document 1 and Non-Patent Documents 1 and 2).

図6(A)は、特許文献1の開示する複合型システムの一例を示す。図示例の複合型システムは、シールド対象空間Rの床、壁、天井の各内面にパーマロイ等の軟磁性板6、7(図7(A)参照)を隙間なく配置したパッシブ型システム5と、アクティブ型システム1とを組み合わせたものである。図示例のアクティブ型システム1は、空間Rの周囲に配置した補償コイル2、3と、空間Rの内部磁場(磁束密度)を検出する磁気センサ10と、磁気センサ10の検出信号を入力して補償コイル2、3を駆動する制御装置20とにより構成されている。例えば空間R内の嫌磁気装置を設置する位置のX軸に補償コイル2、3の中心軸線を芯合わせして配置し、パッシブ型システム5で減衰された空間Rの内側の外乱磁場(内部磁場)Beを磁気センサ10で検出し、その内部磁場Beに補償コイル2、3の発生する補償磁場Bcを重畳させ、その重畳磁場Bs(=Be−Bc)がゼロに近付くように制御装置20でコイル電流を調整する。図示例はX軸方向の補償コイル2、3のみを示しているが、Y軸方向及びZ軸方向についても同様に補償コイルを配置することにより、あらゆる方向の外乱磁場に対応可能である。   FIG. 6A shows an example of a composite system disclosed in Patent Document 1. FIG. The composite type system of the illustrated example includes a passive type system 5 in which soft magnetic plates 6 and 7 (see FIG. 7A) such as permalloy are arranged without gaps on the inner surfaces of the floor, wall, and ceiling of the space R to be shielded, This is a combination with the active system 1. The active type system 1 in the illustrated example receives compensation coils 2 and 3 arranged around the space R, a magnetic sensor 10 that detects an internal magnetic field (magnetic flux density) in the space R, and a detection signal from the magnetic sensor 10. And a control device 20 that drives the compensation coils 2 and 3. For example, a disturbance magnetic field (internal magnetic field) inside the space R attenuated by the passive system 5 is arranged by aligning the center axis of the compensation coils 2 and 3 with the X axis of the position where the magnetoless device in the space R is installed. ) The Be is detected by the magnetic sensor 10, the compensation magnetic field Bc generated by the compensation coils 2 and 3 is superimposed on the internal magnetic field Be, and the superposition magnetic field Bs (= Be−Bc) approaches zero. Adjust the coil current. The illustrated example shows only the compensation coils 2 and 3 in the X-axis direction. However, by disposing the compensation coils in the Y-axis direction and the Z-axis direction as well, it is possible to deal with disturbance magnetic fields in all directions.

非特許文献1は、図6(A)のような複合型システムにおいて、アクティブ型システム1の補償コイル2、3をパッシブ型システム5の軟磁性板6、7の外側に配置した場合と内側に配置した場合とのシールド性能を比較検討し、パッシブ型システム5の外側に補償コイル2、3を配置して複合型とした方が、内側に配置した場合に比して、シールド対象空間R内の広い範囲で磁場分布を均一化することができると報告している。例えば、空間R内において嫌磁気装置の設置位置と磁気センサ10の配置位置とが離れていても、パッシブ型システム5の外側に配置した補償コイル2、3によって空間R内の広い範囲で内部磁場を均一に減衰させて磁気障害を抑制することができれば、センサ10の配置の自由度を高めて空間Rの利用効率を高めることができる。   Non-Patent Document 1 describes the case where the compensation coils 2 and 3 of the active system 1 are arranged outside the soft magnetic plates 6 and 7 of the passive system 5 in the composite system as shown in FIG. Compared with the case where it is arranged, the shield performance is compared, and the arrangement of the compensation coils 2 and 3 outside the passive system 5 and the composite type is more in the shield target space R than the case where it is arranged inside. It is reported that the magnetic field distribution can be made uniform in a wide range. For example, even if the installation position of the anaerobic device and the arrangement position of the magnetic sensor 10 are separated in the space R, the internal magnetic field can be generated in a wide range in the space R by the compensation coils 2 and 3 arranged outside the passive system 5. Can be attenuated uniformly to suppress magnetic disturbance, the degree of freedom of arrangement of the sensor 10 can be increased and the utilization efficiency of the space R can be increased.

特開2008−282983号公報JP 2008-282893 A 特開2009−175067号公報JP 2009-175067 A 国際公開2004/084603号パンフレットInternational Publication No. 2004/084603 Pamphlet 特開2006−351598号公報JP 2006-351598 A

山崎慶太他「簡易型磁気シールドルームに適したアクティブシールドシステム設計のための磁界分布と位相遅れの検討」電気学会論文誌A、121巻12号、2001年、pp1085−1092Keita Yamazaki et al. “Investigation of magnetic field distribution and phase lag for designing an active shield system suitable for a simple magnetic shield room” IEEJ Transactions, Vol. 121, No. 12, 2001, pp 1085-1092 梅田雄介他「円筒形磁気シールドへのアクティブ・キャンセルの適用」電気学会論文誌A、123巻8号、2003年、pp790−796Yusuke Umeda et al. “Application of Active Cancellation to Cylindrical Magnetic Shield” IEICE Transactions, Vol. 123, No. 8, 2003, pp 790-796 社団法人日本建築学会編集「環境磁場の計測技術−現場における計測の実例−」丸善株式会社、1998年7月15日、pp23−57Edited by the Architectural Institute of Japan “Environmental Magnetic Field Measurement Techniques—In-Situ Measurement Examples” Maruzen Corporation, July 15, 1998, pp23-57

しかし、図6(A)のようにパッシブ型システム5の外側に補償コイル2、3を配置した複合型システムは、パッシブ型システム5の軟磁性板6、7に誘起される渦電流の影響によって、シールド対象空間Rの外側の外乱磁場Bに対して内側の重畳磁場Bs(=内側磁場Be−補償磁場Bc)に位相遅れ(位相遅延)が生じ、アクティブ型システム1のシールド性能が低下する問題点がある。図9のグラフは、図6(A)のような複合型システムにおいて、パッシブ型システム5の外側の補償コイル2、3で発生させた交流磁場を内側の中心部で測定した遮蔽率及び位相遅れの周波数特性の測定結果を示したものである(非特許文献1参照)。また図9には、軟磁性板6、7に誘起される渦電流を考慮した位相遅れ及び遮蔽率の周波数特性の解析結果を併せて示している。図9の測定結果及び解析結果は共に、周波数の増加に従って軟磁性板6、7の渦電流の遮蔽効果により、パッシブ型システム5の遮蔽率が大きくなると同時に補償コイル2、3の位相遅れも大きくなることを表している。   However, the composite system in which the compensation coils 2 and 3 are arranged outside the passive system 5 as shown in FIG. 6A is affected by the influence of eddy currents induced on the soft magnetic plates 6 and 7 of the passive system 5. In addition, a phase delay (phase delay) occurs in the superimposed magnetic field Bs (= inner magnetic field Be−compensation magnetic field Bc) with respect to the disturbance magnetic field B outside the shield target space R, and the shielding performance of the active system 1 is deteriorated. There is a point. The graph of FIG. 9 shows the shielding rate and phase delay measured in the central part of the AC magnetic field generated by the compensation coils 2 and 3 outside the passive system 5 in the composite system as shown in FIG. The frequency characteristic measurement results are shown (see Non-Patent Document 1). FIG. 9 also shows the analysis results of the frequency characteristics of the phase lag and shielding rate in consideration of eddy currents induced in the soft magnetic plates 6 and 7. Both the measurement results and the analysis results of FIG. 9 show that the shielding rate of the passive system 5 is increased and the phase delay of the compensation coils 2 and 3 is also increased due to the eddy current shielding effect of the soft magnetic plates 6 and 7 as the frequency increases. Represents that.

図6(A)のアクティブ型システム1のブロック図は、磁気センサ10及び制御装置20(フィルタ回路や電流駆動アンプその他の電子回路を含む)の周波数特性Go(ω)と、補償コイル2、3の周波数特性Gc(ω)とを用いて、図6(B)の実線のように表すことができる。また、そのシールド性能(相殺性能)SEsは、重畳磁場Bsに対する内部磁場Beの比率(=Be/Bs)として定義することができ、(1)〜(3)式のようにフィードバック系の一巡伝達関数G(ω)(=Go(ω)・Gc(ω))を用いて評価することができる。(3)式から分かるように、アクティブ型システム1のシールド性能SEsは一巡伝達関数G(ω)が大きいほど高くなる。
The block diagram of the active system 1 in FIG. 6A shows the frequency characteristics Go (ω) of the magnetic sensor 10 and the control device 20 (including a filter circuit, a current drive amplifier, and other electronic circuits), and the compensation coils 2, 3. Can be expressed as a solid line in FIG. 6B using the frequency characteristic Gc (ω). The shield performance (cancellation performance) SEs can be defined as the ratio of the internal magnetic field Be to the superposed magnetic field Bs (= Be / Bs). It can be evaluated using the function G (ω) (= Go (ω) · Gc (ω)). As can be seen from the equation (3), the shielding performance SEs of the active system 1 increases as the one-round transfer function G (ω) increases.

図6(B)のブロック図において、磁気センサ10及び制御装置20の周波数特性Go(ω)は、図8のような位相遅延特性(周波数の増加に従って位相遅延が大きくなる特性)を有している。また、図6(A)のような複合型システムでは、補償コイル2、3の周波数特性Gc(ω)が上述した図9のような位相遅れ特性を示し、アクティブ型システム1の一巡伝達関数G(ω)にGo(ω)の位相遅延とGc(ω)の位相遅延とが累積される。この位相遅延が大きくなると、アクティブ型システム1は遅れた信号に基づいて動作することになり、伝達関数G(ω)が小さくなってシールド性能SEsが低下してしまう。また、一般に、磁場の周波数が高くなるに応じて一巡伝達関数の大きさは小さくなるから、位相遅延の影響は一層顕著になってシールド性能SEsを更に劣化させ、最悪の場合は位相遅延が180度になってシールド性能SEs=0、つまり発振現象を生じてしまう。   In the block diagram of FIG. 6B, the frequency characteristic Go (ω) of the magnetic sensor 10 and the control device 20 has a phase delay characteristic (a characteristic in which the phase delay increases as the frequency increases) as shown in FIG. Yes. 6A, the frequency characteristics Gc (ω) of the compensation coils 2 and 3 exhibit the phase lag characteristics as shown in FIG. 9, and the circular transfer function G of the active system 1 In (ω), the phase delay of Go (ω) and the phase delay of Gc (ω) are accumulated. When this phase delay increases, the active system 1 operates based on the delayed signal, and the transfer function G (ω) decreases and the shield performance SEs decreases. In general, as the frequency of the magnetic field increases, the magnitude of the loop transfer function decreases, so that the influence of the phase delay becomes more prominent and the shield performance SEs is further deteriorated. In the worst case, the phase delay is 180. As a result, the shield performance SEs = 0, that is, an oscillation phenomenon occurs.

特許文献1は、このようなアクティブ型システム1の位相遅延によるシールド性能の低下(とくに高周波数領域でのシールド性能の劣化)を避けるため、図6(C)に示すように、アクティブ型システム1の制御装置20に高周波信号処理回路22と低周波数信号処理回路23とを設け、磁気センサ10で検出した広帯域の検出信号を高周波帯と低周波数帯とに分けて信号処理することを提案している。すなわち、磁気センサ10の検出信号のうち位相遅延の比較的小さい低周波帯域(例えば30Hz以下)については、バッファー21から高域通過フィルタ23a経由で直流成分を除去したうえで低域通過フィルタ23bにより抽出し、そのまま積分器23c及び増幅度調整回路23eにより逆位相信号に変換する。他方、位相遅延の比較的大きい高周波信号(例えば50Hz)については、帯域通過フィルタ22a、22cにより抽出し、増幅度調整回路22dにより逆位相信号に変換したのち、位相調整回路22eによって位相遅延時間を調整して位相調整信号に変換する。低周波数信号処理回路23の逆位相信号と高周波信号処理回路22の位相調整信号とを加算器24によって合成して補償コイル2、3に加えることにより、高周波数領域の位相遅延によるにシールド性能の低下を防止する。   In order to avoid a decrease in shielding performance due to the phase delay of such an active system 1 (particularly, deterioration of shielding performance in a high frequency region), Patent Document 1 discloses an active system 1 as shown in FIG. Proposed to provide a high-frequency signal processing circuit 22 and a low-frequency signal processing circuit 23 in the control device 20, and to perform signal processing by dividing a wideband detection signal detected by the magnetic sensor 10 into a high-frequency band and a low-frequency band. Yes. That is, for the low frequency band (for example, 30 Hz or less) of the detection signal of the magnetic sensor 10 having a relatively small phase delay, the DC component is removed from the buffer 21 via the high pass filter 23a and then the low pass filter 23b. The extracted signal is directly converted into an antiphase signal by the integrator 23c and the amplification degree adjusting circuit 23e. On the other hand, a high-frequency signal (for example, 50 Hz) having a relatively large phase delay is extracted by the band pass filters 22a and 22c, converted into an antiphase signal by the amplification adjustment circuit 22d, and then the phase delay time is adjusted by the phase adjustment circuit 22e. Adjust and convert to phase adjustment signal. The anti-phase signal of the low-frequency signal processing circuit 23 and the phase adjustment signal of the high-frequency signal processing circuit 22 are combined by the adder 24 and added to the compensation coils 2 and 3, so that the shielding performance can be improved due to the phase delay in the high frequency region. Prevent decline.

しかし、図9に示すように補償コイル2、3の位相遅延時間は周波数毎に異なるのに対し、図6(C)の高周波信号処理回路22(位相調整回路22e)は特定周波数(例えば50Hz)の位相遅延時間しか調整できないので、特許文献1の制御装置20で複数の異なる周波数の外乱磁場B(例えば50Hz、100Hz、150Hz等)に対応するためには高周波信号処理回路22を複数組み合わせた複雑な信号処理が必要となる。また、予め周波数が既知の外乱磁場については、その周波数に応じた高周波信号処理回路22を設けることで対応できるが、特許文献1の制御装置20は周波数の未知の外乱磁場に対応できない問題点もある。   However, as shown in FIG. 9, the phase delay times of the compensation coils 2 and 3 differ for each frequency, whereas the high-frequency signal processing circuit 22 (phase adjustment circuit 22e) in FIG. 6C has a specific frequency (for example, 50 Hz). In order to cope with a plurality of different magnetic field disturbance fields B (for example, 50 Hz, 100 Hz, 150 Hz, etc.) in the control device 20 of Patent Document 1, a complex combination of a plurality of high-frequency signal processing circuits 22 is possible. Signal processing is required. Further, a disturbance magnetic field whose frequency is known in advance can be dealt with by providing a high-frequency signal processing circuit 22 corresponding to the frequency, but there is a problem that the control device 20 of Patent Document 1 cannot deal with a disturbance magnetic field whose frequency is unknown. is there.

更に、一般的なアクティブ型システム1ではフラックスゲート型磁気センサ10等を利用して外乱磁場を検出しているが、フラックスゲート型磁気センサ10の応答速度は数kHz程度であって広帯域化に限界があり、磁気センサ10の応答速度以上の高周波信号に対応することが難しい問題点もある。様々な外乱磁場に対してシールド性能の高い複合型システムを実現するためには、外乱磁場の周波数に拘らず位相遅延によるシールド性能の低下が生じにくいアクティブ型システムとすることが望ましい。   Further, in the general active type system 1, the disturbance magnetic field is detected by using the fluxgate type magnetic sensor 10 or the like, but the response speed of the fluxgate type magnetic sensor 10 is about several kHz, which is limited to a wide band. There is also a problem that it is difficult to cope with a high-frequency signal exceeding the response speed of the magnetic sensor 10. In order to realize a composite system having high shielding performance against various disturbance magnetic fields, it is desirable to make an active system in which the shielding performance is hardly deteriorated due to the phase delay regardless of the frequency of the disturbance magnetic field.

そこで本発明の目的は、外乱磁場の周波数に拘らず位相遅延によるシールド性能の低下が生じにくいアクティブ型磁気シールドシステムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an active magnetic shield system in which a reduction in shield performance due to phase delay hardly occurs regardless of the frequency of a disturbance magnetic field.

図6(A)のような複合型システムにおいて、アクティブ型システム1の補償コイル2、3の周波数特性Gc(ω)に図9のような位相遅延が生じる理由は、補償コイル2、3の発生する補償磁場Bc(及び外乱磁場B)によってシールド対象空間Rの周囲を覆うパッシブ型システム5の軟磁性板6、7に渦電流が誘導されるからである(非特許文献1及び2参照)。例えば、図7(A)のように空間Rを密閉するパッシブ型システム5にX軸方向の外乱磁場Bxが暴露されたとすると、図7(B)に示すようにX軸と垂直な前後YZ面の軟磁性板6a、6bには、そのYZ面に進入する磁場Bxを妨げる環状方向の誘導起電力(回転電界)及び渦電流Eが誘導される。また、図7(C)に示すようにX軸と平行な周囲XY面及びXZ面の角筒状の軟磁性板7a、7b、7c、7dには、磁場Bx(磁束密度)の時間変動によって磁場Bxの侵入を妨げる方向に大環状の渦電流Eが誘導される。   In the hybrid system as shown in FIG. 6A, the reason why the phase delay as shown in FIG. 9 occurs in the frequency characteristics Gc (ω) of the compensation coils 2 and 3 of the active system 1 is that the compensation coils 2 and 3 are generated. This is because eddy current is induced in the soft magnetic plates 6 and 7 of the passive system 5 that covers the periphery of the shield target space R by the compensation magnetic field Bc (and the disturbance magnetic field B) (see Non-Patent Documents 1 and 2). For example, if the disturbance magnetic field Bx in the X-axis direction is exposed to the passive system 5 that seals the space R as shown in FIG. 7A, the front and back YZ planes perpendicular to the X-axis are shown in FIG. 7B. In the soft magnetic plates 6a and 6b, an induced electromotive force (rotating electric field) and an eddy current E in an annular direction that prevent the magnetic field Bx entering the YZ plane are induced. As shown in FIG. 7C, the rectangular cylindrical soft magnetic plates 7a, 7b, 7c, and 7d on the peripheral XY plane and XZ plane parallel to the X axis are caused by time fluctuation of the magnetic field Bx (magnetic flux density). A macro-circular eddy current E is induced in a direction that prevents the magnetic field Bx from entering.

変動する外乱磁場Bによって渦電流が誘起される場合の軟磁性材の磁化特性は交流磁化特性として知られている。これは主として、変動する外乱磁場Bによって誘起される渦電流の作用により、外乱磁場Bに対する見かけ上の磁化の変動が位相遅延を起こすことにより生じる(交流ヒステリシス)。図7(B)及び(C)のように軟磁性板6、7に表面に誘導された大きな環状の渦電流Eは、軟磁性板6、7で囲まれた内側領域に外側の外乱磁場Bに対して位相の遅れた二次的磁場を生じ、その位相の遅れた二次的磁場との重畳によってパッシブ型システム5の内部磁場Beに外側の外乱磁場Bに対して位相遅延を生じさせる。   The magnetization characteristic of a soft magnetic material when an eddy current is induced by a fluctuating disturbance magnetic field B is known as an AC magnetization characteristic. This is mainly caused by a phase delay caused by an apparent fluctuation of magnetization with respect to the disturbance magnetic field B due to an action of an eddy current induced by the changing disturbance magnetic field B (AC hysteresis). As shown in FIGS. 7B and 7C, a large annular eddy current E induced on the surface of the soft magnetic plates 6 and 7 is generated in the outer disturbance magnetic field B in the inner region surrounded by the soft magnetic plates 6 and 7. A secondary magnetic field that is delayed in phase is generated, and a phase delay is generated in the internal magnetic field Be of the passive system 5 with respect to the external disturbance magnetic field B by superposition with the secondary magnetic field that is delayed in phase.

本発明者は、外乱磁場Bによって図7のような大きな環状の渦電流Eが表面に誘導されない軟磁性材の配置、例えば図3(A)のように外乱磁場Bの到来方向と平行に配置した軟磁性板12aの生じる二次的磁場に着目した。先ず外乱磁場Bが静磁場又は周波数の低い変動磁場である場合は、外乱磁場Bと平行な図3(A)の軟磁性板12aは外乱磁場Bと位相的に同相で磁化されて端部に磁極が生じる。この磁極は軟磁性板12aの内部に反磁場を発生し、磁化を弱める方向に作用すると同時に、外部にも二次的磁場を発生する。この二次的磁場は図3(B)のような等価磁石の生じる磁場として表現することができ、外乱磁場Bの向きと対向することから、外乱磁場Bに対して逆相の二次的磁場となる。外乱磁場Bが変動すると、図3(C)のように軟磁性板12aの断面に渦電流が誘起され、外乱磁場Bに対して位相の遅れた二次的磁場を発生するが(交流ヒステリシス)、この二次的磁場は上述した逆相よりも更にヒステリシス効果の分だけ位相が遅れるため、全体として見れば外乱磁場Bに対して位相の進んだ二次的磁場となる。   The inventor has arranged a soft magnetic material in which a large annular eddy current E as shown in FIG. 7 is not induced on the surface by the disturbance magnetic field B, for example, parallel to the arrival direction of the disturbance magnetic field B as shown in FIG. Attention was paid to the secondary magnetic field generated by the soft magnetic plate 12a. First, when the disturbance magnetic field B is a static magnetic field or a variable magnetic field having a low frequency, the soft magnetic plate 12a of FIG. 3A parallel to the disturbance magnetic field B is magnetized in phase with the disturbance magnetic field B and is at the end. Magnetic poles are generated. This magnetic pole generates a demagnetizing field inside the soft magnetic plate 12a, acts in the direction of weakening the magnetization, and also generates a secondary magnetic field outside. This secondary magnetic field can be expressed as a magnetic field generated by an equivalent magnet as shown in FIG. 3B, and is opposite to the direction of the disturbance magnetic field B. It becomes. When the disturbance magnetic field B fluctuates, an eddy current is induced in the cross section of the soft magnetic plate 12a as shown in FIG. 3C, and a secondary magnetic field whose phase is delayed with respect to the disturbance magnetic field B is generated (AC hysteresis). The phase of this secondary magnetic field is further delayed by the amount of the hysteresis effect than that of the above-described reverse phase, so that it becomes a secondary magnetic field whose phase is advanced with respect to the disturbance magnetic field B as a whole.

すなわち、外来磁場Bの到来方向に対して平行に軟磁性板12aを配置すれば、軟磁性板12aの周囲に外来磁場Bに対して位相の先進した二次的磁場を生成することができる。図6のようなアクティブ型システム1では、上述したように(i)システムの構成要素(磁気センサ10及び制御装置20)による位相遅延が発生すると共に(図8参照)、(ii)複合型システムとしたときはパッシブ型システム5の誘導渦電流による位相遅延が累積されてシールド性能の劣化を招くが(図9参照)、そのようなアクティブ型システム1の磁気センサ10の周辺に図3(A)のような軟磁性板12aを付帯させ、磁気センサ10の周辺に外乱磁場Bに対して位相の進んだ二次的磁場を発生させれば、その二次的磁場の位相進みによって位相遅延(i)及び(ii)を低減又は補償し、アクティブ型システム1のシールド性能の低下を抑えることが期待できる。本発明は、この着想に基づく研究開発の結果、完成に至ったものである。   That is, if the soft magnetic plate 12a is arranged in parallel to the direction of arrival of the external magnetic field B, a secondary magnetic field whose phase is advanced with respect to the external magnetic field B can be generated around the soft magnetic plate 12a. In the active system 1 as shown in FIG. 6, as described above, (i) a phase delay is generated by the system components (the magnetic sensor 10 and the control device 20) (see FIG. 8), and (ii) the composite system In this case, the phase delay due to the induced eddy current of the passive type system 5 is accumulated and the shielding performance is deteriorated (see FIG. 9). However, FIG. If a secondary magnetic field whose phase is advanced with respect to the disturbance magnetic field B is generated around the magnetic sensor 10 by attaching a soft magnetic plate 12a as shown in FIG. It can be expected that i) and (ii) are reduced or compensated to suppress a decrease in shield performance of the active system 1. The present invention has been completed as a result of research and development based on this idea.

図1(B)の実施例を参照するに,本発明による外乱磁場計測センサ10は,変動する外乱磁場Bの検出用プローブ11,及びそのプローブ11の周囲に間隙を介してプローブ検出軸Aと平行に付帯させた軟磁性材12を備え,その軟磁性材12の周囲に生じる位相の進んだ二次的磁場の重畳された外乱磁場をプローブ11で検出してなるものである。 Referring to the embodiment of FIG. 1B, a disturbance magnetic field measuring sensor 10 according to the present invention includes a probe 11 for detecting a varying disturbance magnetic field B, and a probe detection axis A and a gap around the probe 11 via a gap. A soft magnetic material 12 attached in parallel is provided, and a disturbance magnetic field on which a secondary magnetic field with an advanced phase generated around the soft magnetic material 12 is superimposed is detected by the probe 11.

また,図1(A)のブロック図を参照するに,本発明によるアクティブ型磁気シールドシステムは,変動する外乱磁場Bから保護すべきシールド対象空間Rの周囲に配置する補償磁場発生用コイル2,3,外乱磁場Bの検出用プローブ11とそのプローブ11の周囲に間隙を介してプローブ検出軸Aと平行に付帯させた軟磁性材12とを有し且つシールド対象空間R内に配置する外乱磁場計測用センサ10,及び軟磁性材12の周囲に生じる位相の進んだ二次的磁場の重畳された外乱磁場を検出するセンサ10の検出値に応じてコイル2,3の発生する補償磁場を制御する制御装置20を備えてなるものである。 Referring to the block diagram of FIG. 1A, the active magnetic shield system according to the present invention includes a compensating magnetic field generating coil 2 disposed around a shielded space R to be protected from a fluctuating disturbance magnetic field B. 3, a disturbance magnetic field B having a probe 11 for detecting the disturbance magnetic field B and a soft magnetic material 12 attached around the probe 11 in parallel with the probe detection axis A through a gap and arranged in the shielded space R The compensation magnetic field generated by the coils 2 and 3 is controlled in accordance with the detection value of the sensor 10 for detecting the disturbance magnetic field on which the secondary magnetic field with an advanced phase generated around the measurement sensor 10 and the soft magnetic material 12 is superimposed. The control device 20 is provided.

好ましくは,図1(C)に示すように,センサ10のプローブ11の周囲に間隙を介してプローブ検出軸Aと平行に複数の軟磁性材12a,12bを付帯させる。望ましくは,センサ10のプローブ検出軸Aと垂直な軸Vの周りに,プローブ検出軸Aと平行な軟磁性板12a,12bとプローブ検出軸Aと交差するスリット13付き軟磁性板12c,12dとを筒状に結合して付帯させる。 Preferably, as shown in FIG. 1C, a plurality of soft magnetic materials 12a and 12b are attached around the probe 11 of the sensor 10 in parallel with the probe detection axis A via a gap . Desirably, soft magnetic plates 12a and 12b parallel to the probe detection axis A and soft magnetic plates 12c and 12d with slits 13 intersecting the probe detection axis A are arranged around an axis V perpendicular to the probe detection axis A of the sensor 10. Are attached in a cylindrical shape.

或いは、図2(B)及び(C)に示すように、センサ10のプローブ11の周囲に、プローブ検出軸Aと平行な長手方向軸を有する複数の帯状軟磁性板14をプローブ検出軸Aと垂直方向に所定間隔dで並べて付帯させてもよい。望ましくは、図2(E)に示すように、センサ10のプローブ検出軸Aと垂直な軸Vの周りに、その垂直な軸Vと所定間隔dで交差する複数の平行な面上に配置した環状軟磁性板16の群を付帯させる。   Alternatively, as shown in FIGS. 2B and 2C, a plurality of strip-shaped soft magnetic plates 14 having longitudinal axes parallel to the probe detection axis A are arranged around the probe 11 of the sensor 10 as the probe detection axis A. It may be arranged side by side with a predetermined interval d in the vertical direction. Desirably, as shown in FIG. 2 (E), the sensor 10 is arranged around a plurality of parallel planes intersecting the vertical axis V at a predetermined interval d around the axis V perpendicular to the probe detection axis A. A group of annular soft magnetic plates 16 is attached.

更に好ましくは、図1(B)〜(D)及び図2(B)、(C)、(E)に示すように、軟磁性材12(又は軟磁性板14又は16)のプローブ11に対する相対位置をプローブ検出軸Aと垂直方向に調整する位置調整機構17を設ける。   More preferably, as shown in FIGS. 1B to 1D and FIGS. 2B, 2C, and 2E, the soft magnetic material 12 (or the soft magnetic plate 14 or 16) is relative to the probe 11. A position adjusting mechanism 17 for adjusting the position in the direction perpendicular to the probe detection axis A is provided.

本発明による外乱磁場計測センサ及びアクティブ型磁気シールドシステムは,変動する外乱磁場Bを検出するプローブ11の周囲に間隙を介してプローブ検出軸Aと平行に軟磁性材12を付帯させ,外乱磁場B中で軟磁性材12の周囲に生じる位相の進んだ二次的磁場の重畳された外乱磁場Bをプローブ11で検出するので,次の効果を奏する。 The disturbance magnetic field measurement sensor and the active magnetic shield system according to the present invention are provided with a soft magnetic material 12 attached in parallel to the probe detection axis A through a gap around a probe 11 for detecting a fluctuating disturbance magnetic field B. The probe 11 detects the disturbance magnetic field B on which the secondary magnetic field with an advanced phase generated around the soft magnetic material 12 is superimposed.

(イ)プローブ検出軸Aを外来磁場Bの到来方向と一致させることにより、軟磁性材12の周囲に位相の進んだ二次的磁場を生じさせ、外乱磁場Bに対して位相の進んだプローブ11の検出値を出力する外乱磁場計測センサ10とすることができる。
(ロ)また、外乱磁場Bに対して位相の進んだ検出値を出力する外乱磁場計測センサ10をアクティブ型システムに組み込むことにより、システムの構成要素による位相遅延を低減又は補償し、位相遅延が小さくシールド性能の低下の生じにくいアクティブ型システムとすることができる。
(ハ)更に、外乱磁場Bに対して位相の進んだ検出値を出力する外乱磁場計測センサ10を複合型システムに組み込むことにより、パッシブ型システム5に誘起される渦電流の影響による位相遅延を低減又は補償し、位相遅延が小さくシールド性能の低下の生じにくい複合型システムとすることができる。
(A) By making the probe detection axis A coincide with the arrival direction of the external magnetic field B, a secondary magnetic field having a phase advanced around the soft magnetic material 12 is generated, and the probe having a phase advanced with respect to the disturbance magnetic field B The disturbance magnetic field measurement sensor 10 can output 11 detection values.
(B) In addition, by incorporating the disturbance magnetic field measurement sensor 10 that outputs a detection value whose phase is advanced with respect to the disturbance magnetic field B into the active system, the phase delay due to the system components is reduced or compensated, and the phase delay is reduced. It can be an active system that is small and does not easily cause a decrease in shield performance.
(C) Furthermore, by incorporating a disturbance magnetic field measurement sensor 10 that outputs a detection value whose phase is advanced with respect to the disturbance magnetic field B into the composite system, the phase delay due to the eddy current induced in the passive system 5 is reduced. It is possible to reduce or compensate for a composite system that has a small phase delay and is unlikely to cause a reduction in shield performance.

(ニ)プローブ11の周囲に複数の軟磁性材12a、12bを付帯させ、複数の軟磁性材12a、12bに位相の進んだ二次的磁場を生じさせることにより、外来磁場Bに対する位相進みの大きい検出値を出力する外乱磁場計測センサ10とすることができる。
(ホ)また、プローブ検出軸Aと垂直な軸Vの周りに複数の軟磁性材12を筒状又は環状に付帯させて磁気回路を形成し、各軟磁性材12中に渦電流を流れやすくすることにより、外来磁場Bに対する検出値の位相進みが一層大きい外乱磁場計測センサ10とすることができる。
(ヘ)付帯させる軟磁性材12の形状や透磁率等によって外来磁場Bに対する位相進みの大きさを調整することも可能であるが、軟磁性材12のプローブ11に対する相対位置をプローブ検出軸Aと垂直方向に調整可能とすることにより、検出値の位相進みの調整が容易な外乱磁場計測センサ10とすることができる。
(D) A plurality of soft magnetic materials 12a and 12b are attached around the probe 11, and a phase-advanced magnetic field is generated in the plurality of soft magnetic materials 12a and 12b. The disturbance magnetic field measurement sensor 10 can output a large detection value.
(E) In addition, a plurality of soft magnetic materials 12 are attached in a cylindrical or annular shape around an axis V perpendicular to the probe detection axis A to form a magnetic circuit, and eddy currents easily flow through each soft magnetic material 12. By doing so, the disturbance magnetic field measurement sensor 10 having a larger phase advance of the detection value with respect to the external magnetic field B can be obtained.
(F) Although the magnitude of the phase advance with respect to the external magnetic field B can be adjusted by the shape and permeability of the soft magnetic material 12 to be attached, the relative position of the soft magnetic material 12 with respect to the probe 11 is determined by the probe detection axis A. The disturbance magnetic field measurement sensor 10 can easily adjust the phase advance of the detected value.

以下、添付図面を参照して本発明を実施するための形態及び実施例を説明する。
は、本発明によるアクティブ型磁気シールドシステム及び外乱磁場計測センサの一実施例の説明図である。 は、本発明によるアクティブ型磁気シールドシステム及び外乱磁場計測センサの他の実施例の説明図である。 は、本発明による外乱磁場計測センサの作用の説明図である。 は、本発明の外乱磁場計測センサの位相進み特性を確認した実験結果を示すグラフである。 は、本発明の外乱磁場計測センサの軟磁性材の中心からのプローブの距離と位相進み特性との関係を確認した実験結果を示すグラフである。 は、従来の複合型磁気シールドシステムの一例の説明図である。 は、図6の複合型磁気シールドシステムに誘起される渦電流の説明図である。 は、図6の磁気センサ10及び制御装置20の周波数特性Go(ω)の位相遅れ(位相進み)特性を示すグラフの一例である。 は、図6の補償コイル2、3の周波数特性Gc(ω)の位相遅れ特性を示すグラフの一例である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
These are explanatory drawings of one Example of the active type magnetic shielding system and disturbance magnetic field measurement sensor by this invention. These are explanatory drawings of other Examples of the active type magnetic shield system and disturbance magnetic field measurement sensor by this invention. These are explanatory drawings of an effect | action of the disturbance magnetic field measurement sensor by this invention. These are the graphs which show the experimental result which confirmed the phase advance characteristic of the disturbance magnetic field measurement sensor of this invention. These are the graphs which show the experimental result which confirmed the relationship between the distance of the probe from the center of the soft magnetic material of the disturbance magnetic field measurement sensor of this invention, and a phase advance characteristic. These are explanatory drawings of an example of the conventional composite type magnetic shield system. These are explanatory drawings of the eddy current induced in the composite magnetic shield system of FIG. These are an example of the graph which shows the phase lag (phase advance) characteristic of the frequency characteristic Go ((omega)) of the magnetic sensor 10 of FIG. 6, and the control apparatus 20. FIG. These are an example of the graph which shows the phase delay characteristic of the frequency characteristic Gc ((omega)) of the compensation coils 2 and 3 of FIG.

図1(A)は、本発明のアクティブ型システム1の一実施例を示す。図示例のアクティブ型システム1は、図6(A)に示す従来のアクティブ型システム1と同様に、シールド対象空間Rのシールド対象位置(例えば嫌磁気装置4の設置位置)Pの周囲に配置した補償コイル2、3と、空間R内のセンサ位置Sに設置した外乱磁場計測用センサ10と、センサ10の検出値を入力して補償コイル2、3を駆動する制御装置20とで構成されている。図示例の補償コイル2、3は、それぞれシールド対象位置Pを通るX軸に芯合わせして空間Rの周囲に配置されており、図6(A)の場合と同様に、空間Rの内側の対象位置P付近の外乱磁場(内部磁場)を補償磁場Bcの重畳によって減衰させるものである。Y軸方向及びZ軸方向についても同様に補償コイルを配置して、あらゆる方向の外乱磁場に対応可能なシステム1とすることができる。ただし、補償コイル2、3の配置位置や形状は図示例に限定されず、例えば空間Rの内面を複数に分割して各領域にそれぞれ補償コイル2、3を配置してもよい。なお、センサ位置Sは対象位置Pと近接させることが望ましいが、センサ位置Sが対象位置Pと離れていても、例えば制御装置20においてセンサ10の検出値を適当に補正することで対象位置P付近の外乱磁場を減衰させることが可能である(特許文献2参照)。   FIG. 1A shows an embodiment of an active system 1 of the present invention. The active type system 1 in the illustrated example is arranged around a shield target position P (for example, an installation position of the anaerobic device 4) P in the shield target space R, similarly to the conventional active type system 1 shown in FIG. Compensation coils 2 and 3, a disturbance magnetic field measurement sensor 10 installed at a sensor position S in the space R, and a controller 20 that inputs the detection value of the sensor 10 and drives the compensation coils 2 and 3. Yes. The compensation coils 2 and 3 in the illustrated example are arranged around the space R so as to be aligned with the X axis passing through the shield target position P, respectively, and in the same way as in the case of FIG. The disturbance magnetic field (internal magnetic field) near the target position P is attenuated by superimposing the compensation magnetic field Bc. Similarly, in the Y-axis direction and the Z-axis direction, compensation coils can be arranged to make the system 1 capable of dealing with disturbance magnetic fields in all directions. However, the arrangement position and shape of the compensation coils 2 and 3 are not limited to the illustrated example. For example, the inner surface of the space R may be divided into a plurality of areas and the compensation coils 2 and 3 may be arranged in the respective regions. Although the sensor position S is preferably close to the target position P, even if the sensor position S is separated from the target position P, for example, the control device 20 appropriately corrects the detection value of the sensor 10 to correct the target position P. It is possible to attenuate nearby disturbance magnetic fields (see Patent Document 2).

図1(A)の外乱磁場計測用センサ10は、制御装置20に接続された外乱磁場Bの検出用プローブ11と、その磁気プローブ11の周囲にプローブ検出軸Aと平行に付帯させた軟磁性材12とを有する。磁気プローブ11は、センサ位置Sの少なくとも1軸方向(図示例ではX軸方向)の外乱磁場(又は磁束密度)の検出値を制御装置20に出力するものであればとくに制限はなく、従来のアクティブ型システムと同様のもの、例えばサーチコイル型、ホール素子型、フラックスゲート型、磁気発振方式型の磁気プローブ、高感度マイクロ磁気プローブ(MIセンサ)、磁気抵抗効果素子を用いた磁気プローブ(MRセンサ)、磁性薄膜を用いた高周波駆動型磁気プローブ(TMFセンサ)等とすることができる(非特許文献3参照)。プローブ11に付帯させる軟磁性材12は、外乱磁場Bの変動によって渦電流を生じると共にその渦電流に伴う磁化の遅れ(交流ヒステリシス)を生じるパーマロイ、電磁鋼板等の磁性部材であり、例えば図3(A)のような板状のもの、又は図3(D)のような棒状のものとすることができる。   A disturbance magnetic field measurement sensor 10 in FIG. 1A includes a disturbance magnetic field B detection probe 11 connected to a control device 20, and a soft magnet attached around the magnetic probe 11 in parallel with the probe detection axis A. Material 12. The magnetic probe 11 is not particularly limited as long as it outputs a detection value of a disturbance magnetic field (or magnetic flux density) in at least one axial direction (X-axis direction in the illustrated example) of the sensor position S to the control device 20. Same as active system, for example, search coil type, Hall element type, fluxgate type, magnetic oscillation type magnetic probe, high sensitivity micro magnetic probe (MI sensor), magnetic probe using magnetoresistive effect element (MR) Sensor), a high-frequency drive type magnetic probe (TMF sensor) using a magnetic thin film, and the like (see Non-Patent Document 3). The soft magnetic material 12 attached to the probe 11 is a magnetic member such as permalloy or electromagnetic steel plate that generates eddy currents due to fluctuations in the disturbance magnetic field B and causes a magnetization delay (AC hysteresis) associated with the eddy currents. It can be a plate-like one as in (A) or a rod-like one as in FIG.

図1(B)は、プローブ11の周囲にプローブ検出軸Aと平行に軟磁性板(板状磁性部材)12aを付帯させた外乱磁場計測用センサ10の一例を示す。例えば図1(A)のようにX軸方向の変動する外乱磁場Bxに暴露されるシールド対象空間Rにおいて、センサ10のプローブ検出軸Aを外来磁場Bxの到来方向(X軸)に向けて設置し、その検出軸Aと平行な軟磁性板12aの側面(厚さ方向断面)を外乱磁場Bxと交差させる。図7(B)のように軟磁性板12aの表面を外乱磁場Bxと交差させると、その表面に環状の渦電流Eが誘起され、外乱磁場Bxに対して位相の遅れた二次的磁場が軟磁性板12aの周囲に発生するが、図1(B)のように軟磁性板12aを外乱磁場Bxの到来方向と平行に配置すれば、軟磁性板12の表面に大きな環状の渦電流Eが誘導されるのを抑制し、図3(A)及び(C)を参照して上述したように、外乱磁場Bxに対して位相の進んだ二次的磁場を軟磁性板12aの周囲に発生させることができる。軟磁性板12aの形状や透磁率等によって周囲に発生する二次的磁場の大きさや位相進みは相違するが、プローブ11の周囲の外乱磁場Bxに位相の進んだ二次的磁場が重畳されるので、その重畳磁場をプローブ11で検出して外乱磁場Bxより位相の進んだ検出値を出力することができる。   FIG. 1B shows an example of a disturbance magnetic field measurement sensor 10 in which a soft magnetic plate (plate-like magnetic member) 12 a is attached around the probe 11 in parallel with the probe detection axis A. For example, as shown in FIG. 1A, in the shield target space R exposed to the disturbance magnetic field Bx that fluctuates in the X-axis direction, the probe detection axis A of the sensor 10 is set to face the arrival direction (X-axis) of the external magnetic field Bx. Then, the side surface (thickness direction cross section) of the soft magnetic plate 12a parallel to the detection axis A is crossed with the disturbance magnetic field Bx. When the surface of the soft magnetic plate 12a intersects with the disturbance magnetic field Bx as shown in FIG. 7B, an annular eddy current E is induced on the surface, and a secondary magnetic field whose phase is delayed with respect to the disturbance magnetic field Bx is generated. Although generated around the soft magnetic plate 12a, if the soft magnetic plate 12a is arranged parallel to the arrival direction of the disturbance magnetic field Bx as shown in FIG. 1B, a large annular eddy current E is generated on the surface of the soft magnetic plate 12. And a secondary magnetic field whose phase is advanced with respect to the disturbance magnetic field Bx is generated around the soft magnetic plate 12a as described above with reference to FIGS. 3 (A) and 3 (C). Can be made. Although the magnitude and phase advance of the secondary magnetic field generated in the surroundings are different depending on the shape, magnetic permeability, etc. of the soft magnetic plate 12a, the secondary magnetic field having the advanced phase is superimposed on the disturbance magnetic field Bx around the probe 11. Therefore, the superposed magnetic field can be detected by the probe 11 and a detected value whose phase is advanced from the disturbance magnetic field Bx can be output.

図1(B)の軟磁性板12aに代えて、例えば図3(D)に示すように、断面円形又は矩形の棒状軟磁性材12をプローブ検出軸Aと平行に付帯させて外乱磁場計測用センサ10とすることも可能である。図3(A)及び(C)の軟磁性板12aと同様に、外乱磁場Bxの到来方向と平行に配置した棒状軟磁性材12の周囲にも、外乱磁場Bxに対して位相の進んだ二次的磁場が発生するので、その二次的磁場の重畳された外乱磁場Bxをプローブ11で検出することにより、外乱磁場Bxに対して位相の進んだ検出値を出力する外乱磁場計測センサ10とすることができる。   Instead of the soft magnetic plate 12a of FIG. 1B, for example, as shown in FIG. 3D, a rod-shaped soft magnetic material 12 having a circular or rectangular cross section is attached in parallel to the probe detection axis A for measuring a disturbance magnetic field. The sensor 10 can also be used. Similarly to the soft magnetic plate 12a of FIGS. 3A and 3C, the phase around the magnetic field Bx is also increased around the rod-shaped soft magnetic material 12 arranged in parallel with the arrival direction of the magnetic field Bx. Since the secondary magnetic field is generated, the disturbance magnetic field Bx on which the secondary magnetic field is superimposed is detected by the probe 11, and thereby the disturbance magnetic field measurement sensor 10 that outputs a detection value whose phase is advanced with respect to the disturbance magnetic field Bx; can do.

ただし、後述するように軟磁性材12の周囲に発生する二次的磁場は、軟磁性材12の外乱磁場Bxと交差する断面(側面)の中心付近で最も位相が進んでおり、その断面中心から磁場到来方向と垂直方向にずれると位相の進みは徐々に小さくなる(図5参照)。位相の進んだセンサ10の検出値を安定的に得るためには、図3(D)のように磁場到来方向と垂直方向の断面長さが小さい棒状軟磁性材12よりも、図1(B)のように磁場到来方向と垂直方向の断面長さDが大きい軟磁性板12aを付帯させることが望ましい。すなわち、プローブ検出軸Aと垂直方向の断面長さDが十分大きい軟磁性板12aを用い、その断面長さDの中心付近をプローブ11に隣接させて付帯させることにより、位相の進んだ検出値を安定的に出力するセンサ10とすることができる。軟磁性板12aのプローブ検出軸方向の長さL(図1(B)参照)は、位相の進んだ検出値が安定的に得られるように適当に設計することができる。   However, as will be described later, the phase of the secondary magnetic field generated around the soft magnetic material 12 is most advanced in the vicinity of the center of the cross section (side surface) intersecting the disturbance magnetic field Bx of the soft magnetic material 12. As the magnetic field shifts from the vertical direction to the direction perpendicular to the magnetic field arrival, the phase advance gradually decreases (see FIG. 5). In order to stably obtain the detection value of the sensor 10 having the advanced phase, as shown in FIG. 3D, the cross-sectional length in the direction perpendicular to the magnetic field arrival direction is smaller than that of the rod-shaped soft magnetic material 12 shown in FIG. It is desirable to attach a soft magnetic plate 12a having a large cross-sectional length D in the direction perpendicular to the magnetic field arrival direction as in FIG. That is, by using a soft magnetic plate 12a having a sufficiently large cross-sectional length D in the direction perpendicular to the probe detection axis A and attaching the vicinity of the center of the cross-sectional length D adjacent to the probe 11, a detection value with a advanced phase is obtained. Can be obtained as a sensor 10 that stably outputs. The length L of the soft magnetic plate 12a in the probe detection axis direction (see FIG. 1B) can be appropriately designed so that a detection value with an advanced phase can be stably obtained.

好ましくは、図1(C)に示すように、プローブ11の周囲に検出軸Aと平行に複数の軟磁性材12a、12bを付帯させる。例えば、プローブ11を挟んで一対の軟磁性材12a、12bを対向させて付帯させる。複数の軟磁性材12a、12bを付帯させた場合は、図3(E)に示すように各軟磁性材12a、12bの周囲にそれぞれ発生した位相の進んだ二次的磁場が外乱磁場Bxに重畳されるので、単独の軟磁性材12a(又は12b)のみを付帯させた場合に比して、プローブ11の検出値の外来磁場Bに対する位相進みを拡大することができる。   Preferably, as shown in FIG. 1C, a plurality of soft magnetic materials 12 a and 12 b are attached around the probe 11 in parallel with the detection axis A. For example, a pair of soft magnetic materials 12a and 12b are attached to each other with the probe 11 interposed therebetween. When a plurality of soft magnetic materials 12a and 12b are attached, as shown in FIG. 3E, secondary magnetic fields with advanced phases generated around the respective soft magnetic materials 12a and 12b become disturbance magnetic fields Bx. Since they are superimposed, the phase advance of the detected value of the probe 11 with respect to the external magnetic field B can be expanded as compared with the case where only the single soft magnetic material 12a (or 12b) is attached.

更に好ましくは、図1(D)に示すように、プローブ検出軸Aと垂直な軸Vの周りに、プローブ検出軸Aと平行な軟磁性板12a、12bとプローブ検出軸Aと交差するスリット13付き軟磁性板12c、12dとを筒状に結合して付帯させる。軟磁性板12a〜12dを筒状に結合して渦電流の流れやすい環状の磁路(磁気回路)を形成することにより、各軟磁性材12の内部における渦電流の励起を促進し、軟磁性板12a、12bの周囲に発生する二次的磁場の外来磁場Bに対する位相進みを更に拡大することができる。また、プローブ検出軸Aを外来磁場Bxの到来方向(X軸)に向けて設置したときに、筒状に結合した軟磁性板12c、12dの表面が外乱磁場Bxと交差することになるが、その軟磁性板12c、12dにスリット13を設けて大きな環状の渦電流Eが誘導されるのを抑制することにより、軟磁性板12c、12dの周囲に位相の遅れた二次的磁場が発生してプローブ11の周囲の外乱磁場Bxに重畳されるのを防止することができる。   More preferably, as shown in FIG. 1D, the soft magnetic plates 12a and 12b parallel to the probe detection axis A and the slit 13 intersecting with the probe detection axis A around the axis V perpendicular to the probe detection axis A. The attached soft magnetic plates 12c and 12d are joined together in a cylindrical shape. By linking the soft magnetic plates 12a to 12d into a cylindrical shape to form an annular magnetic path (magnetic circuit) in which eddy currents easily flow, excitation of eddy currents in each soft magnetic material 12 is promoted and soft magnetism is increased. The phase advance of the secondary magnetic field generated around the plates 12a and 12b with respect to the external magnetic field B can be further expanded. In addition, when the probe detection axis A is installed in the direction of arrival of the external magnetic field Bx (X axis), the surfaces of the soft magnetic plates 12c and 12d coupled in a cylindrical shape intersect the disturbance magnetic field Bx. By providing the slits 13 in the soft magnetic plates 12c and 12d to suppress the induction of a large annular eddy current E, a secondary magnetic field having a delayed phase is generated around the soft magnetic plates 12c and 12d. Thus, it is possible to prevent the magnetic field from being superimposed on the disturbance magnetic field Bx around the probe 11.

図2(B)は、プローブ11の周囲に、プローブ検出軸Aと平行な長手方向軸Cを有する複数の帯状軟磁性板14をプローブ検出軸Aと垂直方向に所定間隔dで並べて付帯させた本発明の外乱磁場計測用センサ10の他の実施例を示す。例えば、所定幅Wの複数の帯状軟磁性板14の長手方向軸Cをプローブ検出軸Aと平行な同一平面(又は曲面)F上に所定間隔dで平行に並ぶように配置して磁性簾体15とし、その磁性簾体15をプローブ11の周囲に付帯させる。各帯状軟磁性板14の相互間隔dは、磁性簾体15の平面(又は曲面)Fが磁気シールド面として機能するように、具体的には間隔d中の磁束の通りやすさ(間隔のパーミアンス)が磁性板14中の磁束の通りやすさ(磁性板のパーミアンス)より小さくなるように設計することができる。例えば、磁性簾体15の長手方向線Cと直交する間隔dの断面積Saに対して、磁性板14の断面積Smと比透磁率μとの積(Sm・μ)の割合(Sm・μ/Sa)が1より大きくなるように設計する。   In FIG. 2B, a plurality of strip-shaped soft magnetic plates 14 having a longitudinal axis C parallel to the probe detection axis A are arranged around the probe 11 in a direction perpendicular to the probe detection axis A at a predetermined interval d. The other Example of the sensor 10 for disturbance magnetic field measurement of this invention is shown. For example, the longitudinal axis C of the plurality of strip-shaped soft magnetic plates 14 having a predetermined width W is arranged on the same plane (or curved surface) F parallel to the probe detection axis A so as to be arranged in parallel at a predetermined interval d. 15, the magnetic casing 15 is attached around the probe 11. The mutual spacing d of the strip-shaped soft magnetic plates 14 is specifically determined so that the magnetic flux 15 in the spacing d can pass through (the permeance of the spacing) so that the plane (or curved surface) F of the magnetic casing 15 functions as a magnetic shield surface. ) Can be designed to be smaller than the ease of passing the magnetic flux in the magnetic plate 14 (permeance of the magnetic plate). For example, the ratio (Sm · μ) of the product (Sm · μ) of the cross sectional area Sm of the magnetic plate 14 and the relative magnetic permeability μ to the cross sectional area Sa of the interval d orthogonal to the longitudinal direction line C of the magnetic housing 15. / Sa) is designed to be greater than 1.

図2(B)のセンサ10を、図2(A)のようにプローブ検出軸Aを外来磁場Bxの到来方向(X軸)に向けて設置した場合、各帯状軟磁性板14の周囲には、図1(B)の軟磁性板12aと同様に外乱磁場Bxに比して位相の進んだ二次的磁場が発生する。また、複数の帯状軟磁性板14を所定間隔dの磁性簾体15として付帯することにより、図3(F)に示すように各磁性板14の周囲に発生した二次的磁場がそれぞれ外乱磁場Bxに重畳されるので、図1(B)の軟磁性板12aに比して外来磁場Bに対する位相進みの拡大した検出値を出力するセンサ10とすることができる。磁性簾体15のプローブ検出軸Aと垂直方向の断面長さD及びプローブ検出軸方向の長さLは、上述した図1(B)の軟磁性板12aの場合と同様に、位相の進んだ検出値が安定的に得られるように設計することができる。   When the sensor 10 in FIG. 2B is installed with the probe detection axis A facing the direction of arrival of the external magnetic field Bx (X-axis) as shown in FIG. As in the soft magnetic plate 12a in FIG. 1B, a secondary magnetic field having a phase advanced as compared with the disturbance magnetic field Bx is generated. Further, by attaching a plurality of strip-shaped soft magnetic plates 14 as magnetic housings 15 having a predetermined interval d, secondary magnetic fields generated around the respective magnetic plates 14 are respectively disturbed magnetic fields as shown in FIG. Since it is superimposed on Bx, the sensor 10 can output a detection value with an expanded phase advance with respect to the external magnetic field B as compared with the soft magnetic plate 12a of FIG. The cross-sectional length D perpendicular to the probe detection axis A and the length L in the probe detection axis direction of the magnetic housing 15 are advanced in phase as in the case of the soft magnetic plate 12a of FIG. The detection value can be designed to be obtained stably.

また図2(C)に示すように、プローブ11を挟んで一対の磁性簾体15a、15bを対向させて付帯させることにより、図2(B)のように単独の磁性簾体15を付帯させた場合に比して、プローブ11の検出値の外来磁場Bに対する位相進みを更に拡大することが期待できる。なお、磁性簾体15の構成及び磁気シールド性能については、例えば特許文献3及び4に詳述されている。   Further, as shown in FIG. 2C, by attaching the pair of magnetic housings 15a and 15b to each other with the probe 11 interposed therebetween, the single magnetic housing 15 is attached as shown in FIG. It can be expected that the phase advance of the detected value of the probe 11 with respect to the external magnetic field B is further expanded as compared with the case of the above. The configuration of the magnetic housing 15 and the magnetic shielding performance are described in detail in Patent Documents 3 and 4, for example.

好ましくは、図2(E)に示すように、プローブ検出軸Aと垂直な軸Vの周りに、その垂直な軸Vと所定間隔dで交差する複数の平行な面上に配置した環状軟磁性板16の群を筒状に付帯させる。渦電流の流れやすい環状の軟磁性板16(磁気回路)を付帯させることにより、各軟磁性材16の内部における渦電流の励起を促進し、軟磁性板16の周囲に発生する二次的磁場の外来磁場Bに対する位相進みを更に拡大することが期待できる。また図2(E)の環状軟磁性板16は、図2(C)のようにX軸方向のプローブ検出軸Aと平行に並べた帯状軟磁性板14(磁性簾体15)と、図2(D)のようにY軸方向のプローブ検出軸Aと平行に並べた帯状軟磁性板14(磁性簾体15)とを組み合わせて構成することができ、X軸方向の外来磁場Bx及びY軸方向の外来磁場Byの何れに対しても位相の進んだ二次的磁場を発生することができる。すなわち、図2(E)に示すような環状軟磁性板16の群をプローブ11の周囲に付帯させることにより、XY平面上の何れの方向からの外来磁場Bに対しても位相の進んだ検出値を出力する2軸対応のセンサ10とすることができる。   Preferably, as shown in FIG. 2 (E), an annular soft magnetic material arranged on a plurality of parallel surfaces that intersect the vertical axis V at a predetermined interval d around the axis V perpendicular to the probe detection axis A. A group of plates 16 is attached in a cylindrical shape. By attaching an annular soft magnetic plate 16 (magnetic circuit) in which eddy current easily flows, excitation of eddy current in each soft magnetic material 16 is promoted, and a secondary magnetic field generated around the soft magnetic plate 16. It can be expected that the phase advance with respect to the external magnetic field B will be further expanded. 2 (E) includes a strip-shaped soft magnetic plate 14 (magnetic casing 15) arranged in parallel with the probe detection axis A in the X-axis direction as shown in FIG. 2 (C), and FIG. As shown in (D), it can be configured by combining the strip-shaped soft magnetic plate 14 (magnetic housing 15) arranged in parallel with the probe detection axis A in the Y-axis direction, and the external magnetic field Bx and Y-axis in the X-axis direction. A secondary magnetic field with an advanced phase can be generated for any external magnetic field By. That is, a group of annular soft magnetic plates 16 as shown in FIG. 2 (E) is attached around the probe 11 to detect the phase advanced with respect to the external magnetic field B from any direction on the XY plane. It can be set as the sensor 10 corresponding to two axes which outputs a value.

[実験例1]
フラックスゲート型の磁気プローブ11とパーマロイ製の環状軟磁性板16の群とを用いて図2(E)のような外乱磁場計測用センサ10を試作し、外来磁場Bに対するセンサ10の検出値の位相進みを確認する実験を行った。本実験では、図2(B)に示すような長さLの帯状軟磁性板14を端縁の重ね合わせによりロ字型に接合して環状軟磁性板16とし、その環状軟磁性板16の複数枚を所定間隔dで平行に積み重ねて図2(E)に示すような積み重ね長さDの筒型積層体を形成し、その筒型積層体の両端から等しい距離(=D/2)の中心位置にプローブ11を係止して外乱磁場計測用センサ10とした。また、筒型積層体の中心軸線(筒軸)とプローブ検出軸Aの垂直軸Vとを芯合わせし、プローブ検出軸Aを各環状軟磁性板16と平行になるように配置した。その筒型積層体を付帯したセンサ10にプローブ検出軸Aと平行に外乱磁場Bを周波数掃引しながら暴露し、暴露した外乱磁場Bxに対するプローブ11の検出値の位相進みを周波数毎に検出した。また、暴露する外乱磁場Bxの強度を0.1μT、1μT、10μT、40μTと切り替えながら、同様の実験を繰り返した。
[Experimental Example 1]
A disturbance magnetic field measurement sensor 10 as shown in FIG. 2E is made using a flux gate type magnetic probe 11 and a group of permalloy annular soft magnetic plates 16, and the detection value of the sensor 10 for the external magnetic field B is measured. An experiment was conducted to confirm the phase advance. In this experiment, a strip-shaped soft magnetic plate 14 having a length L as shown in FIG. 2B is joined in a square shape by overlapping edges to form an annular soft magnetic plate 16. A plurality of sheets are stacked in parallel at a predetermined interval d to form a cylindrical laminate having a stacking length D as shown in FIG. 2 (E), and an equal distance (= D / 2) from both ends of the cylindrical laminate. The probe 11 is locked at the center position to obtain a disturbance magnetic field measurement sensor 10. Further, the central axis (cylinder axis) of the cylindrical laminate and the vertical axis V of the probe detection axis A are aligned, and the probe detection axis A is arranged in parallel with each annular soft magnetic plate 16. The disturbance magnetic field B was exposed to the sensor 10 attached with the cylindrical laminate while sweeping the disturbance magnetic field B in parallel with the probe detection axis A, and the phase advance of the detection value of the probe 11 with respect to the exposed disturbance magnetic field Bx was detected for each frequency. The same experiment was repeated while switching the intensity of the disturbance magnetic field Bx to be exposed to 0.1 μT, 1 μT, 10 μT, and 40 μT.

実験結果を、外乱磁場Bxの強度別のグラフとして図4に示す。図4の各グラフは、外来磁場Bxの強度及び周波数に拘らず、センサ10の検出値の位相が外乱磁場Bに対して進むことを示しており、上述した図2(B)のようなプローブ検出軸Aと平行な帯状軟磁性板14(又は図1(B)のような軟磁性板12a)の付帯によって外乱磁場Bの検出値の位相が進むことを確認できた。また、図4の強度別のグラフは、それぞれ外乱磁場Bxの周波数の増加に従ってセンサ10の検出値の位相進みが大きくなることを示している。すなわち、本発明の外乱磁場計測用センサ10の周波数特性Gs(ω)が、図8のように周波数の増加に従って位相遅延が大きくなる従来のアクティブ型システム1の磁気センサ10及び制御装置20の周波数特性Go(ω)とほぼ正反対の特性に調整されており、位相遅延の影響が補償されていることが分かる。従って、本発明のセンサ10を用いて図1(A)又は図2(A)のようなアクティブ型システム1を構成すれば、システム構成要素(制御装置20等)の位相遅延特性Go(ω)をセンサ10の周波数特性Gs(ω)によって低減又は位相補償し、外乱磁場Bの周波数に拘らず位相遅延によるシールド性能の低下が生じにくいアクティブ型システム1とすることができる。   An experimental result is shown in FIG. 4 as a graph according to the intensity of the disturbance magnetic field Bx. Each graph in FIG. 4 shows that the phase of the detection value of the sensor 10 advances with respect to the disturbance magnetic field B regardless of the intensity and frequency of the external magnetic field Bx, and the probe as shown in FIG. It was confirmed that the phase of the detected value of the disturbance magnetic field B was advanced by the incidental of the strip-shaped soft magnetic plate 14 (or the soft magnetic plate 12a as shown in FIG. 1B) parallel to the detection axis A. 4 shows that the phase advance of the detection value of the sensor 10 increases as the frequency of the disturbance magnetic field Bx increases. That is, the frequency characteristic Gs (ω) of the disturbance magnetic field measurement sensor 10 of the present invention has a phase delay that increases as the frequency increases, as shown in FIG. 8, and the frequency of the magnetic sensor 10 and the control device 20 of the conventional active system 1. It can be seen that the characteristic is adjusted to a characteristic almost opposite to the characteristic Go (ω), and the influence of the phase delay is compensated. Therefore, if the active system 1 as shown in FIG. 1A or FIG. 2A is configured using the sensor 10 of the present invention, the phase delay characteristic Go (ω) of the system components (such as the control device 20). Can be reduced or phase-compensated by the frequency characteristic Gs (ω) of the sensor 10, so that the active system 1 is less likely to cause a reduction in shield performance due to phase delay regardless of the frequency of the disturbance magnetic field B.

また、図4に示す本発明の外乱磁場計測用センサ10の周波数特性Gs(ω)は、図9のような従来の複合型システムの補償コイル2、3の周波数特性Gc(ω)ともほぼ正反対の特性に調整されており、例えば図6(A)のような複合型システムを本発明のセンサ10を用いて構成することにより、パッシブ型システム5の渦電流による位相遅延の累積を低減し、複合型システムのシールド性能SEsの低下を防止することも可能である。図6(B)に点線で示すように、本発明のセンサ10を組み込んだ複合型システムのシールド性能SEsは、そのセンサ10の周波数特性Gs(ω)と制御装置20の周波数特性Go(ω)と補償コイル2、3の周波数特性Gc(ω)とを組み合わせた一巡伝達関数G(ω)(=Gs(ω)・Go(ω)・Gc(ω))によって評価することができる。   Further, the frequency characteristic Gs (ω) of the disturbance magnetic field measuring sensor 10 of the present invention shown in FIG. 4 is almost opposite to the frequency characteristic Gc (ω) of the compensation coils 2 and 3 of the conventional composite system as shown in FIG. For example, by constructing a composite system as shown in FIG. 6A using the sensor 10 of the present invention, the accumulation of phase delay due to the eddy current of the passive system 5 is reduced. It is also possible to prevent a decrease in the shielding performance SEs of the composite system. As shown by a dotted line in FIG. 6B, the shield performance SEs of the composite system incorporating the sensor 10 of the present invention is the frequency characteristic Gs (ω) of the sensor 10 and the frequency characteristic Go (ω) of the control device 20. And the frequency characteristic Gc (ω) of the compensation coils 2 and 3 can be evaluated by a round transfer function G (ω) (= Gs (ω) · Go (ω) · Gc (ω)).

例えば、位相遅延が180度になると|G(ω)|=1、すなわちシールド性能SEs=0となって発振現象を生じるが、この位相遅延を本発明のセンサ10の位相進みGs(ω)によって完全に補償できればシールド性能SEs=2に改善することができる。一巡伝達関数G(ω)の大きさは、シールド対象空間Rの規模に伴う補償コイル3、4の巻数や構成、接続方法等によって変化するので一概に示すことは難しいが、例えば100Hzにおいて|G(ω)|=1となる場合を想定すると、本発明のセンサ10を用いない場合の位相遅延が65度程度(図8参照)であってシールド性能SEs=1.68程度となるのに対して、本発明のセンサ10の位相進みは45度程度(図4参照)であるから、本発明のセンサ10を組み込むことで位相遅延を20度程度に補償し、シールド性能SEs=1.97程度に改善することができる。同様に200Hzにおいて|G(ω)|=1となる場合を想定すると、シールド性能SEsが1.53程度であったシステムを、本発明のセンサ10を組み込むことでシールド性能SEsを1.92程度まで改善することができる。   For example, when the phase delay reaches 180 degrees, | G (ω) | = 1, that is, the shield performance SEs = 0, and an oscillation phenomenon occurs. This phase delay is caused by the phase advance Gs (ω) of the sensor 10 of the present invention. If it can be completely compensated, the shield performance SEs = 2 can be improved. The magnitude of the round transfer function G (ω) varies depending on the number of windings, the configuration of the compensation coils 3 and 4 and the connection method according to the size of the shield target space R, and is difficult to show in general. Assuming the case where (ω) | = 1, the phase delay when the sensor 10 of the present invention is not used is about 65 degrees (see FIG. 8) and the shield performance SEs = 1.68. Since the phase advance of the sensor 10 of the present invention is about 45 degrees (see FIG. 4), the phase delay is compensated to about 20 degrees by incorporating the sensor 10 of the present invention, and the shield performance SEs = 1.97. Can be improved. Similarly, assuming that | G (ω) | = 1 at 200 Hz, the shield performance SEs is about 1.92 by incorporating the sensor 10 of the present invention into a system in which the shield performance SEs is about 1.53. Can be improved up to.

こうして本発明の目的である「外乱磁場の周波数に拘らず位相遅延によるシールド性能の低下が生じにくいアクティブ型磁気シールドシステム」を提供することができる。   In this way, it is possible to provide an “active magnetic shield system” that is less likely to cause a reduction in shield performance due to phase delay regardless of the frequency of the disturbance magnetic field, which is an object of the present invention.

なお、本発明のセンサ10は、外乱磁場Bに対して位相の進んだ検出値を出力すると共に、検出値の振幅(ゲイン)も外乱磁場Bに対して異なったものとなるが、そのような振幅(ゲイン)の検出値の劣化については、従来のアクティブ型システムと同様の校正処理によって推定又は補正することが可能である。すなわち、本発明のセンサ10は、新規にアクティブ型システム又は複合型システムを構築する場合だけでなく、既存のアクティブ型システム又は複合型システムの位相遅延を補償してシールド性能の向上を図る場合にも有益である。   Note that the sensor 10 of the present invention outputs a detection value whose phase is advanced with respect to the disturbance magnetic field B, and the amplitude (gain) of the detection value is different from that of the disturbance magnetic field B. The deterioration of the detected value of the amplitude (gain) can be estimated or corrected by a calibration process similar to that of the conventional active system. In other words, the sensor 10 of the present invention is not only used for constructing a new active system or composite system, but also for improving shield performance by compensating for the phase delay of an existing active system or composite system. Is also beneficial.

上述したように本発明の外乱磁場計測用センサ10を組み込んでアクティブ型システム又は複合型システムを構築する場合は、システムの制御装置20の周波数特性Go(ω)と補償コイル2、3の周波数特性Gc(ω)とを勘案して、センサ10により適切な位相補償が行えるように付帯する軟磁性材12(又は帯状軟磁性板14、環状軟磁性板16)の形状や大きさ、透磁率等を実験的又は数値解析により設計することができる。更に本発明者は、本発明のセンサ10において、軟磁性材12のプローブ11に対する相対位置をプローブ検出軸Aと垂直方向に調整可能とすることにより、位相補償(すなわち検出値の位相進み)を動的に調整できることを実験的に見出した。   As described above, when the active system or the composite system is constructed by incorporating the disturbance magnetic field measurement sensor 10 of the present invention, the frequency characteristic Go (ω) of the control device 20 of the system and the frequency characteristics of the compensation coils 2 and 3 are used. Taking into account Gc (ω), the shape and size of the soft magnetic material 12 (or the strip-shaped soft magnetic plate 14 or the annular soft magnetic plate 16) attached so that the sensor 10 can perform appropriate phase compensation, the magnetic permeability, etc. Can be designed experimentally or by numerical analysis. Furthermore, the inventor makes phase compensation (that is, phase advance of the detected value) by making it possible to adjust the relative position of the soft magnetic material 12 to the probe 11 in the direction perpendicular to the probe detection axis A in the sensor 10 of the present invention. It was found experimentally that it can be adjusted dynamically.

[実験例2]
実験例1と同じ外乱磁場計測用センサ10を使用し、環状軟磁性板16の筒型積層体とプローブ11との相対位置を変化させながら、外来磁場Bに対するセンサ10の検出値の位相進みを確認する実験を行った。本実験では、図2(B)又は(E)のような位置調整機構17を介して筒型積層体上にプローブ11を係止し、位置調整機構17により筒型積層体上のプローブ11の係止位置を調整可能とした。図示例の位置調整機構17は、筒型積層体上の両端間にプローブ検出軸Aと垂直方向に延在させた移動レール18と、その移動レール18上の特定位置にプローブ11を係止する係止部材18とを有する。先ずプローブ11を筒型積層体の中心位置に位置付けたうえでプローブ検出軸Aと平行に周波数1Hzの外乱磁場Bを暴露し、移動レール18上で係止部材18を移動させて筒型積層体の中心位置からのプローブ11の距離を変えながら外乱磁場Bの暴露を繰り返し、中心からの距離毎にプローブ11の検出値の位相進みを検出した。また、暴露する外乱磁場Bxの周波数を10Hz、60Hz、200Hzと切り替えながら、同様の実験を繰り返した。
[Experiment 2]
Using the same disturbance magnetic field measurement sensor 10 as in Experimental Example 1 and changing the relative position between the cylindrical laminated body of the annular soft magnetic plate 16 and the probe 11, the phase advance of the detection value of the sensor 10 with respect to the external magnetic field B is increased. An experiment to confirm was conducted. In this experiment, the probe 11 is locked on the cylindrical laminate via the position adjusting mechanism 17 as shown in FIG. 2B or (E), and the probe 11 on the cylindrical laminate is moved by the position adjusting mechanism 17. The locking position can be adjusted. The position adjusting mechanism 17 in the illustrated example locks the probe 11 at a specific position on the moving rail 18 that extends in the direction perpendicular to the probe detection axis A between both ends on the cylindrical laminate. And a locking member 18. First, the probe 11 is positioned at the center of the cylindrical laminate, and a disturbance magnetic field B having a frequency of 1 Hz is exposed parallel to the probe detection axis A, and the locking member 18 is moved on the moving rail 18 to move the cylindrical laminate. The exposure of the disturbance magnetic field B was repeated while changing the distance of the probe 11 from the center position, and the phase advance of the detection value of the probe 11 was detected for each distance from the center. Further, the same experiment was repeated while switching the frequency of the disturbance magnetic field Bx to be exposed to 10 Hz, 60 Hz, and 200 Hz.

実験結果を、外乱磁場Bxの周波数別のグラフとして図5に示す。図5の各グラフは、外来磁場Bxの周波数に拘らず、筒型積層体の中心位置において外乱磁場計測用センサ10の検出値の位相進み(位相先進)が最も大きく、中心位置から離れて筒型積層体の端部に近付くに従って位相進みが徐々に小さくなることを示している。このような位相進みの変動理由の詳細は不明であるが、筒型積層体の両端部から外乱磁場Bが内側に回り込み、その回り込みの影響によって筒型積層体の両端部に近付くに従って位相進みが小さくなると推定される。この実験結果から、本発明のセンサ10によって位相進みの安定した検出値を出力するためには、筒型積層体(又は図1(E)の軟磁性板12a)のプローブ検出軸Aと垂直方向長さDを、両端部からの外乱磁場Bの回り込みの影響が避けられる大きさとすることが有効であることが確認できた。   An experimental result is shown in FIG. 5 as a graph according to the frequency of the disturbance magnetic field Bx. Each graph of FIG. 5 shows that the phase advance (phase advance) of the detection value of the disturbance magnetic field measurement sensor 10 is the largest at the center position of the cylindrical laminate regardless of the frequency of the external magnetic field Bx, and the cylinder is separated from the center position. It shows that the phase advance gradually decreases as it approaches the end of the mold stack. Although the details of the reason for the phase advance variation are unknown, the phase magnetic field B circulates inward from both ends of the cylindrical laminate, and the phase advance increases as it approaches the both ends of the cylindrical laminate due to the influence of the wraparound. Estimated to be smaller. From this experimental result, in order to output a detection value with a stable phase advance by the sensor 10 of the present invention, a direction perpendicular to the probe detection axis A of the cylindrical laminate (or the soft magnetic plate 12a in FIG. 1E). It has been confirmed that it is effective to set the length D to a size that avoids the influence of the disturbance magnetic field B from both ends.

また、本発明の外乱磁場計測用センサ10にプローブ11の位置調整機構17を含め、図5のグラフのようにプローブ11の位置と応じたセンサ10の検出値の位相進みとの対応関係を予め求めておくことにより、アクティブ型システム1を構築する各現場に応じて適切な位相補償が行えるように、検出値の位相進みを動的に調整可能な外乱磁場計測用センサ10とすることができる。   Further, the disturbance magnetic field measurement sensor 10 of the present invention includes the position adjustment mechanism 17 of the probe 11, and the correspondence relationship between the position of the probe 11 and the phase advance of the detected value of the sensor 10 corresponding to the position of the probe 11 as shown in the graph of FIG. By obtaining the disturbance magnetic field measurement sensor 10, the phase advance of the detection value can be dynamically adjusted so that appropriate phase compensation can be performed according to each site where the active system 1 is constructed. .

1…アクティブ型磁気シールドシステム 2、3…補償コイル
4…嫌磁気装置 5…パッシブ型磁気シールドシステム
6、7…軟磁性板
10…磁気検出センサ 11…プローブ
12…軟磁性材 13…スリット
14…帯状軟磁性板 15…磁性簾体
16…環状軟磁性板 17…位置調整機構
18…移動レール 19…係止部材
20…制御装置 21…バッファー
22…高周波信号処理回路 22a、22c…帯域通過フィルタ
22b、22d…増幅度調整回路 22e…位相調整回路
23…低周波数信号処理回路 23a…高域通過フィルタ
23b…低域通過フィルタ 23c…積分器
23d…増幅度調整回路 24…加算器
A…プローブ検出軸 B…外乱磁場
Be…内部磁場 Bc…補償磁場
Bs…重畳磁場 R…シールド対象空間
V…プローブ検出軸の垂直軸 P…シールド対象位置
S…センサ位置 C…帯状軟磁性板の長手方向軸
w…帯状軟磁性板の幅 d…軟磁性板の相互間隔
D…軟磁性板のプローブ検出軸と垂直方向の断面長さ
DESCRIPTION OF SYMBOLS 1 ... Active type magnetic shield system 2, 3 ... Compensation coil 4 ... Magnetostatic device 5 ... Passive type magnetic shield system 6, 7 ... Soft magnetic plate 10 ... Magnetic detection sensor 11 ... Probe 12 ... Soft magnetic material 13 ... Slit 14 ... Belt-shaped soft magnetic plate 15 ... magnetic housing 16 ... annular soft magnetic plate 17 ... position adjusting mechanism 18 ... moving rail 19 ... locking member 20 ... control device 21 ... buffer 22 ... high frequency signal processing circuits 22a, 22c ... band pass filter 22b , 22d ... amplification adjustment circuit 22e ... phase adjustment circuit 23 ... low frequency signal processing circuit 23a ... high pass filter 23b ... low pass filter 23c ... integrator 23d ... amplification adjustment circuit 24 ... adder A ... probe detection axis B ... Disturbance magnetic field Be ... Internal magnetic field Bc ... Compensation magnetic field Bs ... Superimposed magnetic field R ... Shield target space V ... Vertical axis of probe detection axis Longitudinal axis w ... probe detection axis and a cross-sectional length of the vertical spacing D ... soft plate width d ... soft plate strip soft plate ... shielding object position S ... sensor position C ... belt soft plate

Claims (12)

変動する外乱磁場検出用のプローブ,及びそのプローブ周囲に間隙を介してプローブ検出軸と平行に付帯させた軟磁性材を備え,前記軟磁性材の周囲に生じる位相の進んだ二次的磁場の重畳された外乱磁場を前記プローブで検出してなる外乱磁場計測センサ。 A probe for detecting a fluctuating disturbance magnetic field, and a soft magnetic material attached in parallel to the probe detection axis through a gap around the probe, and a secondary magnetic field with an advanced phase generated around the soft magnetic material. A disturbance magnetic field measuring sensor formed by detecting a superimposed disturbance magnetic field with the probe. 請求項1のセンサにおいて,前記プローブ周囲に間隙を介してプローブ検出軸と平行に複数の軟磁性材を付帯させてなる外乱磁場計測センサ。 The disturbance magnetic field measurement sensor according to claim 1, wherein a plurality of soft magnetic materials are attached around the probe in parallel to the probe detection axis via a gap . 請求項1又は2のセンサにおいて,前記プローブ周囲に,前記プローブ検出軸と平行な長手方向軸を有する複数の帯状軟磁性板をプローブ検出軸と垂直方向に所定間隔で並べて付帯させてなる外乱磁場計測センサ。 The disturbance magnetic field according to claim 1 or 2, wherein a plurality of strip-shaped soft magnetic plates having a longitudinal axis parallel to the probe detection axis are arranged around the probe and arranged at predetermined intervals in a direction perpendicular to the probe detection axis. Measuring sensor. 請求項1から3の何れかのセンサにおいて,前記プローブ検出軸と垂直な軸の周りに,プローブ検出軸と平行な軟磁性板とプローブ検出軸と交差するスリット付き軟磁性板とを筒状に結合して付帯させてなる外乱磁場計測センサ。 4. The sensor according to claim 1, wherein a soft magnetic plate parallel to the probe detection axis and a soft magnetic plate with a slit intersecting with the probe detection axis are formed around an axis perpendicular to the probe detection axis. A disturbance magnetic field measurement sensor that is combined and attached. 請求項1から4の何れかのセンサにおいて,前記プローブ検出軸と垂直な軸の周りに,その垂直な軸と所定間隔で交差する複数の平行な面上に配置した環状軟磁性板の群を付帯させてなる外乱磁場計測センサ。 5. The sensor according to claim 1, wherein a group of annular soft magnetic plates arranged on a plurality of parallel planes intersecting the vertical axis at a predetermined interval around an axis perpendicular to the probe detection axis. An external disturbance magnetic field measurement sensor. 請求項1から5の何れかのセンサにおいて,前記軟磁性材のプローブに対する相対位置をプローブ検出軸と垂直方向に調整する位置調整機構を設けてなる外乱磁場計測センサ。 6. The disturbance magnetic field measurement sensor according to claim 1, further comprising a position adjusting mechanism for adjusting a relative position of the soft magnetic material to the probe in a direction perpendicular to the probe detection axis. 変動する外乱磁場から保護すべきシールド対象空間の周囲に配置する補償磁場発生用コイル,前記磁場検出用のプローブとそのプローブ周囲に間隙を介してプローブ検出軸と平行に付帯させた軟磁性材とを有し且つ前記シールド対象空間内に配置する外乱磁場計測用センサ,及び前記軟磁性材の周囲に生じる位相の進んだ二次的磁場の重畳された外乱磁場を検出する前記センサの検出値に応じて前記コイルの発生する補償磁場を制御する制御装置を備えてなるアクティブ型磁気シールドシステム。 A compensating magnetic field generating coil arranged around a space to be shielded to be protected from a fluctuating magnetic field, a probe for detecting the magnetic field, and a soft magnetic material attached around the probe in parallel with the probe detection axis via a gap ; And a detection value of the sensor for detecting a disturbance magnetic field on which a secondary magnetic field with an advanced phase generated around the soft magnetic material is superimposed. An active magnetic shield system comprising a control device for controlling the compensation magnetic field generated by the coil in response. 請求項7のシステムにおいて,前記センサのプローブ周囲に間隙を介してプローブ検出軸と平行に複数の軟磁性材を付帯させてなるアクティブ型磁気シールドシステム。 8. The active magnetic shield system according to claim 7, wherein a plurality of soft magnetic materials are attached around the probe of the sensor in parallel to the probe detection axis via a gap . 請求項7又は8のシステムにおいて,前記センサのプローブ周囲に,プローブ検出軸と平行な長手方向軸を有する複数の帯状軟磁性板をプローブ検出軸と垂直方向に所定間隔で並べて付帯させてなるアクティブ型磁気シールドシステム。 9. The system according to claim 7 or 8, wherein a plurality of strip-shaped soft magnetic plates having a longitudinal axis parallel to the probe detection axis are arranged around the probe of the sensor and arranged at predetermined intervals in a direction perpendicular to the probe detection axis. Type magnetic shield system. 請求項7から9の何れかのシステムにおいて,前記センサのプローブ検出軸と垂直な軸の周りに,プローブ検出軸と平行な軟磁性板とプローブ検出軸と交差するスリット付き軟磁性板とを筒状に結合して付帯させてなるアクティブ型磁気シールドシステム。 10. The system according to claim 7, wherein a soft magnetic plate parallel to the probe detection axis and a soft magnetic plate with a slit intersecting the probe detection axis are arranged around an axis perpendicular to the probe detection axis of the sensor. An active magnetic shield system that is combined and attached. 請求項7から10の何れかのシステムにおいて,前記センサのプローブ検出軸と垂直な軸の周りに,その垂直な軸と所定間隔で交差する複数の平行な面上に配置した環状軟磁性板を付帯させてなるアクティブ型磁気シールドシステム。 11. The system according to claim 7, wherein an annular soft magnetic plate disposed on a plurality of parallel surfaces intersecting the perpendicular axis at a predetermined interval around an axis perpendicular to the probe detection axis of the sensor. An accompanying active magnetic shield system. 請求項7から11の何れかのシステムにおいて,前記センサに,前記軟磁性材のプローブに対する相対位置をプローブ検出軸と垂直方向に調整する位置調整機構を設けてなるアクティブ型磁気シールドシステム。 12. The active magnetic shield system according to claim 7, wherein the sensor is provided with a position adjusting mechanism for adjusting a relative position of the soft magnetic material to the probe in a direction perpendicular to a probe detection axis.
JP2010218816A 2010-09-29 2010-09-29 Disturbance magnetic field measurement sensor and active magnetic shield system Expired - Fee Related JP5630861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218816A JP5630861B2 (en) 2010-09-29 2010-09-29 Disturbance magnetic field measurement sensor and active magnetic shield system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218816A JP5630861B2 (en) 2010-09-29 2010-09-29 Disturbance magnetic field measurement sensor and active magnetic shield system

Publications (2)

Publication Number Publication Date
JP2012073146A JP2012073146A (en) 2012-04-12
JP5630861B2 true JP5630861B2 (en) 2014-11-26

Family

ID=46169476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218816A Expired - Fee Related JP5630861B2 (en) 2010-09-29 2010-09-29 Disturbance magnetic field measurement sensor and active magnetic shield system

Country Status (1)

Country Link
JP (1) JP5630861B2 (en)

Also Published As

Publication number Publication date
JP2012073146A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
KR101965977B1 (en) Apparatus for measuring current
JP5531215B2 (en) Current sensor
US8978488B2 (en) Magnetic force sensor including a magneto-electric transducer
EP2787363B1 (en) Geomagnetic sensor
JP5535467B2 (en) Phase correction type active magnetic shield device
Baltag et al. Dynamic shielding of the magnetic fields
US10337887B2 (en) Magnetic sensor inhibiting influence of induced electromotive force
JP2015102513A (en) Metallic foreign matter detection device, and eddy current flaw detector
JP2014531185A (en) Magnetic flux enhancer system for reluctance type sensor
JP2009288158A (en) Rotation angle detecting device
JP2011082444A (en) Structure and system for composite magnetic shield
US10082407B2 (en) Angle detecting apparatus and angle detecting system
JP5417404B2 (en) Current detector
JP5630861B2 (en) Disturbance magnetic field measurement sensor and active magnetic shield system
JP2014021102A (en) Magnetic shield and current detector including the same
Vrijsen et al. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation
Çağıl et al. Design of a doubly tunable gradiometer coil
JP2012033669A (en) Method and system for active magnetic shield of disturbed and fluctuated magnetic field
JP5592193B2 (en) Method of constructing a composite magnetic shield for disturbance magnetic fields
JP2013238500A (en) Inclined core type current sensor
JP2016061572A (en) Magnetic field sensor
van Beek et al. Optimization and measurement of eddy current damping applied in a tuned mass damper
JP2010103373A (en) Active magnetic shielding device compatible with alternating-current magnetic field
JP5900014B2 (en) Magnetic shield device
JP7243747B2 (en) Current sensor and electric control device with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5630861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees