JP5627845B2 - Fuel oil composition for premixed compression ignition gasoline engine - Google Patents

Fuel oil composition for premixed compression ignition gasoline engine Download PDF

Info

Publication number
JP5627845B2
JP5627845B2 JP2008281248A JP2008281248A JP5627845B2 JP 5627845 B2 JP5627845 B2 JP 5627845B2 JP 2008281248 A JP2008281248 A JP 2008281248A JP 2008281248 A JP2008281248 A JP 2008281248A JP 5627845 B2 JP5627845 B2 JP 5627845B2
Authority
JP
Japan
Prior art keywords
oil composition
fuel oil
ppm
fuel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008281248A
Other languages
Japanese (ja)
Other versions
JP2010106183A (en
Inventor
行男 赤坂
行男 赤坂
田中 英治
英治 田中
鈴木 昭雄
昭雄 鈴木
真人 村瀬
真人 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008281248A priority Critical patent/JP5627845B2/en
Publication of JP2010106183A publication Critical patent/JP2010106183A/en
Application granted granted Critical
Publication of JP5627845B2 publication Critical patent/JP5627845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

本発明は、予混合圧縮着火(CAI:Controlled Auto-ignition)エンジン用の燃料油組成物に関し、特には、予混合圧縮着火(CAI)エンジンに用いた際に、予混合圧縮着火(CAI)燃焼を確保できるエンジンの運転範囲を、従来のガソリンではなし得ない範囲まで拡大することが可能で、且つCO2の排出が少ない燃料油組成物に関するものである。 The present invention relates to a fuel oil composition for a premixed compression ignition (CAI) engine, and more particularly to premixed compression ignition (CAI) combustion when used in a premixed compression ignition (CAI) engine. The present invention relates to a fuel oil composition that can expand the operating range of an engine that can ensure the above to a range that cannot be achieved by conventional gasoline and that emits less CO 2 .

自動車から排出される窒素酸化物(NOx)、粒子状物質(PM)、一酸化炭素(CO)、炭化水素(HC)は、大気中におけるこれら有害成分濃度に一定の寄与があるため、大気環境改善の観点から、これら有害排出ガス成分の削減が強く求められている。一方、地球温暖化防止のためには、化石燃料の燃焼で排出されるCO2の削減が必要であり、自動車からのCO2排出の削減、即ち、自動車の燃料消費効率(燃費)の向上が強く求められている。このように、自動車においては、有害ガス成分の排出削減とCO2の排出削減を同時に達成する必要があり、昨今、その対応技術として、予混合圧縮着火(HCCI:Homogeneous Charged Compression Ignition)エンジンが注目されている。一般に、ディーゼルエンジンでHCCI燃焼を達成するPCCI(Premixed Charged Compression Ignition)エンジンに対し、ガソリンエンジンでHCCI燃焼を達成するエンジンはCAIエンジンと呼ばれている。 Nitrogen oxides (NOx), particulate matter (PM), carbon monoxide (CO), and hydrocarbons (HC) emitted from automobiles have a certain contribution to the concentration of these harmful components in the atmosphere. From the viewpoint of improvement, reduction of these harmful exhaust gas components is strongly demanded. On the other hand, in order to prevent global warming, it is necessary to reduce the CO 2 emitted by the combustion of fossil fuels, which reduces CO 2 emissions from automobiles, that is, improves the fuel consumption efficiency (fuel consumption) of automobiles. There is a strong demand. As described above, in automobiles, it is necessary to simultaneously achieve emission reduction of harmful gas components and CO 2 emission reduction. Recently, premixed compression ignition (HCCI) engine has attracted attention as a countermeasure technology. Has been. In general, a PCCI (Premixed Charged Compression Ignition) engine that achieves HCCI combustion with a diesel engine is an CAI engine that achieves HCCI combustion with a gasoline engine.

CAIエンジンでは、燃焼の開始(着火)を燃料の自己着火に依存しているので、燃焼室内の温度が低い冷機時や低負荷条件下では、着火性の良好な燃料が必要となる。しかしながら、着火性の良好な燃料は、燃焼室内の温度が高い高負荷条件下では、燃焼室内で多点同時着火による急激な燃焼(ノッキング)を起こし、燃焼騒音の増大やエンジンの損傷を引き起こしてしまう。そのため、燃焼室内の温度が高い高負荷条件下では、着火性の低い燃料、即ち、緩慢な燃焼挙動を示すアンチノック性の高い燃料が求められる。従って、CAIエンジン用燃料としては、広範囲な負荷条件でCAI燃焼が成立するように、燃料の着火性やアンチノック性を最適な値に制御する必要がある。さらに、燃料からのCO2を削減するためには、単位発熱量当たりのCO2排出量が少ないことが望まれ、CO2排出原単位が小さく、且つCAI燃焼範囲が広い燃料が必要である。 In the CAI engine, the start (ignition) of combustion depends on the self-ignition of fuel, and therefore, a fuel with good ignitability is required when the temperature in the combustion chamber is low or the load is low. However, fuel with good ignitability causes sudden combustion (knocking) due to multipoint simultaneous ignition in the combustion chamber under high load conditions where the temperature in the combustion chamber is high, resulting in increased combustion noise and engine damage. End up. Therefore, under high load conditions where the temperature in the combustion chamber is high, a fuel with low ignitability, that is, a fuel with high anti-knock property that exhibits a slow combustion behavior is required. Therefore, as the fuel for the CAI engine, it is necessary to control the ignitability and anti-knock property of the fuel to optimum values so that CAI combustion is established under a wide range of load conditions. Furthermore, in order to reduce the CO 2 from the fuel, it is desired CO 2 emissions per unit calorific value is small, a small CO 2 emission intensity, and CAI combustion range is required wide fuel.

従来型ガソリンエンジンやディーゼルエンジン用燃料の着火性やアンチノック性を表現する尺度(評価指標)としては、セタン価やオクタン価があるが、CAIエンジン用燃料の着火性や燃焼性を記述し、CAI燃焼が成立する負荷条件の範囲で使用できる燃料油組成物に求められる性状や組成を把握するためには、これらの評価指標は不十分であることが知られている。   There are cetane number and octane number as a scale (evaluation index) for expressing the ignitability and anti-knock property of conventional gasoline engine and diesel engine fuel. It is known that these evaluation indexes are insufficient for grasping the properties and compositions required for a fuel oil composition that can be used within a range of load conditions where combustion is established.

特開2004−91657号公報JP 2004-91657 A Paul W. Besonette, Charles H. Schleyer, Kevin P Duffy, William L. Hardy and Michael P. Liechty, ”Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion”, SAE Paper 2007-01-0191, 2007Paul W. Besonette, Charles H. Schleyer, Kevin P Duffy, William L. Hardy and Michael P. Liechty, “Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion”, SAE Paper 2007-01-0191, 2007

そこで、本発明の目的は、CAI燃焼が成立する負荷条件の範囲で使用できる燃料油組成物に求められる性状や組成を把握し、従来のガソリンではなし得ない範囲までCAI燃焼の燃焼範囲を拡大することが可能で、且つCO2の排出が少ない燃料組成物を提供することにある。 Accordingly, an object of the present invention is to grasp the properties and composition required for a fuel oil composition that can be used within the range of load conditions where CAI combustion is established, and to expand the combustion range of CAI combustion to a range that cannot be achieved with conventional gasoline. It is an object of the present invention to provide a fuel composition that can be reduced and emits less CO 2 .

本発明者らは、上記目的を達成するために鋭意検討した結果、CAIエンジン用燃料の着火性や燃焼性を記述し、CAI燃焼が成立する負荷条件の範囲を精度よく予測するためには、着火や燃焼挙動に直接影響する燃料の分子構造に立脚した尺度が有益と考え、多成分系である自動車用燃料の平均的な分子構造を表現する評価指標を開発した。そして、特定の蒸留性状を有し、新規に創出した着火性やアンチノック性指標が特定の範囲にある燃料油組成物を予混合圧縮着火(CAI)エンジンに用いることで、CAI燃焼が成立するエンジンの運転範囲が、従来の自動車用燃料(ガソリン、軽油)ではなし得ない範囲まで拡大することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors describe the ignitability and combustibility of CAI engine fuel, and accurately predict the range of load conditions where CAI combustion is established. We considered that the scale based on the molecular structure of the fuel that directly affects the ignition and combustion behavior is useful, and developed an evaluation index that expresses the average molecular structure of the multi-component automotive fuel. Then, CAI combustion is established by using a fuel oil composition having a specific distillation property and a newly created ignitability and anti-knock property index within a specific range for a premixed compression ignition (CAI) engine. It has been found that the operating range of the engine extends to a range that cannot be achieved with conventional automobile fuels (gasoline, light oil), and the present invention has been completed.

即ち、本発明の予混合圧縮着火(CAI)エンジン用燃料油組成物は、
・硫黄分が質量ppm以下で、
・90容量%留出温度が260.0℃以下で、
・下記式(1):
IQI=Ha×(−1723)+Ha×Ha×(228)+Ho×(−1988)+Ho×Ho×(3696)+Hα×(−1607)+Hα×Hα×(71)+Hβ×(−1529)+Hβ×Hβ×(41)+Hγ×(−1677)+Hγ×Hγ×(75)+1618 ・・・ (1)
[式中、Haは燃料油組成物の1H−NMRスペクトルの9.20〜6.20ppmのピークの面積の割合であり、Hoは燃料油組成物の1H−NMRスペクトルの6.00〜4.20ppmのピークの面積の割合であり、Hαは燃料油組成物の1H−NMRスペクトルの4.17〜2.00ppmのピークの面積の割合であり、Hβは燃料油組成物の1H−NMRスペクトルの2.00〜1.00ppmのピークの面積の割合であり、Hγは燃料油組成物の1H−NMRスペクトルの1.00〜0.50ppmのピークの面積の割合であり、ここで、スペクトル位置は内部標準物質として用いたテトラメチルシラン(TMS)からの化学シフト位置を指し、0ppmはTMSのスペクトル位置である]で定義される着火性指数(IQI)が32.4以上33.1以下で、
・下記式(2):
AKI=Ha×(8321)+Ha×Ha×(1194)+Ho×(9818)+Ho×Ho×(4481)+Hα×(10660)+Hα×Hα×(−696)+Hβ×(9538)+Hβ×Hβ×(−209)+Hγ×(9479)+Hγ×Hγ×(97)−9447 ・・・ (2)
[式中、Ha、Ho、Hα、Hβ、及びHγは、上記と同義である]で定義されるアンチノック性指数(AKI)が51.1以上66.1以下で、
・下記式(3):
CO2I=1000×{(16×2+12)/12}×(C/100)/(真発熱量)} ・・・ (3)
[式中、Cは、元素分析で求めた炭素の質量割合(%)で、真発熱量(kJ/kg)は、下記式(4):
真発熱量(kJ/kg)=4.184×[8100×C/100+29000×{H/100−O/(8×100)}] ・・・ (4)
{式中、Cは元素分析で求めた炭素の質量割合(%)で、Hは元素分析で求めた水素の質量割合(%)で、Oは元素分析で求めた酸素の質量割合(%)である}で示した計算値である]で定義されるCO2排出原単位(CO2I)が0.069(CO2−g/kJ)以下で、且つ
・下記式(5):
Ha/Htotal=Ha/(Ha+Ho+Hα+Hβ+Hγ) ・・・ (5)
[式中、Haは上記と同義であり、HtotalはHa、Ho、Hα、Hβ、Hγの合計である]で定義される芳香族性(Ha/Htotal)が0.047以上0.069以下である
ことを特徴とする。
That is, the fuel oil composition for premixed compression ignition (CAI) engine of the present invention is
・ Sulfur content is 4 mass ppm or less,
・ 90 vol% distillation temperature is 260.0 ℃ or less,
-The following formula (1):
IQI = Ha × (−1723) + Ha × Ha × (228) + Ho × (−1988) + Ho × Ho × (3696) + Hα × (−1607) + Hα × Hα × (71) + Hβ × (−1529) + Hβ × Hβ × (41) + Hγ × (−1677) + Hγ × Hγ × (75) +1618 (1)
[In the formula, Ha is a ratio of the peak area of 9.20 to 6.20 ppm of the 1 H-NMR spectrum of the fuel oil composition, and Ho is 6.00 to 6.00 of the 1 H-NMR spectrum of the fuel oil composition. The ratio of the peak area of 4.20 ppm, Hα is the ratio of the peak area of 4.17 to 2.00 ppm in the 1 H-NMR spectrum of the fuel oil composition, and Hβ is the ratio of 1 H of the fuel oil composition. -The ratio of the peak area of 2.000 to 1.00 ppm of the NMR spectrum, and Hγ is the ratio of the area of the peak of 1.00 to 0.50 ppm of the 1 H-NMR spectrum of the fuel oil composition, The spectral position indicates the chemical shift position from tetramethylsilane (TMS) used as the internal standard substance, and 0 ppm is the spectral position of TMS]. The ignitability index (IQI) defined by . In the following,
-The following formula (2):
AKI = Ha × (8321) + Ha × Ha × (1194) + Ho × (9818) + Ho × Ho × (4481) + Hα × (10660) + Hα × Hα × (−696) + Hβ × (9538) + Hβ × Hβ × (− 209) + Hγ × (9479) + Hγ × Hγ × (97) −9447 (2)
The antiknock index (AKI) defined by [wherein Ha, Ho, Hα, Hβ, and Hγ are as defined above] is 51.1 or more and 66.1 or less,
-The following formula (3):
CO2I = 1000 × {(16 × 2 + 12) / 12} × (C / 100) / (true calorific value)} (3)
[In the formula, C is the mass ratio (%) of carbon obtained by elemental analysis, and the true calorific value (kJ / kg) is expressed by the following formula (4):
True calorific value (kJ / kg) = 4.184 × [8100 × C / 100 + 29000 × {H / 100−O / (8 × 100)}] (4)
{In the formula, C is a mass proportion (%) of carbon obtained by elemental analysis, H is a mass proportion (%) of hydrogen obtained by elemental analysis, and O is a mass proportion (%) of oxygen obtained by elemental analysis. The CO 2 emission basic unit (CO2I) defined by the following formula (5) is 0.069 (CO2-g / kJ) or less, and the following formula (5):
Ha / Htotal = Ha / (Ha + Ho + Hα + Hβ + Hγ) (5)
In the formula, Ha is as defined above, and Htotal is the sum of Ha, Ho, Hα, Hβ, and Hγ, and the aromaticity (Ha / Htotal) is 0.047 or more and 0.069 or less. It is characterized by being.

なお、本発明において、硫黄分はJIS K2541−6に従って測定され、90容量%留出温度はJIS K2254に従って測定され、1H−NMRスペクトルは日本電子(株)製核磁気共鳴装置(AL−400型)に従って測定される。また、上記式(4)は硫黄分、水分の質量割合(ppm)を無視した経験式である。 In the present invention, the sulfur content is measured according to JIS K2541-6, the 90% by volume distillation temperature is measured according to JIS K2254, and the 1 H-NMR spectrum is measured by JEOL Ltd. nuclear magnetic resonance apparatus (AL-400). Measured according to type). Moreover, the said Formula (4) is an empirical formula which disregarded the sulfur content and the mass ratio (ppm) of the water | moisture content.

本発明によれば、特定の蒸留性状を有し、CO2排出原単位が小さい上に、新規に創出した着火性と燃焼性指標が特定の範囲にある燃料油組成物を予混合圧縮着火(CAI)エンジンに用いることで、CAI燃焼が成立する負荷条件の範囲を、従来の自動車用燃料(ガソリン、軽油)ではなし得ない範囲まで拡大することが可能となり、CO2の削減に寄与する。 According to the present invention, a fuel oil composition having a specific distillation property, a small CO 2 emission basic unit, and a newly created ignitability and combustibility index within a specific range is premixed compression ignition ( By using it in an engine, it is possible to expand the range of load conditions where CAI combustion is established to a range that cannot be achieved with conventional automobile fuels (gasoline, light oil), and contribute to CO 2 reduction.

以下に、本発明を詳細に説明する。本発明の予混合圧縮着火(CAI)エンジン用燃料油組成物は、硫黄分が質量ppm以下で、90容量%留出温度が260.0℃以下で、上記式(1)で定義される着火性指数(IQI)が32.4以上33.1以下で、上記式(2)で定義されるアンチノック性指数(AKI)が51.1以上66.1以下であることを特徴とする。また、本発明の予混合圧縮着火(CAI)エンジン用燃料油組成物は、燃焼時のCO2排出量を低減する観点から上記式(3)で定義されるCO2排出原単位(CO2I)が0.069(CO2−g/kJ)以下で、有害排出ガス成分の排出を抑制する観点から上記式(5)で定義される芳香族性(Ha/Htotal)が0.047以上0.069以下である。 The present invention is described in detail below. The premixed compression ignition (CAI) engine fuel oil composition of the present invention has a sulfur content of 4 ppm by mass or less, a 90% by volume distillation temperature of 260.0 ° C. or less, and is defined by the above formula (1). The ignitability index (IQI) is 32.4 or more and 33.1 or less, and the antiknock index (AKI) defined by the above formula (2) is 51.1 or more and 66.1 or less. In addition, the premixed compression ignition (CAI) engine fuel oil composition of the present invention has a CO 2 emission basic unit (CO2I) defined by the above formula (3) from the viewpoint of reducing CO 2 emission during combustion. The aromaticity (Ha / Htotal) defined by the above formula (5) is 0.047 or more and 0.069 or less from the viewpoint of suppressing emission of harmful exhaust gas components at 0.069 (CO2-g / kJ) or less. It is.

上述のように、従来、燃料の着火性の指標として用いられてきたセタン価(CN)及びリサーチ法オクタン価(RON)は、CAIエンジン用燃料の着火性の指標としては必ずしも適切とはいえない。ところで、着火や燃焼は化学反応であり、本発明者らは、予混合気が準備されるCAIエンジンでは、燃料の化学的特性、すなわち分子構造が支配的になると考えた。そして、本発明者らは、この考えを基に、従来から用いられてきたセタン価やオクタン価に変わる多成分系燃料の着火・燃焼性を表す尺度として、これらよりも有益な指標としてIQIとAKIを創出した。なお、1H−NMRスペクトルにおいて、9.20〜6.20ppmのピークは芳香族環に結合する水素に対応し、6.00〜4.20ppmのピークは二重結合の炭素に結合する水素に対応し、4.17〜2.00ppmのピークは芳香族環に隣接したメチレン水素に対応し、2.00〜1.00ppmのピークはアルキル基に隣接したメチレン水素に対応し、1.00〜0.50ppmのピークはアルキル基に隣接したメチル水素に対応するものである。 As described above, the cetane number (CN) and the research octane number (RON) that have been conventionally used as indicators of fuel ignitability are not necessarily appropriate as indicators of CAI engine fuel ignitability. By the way, ignition and combustion are chemical reactions, and the present inventors considered that in a CAI engine in which a premixed gas is prepared, the chemical characteristics of the fuel, that is, the molecular structure becomes dominant. Based on this idea, the present inventors have used IQI and AKI as indices that are more useful than these as measures that represent the ignition / combustibility of multicomponent fuels that have been changed to cetane number and octane number, which have been conventionally used. Created. In the 1 H-NMR spectrum, the peak of 9.20 to 6.20 ppm corresponds to hydrogen bonded to the aromatic ring, and the peak of 6.00 to 4.20 ppm corresponds to hydrogen bonded to carbon of a double bond. Correspondingly, the 4.17 to 2.00 ppm peak corresponds to the methylene hydrogen adjacent to the aromatic ring, the 2.000 to 1.00 ppm peak corresponds to the methylene hydrogen adjacent to the alkyl group, and 1.000 to The 0.50 ppm peak corresponds to methyl hydrogen adjacent to the alkyl group.

そして、本発明の燃料油組成物は、上記式(1)で定義されるIQIが十分高いため、CAI燃焼を確保できる負荷条件の下限値が十分低い。また、本発明の燃料油組成物は、上記式(2)で定義されるAKIが十分高いため、CAI燃焼を確保できる負荷条件の上限値が十分高い。従って、本発明の燃料油組成物は、CAI燃焼を確保できる負荷条件の上限値が十分高く且つ下限値が十分低いため、CAI燃焼が成立する負荷条件の範囲を、従来の自動車用燃料(ガソリン、軽油)ではなし得ない範囲まで拡大することができ、CAIエンジンに特に好適である。   And since the IQI defined by the said Formula (1) is high enough, the fuel oil composition of this invention has low enough the lower limit of the load conditions which can ensure CAI combustion. Moreover, since the fuel oil composition of the present invention has a sufficiently high AKI defined by the above formula (2), the upper limit value of the load condition that can ensure CAI combustion is sufficiently high. Therefore, the fuel oil composition of the present invention has a sufficiently high upper limit value and a sufficiently low lower limit value of load conditions that can ensure CAI combustion. , Diesel oil) can be expanded to a range that cannot be achieved, and is particularly suitable for CAI engines.

<硫黄分>
本発明のCAIエンジン用燃料油組成物は、硫黄分が質量ppm以下であり、好ましくは1質量ppm以下である。本発明の燃料油組成物は、硫黄分が10質量ppm以下であるため、燃焼生成物である硫黄酸化物が少なく、環境負荷の低減に寄与できる。また、硫黄分は、排出ガス浄化触媒を被毒するので、硫黄分の低減は、排出ガス浄化触媒の性能の維持を通じても、環境負荷の低減に寄与できる。更に、NOx吸蔵還元触媒を装着した車輌においては、該触媒の硫黄被毒の再生に燃料を使用するので、硫黄分の低減は、燃費の向上にも寄与する。そして、これらの効果は、硫黄分が低い程顕著であるため、本発明の燃料油組成物中の硫黄分は、1質量ppm以下であることが好ましい。

<Sulfur content>
The fuel oil composition for CAI engines of the present invention has a sulfur content of 4 ppm by mass or less, preferably 1 ppm by mass or less. Since the fuel oil composition of the present invention has a sulfur content of 10 ppm by mass or less, there are few sulfur oxides as combustion products, which can contribute to reduction of environmental burden. Further, since the sulfur content poisons the exhaust gas purification catalyst, the reduction of the sulfur content can contribute to the reduction of the environmental load through the maintenance of the performance of the exhaust gas purification catalyst. Furthermore, in a vehicle equipped with a NOx occlusion reduction catalyst, fuel is used for regeneration of sulfur poisoning of the catalyst. Therefore, reduction of the sulfur content also contributes to improvement of fuel consumption. And since these effects are so remarkable that a sulfur content is low, it is preferable that the sulfur content in the fuel oil composition of this invention is 1 mass ppm or less.

<90容量%留出温度(T90)>
本発明のCAIエンジン用燃料油組成物は、90容量%留出温度(T90)が260.0℃以下であり、好ましくは255.0℃以下、さらに好ましくは250℃以下であり、特には200℃以下である。燃料油組成物の後留部分の揮発性は、燃料油組成物と空気との混合気の形成や燃焼性に影響し90容量%留出温度(T90)が260.0℃を超えると、十分な予混合気が得られなくなる。また、T90が極端に高くなると燃料の後留分が燃焼室壁に付着し、潤滑油の希釈の原因になるので、T90は260.0℃以下である。さらに、特に限定されるものではないが、本発明の燃料油組成物は、吸気弁や噴射ノズルの清浄性を維持する観点から、90容量%留出温度(T90)が120℃以上であることが好ましい。
<90 volume% distillation temperature (T90)>
The fuel oil composition for CAI engines of the present invention has a 90% by volume distillation temperature (T90) of 260.0 ° C. or lower, preferably 255.0 ° C. or lower, more preferably 250 ° C. or lower, particularly 200 It is below ℃. The volatility of the trailing portion of the fuel oil composition affects the formation of the mixture of air and the combustibility of the fuel oil composition and air, and if the 90 vol% distillation temperature (T90) exceeds 260.0 ° C, it is sufficient A premixed gas mixture cannot be obtained. In addition, if T90 is extremely high, the later fraction of the fuel adheres to the combustion chamber wall and causes dilution of the lubricating oil. Therefore, T90 is 260.0 ° C. or lower. Further, although not particularly limited, the fuel oil composition of the present invention has a 90 vol% distillation temperature (T90) of 120 ° C or higher from the viewpoint of maintaining the cleanliness of the intake valve and the injection nozzle. Is preferred.

<着火性指数(IQI)>
本発明のCAIエンジン用燃料油組成物は、CAI燃焼を確保できる負荷条件の下限値に影響を及ぼす上記式(1)で定義されるIQIが32.4以上33.1以下である。燃料の着火性を向上させるために、エンジン側では圧縮比の向上等の対策が採られるが、燃料の確実な着火と燃焼の安定性とを確保するために燃料自体のIQIを32.4以上とする
<Ignition index (IQI)>
In the fuel oil composition for a CAI engine of the present invention, the IQI defined by the above formula (1) that affects the lower limit of the load condition that can ensure CAI combustion is 32.4 or more and 33.1 or less . In order to improve the ignitability of the fuel, measures such as an improvement in the compression ratio are taken on the engine side. However, in order to ensure reliable ignition of the fuel and stability of combustion, the IQI of the fuel itself is set to 32.4. That's it .

<アンチノック性指数(AKI)>
本発明のCAIエンジン用燃料油組成物は、CAI燃焼を確保できる負荷条件の上限値に影響を及ぼす上記式(2)で定義されるAKIが51.1以上66.1以下であり、好ましくは54以上66.1以下、さらに好ましくは60以上66.1以下である。高負荷条件下での急激な燃焼に伴う騒音やNOxの増大やエンジンの損傷を避ける緩慢な燃焼を確保するためにAKIを51.1以上とするなお、急激な燃焼を回避するために、エンジン側では排気ガス再循環装置(EGR)の導入等の対策が講じられるが、高負荷運転領域を拡大するためにAKIを51.1以上と、54以上とすることが好ましい
<Antiknock index (AKI)>
The CAI engine fuel oil composition of the present invention has an AKI defined by the above formula (2) that affects the upper limit of the load condition that can ensure CAI combustion, and is preferably 51.1 or more and 66.1 or less , preferably It is 54 or more and 66.1 or less , More preferably, it is 60 or more and 66.1 or less . To ensure slow combustion to avoid damage to the increase and the engine noise and NOx caused by the rapid combustion at high load conditions, and the AKI 51.1 or more. In order to avoid rapid combustion, in the engine-side Although measures such as the introduction of the exhaust gas recirculation system (EGR) are taken, in order to expand the high-load operation region, the AKI and 51.1 or more , 54 or more .

<CO2排出原単位(CO2I)>
本発明のCAIエンジン用燃料油組成物は、上記式(3)で定義されるCO2Iが0.069(CO2−g/kJ)以下である。エンジンから排出されるCO2を削減するためには、燃料の単位発熱量当たりのCO2排出量が少ない燃料が必要であり、CO2Iは0.069(CO2−g/kJ)以下である
<CO 2 emission intensity (CO2I)>
In the fuel oil composition for a CAI engine of the present invention, CO2I defined by the above formula (3) is 0.069 (CO2-g / kJ) or less. In order to reduce the CO 2 emitted from the engine, a fuel having a small amount of CO 2 emission per unit calorific value of the fuel is required, and CO 2 I is 0.069 (CO 2 -g / kJ) or less .

<芳香族性(Ha/Htotal)>
本発明のCAIエンジン用燃料油組成物は、上記式(5)で定義されるHa/Htotalが0.047以上0.069以下であるなお、Ha/Htotalが大きくなると芳香族環に結合する水素が多くなり、有害排出ガスの増大に繋がるので、Ha/Htotalは0.069以下である特に、NOxやCOは、Ha/Htotalに影響されるので、Ha/Htotalは0.069以下である
<Aromaticity (Ha / Htotal)>
In the fuel oil composition for a CAI engine of the present invention, the Ha / Htotal defined by the above formula (5) is 0.047 or more and 0.069 or less . When Ha / Htotal increases, more hydrogen is bonded to the aromatic ring, leading to an increase in harmful exhaust gas, so Ha / Htotal is 0.069 or less . In particular, since NOx and CO are affected by Ha / Htotal, Ha / Htotal is 0.069 or less .

<燃料油組成物の調製>
本発明のCAIエンジン用燃料油組成物は、上記の性状を満たすように、石油系ナフサや接触分解ガソリン基材及び接触改質ガソリン基材の飽和水素化燃料から調製することができる。
<Preparation of fuel oil composition>
The fuel oil composition for a CAI engine of the present invention can be prepared from a saturated hydrogenated fuel of a petroleum naphtha, a catalytic cracked gasoline base and a catalytic reformed gasoline base so as to satisfy the above properties.

<添加剤>
本発明のCAIエンジン用燃料油組成物には、燃料油組成物の安定性を確保するための酸化防止剤、エンジンの清浄性を確保するための清浄剤等を適宜添加することができる。
<Additives>
An antioxidant for ensuring the stability of the fuel oil composition, a detergent for ensuring the cleanliness of the engine, and the like can be appropriately added to the fuel oil composition for the CAI engine of the present invention.

上記酸化防止剤としては、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-メチルフェノール、2,4-ジメチル-6-t-ブチルフェノール、2,4,6-トリ-t-ブチルフェノール、2-t-ブチル-4,6-ジメチルフェノール、2-t-ブチルフェノール等のフェノール系酸化防止剤や、N,N'-ジイソプロピル-p-フェニレンジアミン、N,N'-ジ-sec-ブチル-p-フェニレンジアミン等のアミン系酸化防止剤、及びこれらの混合物が挙げられる。これら酸化防止剤の添加量は、0.05〜1質量%の範囲が好ましい。   Examples of the antioxidant include 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 2,4-dimethyl-6-t-butylphenol, 2,4,6- Phenolic antioxidants such as tri-t-butylphenol, 2-t-butyl-4,6-dimethylphenol, 2-t-butylphenol, N, N'-diisopropyl-p-phenylenediamine, N, N'- Examples thereof include amine-based antioxidants such as di-sec-butyl-p-phenylenediamine, and mixtures thereof. The addition amount of these antioxidants is preferably in the range of 0.05 to 1% by mass.

上記清浄剤としては、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミン等が挙げられる。これら清浄剤の添加量は、特に限定されず、目的に応じて、適宜選択することができる。   Examples of the detergent include succinimide, polyalkylamine, and polyetheramine. The addition amount of these detergents is not particularly limited, and can be appropriately selected according to the purpose.

<予混合圧縮着火エンジン>
上述した本発明の燃料油組成物は、予混合圧縮着火(CAI)エンジンに用いられる。該CAIエンジンは、HCCI(Homogeneous Charge Compression Ignition)エンジンとも呼ばれ、従来のディーゼルエンジンと同様に圧縮着火であるが、燃料噴射時期、燃料噴射圧力や噴射パターン、EGR、圧縮比、燃焼室構造などを最適化して達成される燃料と空気が十分に混合した予混合気の燃焼で形成される予混合火炎のみで燃焼を完結する燃焼方式である。したがって、熱発生のパターンを観察すると冷炎に伴う微弱な熱発生(観察されない場合もあるが)に続いて主燃焼である予混合火炎による1つの熱発生ピークが観察される。従来型ディーゼル燃焼では予混合火炎と拡散火炎に伴う2つのピークが観察される点で、大きく異なっている。また、予混合火炎の伝播で燃焼が完結するガソリンエンジンとも異なり、高効率であるという特徴を有する。
<Premixed compression ignition engine>
The fuel oil composition of the present invention described above is used in a premixed compression ignition (CAI) engine. The CAI engine is also called an HCCI (Homogeneous Charge Compression Ignition) engine, which is compression ignition like a conventional diesel engine, but fuel injection timing, fuel injection pressure and injection pattern, EGR, compression ratio, combustion chamber structure, etc. Is a combustion system that completes combustion only by a premixed flame formed by combustion of a premixed gas in which fuel and air are sufficiently mixed. Therefore, when the heat generation pattern is observed, one heat generation peak due to the premixed flame as the main combustion is observed following the weak heat generation (although it may not be observed) accompanying the cold flame. Conventional diesel combustion is greatly different in that two peaks associated with premixed flame and diffusion flame are observed. Further, unlike a gasoline engine in which combustion is completed by propagation of a premixed flame, it has a feature of high efficiency.

そして、かかる予混合圧縮自己着火(CAI)エンジンに上述した本発明の燃料油組成物を用いることで、CAI燃焼を確保できる負荷条件の範囲を、従来の自動車用燃料(ガソリン、軽油)ではなし得ない範囲まで拡大できるため、従来の自動車用燃料を用いた場合よりも、窒素酸化物(NOx)、粒子状物質(PM)等の有害排出ガス成分を削減しつつ、自動車の燃費を向上させることができる。   And, by using the above-described fuel oil composition of the present invention for such a premixed compression self-ignition (CAI) engine, there is no range of load conditions that can ensure CAI combustion with conventional automobile fuels (gasoline, light oil). Since it can be expanded to a range that can not be obtained, it improves the fuel efficiency of automobiles while reducing harmful exhaust gas components such as nitrogen oxides (NOx) and particulate matter (PM) compared to the case of using conventional automobile fuel be able to.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

以下の供試燃料に対して、下記の方法で性状分析を行った。
<供試燃料の調製>
・RG:市販のレギュラーガソリンを準備した。
・RFG:重質ナフサを固体触媒により移動床式反応装置を用いて反応させることにより、芳香族分の高い炭化水素に改質し、ペンタン留分以下を蒸留分離することにより得られたオクタン価106のガソリンを用いた。
・ALK:流動接触分解装置から留出されるブチレンと常圧蒸留装置から留出されるブタンを原料油にして、硫酸接触法により異性化させることにより得られたオクタン価95.5のアルキレートガソリンを用いた。
・GTL:(株)ジョモサンエナジーからモスガス品として購入したFT合成したパラフィン系燃料
・燃料−1:原油の常圧蒸留で得られる軽質ガソリンを水素化精製して製造されるナフサを原料として接触改質を行い、得られた接触改質ガソリン基材を水素化処理により全量ナフテン成分にした燃料を50容量%、RGを50容量%混合した。
・燃料−2:中東原油を常圧蒸留により170〜360℃の沸点に分離して、水素化脱硫を行い、さらに精密蒸留により280℃以上を抜き出したものを50容量%、RGを50容量%混合した。
Properties of the following test fuels were analyzed by the following method.
<Preparation of test fuel>
-RG: Commercial regular gasoline was prepared.
RFG: octane number obtained by reacting heavy naphtha with a solid catalyst using a moving bed reactor to reform to a hydrocarbon with high aromatic content and distilling and separating the pentane fraction and below. Of gasoline was used.
ALK: An alkylate gasoline having an octane number of 95.5 obtained by isomerizing by a sulfuric acid catalytic method using butylene distilled from a fluid catalytic cracking unit and butane distilled from an atmospheric distillation unit as raw material oil Was used.
・ GTL: FT synthesized paraffinic fuel purchased as moss gas from Jomosan Energy Co., Ltd. ・ Fuel-1: Contact with naphtha produced by hydrorefining light gasoline obtained by atmospheric distillation of crude oil Reformation was carried out, and the obtained catalytically reformed gasoline base material was mixed with 50% by volume of fuel obtained by converting the total amount of naphthenic components by hydrogenation, and 50% by volume of RG.
・ Fuel-2: Middle East crude oil was separated into boiling points of 170-360 ° C by atmospheric distillation, hydrodesulfurized, and further extracted at 280 ° C or higher by precision distillation, 50% by volume, RG 50% by volume Mixed.

<燃料の性状分析法>
・密度:JIS K2249「原油及び石油製品密度試験法」
・蒸留性状:JIS K2254「蒸留試験法」
・硫黄分:JIS K2541−6「硫黄分試験法(紫外蛍光法)」
・セタン価(CN):JIS K2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」に規定された実測法(指数は適用できない)
・リサーチ法オクタン価(RON):JIS K2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」
1H−NMRスペクトルは日本電子(株)製核磁気共鳴装置(AL−400型)に従って測定
・炭素の質量割合:元素分析で測定
・真発熱量:元素分析で求めた炭素の質量割合、水素の質量割合、酸素の質量割合を用いて、上記式(4)に従って算出
<Fuel property analysis method>
・ Density: JIS K2249 “Crude oil and petroleum product density test method”
・ Distillation properties: JIS K2254 "Distillation test method"
・ Sulfur content: JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”
-Cetane number (CN): Measured method defined in JIS K2280 "Petroleum products-Fuel oil-Octane number and cetane number test method and cetane index calculation method" (index is not applicable)
-Research octane number (RON): JIS K2280 "Petroleum products-Fuel oil-Octane number and cetane number test method and cetane index calculation method"
1 H-NMR spectrum was measured according to a nuclear magnetic resonance apparatus (AL-400 type) manufactured by JEOL Ltd. ・ Carbon mass ratio: measured by elemental analysis ・ True calorific value: Carbon mass ratio determined by elemental analysis, Calculated according to the above formula (4) using the mass proportion of hydrogen and the mass proportion of oxygen

<供試燃料の評価>
単気筒で排気量が1.8(L)のエンジンを用いて、市販ガソリン(RG)に比較して上述の各燃料のCAI燃焼範囲を相対的に評価した。CAI燃焼の低負荷限界は、着火の安定性で、高負荷限界は熱発生率の最大値で決定した。RFGやALKでは、RGとほぼ同等のCAI燃焼範囲を示すが、GTLはAKIが小さく高負荷限界がRGよりも小さい。一方、水素化RFGとRGの混合品(燃料−1)及び軽質軽油とRGの混合品(燃料−2)は適度なIQIとAKIを有しているので、CAI燃焼範囲がRGよりも広くなっている。表1にRGを基準としたCAI燃焼範囲をRGと同等の場合を△、RGよりも広い場合を○、RGよりも狭い場合を×、RGと上下限ともに同等の場合を△/△、RGと上限が同等ながら下限が狭い場合を△/×で記載した。
<Evaluation of test fuel>
Using a single-cylinder engine with a displacement of 1.8 (L), the CAI combustion range of each of the above-mentioned fuels was relatively evaluated as compared to commercially available gasoline (RG). The low load limit of CAI combustion was determined by the stability of ignition, and the high load limit was determined by the maximum value of the heat generation rate. RFG and ALK show a CAI combustion range almost equivalent to RG, but GTL has a smaller AKI and a higher high load limit than RG. On the other hand, the mixture of hydrogenated RFG and RG (fuel-1) and the mixture of light gas oil and RG (fuel-2) have moderate IQI and AKI, so the CAI combustion range is wider than RG. ing. Table 1 shows that the CAI combustion range based on RG is equivalent to RG, ◯ when wider than RG, × when narrower than RG, Δ / △ when RG is equivalent to both upper and lower limits, RG The case where the upper limit is the same and the lower limit is narrow is indicated by Δ / x.

Figure 0005627845
Figure 0005627845

表1から明らかなように、本発明で規定する性状を満たす燃料組成物は、市販ガソリンに比較して、CAI燃焼範囲を拡大させることが出来る。   As is apparent from Table 1, the fuel composition satisfying the properties defined in the present invention can expand the CAI combustion range as compared with commercially available gasoline.

Claims (1)

硫黄分が質量ppm以下で、90容量%留出温度が260.0℃以下で、
下記式(1):
IQI=Ha×(−1723)+Ha×Ha×(228)+Ho×(−1988)+Ho×Ho×(3696)+Hα×(−1607)+Hα×Hα×(71)+Hβ×(−1529)+Hβ×Hβ×(41)+Hγ×(−1677)+Hγ×Hγ×(75)+1618 ・・・ (1)
[式中、Haは燃料油組成物の1H−NMRスペクトルの9.20〜6.20ppmのピークの面積の割合であり、Hoは燃料油組成物の1H−NMRスペクトルの6.00〜4.20ppmのピークの面積の割合であり、Hαは燃料油組成物の1H−NMRスペクトルの4.17〜2.00ppmのピークの面積の割合であり、Hβは燃料油組成物の1H−NMRスペクトルの2.00〜1.00ppmのピークの面積の割合であり、Hγは燃料油組成物の1H−NMRスペクトルの1.00〜0.50ppmのピークの面積の割合であり、ここで、スペクトル位置は内部標準物質として用いたテトラメチルシラン(TMS)からの化学シフト位置を指し、0ppmはTMSのスペクトル位置である]で定義される着火性指数(IQI)が32.4以上33.1以下で、
下記式(2):
AKI=Ha×(8321)+Ha×Ha×(1194)+Ho×(9818)+Ho×Ho×(4481)+Hα×(10660)+Hα×Hα×(−696)+Hβ×(9538)+Hβ×Hβ×(−209)+Hγ×(9479)+Hγ×Hγ×(97)−9447 ・・・ (2)
[式中、Ha、Ho、Hα、Hβ、及びHγは、上記と同義である]で定義されるアンチノック性指数(AKI)が51.1以上66.1以下で、
下記式(3):
CO2I=1000×{(16×2+12)/12}×(C/100)/(真発熱量)} ・・・ (3)
[式中、Cは、元素分析で求めた炭素の質量割合(%)で、真発熱量(kJ/kg)は、下記式(4):
真発熱量(kJ/kg)=4.184×[8100×C/100+29000×{H/100−O/(8×100)}] ・・・ (4)
{式中、Cは元素分析で求めた炭素の質量割合(%)で、Hは元素分析で求めた水素の質量割合(%)で、Oは元素分析で求めた酸素の質量割合(%)である}で示した計算値である]で定義されるCO2排出原単位(CO2I)が0.069(CO2−g/kJ)以下で、且つ
下記式(5):
Ha/Htotal=Ha/(Ha+Ho+Hα+Hβ+Hγ) ・・・ (5)
[式中、Haは上記と同義であり、HtotalはHa、Ho、Hα、Hβ、Hγの合計である]で定義される芳香族性(Ha/Htotal)が0.047以上0.069以下である
ことを特徴とする予混合圧縮着火エンジン用燃料油組成物。
Sulfur content is 4 mass ppm or less, 90 vol% distillation temperature is 260.0 ° C or less,
Following formula (1):
IQI = Ha × (−1723) + Ha × Ha × (228) + Ho × (−1988) + Ho × Ho × (3696) + Hα × (−1607) + Hα × Hα × (71) + Hβ × (−1529) + Hβ × Hβ × (41) + Hγ × (−1677) + Hγ × Hγ × (75) +1618 (1)
[In the formula, Ha is a ratio of the peak area of 9.20 to 6.20 ppm of the 1 H-NMR spectrum of the fuel oil composition, and Ho is 6.00 to 6.00 of the 1 H-NMR spectrum of the fuel oil composition. The ratio of the peak area of 4.20 ppm, Hα is the ratio of the peak area of 4.17 to 2.00 ppm in the 1 H-NMR spectrum of the fuel oil composition, and Hβ is the ratio of 1 H of the fuel oil composition. -The ratio of the peak area of 2.000 to 1.00 ppm of the NMR spectrum, and Hγ is the ratio of the area of the peak of 1.00 to 0.50 ppm of the 1 H-NMR spectrum of the fuel oil composition, The spectral position indicates the chemical shift position from tetramethylsilane (TMS) used as the internal standard substance, and 0 ppm is the spectral position of TMS]. The ignitability index (IQI) defined by . In the following,
Following formula (2):
AKI = Ha × (8321) + Ha × Ha × (1194) + Ho × (9818) + Ho × Ho × (4481) + Hα × (10660) + Hα × Hα × (−696) + Hβ × (9538) + Hβ × Hβ × (− 209) + Hγ × (9479) + Hγ × Hγ × (97) −9447 (2)
The antiknock index (AKI) defined by [wherein Ha, Ho, Hα, Hβ, and Hγ are as defined above] is 51.1 or more and 66.1 or less,
Following formula (3):
CO2I = 1000 × {(16 × 2 + 12) / 12} × (C / 100) / (true calorific value)} (3)
[In the formula, C is the mass ratio (%) of carbon obtained by elemental analysis, and the true calorific value (kJ / kg) is expressed by the following formula (4):
True calorific value (kJ / kg) = 4.184 × [8100 × C / 100 + 29000 × {H / 100−O / (8 × 100)}] (4)
{In the formula, C is a mass proportion (%) of carbon obtained by elemental analysis, H is a mass proportion (%) of hydrogen obtained by elemental analysis, and O is a mass proportion (%) of oxygen obtained by elemental analysis. The CO 2 emission basic unit (CO2I) defined by the formula (5) is 0.069 (CO 2 -g / kJ) or less and the following formula (5):
Ha / Htotal = Ha / (Ha + Ho + Hα + Hβ + Hγ) (5)
In the formula, Ha is as defined above, and Htotal is the sum of Ha, Ho, Hα, Hβ, and Hγ, and the aromaticity (Ha / Htotal) is 0.047 or more and 0.069 or less. A fuel oil composition for a premixed compression ignition engine, characterized by comprising:
JP2008281248A 2008-10-31 2008-10-31 Fuel oil composition for premixed compression ignition gasoline engine Active JP5627845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281248A JP5627845B2 (en) 2008-10-31 2008-10-31 Fuel oil composition for premixed compression ignition gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281248A JP5627845B2 (en) 2008-10-31 2008-10-31 Fuel oil composition for premixed compression ignition gasoline engine

Publications (2)

Publication Number Publication Date
JP2010106183A JP2010106183A (en) 2010-05-13
JP5627845B2 true JP5627845B2 (en) 2014-11-19

Family

ID=42295952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281248A Active JP5627845B2 (en) 2008-10-31 2008-10-31 Fuel oil composition for premixed compression ignition gasoline engine

Country Status (1)

Country Link
JP (1) JP5627845B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109053B2 (en) * 2002-08-30 2008-06-25 新日本石油株式会社 Fuel for premixed compression self-ignition engines
JP2006028493A (en) * 2004-06-16 2006-02-02 Idemitsu Kosan Co Ltd Fuel oil composition for premix compression self-ignition engine
JP4902278B2 (en) * 2006-03-31 2012-03-21 Jx日鉱日石エネルギー株式会社 Fuel for premixed compression self-ignition engines

Also Published As

Publication number Publication date
JP2010106183A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5355064B2 (en) Fuel for premixed compression self-ignition engines
JP4902278B2 (en) Fuel for premixed compression self-ignition engines
JP2006028493A (en) Fuel oil composition for premix compression self-ignition engine
JP4454247B2 (en) Fuel oil composition for premixed compression self-ignition engine
JP5019802B2 (en) Fuel for premixed compression self-ignition engines
JP5361499B2 (en) Fuel oil composition for premixed compression ignition engine with reformer
JP2006037075A (en) Fuel oil composition for preliminarily mixing compression self-ignition type engine
JP5319128B2 (en) Fuel oil composition for premixed compression ignition engine and method for producing the same
JP2005343917A (en) Fuel oil composition for premixed compressed self-ignition type engine
JP5342865B2 (en) Fuel oil composition for premixed compression ignition engine and method for producing the same
JP5184903B2 (en) Low temperature, premixed compression ignition engine fuel oil composition
JP5627845B2 (en) Fuel oil composition for premixed compression ignition gasoline engine
JP4930820B2 (en) Fuel oil composition for diesel engines having a multi-stage injection mechanism
JP4458405B2 (en) Fuel for premixed compression self-ignition engines
JP5130065B2 (en) Fuel oil composition for off-road premixed compression ignition engines
JP4815178B2 (en) Fuel for premixed compression self-ignition engines
JP5283950B2 (en) Low temperature, premixed compression ignition engine fuel oil composition
JP5188796B2 (en) Fuel oil composition for premixed compression ignition engine and method for producing the same
JP5342864B2 (en) Fuel oil composition for premixed compression ignition engine and method for producing the same
JP5436849B2 (en) Fuel oil composition for premixed compression ignition engines
JP5350769B2 (en) Low temperature, premixed compression ignition engine fuel oil composition
JP5525834B2 (en) Light oil composition
JP5334556B2 (en) Low temperature, premixed compression ignition engine fuel oil composition
JP5620057B2 (en) Fuel oil composition for premixed compression self-ignition engine
JP5436848B2 (en) Fuel oil composition for premixed compression ignition engines

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131016

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5627845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250